Skip to main content

Characterization of Active Microcantilevers Using Laser Doppler Vibrometry

  • Conference paper
  • First Online:
Vibration Engineering for a Sustainable Future

Abstract

Active atomic force microscope cantilevers with on-chip actuation and sensing provide several advantages over passive cantilevers which rely on piezoacoustic base-excitation and the optical beam deflection measurement. Most importantly, these cantilevers provide clean frequency responses, the possibility of down-scaling and parallelization to cantilever arrays as well as the absence of optical interferences. In this paper, we demonstrate the analysis and calibration steps for three active cantilever geometries with integrated piezoelectric actuation. For this purpose, laser Doppler vibrometry (LDV) is used to experimentally obtain the deflection mode shapes of the first three eigenmodes, calibrate actuation gains, and to determine the dynamic modal stiffnesses using the Brownian spectrum of the cantilever. The experimental values are compared with finite element simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhushan, B.: Scanning Probe Microscopy in Nanoscience and Nanotechnology. Springer, Berlin/Heidelberg (2010)

    Book  Google Scholar 

  2. Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  3. Ruppert, M.G., Moheimani, S.O.R.: High-bandwidth multimode self-sensing in bimodal atomic force microscopy. Beilstein J. Nanotechnol. 7, 284–295 (2016)

    Article  Google Scholar 

  4. Rangelow, I.W., et al.: Review article: active scanning probes: a versatile toolkit for fast imaging and emerging nanofabrication. J. Vac. Sci. Technol. B 35(6), 06G101 (2017)

    Google Scholar 

  5. Ruppert, M.G., Fowler, A.G., Maroufi, M., Moheimani, S.O.R.: On-chip dynamic mode atomic force microscopy: a silicon-on-insulator MEMS approach. IEEE J. Microelectromech. Syst. 26(1), 215–225 (2017)

    Article  Google Scholar 

  6. Ruppert, M.G., et al.: Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing. Nanotechnology 30(8), 085503 (2019)

    Article  Google Scholar 

  7. Rothberg, S., et al.: An international review of laser doppler vibrometry: making light work of vibration measurement. Opt. Lasers Eng. 99, 11–22 (2017)

    Article  Google Scholar 

  8. Moore, S.I., Ruppert, M.G., Yong, Y.K.: Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement. Beilstein J. Nanotechnol. 8, 358–371 (2017)

    Article  Google Scholar 

  9. Ruppert, M.G., Moheimani, S.O.R.: Multimode Q control in tapping-mode AFM: enabling imaging on higher flexural eigenmodes. IEEE Trans. Control Syst. Technol. 24(4), 1149–1159 (2016)

    Article  Google Scholar 

  10. Ruppert, M.G., Yong, Y.K.: Note: guaranteed collocated multimode control of an atomic force microscope cantilever using on-chip piezoelectric actuation and sensing. Rev. Sci. Instrum. 88(8), 086109 (2017)

    Article  Google Scholar 

  11. Sader, J.E., et al.: Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Rev. Sci. Instrum. 83(10), 103705 (2012)

    Article  Google Scholar 

  12. Moore, S.I., Ruppert, M.G., Yong, Y.K.: An optimization framework for the design of piezoelectric AFM cantilevers. Precis. Eng. 60, 130–142 (2019)

    Article  Google Scholar 

  13. Kaajakari, V.: Practical MEMS. Small Gear Publishing, Las Vegas (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Ruppert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruppert, M.G., Bem, N.F.S.D., Fleming, A.J., Yong, Y.K. (2021). Characterization of Active Microcantilevers Using Laser Doppler Vibrometry. In: Oberst, S., Halkon, B., Ji, J., Brown, T. (eds) Vibration Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-48153-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48153-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48152-0

  • Online ISBN: 978-3-030-48153-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics