
Modeling of a Speed Control System
Using Event-B

Amel Mammar1(B) and Marc Frappier2

1 SAMOVAR, Institut Polytechnique de Paris, Télécom SudParis, Évry, France
amel.mammar@telecom-sudparis.eu

2 Laboratoire GRIF, Département d’informatique, Faculté des sciences,
Université de Sherbrooke, Québec, Canada

marc.frappier@usherbrooke.ca

Abstract. The present paper presents our proposal of an Event-B
model of a speed control system, a part of the case study provided in
the ABZ2020 conference. The case study describes how the system regu-
lates the current speed of a car according to a set criteria like the speed
desired by the driver, the position of a possible preceding vehicle but also
a given speed limit that the driver must not exceed. For that purpose,
this controller reads different information form the available sensors (key
state, desired speed, etc.) and takes the adequate actions by acting on
the actuators of the car’s speed according to the read information. To
formally model this system, we adopt a stepwise refinement approach
with the Event-B method. We consider most features of the case study,
all proof obligations have been discharged using the Rodin provers. Our
model has been validated using ProB by applying the different provided
scenarios. This validation has permitted us to point out and correct some
mistakes, ambiguities and oversights contained in the first versions of the
case study.

Keywords: Speed control system · Event-B method · Refinement ·
Verification

1 Introduction

The case study, proposed in the context of the ABZ2020 conference, is com-
posed of two parts: Adaptive Exterior Light and Speed Control Systems. Since
the whole case study is quite lengthy/complex and the two parts are only loosely
coupled as stated in the description document, we chose to handle each part in a
separate paper. The present paper deals with the speed control system whereas
a companion paper considers the adaptive exterior light system [7].

The goal of the speed control system is to regulate the current speed of a car
according to a set of criteria like the speed desired by the driver, the position of

This work was supported in part by NSERC (Natural Sciences and Engineering
Research Council of Canada).

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 367–381, 2020.
https://doi.org/10.1007/978-3-030-48077-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_29&domain=pdf
http://orcid.org/0000-0003-0016-6898
http://orcid.org/0000-0002-4402-2514
https://doi.org/10.1007/978-3-030-48077-6_29

368 A. Mammar and M. Frappier

a possible preceding vehicle but also a given speed limit that the driver must not
exceed. The system can behave according to two options: the first one regulates
the speed independently on the any preceding vehicle, the second component
takes into account the position of a possible preceding vehicle by maintaining a
safety distance. The driver has the possibility to choose which option to activate
at a given moment. Like a controller, in both options, the system reads different
informations from the available sensors (key state, desired speed, the preceding
vehicle position, etc.) and takes the adequate actions by acting on the actuators
of the car’s speed according to the read information.

The present paper describes the formal modeling of the speed control sys-
tem using the Event-B method and its refinement technique that permits to
master the complexity of a system by gradually introducing its different ele-
ments/characteristics. Proposed by Abrial as a successor of the B method [1],
the Event-B method [2] permits to model discrete systems using mathemati-
cal notations. An Event-B specification is made of two elements: context and
machine. A context describes the static part of an Event-B specification; it
consists of constants and sets (user-defined types) together with axioms that
specify their properties. The dynamic part is included in a machine that defines
variables and a set of events. The possible values that the variables can hold
are specified by an invariant using a first-order formula on the state variables.
The different machines composing an Event-B specification are related with
a refinement relation whereas the contexts are linked with an extension link
(extends). Each refinement adds new information to a model; these could be
new state variables, new events or new properties. Event-B refinement allows
for guard strengthening, nondeterminism reduction, and new events introduc-
tion. New events of a model M ′ that refines a model M are considered to refine
a skip event of M , hence they cannot modify a variable of M . Therefore, all
events that need to modify a variable v must be defined in the same model
where v is first introduced. The correctness of an Event-B model is ensured by
proof obligations that verify that the invariant is preserved by each event and
that the refinement preserves the properties of the system.

The development of our Event-B models has been done under the Rodin
platform [3] that provides editors, provers and several other plugins for various
tasks like animation and model checking with ProB [5]. We use ProB in order to
animate the built models with two purposes: exhibiting the problematic scenarios
that violate the invariant prior to the hard/long proof phase, but also validating
the specification by playing the provided scenarios in order to be sure that we
have specified the right system.

The rest of this paper is structured as follows. Section 2 describes our mod-
elling strategy. Section 3 describes our model in more details. Section 4 describes
the validation and verification of our model. Section 5 identifies the weaknesses
of the requirements document provided for the case study, and the adequacy of
the Event-B method for constructing a model of this case study. We conclude
in Sect. 6.

Modeling a Speed Control System Using Event-B 369

2 Modelling Strategy

The speed control system subject of this paper can be seen as a control system
that interacts with its environment through a set of sensors, which provide it
with information about the state of the physical elements, and a set of actu-
ators that are used to transmit the adequate orders to these elements. In this
paper, we use the concepts described in [10]. A sensor measures the value of
some environment elements m, called a monitored variable (e.g., the state of
the ignition key), and provides this measure (e.g., whether the key is inserted
or not) to the software controller as an input variable i. The software controller
can influence the environment by sending commands, called output variable o to
actuators. An actuator influences the value of some characteristics of the envi-
ronment, call a controlled variable c. Variables m and c are called environment
variables. Variables i and o are called controller variables. Finally, a controller
has its own internal state variables to perform computations. In this case study,
we use Event-B state variables to represent both environment and controller
variables. We do not model sensor or actuator failures.

A well-known architecture of a control system is a control loop that reads
all input variables at once, at a given moment, and then computes all output
variables in the same iteration. But, it can be also viewed as a continuous system
that can be interrupted by any change in the environment represented by a new
value sent by a sensor. In this paper, we see the controller as a distributed system;
each sub-system is associated to a given sensor. In that case, the system reacts
to each single modification of the sensor. This approach can be seen as a more
abstract approach, as it is common in the Event-B style of system modeling. We
define one event for each input variable change, which allows for a more modular
specification that is easier to prove. This is closer to an interrupt-driven control
system. Our Event-B abstraction is also a reasonable abstraction for a control
loop, considering that in most cases, a single input variable changes between two
control loop iterations. The control loop can be derived from our specification
by merging all events and defining priorities between events.

3 Model Details

This section briefly describes the main modeling elements that characterize
our specification. The complete archive of the Event-B project is available
in [6]. Let us note that the development of our model (Event-B components,
proofs, animation, etc.) took about two months including the different exchanges
with the authors of the case study. Our model contains 4 contexts and 4
machines/refinements. Table 1 relates the components of our model with the
requirements listed in [4]. As one can remark, some requirements are modelled
as invariants whereas others are dealt with in the adequate events. We chose to
do not model some requirements as invariants because this would make the mod-
eling and the proof activities more complex and difficult. Requirement SCS-41
for example: “. . . the self-test of the radar system is restarted every 10min” is

370 A. Mammar and M. Frappier

modeled by a variable nextTest that is set to the current time plus 10 min in the
events that represent the movement of the key and the progression of the time
because the self-test of the radar system should be performed at the start (the
key is in the ignition position) and then every 10 min. Modeling this requirement
as an invariant would require the introduction of two extra variables to store the
moments of two consecutive self-test activities, then we have to state that 10 min
should be elapsed between these two moments.

Machine M0 models the current speed of the studied car independently from
any preceding vehicle and also without giving any condition on its evolution.
This machine defines the following unique invariant:

currentSpeed ∈ rangeSpeed

where rangeSpeed denotes a constant defined in the context C0 to set the range
values for the speed (rangeSpeed = 0..5000). Machine M0 defines a unique event
updateV ehicleSpeed to set the current speed of the car as follows:

Event updateVehicleSpeed =̂
any

val
where

grd1: val ∈ rangeSpeed
then

act1: currentSpeed := val
end

Machine M1 introduces the physical elements that are manipulated by the driver
and that have an impact on the current speed of the car. These elements include
gas/brake pedal, key, cruise control lever, etc. Machine M1 describes how the
position of each of these elements evolves depending on its current position. In
this same machine, we also introduce the event progress that makes the current
time keep progressing. Machine M2 models the desired speed together with
the activation of the normal/adaptive cruise control and also the traffic sign
detection that has an impact on the value of the desired speed according to the
requirements (SCS-36,SCS-39). It is worth noting that some events, like that
related to the traffic sign detection, are introduced in M1 even if this aspect
is really dealt with in Machine M2. Indeed, these events need to modify some
variables that are introduced in M1 and, as noted before, a new event cannot
modify a variable defined in a previous refinement level. Machine M3 specifies
the different aspects that depend on or impact the desired/current speed like
speed-dependent safety distance that also depends on the speed of the preceding
vehicle but also the faults that can happen on the radar system. The main
elements of these Event-B components are described hereafter.

3.1 Machine M1: Physical Elements

This machine refines Machine M0 by introducing the different elements that
impact the current speed of the car. This includes the physical elements that

Modeling a Speed Control System Using Event-B 371

Table 1. Cross-reference between the components of our model and the requirements
of [4]

Requirements [4] Component Invariant/event

SCS-1, SCS-31 M2 inv4

SCS-2, SCS-31 M2 inv5

SCS-3, SCS-12, SCS-13,
SCS-16, SCS-17, SCS-31

M2 inv6 and inv7

SCS-4, SCS-19, SCS-31 M2 inv8

SCS-5, SCS-19, SCS-31 M2 inv9

SCS-6, SCS-19, SCS-31 M2 inv10 and inv11

SCS-7, SCS-19, SCS-31 M2 inv12

SCS-8, SCS-19, SCS-31 M2 inv13

SCS-9, SCS-31 M2 inv14

SCS-10, SCS-31 M2 inv15

SCS-11, SCS-31 M2 inv16

SCS-14 Not covered since no information is given on
how the system reaches/ maintain the desired
speed

SCS-15 M3 inv13

SCS-18 M3 inv24, inv25, inv26

SCS-20 M3 inv12

SCS-21 Not covered

SCS-22 M3 inv11

SCS-23 M3 inv14, inv15 and inv16

SCS-24 M3 inv17

SCS-25 M3 inv19

SCS-26 M3 inv20

SCS-27-SCS-28 Not covered

SCS-29 M3 Event moveSpeedLimiterSwitch

SCS-30 Not covered since it is related to the interface
appearance

SCS-32, SCS-33, SCS-34 M2 inv21

SCS-35 M2 inv26 and moveSpeedLimiterSwitch

SCS-36, SCS-37, SCS-38,
SCS-39

M2 inv24

SCS-40 and SCS-41 M2 Event moveKey and progress

SCS-42 M3 inv13

SCS-43 Not covered since the light system is not
included

the driver manipulates, the radar system that gives the distance to the nearest
obstacle but also the time progression since it makes some variables evolve like
the desired speed. For that purpose, several variables/invariants are introduced
to model how the position of the physical elements evolves depending on its

372 A. Mammar and M. Frappier

current position. In this paper, we give details about the radar the system, the
time progression and also the cruise control lever.

The state of the radar system is modelled by a Boolean variable
rangeRadarState. This variable is initialized to FALSE since the ignition is
Off at the beginning then its state is updated each 10 min. Therefore, we define
a variable nextTest to store the moment of the next radar system self-test. These
variables are defined by the following invariants:

keyState = KeyInIgnitionOnPosition∧
keyStateP �= KeyInIgnitionOnPosition

=⇒
nextTest = currentT ime + 6000

where KeyState is a variable representing the position of the key
({NoKeyInserted,KeyInserted,KeyInIgnitionOnPosition}). This invariant
expresses that the state of the radar system is checked 10 min after the state
(keyState = KeyInIgnitionOnPosition). Let us remark the value of 6000 is
equal to (10×600) since we choose a progression time step of a tenth of a second
because some data in the case study are with 0.1 precision as depicted by the
following progress event that models the time progression:

Event progress =̂
refines updateVehiculeSpeed

any
val

radstate
where

grd1: keyState �= KeyInIgnitionOnPosition∨
nextTest �= currentT ime + 1 =⇒ radstate = rangeRadarState

grd2: keyState = KeyInIgnitionOnPosition∧
nextTest = currentT ime + 1 =⇒ radstate ∈ BOOL

....
then

act1: currentT ime := currentT ime + 1

act2: rangeRadarState := adstate

act3: nextTest := {TRUE �→ 6000, FALSE �→ nextTest}
(bool(keyState = KeyInIgnitionOnPosition∧

nextTest = currentT ime + 1))

...
end

Guard grd1 specifies that when the time progresses to the next self-test moment
(nextTest = currentT ime + 1) and the stating of the system (keyState =
KeyInIgnitionOnPosition), the state of the radar system is chosen ran-
domly (rdstate ∈ BOOL) otherwise its state remains the same (radstate =
rangeRadarState in grd2).

Similarly, cruise control lever is modeled by the variable SCSLeverUD
and its typing invariant: SCSLeverUD ∈ SCSLeverPositions where
SCSLeverPositions is a given set defined in Context C1 seen by M1:

Modeling a Speed Control System Using Event-B 373

partition(SCSLeverPositions, Upward,Downward,
{Backward}, {Forward}, {Neutral})

partition(Upward, {Upward5}, {Upward7})
partition(Downward, {Downward5}, {Downward7})

For each of these elements, invariants are defined in Machine M1 to specify
the authorized position changes together with the event that models them. The
following invariant states that the cruise control level cannot directly move from
an Upward position to a Downward position bypassing the Neutral position. As
we can remark, the above invariant uses an extra variable SCSLeverUDP to
model the previous position of the cruise control level. In the next section, we
show that this kind of variables is also relevant for modeling some requirements
that need to make reference to the current and previous states of the system.

SCSLeverUDP �= Neutral =⇒
SCSLeverUD = SCSLeverUDP

∨
(SCSLeverUDP ∈ Upward ∧ SCSLeverUD ∈ Upward)

∨
(SCSLeverUDP ∈ Downward ∧ SCSLeverUD ∈ Downward)

∨
SCSLeverUD = Neutral

Machine M1 defines event moveSCSLeverUD that models the cruise control
level movements where grd2 permits to make the invariant preserved after the
observation of this event:

Event moveSCSLeverUD =̂
any

valSCS
where

grd1: valSCS ∈ Upward ∪ Downward ∪ {Neutral}
grd2: SCSLeverUD �= Neutral =⇒

(SCSLeverUD ∈ Upward ∧ valSCS ∈ Upward)

∨
(SCSLeverUD ∈ Downward ∧ valSCS ∈ Downward)

∨
(valSCS = Neutral)

then
act1: SCSLeverUD := valSCS

act2: SCSLeverUDP := SCSLeverUD

...
end

3.2 Machine M2: Desired Speed

This machine describes how the desired speed evolves according to the require-
ments (SCS-1 to SCS-12) by moving the cruise control level into different posi-
tions. We also model the activation of the normal/adaptive cruise control as

374 A. Mammar and M. Frappier

described in the document. In addition, we specify the speed limit requirements
(SCS-29 to SCS-34) because the calculation of the current speed must respect
such a limit.

Mainly, this machine introduces some additional variables to model
the desired speed (desiredSpeed) and the normal/adaptive cruise control
(normContr and adapContr) with their associated variables to represent their
previous values. For instance, the following invariant defines the activation of
the normal cruise control:

normContr = TRUE
⇔

((SCSLeverFB = Forward ∧ SCSLeverFBP �= Forward∧
(currentSpeed ≥ 2000 ∨ desiredSpeed �= 0))

∨
(normContrP = TRUE ∧ SCSLeverFB �= Backward))∧

cruiseControlMode = 1 ∧ brakePedal = 0

The invariant states that, if the normal mode is selected for the cruise control
and the brake pedal is not activated, the normal cruise control is activated the
first time when the cruise control level moves to the forward position while the
current speed is greater than 200 km/h and or the desired speed is not null and
remains activated as long as the cruise control level is not put in the Backward
position.

To model the desired speed whose evolution depends on the time, we store
the last time (lastT imeSCSLeverUD) when the cruise control level has been
in the Up/down positions. Thus requirements SCS-4 and SCS-7 are modeled as
follows. Requirement SCS-4 specifies that, while the cruise control is activated,
the desired speed increases by 1 the first time the cruise control level is put in
position Upward5 whereas Requirement SCS-7 states that the desired speed
continues to increase by 1 by each second as long as the cruise control level
stays in that position for more than 2 s. Variable lastdesiredSpeed represents
the desired speed when the lever has been moved into a given position.

SCSLeverUDP �= Upward5 ∧ SCSLeverUD = Upward5
∧

(adapContrP = TRUE ∨ normContrP = TRUE)
=⇒

desiredSpeed = min({200, desiredSpeedP + 1})

and

(normContr = TRUE ∨ adapContr = TRUE) ∧ SCSLeverUD = Upward5
∧

currentT ime − lastT imeSCSLeverUD ≥ 20
=⇒

desiredSpeed =
min({200, lastdesiredSpeed + (currentT ime − lastT imeSCSLeverUD − 10) ÷ 10})

Modeling a Speed Control System Using Event-B 375

Let us give more explanation about the last invariant. Expression
(currentT ime − lastT imeSCSLeverUD − 10) permits to update the desired
speed immediately after 2 s, this is why we subtract 10 units of time and not 20.
As stated before, as we chose a progression step of tenth of a second, we must
divide by 10 each data related to the time. To make these invariants preserved,
we have refined the moveSCSLeverUD event according to Requirement SCS-4
but also the progress event with respect to Requirement SCS-7. Event progress
for instance is refined by adding the following guard that calculates the new
desired speed:

(normContr = TRUE ∨ adapContr = TRUE) ∧ SCSLeverUD �= Neutral
=⇒
despeed=

{TRUE �→
{TRUE �→

{TRUE �→ min({200, lastdesiredSpeed+
((currentT ime + 1 − lastT imeSCSLeverUD − 10)÷10)}), //(*case 2*)
FALSE �→ min({200, lastdesiredSpeed+

((currentT ime + 1 − lastT imeSCSLeverUD) ÷ 2)}) //(*case 3*)
} (bool(SCSLeverUD = Upward5)),

FALSE �→
{TRUE �→ max({10, lastdesiredSpeed−

(currentT ime + 1 − lastT imeSCSLeverUD − 10)÷10}),//(*case 4*)
FALSE �→ max({10, lastdesiredSpeed−

((currentT ime + 1 − lastT imeSCSLeverUD) ÷ 2)})//(*case 5*)
}(bool(SCSLeverUD = Downward5))

}(bool(SCSLeverUD ∈ Upward)),
FALSE �→ desiredSpeed //(*case 1*)
}(bool(currentT ime + 1 − lastT imeSCSLeverUD ≥ 20))

The above guard distinguishes different cases according to the position of the
control lever and the time elapsed since its last position change(currentT ime +
1 − lastT imeSCSLeverUD ≥ 20). The term (currentT ime + 1) denotes the
after-value of currentT ime when Event progress is observed. The following cases
have been distinguished:

1. if the time elapsed from the last movement of the lever is less than 2 s then,
the desired speed does not change (case 1), otherwise

2. if the lever is at the Upward5 position, the desired speed increases by 1 every
second (10 × tenth of a second): SCS-7, case 2. otherwise the lever is in the
Upward7 position and the desired speed increases to the next ten’s place after
each 2 s: SCS-8, case 3.

3. if the lever is at the Downward5 position, the desired speed decreases by 1
every second (10 × tenth of a second): SCS-9, case 4. otherwise the lever is in
the Upward7 position and the desired speed increases to the next ten’s place
after each 2 s: SCS-10, case 5.

Let us note that the Event-B method and its underlying language is not
well-adapted to model the evolution of the speed vehicle according to its accel-
eration/speed and the time passing. Indeed, since the language does not support

376 A. Mammar and M. Frappier

real numbers, we model the current speed as an integer amount that evolves
according to the usual equation (V = γ × t + Vp) where the γ represents the
acceleration/deceleration of the vehicle, (t = 1) the time progression and Vp the
previous speed. As our time progression is by a tenth of a second, the progression
of the speed is very small, that is, less than one kilometer. This progression can
not be taken into account using the B language. To overcome such a limit, we
proceed as follows. We do not include the increasing/decreasing of the current
speed in the event that makes the time progress but we introduce a new event
setSpeed that sets the current speed to a given value. This also permits to play
and produce the scenarios provided in the case study. Another alternative to
overcome the lack of reals in the Event-B language is to define or reuse an
existing theory plugin that models them [11]. However, this will make the devel-
opment and the proofs more complex since the interactive prover of Rodin does
not adequately support such a concept, that it a proof that uses a theory can
not be saved.

3.3 Machine M3: Other Elements

In this level, we model the different aspects that depend on or impact the
desired/current speed, like speed-dependent safety distance and the speed of the
preceding vehicle. Moreover, we model the faults that can happen on the radar
system. Machine M3 introduces two new events turnHead and VehicHeadDetect
to model respectively the selection of a safety level by turning the cruise control
lever head and the detection of a preceding vehicle by catching its speed that is
relevant for determining the speed-dependent safety distance and also to make
the system decelerates if it is necessary. Event VehicHeadDetect for instance is
specified as follows:

Event VehicHeadDetect =̂
any

val stv brk secdis speh
where

grd1: val ∈ rangeRadarSensorV alues

grd2: rangeRadarState = FALSE ⇔ val = 255

grd3: speh ∈ rangeSpeed

grd4: speh ≤ 200 ∧ speedOfHead > speh ∧ speh �= 0 ∧
adapContr = TRUE ∧ val /∈ {0, 255}
=⇒
secdis = 25 × currentSpeed ÷ 360

grd5: speh = 0 ∧ currentSpeed = 0 ∧ adapContr = TRUE ∧
val /∈ {0, 255}
=⇒
secdis = 2

grd6: speedOfHead < speh ∧ speh �= 0 ∧ speh ≤ 200 ∧
adapContr = TRUE ∧ val /∈ {0, 255}
=⇒
secdis = 30 × currentSpeed ÷ 360

Modeling a Speed Control System Using Event-B 377

grd7: speh > 200 ∧ adapContr = TRUE =⇒ secdis = safetyDistance ×
currentSpeed ÷ 360

grd8: ...
then

act1: rangeRadarSensor := val

act2: speedOfHead := speh

act3: securedistanceToHead:= secdis

act4: . . .
end

Event parameter val represents the distance between the studied car and a
possible preceding vehicle as provided by the radar. Guard grd2 states that such
a value should be equal to 255 if the radar system is not ready. Guards grd4-
grd7 permit to calculate the new value for the speed-dependent safety distance
according to the requirements SCS-23 and SCS-24 with the event parameter
speh denoting the speed of the preceding vehicle.

Already existing events of M2 are refined in M3 in similar way by calculating
the value of the different variables. For instance, the desired speed should be
updated when a traffic sign is detected, the speed-dependent safety distance is
updated when the current speed is modified or the speed of a preceding vehicle
changes. More details can be found in [6].

4 Validation and Verification

To ensure the correctness and validate the built Event-B models, we have
proceeded into three steps detailed hereafter.

4.1 Model Checking of the Specification

We used the ProB tool as a model checker in order to ensure that all the
invariants of each machine are preserved after the observation of each event,
that is, there is no sequence of events that makes an invariant not satisfied.
Basically, when an invariant becomes violated, ProB exhibits such a sequence
of events that, starting from a valid initial state of the machine, leading to a
state that violates the related invariant. Such specification errors can be due
to a guard/action missing, to an incorrect specification of the invariant but
sometimes also to an incorrect property, that is the system really does not satisfy
the property. Let us note that even if no invariant violation is found by the tool,
there may still exist scenarios that violate the invariant that the tool cannot
find due to their complexity or/and the timeout on the model checking process.
This is why a proof phase should be performed to ensure that the specification
is invariant-violation free.

378 A. Mammar and M. Frappier

4.2 Validation with Scenarios

This step aims at verifying that we have built the right model whose behaviors
conform to the desired ones as described by the scenarios of the specification
document. For that purpose, the animation capability of ProB is used to play
the different scenarios provided in the case study. This step allows us to point
out some flaws/ambiguities in the initial release of the description document.
For instance, the initial examples provided to illustrate the requirements SCS-
5-SCS-9 were incorrect with respect to the requirements. In addition, in some
place like SCS-7-SCS-9, the term “target speed” is used instead of “desired
speed”, etc. All these aspects have been discussed with the case study authors
because we are not specialists of the domain. Let us note that we have faced some
difficulties to play the provided scenarios since no information is provided on how
the controller calculates the acceleration at each step. So, we have made our best
to “simulate” these values without any representation about their suitability,
reliability.

4.3 Proof of the Specification

This last phase aims at ensuring the correctness of the specification by discharg-
ing all the proof obligations generated by Rodin to prove that the invariants are
preserved by each event, but also that the guard of each refined event is stronger
than that of the abstract one. Figure 1 provides the proof statistics of the case
study: 579 proof obligations have been generated, of which 60% (345) were auto-
matically proved by the various provers. The remaining proof obligations were
discharged interactively since they needed the use of external provers like the
Mono Lemma prover that has shown to be very useful for arithmetic formulas
even if we had to add some theorems on min/max operators (a min/max of a
finite set is an element of the set, etc) but also on the transitivity property of
the comparison operator (≥, ≤, etc.).

5 Other Points

This section reports on some points about the choices made during the Event-B
modeling of the speed control system.

5.1 Feedback on the Specification Document

The formal modeling of the specification document [4] lead us to question our-
selves about the semantics of some requirement and identify a number of ambigu-
ities and some contradictions with the test scenarios provided. Being not special-
ist of the domain, we have communicated these to the authors of the requirements
document, and a number of revisions were produced, following our comments.
Our discussion and exchange lead to the modification/revision of a set of require-
ments to make them clearer and consistent. A detailed list of these elements are
described in the last version (i.e., 1.17) of the requirements document:

Modeling a Speed Control System Using Event-B 379

Fig. 1. Rodin proof statistics of the case study

1. Correction of the examples in SCS-7, SCS-8 and SCS-9 since the values do
not respect the requirements.

2. Modification of signal description setV ehicleSpeed to make its meaning
clearer.

3. Replacing ‘target speed’ by ‘desired speed’ in requirements SCS-7 and SCS-8.
4. Adjustment of the maximum acceleration and deceleration values in SCS-20,

SCS-22.
5. Stating that SCS-23 applies when the speed is 20 km/h or below.
6. Clarification of priority between adaptive cruise control and emergency brak-

ing assistant in case of brake activation in SCS-28
7. the signal SCSLever has been splitted into signals SCSLeverForthBack and

SCSLeverUpDown with their corresponding positions (states) and the possi-
ble transitions between them.

As already well-known, the use of a formal method does not only permit
to built a correct system but it also allows to make the requirement document
clearer and precise by removing ambuities and errors.

5.2 Modeling Temporal Properties

As stated before, a number of requirements refer to the current and previous
state of an element. In order to be able to verify these requirements using a proof
strategy, we modeled them as invariants by introducing two variables for each
element to store their current and previous values. The obtained specification
is quite cumbersome especially that we have to add for each event that does
not modify a variable that its previous value is equal to its current value. We
think that it would be interesting to investigate existing tools/approaches that
could help us specify this kind of properties in a simpler manner. An example
of such tools is the Event-B State machines plugin1 that produces Event-B

1 http://wiki.event-b.org/index.php/Event-B Statemachines.

http://wiki.event-b.org/index.php/Event-B_State machines

380 A. Mammar and M. Frappier

events from a state machine including their guards that specify the requirements
modeled by the state machine but without producing the related invariants. This
plugin makes difficult to trace and justify the usefulness of the generated guards.

6 Conclusion

This paper presents a formal modeling proposal of a speed control system using
the Event-B method. We have modelled most of requirements that permits
us to point out some ambiguities in the requirements that we have discussed
and clarified with the case study authors by rephrasing them. These ambiguities
have been discovered during during different development phases: formalization,
proof and validation using the provided scenarios. This experience has affirmed
that the formal modeling of a system helps the software users detect error in
early development phase that makes its correction cheaper.

The main difficulty when modeling the speed control system is to determine
the order in which elements should be introduced during the refinement espe-
cially that many elements are interdependent. Due to time constraints, we were
unfortunately not able to explore the different decomposition plugins of Rodin
that might produce smaller specification parts that would be easier to under-
stand and maintain. We plan to explore some decomposition techniques as future
work even if we really think that the Event-B method should include modu-
larization clauses as native structuring mechanisms like those of the B method
that permit to have a modular specification since the early development phases
to make Event-B method more usable for the development of big and complex
systems. Another point concerns the ProB plugin under Rodin that unfortu-
nately does not permit to store an already played scenario, so we are obliged to
manually replay each scenario; this is a very time-consuming for long traces.

The work presented in this paper can also be extended by considering the
remaining requirements that need more clarifications. Requirement SCS-21 for
instance needs more information on how the system can deduce that decelera-
tion of 3 m/s2 is insufficient to prevent a collision without having any information
about the acceleration of the preceding vehicle. Also, we think that more infor-
mation should be provided on the internal variables like setV ehicleSpeed that
represents the automatic acceleration of the system in order to able to build a
more complete system. Finally through the different case studies proposed in the
ABZ conference [8,9], we are now convinced of the need to improve the Event-B
language to make it supports the real numbers as basic types. Its prover should
be also extended to include more rules on arithmetic and set theories.

Acknowledgements. The authors would like to thank the case study authors, and
Frank Houdek in particular, for his responsiveness and useful feedback during the
modeling process when questions were raised or when ambiguities were found. The
authors would also like to thank Michael Leuschel for his quick feedback on using
ProB for this large case study.

Modeling a Speed Control System Using Event-B 381

References

1. Abrial, J.: The B-Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
3. Event-B Consortium. http://www.event-b.org/
4. Houdek, F., Raschke, A.: Adaptive exterior light and speed control system, Novem-

ber 2019. https://abz2020.uni-ulm.de/case-study#Specification-Document
5. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation

to data validation: the prob constraint solver 10 years on. In: Boulanger, J.L. (ed.)
Formal Methods Applied to Complex Systems: Implementation of the B Method,
Chap. 14, pp. 427–446. Wiley ISTE, Hoboken (2014)

6. Mammar, A., Frappier, M.: Modeling of a Speed Control System using Event-B,
January 2020. http://www-public.imtbs-tsp.eu/∼mammar a/SpeedControl.html

7. Mammar, A., Frappier, M., Laleau, R.: An Event-B Model of an Auto-
motive Adaptive Exterior Light System, January 2020. http://www-public.
imtbs-tsp.eu/∼mammar a/LightControlSystem.html and http://info.usherbrooke.
ca/mfrappier/abz2020-ELS-Case-Study/

8. Mammar, A., Frappier, M., Tueno Fotso, S.J., Laleau, R.: An Event-B model of
the hybrid ERTMS/ETCS level 3 standard. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 353–366. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 24

9. Mammar, A., Laleau, R.: Modeling a landing gear system in Event-B. In: Boniol,
F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp.
80–94. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 6

10. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput.
Program. 25(1), 41–61 (1995)

11. Su, W., Abrial, J.R., Zhu, H.: Formalizing hybrid systems with Event-B and the
Rodin platform. Sci. Comput. Program. 94, 164–202 (2014)

http://www.event-b.org/
https://abz2020.uni-ulm.de/case-study#Specification-Document
http://www-public.imtbs-tsp.eu/~mammar_a/SpeedControl.html
http://www-public.imtbs-tsp.eu/~mammar_a/LightControlSystem.html
http://www-public.imtbs-tsp.eu/~mammar_a/LightControlSystem.html
http://info.usherbrooke.ca/mfrappier/abz2020-ELS-Case-Study/
http://info.usherbrooke.ca/mfrappier/abz2020-ELS-Case-Study/
https://doi.org/10.1007/978-3-319-91271-4_24
https://doi.org/10.1007/978-3-319-07512-9_6

	Modeling of a Speed Control System Using Event-B
	1 Introduction
	2 Modelling Strategy
	3 Model Details
	3.1 Machine M1: Physical Elements
	3.2 Machine M2: Desired Speed
	3.3 Machine M3: Other Elements

	4 Validation and Verification
	4.1 Model Checking of the Specification
	4.2 Validation with Scenarios
	4.3 Proof of the Specification

	5 Other Points
	5.1 Feedback on the Specification Document
	5.2 Modeling Temporal Properties

	6 Conclusion
	References

