)

Check for
updates

ProB and Jupyter for Logic, Set Theory,
Theoretical Computer Science
and Formal Methods

David GeleRus and Michael Leuschel ®)

Institut flir Informatik, Universitdt Diisseldorf, Universitatsstr. 1,
40225 Diisseldorf, Germany
{dagel101,michael.leuschel}@hhu.de

Abstract. We present a tool for using the B language in computational
notebooks, based on the Jupyter Notebook interface and the PRoOB tool.
Applications of B notebooks include executable documentation of for-
mal models, interactive manuals, validation reports but also teaching of
formal methods, logic, set theory and theoretical computer science. In
addition to B and Event-B, the tool supports Z, TLA™ and Alloy.

1 Introduction and Motivation

The computational notebook concept has recently become popular in teaching
and research, as it allows mixing executable code with rich text descriptions and
graphical visualizations. We present a tool which enables B and other formal
methods to be used in computational notebooks. Such notebooks have many
applications, from teaching formal methods to documenting formal models or
generating executable reference documents. Given the foundations of B in set
theory and logic, and given that the Unicode syntax of B is identical to or very
close to standard mathematical notation, our tool can also be used to produce
notebooks for teaching mathematical foundations in general or theoretical com-
puter science in particular. Given that our tool is based on the PROB tool, the
notebooks also provide convenient access to its constraint solver.

2 Jupyter Kernel for B

Architecture. Jupyter Notebook [4] is a cross-platform computational notebook
interface implemented in Python with a web-based frontend. Originally it was
developed under the name IPython Notebook and only supported Python-based
notebooks, but it has since been extended to allow using languages other than
Python. Support for each language is provided by a Jupyter kernel: a language-
specific backend that receives input from Jupyter Notebook, processes it using
the target language, and returns the results to Jupyter. Jupyter communicates
with kernels using a language-agnostic protocol, which allows implementing ker-
nels in languages other than Python. In the case of PROB, the kernel was imple-
mented in Java, as PROB provides a high-level Java API [1], and there is an

© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 248-254, 2020.
https://doi.org/10.1007/978-3-030-48077-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_19&domain=pdf
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-030-48077-6_19

ProB and Jupyter for Logic, Set Theory, Theoretical Computer Science 249

existing Java implementation of the Jupyter kernel protocol by the jupyter-jvm-
basekernel project [7].

The Jupyter Notebook web interface can also be extended using JavaScript-
based plugins. This capability was used to implement syntax highlighting for B.

Interacting with B. At its core, the PROB Jupyter kernel is a simple REPL. It
accepts standalone B expressions and predicates as input, which are evaluated
or solved using PROB. The results are output as ITEX formulas and rendered
by Jupyter Notebook, as shown in the following screenshot:

In [5]:

f =Ax.(x € Z|x * x) A £(y) = 100
out[5]:
TRUE

Solution:

o f= Ax-(x € INTEGER | x % x)
o V= 10

Markup cells can be used to provide documentation for the evaluation cells:

The function és(x, @) computes the possible states after processing a word
 starting from the states x. For example, after processing the word 111
starting from the initial states S our automaton can be in the following states:

In [7]: 1 ®s(s,[1,1,1])

out(7): {z0,zl,22,23}

Many PROB features can be accessed using notebook commands. For exam-
ple, prefixing a B expression with the command :table displays the result as a
table, which is useful for viewing complex values, such as sets of tuples. Addi-
tional commands include :prettyprint to pretty-print a predicate without eval-
uating it, :type to display an expression’s static type, and :solve to solve a
predicate using PROB’s various solver backends (such as Kodkod or Z3).

To load a B machine, the B code can be input directly into a notebook cell,
which allows for quick testing and prototyping of short machines. When written
this way, the entire B machine needs to be placed in a single notebook cell (it is
currently not possible to insert text cells in the middle of the machine), and it
cannot refine, extend, or otherwise reference other machines. It is also possible to
load external machine files using the :load command, which is more convenient
for larger machines, and also supports loading machines that reference other
machine files.

The loaded machine can be animated, using the :exec command to execute
operations or events. While a machine is loaded, the input is evaluated in the
current state of the animator, meaning that the loaded machine’s constants and
variables can be used in expressions and predicates. Additional commands such

250 D. Gelefsus and M. Leuschel

as :check and :browse are provided to examine the current state of invariants,
assertions and operations. It is also possible to exercise PROB’s model checker.

PRrROB’s state visualisation features can be called using the :show and :dot
commands, which can for example be used to visualise the current machine state
or the animator’s state space. The visualisation results are displayed directly in
the notebook as raster or SVG images.

Jupyter Notebook’s advanced code editing features, such as syntax high-
lighting and code completion, are also supported by the PROB kernel. Both
regular B syntax and custom commands are highlighted, and completion is pro-
vided for B keywords, variable names, command names and parameters, etc. The
“Inspect” feature (accessed using Shift+Tab) provides quick access to command
help directly inside the notebook interface.

Working with Notebooks. The ProB Jupyter kernel only handles the actual eval-
uation of the code in the notebook. Jupyter Notebook provides all other parts
of the system: including the web frontend responsible for editing notebooks and
rendering the kernel’s outputs, and the file format used when saving notebooks.

Using the nbconvert tool provided by Jupyter, B notebook files can be con-
verted to a variety of standard formats, including HTML, I¥TEX, and PDF. This
allows distributing notebooks in a format that can be viewed without Jupyter
Notebook, although the resulting files cannot be edited and re-executed like the
original notebook.

3 Applications

Industrial. As B notebooks can load and animate external machine files, they
can be used to document the behavior of existing models. This is conceptually
similar to a trace file, with the advantage that notebooks can include not just
operation execution steps, but also explanatory text and evaluation/visualisation
calls to demonstrate specific aspects of the machine’s state.

Some of PROB’s own documentation is currently being converted from static
documentation pages to B notebooks. The Modelling Examples section, e.g., con-
tains pages which start with an introductory text, usually describing a short logic
puzzle or part of a real-world use case of PROB, followed by B code fragments
modelling the problem in B and explanations of how PROB can be used to visu-
alize, verify or solve the model. The notebook format is well-suited for this kind
of documentation: the code in notebooks can be directly executed by the user
and the respective visualisation features can be called directly from the note-
book. Below is part of the documentation of PROB’s external functions. This
documentation is automatically up-to-date and users can experiment themselves
with the various external functions before integrating them into their models:

ProB and Jupyter for Logic, Set Theory, Theoretical Computer Science 251

This external function converts a string to lower-case letters. It currently converts also diacritical
marks (this behaviour may in future be controlled by an additional flag or option).

Type: STRING — STRING.

In (2]: 1 STRING_TO_LOWER("az-AZ-09-3as0-A0")

out[2]: "az-az-09-aaou-ao"

Teaching. In the context of teaching the B language as well as theoretical com-
puter science in general, B notebooks can be used as a format for writing lecture
notes and worksheets.

Lecture notes involving B expressions or machines can be written and dis-
tributed as notebooks, allowing students to execute the code for themselves and
experiment with modifications. Due to its foundations in set theory, the B lan-
guage can also be used to express many general theoretical computer science
concepts, such as finite automata. These concepts can be demonstrated using B
notebooks, taking advantage of the ITEX output and graph visualisation capa-
bilities to display the results in a format familiar to students.

B notebooks can also be used as a format for exercise sheets. Students are
provided with a notebook that contains the exercise text and possibly some
initial code. They can solve the exercises directly in the notebook and turn in
the finished notebook file with their solutions. The nbgrader [9] extension for
Jupyter provides support for writing exercise sheet notebooks: it allows marking
cells with exercise text as read-only, and cells with solutions so they are removed
when the exercises are distributed to students. The extension also assists with
grading and also enables automated verification of solutions.

4 Conclusion, Related and Future Work

A formal model is usually derived from a natural language requirements doc-
ument. A big issue is that of keeping the formal model and natural language
in sync. A related issue is that of traceability, tracing natural language require-
ments to the formal model. In that setting the idea of literate programming [5],
mixing the natural language documentation with the program, is appealing. The
Z language [8] has always allowed literate programming by interleaving ITEX
commands with Z constructs. A similar capability for the B language is provided
by ProB’s KTEX mode [6]. In comparison, the PROB Jupyter kernel focuses
more on interactivity. Individual cells of a B notebook can be quickly edited
and re-rendered /evaluated, whereas the PROB IATEX mode can only render the
entire document at once. However, the ability to write IXTEX code directly offers
more flexibility in terms of formatting and layout, compared to a B notebook
converted to BWTEX or PDF using nbconvert.

An open-source Jupyter kernel for TLA™T [3] is available. Its feature set is
similar to the basic features of the PROB Jupyter kernel: it supports evaluation of
standalone TLA™ expressions, as well as loading and checking of TLA™ models
using the TLC model checker.

252 D. Gelefsus and M. Leuschel

A previous attempt at implementing a notebook-like interface for B was the
PROB worksheet interface [2]. Its design and goals were very similar to our
work, but the implementation provided its own custom web UI, server, and
file format, mainly because extensible notebook implementations like Jupyter
were not available at the time (2012-2013). In comparison, using Jupyter as a
base significantly reduces the required implementation and maintenance work,
and allows B notebooks to benefit from existing tooling for Jupyter, such as
nbconvert and nbgrader.

In summary, this new tool provides a notebook interface to a variety of
state-based formal methods. Along with some extensions of PROB itself, such as
allowing Greek letters or subscripts in identifiers, it is also of use for applications
in teaching of discrete mathematics or theoretical computer science.

Our tool is available for download at:

https://gitlab.cs.uni-duesseldorf.de/general /stups/prob2- jupyter-kernel

A Appendix

Below we show two partial screenshots of a notebook for theoretical computer
science. Observe that mathematical Unicode symbols, subscripts and Greek let-
ters can be used in the B formulas and machines.

https://gitlab.cs.uni-duesseldorf.de/general/stups/prob2-jupyter-kernel

ProB and Jupyter for Logic, Set Theory, Theoretical Computer Science

In [7]:

out[7]:

In [8]:

out[8]:

In [10]:

Out[10]:

cluster_Z

In [6]:

out[6]:

References

The function és(x, @) computes the possible states after processing a word
@ starting from the states x. For example, after processing the word 111
starting from the initial states S our automaton can be in the following states:

8s(s,[1,1,1))

{20,21,22, 23}
The automaton accepts the word 111 but not the word 101, because we have:

8s(s,[1,1,1]) n F
{22}

1 8s(s,[1,0,1]) n F

1: @

These are all words of length 3 which are accepted by our automaton:

1 :table {x,y,z| [X,y,z]eL}

Xy z
010
011
110

111

Alternatively, we can view it as graph:

:dot expr_as_graph ("0",{x,y| x€z & y:5(x,0)),
1", {x,y| xes & yed(x,1)})

VA
o 3
1
zl
z2

ZB)

253

1. Bendisposto, J., Clark, J.: ProB Handbook. ProB 2.0. https://www3.hhu.de/stups/
handbook/prob2/prob _handbook.html#prob2.0. Assessed 30 Jan 2020
2. Goebbels, R.: Worksheets fiir die Integration mit ProB. Bachelor’s thesis, Heinrich-
Heine-Universitéat Diisseldorf, 18 March 2013
3. Kelvich, S.: kelvich/tlaplus_jupyter: Jupyter kernel for TLA™, 9 December 2019.
https://github.com/kelvich/tlaplus jupyter/. Accessed 17 December 2019

https://www3.hhu.de/stups/handbook/prob2/prob_handbook.html#prob2.0
https://www3.hhu.de/stups/handbook/prob2/prob_handbook.html#prob2.0
https://github.com/kelvich/tlaplus_jupyter/

254 D. Gelefsus and M. Leuschel

4. Kluyver, T., et al.: Jupyter notebooks — a publishing format for reproducible com-
putational workflows. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in
Academic Publishing: Players, Agents and Agendas, pp. 87-90. IOS Press (2016)

5. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97-111 (1984). https://doi.
org/10.1093/comjnl/27.2.97

6. Leuschel, M.: Formal model-based constraint solving and document generation. In:
Ribeiro, L., Lecomte, T. (eds.) SBMF 2016. LNCS, vol. 10090, pp. 3-20. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49815-7 1

7. Spencer Park. SpencerPark/jupyter-jvm-basekernel: an abstract kernel implemen-
tation for Jupyter kernels running on the Java virtual machine. Revision ccfb7bbl,
14 May 2018. https://github.com/SpencerPark/jupyter-jvm-basekernel /. Accessed
02 Aug 2018

8. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Upper Saddle
River (1992)

9. Jupyter Development Team. nbgrader—nbgrader 0.5.4 documentation. Revision
808caf33, 18 July 2017. https://nbgrader.readthedocs.io/en/stable/. Accessed 20
Aug 2018

https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1007/978-3-319-49815-7_1
https://github.com/SpencerPark/jupyter-jvm-basekernel/
https://nbgrader.readthedocs.io/en/stable/

	ProB and Jupyter for Logic, Set Theory, Theoretical Computer Science and Formal Methods
	1 Introduction and Motivation
	2 Jupyter Kernel for B
	3 Applications
	4 Conclusion, Related and Future Work
	A Appendix
	References

