®

Check for
updates

Structuring the State and Behavior
of ASMs: Introducing a Trait-Based
Construct for Abstract State
Machine Languages

Philipp Paulweber! ™) Emmanuel Pescosta?, and Uwe Zdun'

! Faculty of Computer Science, Research Group Software Architecture,
University of Vienna, Wahringerstrale 29, 1090 Vienna, Austria
{philipp.paulweber,uwe.zdun}@univie.ac.at
2 Vienna, Austria

Abstract. Abstract State Machine (ASM) theory is a well-known state-
based formal method to analyze, verify, and specify software and hard-
ware systems. Nowadays, as in other state-based formal methods, the
proposed specification languages for ASMs still lack easy-to-comprehend
language constructs for type abstractions to describe reusable and
maintainable specifications. Almost all built-in behaviors are implicitly
defined inside a concrete ASM language implementation and thus, the
behavior is hidden from the language user. In this paper, we present a
new ASM syntax extension based on traits, which allows the specifier
(language user) to define new type abstractions in the form of structure
and behavior definitions to reuse, maintain, structure, and extend the
functionality in ASM specifications. We describe the proposed language
construct by defining its syntax and semantics. The decision to use a
trait-based syntax extension over other object-oriented language con-
structs like interfaces or mixins was motivated and driven by the results
of previously conducted empirical studies. Moreover, we outline details
about the implementation of the trait-based syntax extension in our
Corinthian Abstract State Machine (CASM) language implementation.

Keywords: Abstract State Machine - Trait - Structure -
Modularization - CASM

1 Introduction

In 1993, Gurevich [1] introduced the ASM theory, which is a well-known state-
based formal method consisting of transition rules and algebraic functions. It has
been used extensively by scientists for a broad research field ranging from soft-
ware and hardware to system engineering perspectives in order to specify, ana-
lyze, and verify systems in a formal way. ASMs are used to formally describe the

E. Pescosta—Member of CASM organization.

© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 237-243, 2020.
https://doi.org/10.1007/978-3-030-48077-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_17

238 P. Paulweber et al.

evolution of function states in a step-by-step manner! and are used to describe
sequential, parallel, concurrent, reflective, and even quantum algorithms. Based
on the ASM theory by Gurevich [1], several theory improvements and ASM-
based language implementations were developed, which were summarized by
Borger and Stark [2] and Bérger and Raschke [3].

Prominent ASM languages and tools are Asmetal [4], CASM [5], and Core-
ASM [6]. Today, a common thread in the various ASM languages and tools, as
well as in most other state-based formal methods, is that the proposed spec-
ification languages lack easy-to-comprehend abstractions to describe reusable
and maintainable type specifications. While very few have embraced basic
object-oriented abstractions such as classes and inheritance, more advanced type
abstractions are usually missing. Therefore, in this paper we propose a new lan-
guage construct for ASM specification languages to express type abstractions
in the form of traits [7] to modularize specifications into structural state and
behavioral parts.

2 DMotivation

Modern object-oriented languages offer a variety of advanced type abstractions,
and most offer either interfaces [8], mixins [9], or traits [7] in addition to classes
and inheritance concepts. Interfaces establish a protocol and define method sig-
natures to which a type has to conform [8]. They are often compared to a con-
tract. Mixins define reusable behavior and structure that can be used to com-
bine and form new types [9,10]. Traits are similar to interfaces except that they
can define stateless behavior which depends on the trait itself [11]. There is a
heated debate in the object-oriented community?, which of these abstractions is
best suited to promote reusable and maintainable type specifications, and many
implementations combine different language constructs to define type abstrac-
tions. A notable example would be the programming language Scala [12], which
offers a trait syntax that is similar to the Java 8 [13] interface syntax and offers
mixins type abstractions through the class-based implementation and extension
syntax. Another example of mixed type abstraction concepts, namely interfaces
and traits, can be found in the programming language Rust [14], where the lan-
guage user has to express every interface definition through traits, and the types
have to conform to specified traits and implement all required functionalities.
In the world of ASMs, only AsmL [15] has introduced an object model in the
language through classes and interfaces to represent type abstractions, and to
achieve structuring of the ASM specifications. Only the ASM implementation
and language XASM by [16] has introduced a sub-ASM construct to achieve a
component-based modularization approach. A more generic concept called ambi-
ent ASMs [3] introduces the possibility to achieve hierarchical state partitioning
through nesting of context-sensitive (sub)program environments. Based on this

1 ASM theory was formerly called Fvolving Algebra.
2 See, e.g.: https://stackoverflow.com/questions/925609.

https://stackoverflow.com/questions/925609

Structuring the State and Behavior of ASMs 239

state of the art, we started to investigate the introduction of a new type abstrac-
tion language construct in ASMs. But which language construct is suitable for
ASMs to represent such type abstractions?

Basically every language construct for forming type abstractions is suitable
for ASMs, but it influences the understandability of the language considerably.
For such an ASM extension, we consider the following properties important:
(1) reuse and embed existing specifications; (2) describe built-in behavior of a
language itself in the language; and (3) allow encapsulation of ASM states and
corresponding behavior through modularization. Driven by the properties and
questions raised, we conducted empirical studies to determine, which language
construct — interfaces, mixins, or traits — is most understandable to ASM lan-
guage users for expressing type abstractions [17]. The result of the experiments
showed that the participants with strong object-oriented backgrounds (highly
familiar with interfaces, not familiar with traits at all) had a similar to equal
understanding of an interface and traits language construct in the experimental
ASM syntax variants. Mixins, on the other hand, had a significantly lower under-
standability compared to traits and interfaces. Since the interface and traits type
abstraction language constructs offer a similar to equal understandability, and
novice language users seem to understand traits without even knowing the con-
cept of traits, we investigated introducing traits into ASMs.

Moreover, the object-oriented communities often discuss traits more favor-
ably than interfaces® and even point out that “Traits are Interfaces”? just with
code-level reuse functionality. To gain a better understanding of how specifiers
(language users) comprehend such trait-based specifications, we performed an
eye-tracking experiment [17], where we observed the participants’ gaze patterns.
The results of this experiment showed that the participants could easily distin-
guish between behavioral and non-behavioral aspects of a given specification,
when we applied our trait-based language construct to form state/behavior type
abstractions.

3 A Trait-Based Construct for ASMs

This section proposes our trait-based language construct to extend the syntax of
ASM specification languages. The syntax rules are defined and expressed in BNF
(see Listing 1.1). The semantics of the proposed trait-based syntax extension is
defined by lowering and transforming the new syntax elements to appropriate
Turbo ASM [2] equivalent definitions (see example trait-based ASM Listing 1.2
and the transformed Turbo ASM Listing 1.3). The ASM specifications presented
use the syntax of the CASM specification language®. The trait-based syntax
extension is divided into three parts, namely structural types, basic type behavior,
and extended type behavior.

3 See, e.g.: https://stackoverflow.com/questions/9205083.
* See, e.g.: https://blog.rust-lang.org/2015/05/11 /traits.html.
5 For the CASM syntax description, see: https://casm-lang.org/syntax.

https://stackoverflow.com/questions/9205083
https://blog.rust-lang.org/2015/05/11/traits.html
https://casm-lang.org/syntax

240 P. Paulweber et al.

In order to modularize the states (functions not classified as derived) in
ASM, we introduce a structural type construct (see Listing 1.1, Line 2-4), which
allows a language user to group one or multiple functions together (similar
to members of an object-oriented class) to form a new structure type (see
StructureDefinition grammar rule). Each structure type defines a trait type
through the defined state functions. The access to these functions is only allowed
inside a proper basic behavior definition to clearly specify the access to an instan-
tiated structure’s state over dedicated behaviors (data encapsulation).

// Structural Types

1

2 StructureDefinition ::= ’structure’ Identifier ’=’ ’{’ (FunctionDefinition)+ ’}’.

3 StructurelLiteral [Typel ’{’ [Identifier ’:’ Term (’,’ Identifier ’:’ Term)x] ’}’.
4 Literal ::= Structureliteral | /x other literals */.

5 // Basic Type Behavior

6 ImplementDefinition ::= ’implement’ Identifier ’=’ ’{’

7 (ObjectRuleDefinition | ObjectDerivedDefinition)+ ’}’.

8 ObjectRuleDefinition ::= ’rule’ Identifier ’(’ ’this’

9 (’,’ Identifier ’:’ Type)* ’)’ [’->’ Type] ’=’ Rule.
10 ObjectDerivedDefinition ::= ’derived’ Identifier ’(’ ’this’

11 (’,’ Identifier ’:’ Type)* ’)’ ’->’ Type ’=’ Term.

12 MethodCall 28 Term ’.’° Identifier [’(’ Term (’,’ Term)* ’)’].

13 CallRule MethodCall | (Identifier [’(’ Term (’,’ Term)* ’)’])
14 Term MethodCall | ’this’

15 // Exztended Type Behavior

16 BehaviorDefinition ::= ’behavior’ Identifier ’=’ ’{’

17 (ObjectRuleDeclaration | ObjectDerivedDeclaration

18 | ObjectRuleDefinition | ObjectDerivedDefinition)+ ’}’.
19 ImplementForDefinition ::= ’implement’ Identifier ’for’ Identifier ’=’> ’{’

20 (ObjectRuleDefinition | ObjectDerivedDefinition)+ ’}’.

21 ObjectRuleDeclaration
22 ObjectDerivedDeclaration

‘rule’ Identifier ’:’ ’Object’ (’*’ Type)* ’->’ Type.
’derived’ Identifier ’:’ ’0Object’ (’*’ Type)* ’->’ Type.

Listing 1.1: Trait-Based ASM Syntax Extension

1 structure X = { 1 domain X

2 function f1 : -> Integer 2 function X_f1 : X -> Integer

3 function f2 : Integer -> Boolean 3 function X_f2 : X * Integer -> Boolean
4 4 rule X_instantiate(al : Integer

5 5 , a2 : Integer -> Boolean) -> X =

6 6 let object = new X in {

7 7 X_f1(object) := al

8 8 X_£f2(object) := a2

9 9 result := object

10 10

11 rule R1 = 11 rule R1 =

12 let v1 = X{ f1: 1, 12 let vl = X_instantiate(1,

13 £2: (2) -> false } in skip 13 { (2) -> false }) in skip

14 implement X = { 14

15 derived di(this) -> Integer = 15 derived X_d1(this : X) -> Integer =
16 this.f1 16 X_f1(this)

17 17

18 rule R2(this, al : Integer) = 18 rule X_R2(this : X, al : Integer) =
19 if a1l > -5 and this.dl < 5 then 19 if al > -5 and X_d1(this) < 5 then
20 this.f2(al) := true 20 X_f2(this, al) := true

21 } 21

22 behavior Y = { 22

23 derived d2 : Object -> Integer 23

24 24

25 derived d3(this) -> Boolean 25 derived X_d3(this : X) -> Boolean

26 = this.d2 * this.d2 > 100 26 = X_d2(this) * X_d2(this) > 100
27 } 27 }

28 implement Y for X = { 28

29 derived d2(this) -> Integer = this.f1 29 derived X_d2(this:X) -> Integer = X_f1(this)
30 } 30
31 // ... 31 // ...

Listing 1.2: Trait-Based ASM Listing 1.3: Turbo ASM Equivalent

Structuring the State and Behavior of ASMs 241

A basic type behavior (see Listing 1.1, Line 6-14) defines a set of rules and
derived functions, which are associated with a certain domain type. We intro-
duce a new ImplementDefinition to define a basic behavior consisting of one
or more object-based derived function and/or rule definitions. The syntax for
ObjectRuleDefinition and ObjectDerivedDefinition introduce a new key-
word this as the first argument for all object-based rule and/or derived func-
tion definitions. The type of the argument variable this equals the type of the
ImplementDefinition and it enables the access to the domain’s or structure’s
behavior. The access happens through a MethodCall syntax, which uses a dot
operator between a term, a target name, and a non-negative arity of arguments.
The target name can be a function name or a rule name.

An extended type behavior (see Listing1.1, Line 16-22) defines a set of
rules and derived functions, and forms a new type in the type system. If a
domain and/or structural type wants to use the functionality, it has to imple-
ment the extended behavior. The BehaviorDefinition defines an explicit trait
with type name consisting of zero or more ObjectRuleDeclaration rule names
and/or ObjectDerivedDeclaration derived function names. Please note that
for all object-based declarations we introduced a generic Object argument
type at the first position. The Object type gets checked against the domain
or structural type which is implementing this declared behavior. A specifier
can use the Object type for any other argument or target type in a declara-
tion. Additionally, a trait can define a default behavior through zero or more
ObjectRuleDefinition rule names and/or ObjectDerivedDefinition derived
function names, which depends only on the functionality of the trait itself. Each
domain and/or structural type that wants to support a certain behavior has
to specify an ImplementForDefinition and provide the missing definitions of
the trait declarations. If the trait defines a default behavior, the domain and/or
structural type inherits this definition. This enables code reuse capabilities.

Listing 1.2 depicts an example trait-based ASM specification using all new
syntax grammar rules and Listing 1.3 depicts the equivalent semantics-preserving
Turbo ASM specification. The proposed trait-based syntax extension is realized
in our CASM language implementation®. In order to provide a clean solution,
we updated our CASM language front-end implementation and introduced two
new internal AST representations before the specification gets transformed to
the CASM-IR [5].

By introducing the proposed trait-based construct, we were able to explicitly
specify the behavior of the CASM language itself in CASM in the form of a pre-
lude (See footnote 6) specification, which gets automatically loaded (imported)
for every parsed CASM specification. Each functionality of the CASM language
(e.g. operators) is mapped to a behavior (trait) in the prelude specification.
The language user can explore and extend the behaviors of CASM in CASM.
Moreover, the prelude specification reduced the complexity of the CASM imple-
mentation.

5 For sources, see: https://github.com/casm-lang/libcasm-fe/pull /205.

https://github.com/casm-lang/libcasm-fe/pull/205

242 P. Paulweber et al.

4 Conclusion

In this paper, we present a trait-based construct for ASM languages. It allows
to specify composable models through the usage of domain and structural type
objects, where the behavior can be defined and implemented in a reusable man-
ner. The modularization and composing of object-oriented models is achieved by
specifying structural states along with their behaviors clearly separated through
traits. Novel about this contribution is that ASM language users can directly
define the semantics of operations over domain (structure) types through this
trait-based construct in the ASM language itself. To clearly separate structure
and behavior, we only allow the definition of modifications to structural objects
through a proper behavior definition. Based on previously conducted empiri-
cal studies, the current state of the art, and our current proposed trait-based
construct, we believe that this is the first step towards clearer and more under-
standable ASM specifications by separating the structural (state) and behavioral
elements through dedicated definitions.

References

1. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide - Specification and Validation
Methods, pp. 9-36. Oxford University Press Inc., New York (1995)

2. Borger, E., Stark, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

3. Borger, E., Raschke, A.: Control state diagrams (meta model). Modeling Compan-
ion for Software Practitioners, pp. 297-315. Springer, Heidelberg (2018). https://
doi.org/10.1007/978-3-662-56641-1_9

4. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and
a simulation engine for abstract state machines. J. Univ. Comput. Sci. 14(12),
1949-1983 (2008)

5. Paulweber, P., Pescosta, E., Zdun, U.: CASM-IR: uniform ASM-based intermediate
representation for model specification, execution, and transformation. In: Butler,
M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp.
39-54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_4

6. Farahbod, R., Gervasi, V., Gléasser, U.: CoreASM: an extensible ASM execution
engine. Fundam. Informaticae 77(1-2), 71-104 (2007)

7. Curry, G., Baer, L., Lipkie, D., Lee, B.: Traits: an approach to multiple-inheritance
subclassing. In: Proceedings of the SIGOA Conference on Office Information Sys-
tems, New York, NY, USA, pp. 1-9. ACM (1982)

8. Canning, P.S., Cook, W.R., Hill, W.L., Olthoff, W.G.: Interfaces for strongly-typed
object-oriented programming. In: OOPSLA, pp. 457-467. ACM (1989)

9. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: ACM
SIGPLAN-SIGACT POPL, New York, NY, USA, pp. 171-183. ACM (1998)

10. Bracha, G., Cook, W.: Mixin-based inheritance. ACM Sigplan Not. 25(10), 303—
311 (1990)

11. Schérli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: composable units of
behaviour. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248-274.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45070-2_12

https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-662-56641-1_9
https://doi.org/10.1007/978-3-662-56641-1_9
https://doi.org/10.1007/978-3-319-91271-4_4
https://doi.org/10.1007/978-3-540-45070-2_12

12.

13.

14.

15.

16.

17.

Structuring the State and Behavior of ASMs 243

Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Inc., Walnut
Creek (2008)

Potts, A., Friedel, D.H.: Java Programming Language Handbook. Coriolis Group
Books, Scottsdale (2018)

Matsakis, N.D., Klock II, F.S.: The rust language. ACM SIGAda Ada Lett. 34,
103-104 (2014)

Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL: extended
abstract. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2003. LNCS, vol. 3188, pp. 240-259. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30101-1_11

Anlauff, M.: XASM- an extensible, component-based abstract state machines lan-
guage. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000.
LNCS, vol. 1912, pp. 69-90. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-44518-8_6

Simhandl, G., Paulweber, P., Zdun, U.: Design of an executable specification lan-
guage using eye tracking. In: EMIP 2019 (at ICSE 2019), May 2019

https://doi.org/10.1007/978-3-540-30101-1_11
https://doi.org/10.1007/978-3-540-30101-1_11
https://doi.org/10.1007/3-540-44518-8_6
https://doi.org/10.1007/3-540-44518-8_6

	Structuring the State and Behavior of ASMs: Introducing a Trait-Based Construct for Abstract State Machine Languages
	1 Introduction
	2 Motivation
	3 A Trait-Based Construct for ASMs
	4 Conclusion
	References

