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Abstract. The decentralisation of railway signalling systems has the
potential to increase railway network capacity, availability and reduce
maintenance costs. Given the safety-critical nature of railway signalling
and the complexity of novel distributed signalling solutions, their safety
should be guaranteed by using thorough system validation methods. In
this paper, we present a rigorous formal development and verification of a
distributed protocol for reservation of railway sections, which we believe
could deliver benefits of a decentralised signalling while ensuring safety
and liveness properties. For the formal distributed protocol development
and verification, we devised a multifaceted framework, which aims to
reduce modelling and verification effort, while still providing comple-
mentary techniques to study protocol from all relevant perspectives.
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1 Introduction

Railway signalling is a safety-critical system whose responsibility is to guaran-
tee a safe and efficient operation of railway networks. In recent decades there
have been proposals to utilize distributed system concepts (e.g. [13,24]) in rail-
way signalling as a way to increase railway network capacity and reduce main-
tenance costs. These emerging distributed railway signalling concepts propose
using a radio-based communication technology to decentralise contemporaneous
signalling systems1. Because of their complex concurrent behaviour, distributed
systems are notoriously difficult to validate and this could curtail the develop-
ment and deployment of novel distributed signalling solutions.

In recent years there has been a push (e.g. [12,22]) by the industry with a
strong focus on distributed systems to incorporate formal methods into their
1 A single signalling computer may be responsible for controlling tens of routes (case

studies [18,20]) whereas novel distributed systems would reduce that number.
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system development processes to improve system assurance and time-to-market.
Yet, despite that for years the railway domain has proved to be a fruitful area for
applying various formal methods [3,7], considerably less has been done in apply-
ing them for distributed railway systems by industry and academia. Therefore,
the long-term aim of our research is to lower the effort the barriers to apply-
ing formal methods in developing correct-by-construction distributed signalling
systems.

In order to manage the modelling and verification complexity of distributed
protocols we are working towards an integrated multifaceted methodology, which
is based on three concepts: stepwise renement, communication modelling pat-
terns and validation through proofs. In spite of advancements in proof automa-
tion, it might be too onerous to mathematically prove the model in early devel-
opment stages. Therefore, it is also desirable that the framework should sup-
port model animation and scenario validation. It is also paramount that the
framework should support quantitative evaluation; as stated by Fantechi and
Haxthausen [10], distributed signalling solutions will only be adopted in prac-
tice if system availability is demonstrated. The authors (as discussed in [10])
of related researches did not consider liveness and fairness properties, which
directly affect system availability. In our proposed multifaceted methodology we
integrate stochastic simulators for quantitative analysis.

In this paper, we present a research, which uses the proposed methodology
to formally develop and verify a distributed railway signalling protocol, which
would deliver decentralised signalling benefits, while meeting high safety require-
ments. The developed distributed signalling protocol is based on serialisability
and is inspired by protocols used in transactions processing [4,8,11] in centralised
and distributed database systems. The main objective of our protocol is to guar-
antee mutual exclusion of railway sections while ensuring systems liveness. In
a nutshell, our key contributions are the formally proved distributed railway
section allocation protocol inspired by past protocols for database systems and
the formalisation of the multifaceted verification framework.

Related Work. In Fantechi and Haxthausen [10] the authors formalise the rail-
way interlocking problem as a distributed mutual exclusion problem and discuss
the related literature on distributed interlocking (e.g. [9,13,24]). In principle all
railway models share similar high-level safety, liveness and fairness requirements,
as summarised on page 2 in [10]. One difference between our work and the studies
overviewed in [10] is the interlocking engineering concept and the system model
(e.g. allowed message delays). Another difference is the formal consideration of
liveness and fairness requirements. In our work we not only prove the safety
properties of the protocol, but also ensure systems liveness, fairness and analyse
performance.

A similar distributed signalling concept is presented as a case study in [1].
The authors verified their system design via a simulation approach and only
considered scenarios with up to two trains. In our verification approach we prove
the distributed signalling system mathematically and hence guarantee its safety
for any number of trains. In the paper by Morley [21] the author formally proved
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a distributed protocol, which is used in the real-world railway signalling systems
to reserve a route, which is jointly controlled by adjacent signalling systems.
Even though, the distributed signalling concepts of our works are different, the
effects of message delays to the safety were considered in both works.

The rest of the paper is organised as follows. Section 2 outlines the motivation
for developing the protocol, semi-formally describes its functionality, elicits the
requirements and introduces its specifications and the properties to be proved.
Section 3 further discusses the integrated methodology we are proposing. The
following section briefly discusses formal model development and also provides
technical details on property verication and performance analysis. In the last
section we summarise our work and discuss future work directions.

2 Distributed Resource Allocation Model and Protocol

The distributed railway signalling can increase networks capacity (as trains could
run closer), improve systems agility to delays and possibly reduce repair costs.
On the other hand, an increased system complexity and a safety-critical (SIL4)

nature requires the highest level of safety assurance. In order to apply formal
methods one must clearly state system requirements and specifications. In the
following subsections we describe an abstract model of the distributed railway
system and its requirements as well as the stage1 of the distributed protocol,
which guarantees the safety and liveness of the distributed system.

2.1 High-Level Distributed System Model and Requirements

We abstract the railway model and instead of trains, routes and switches our
system model consists of agents and resources (resources controllers). The sys-
tem model permits message exchanges only between agents and resources, and
messages can be delayed. Each resource controller has an associated queue-like
memory, where agents allocation order can be stored. A resource also has a
promise (ppt) and read pointers (rpt), which respectively indicate the currently
available slot in the queue and the reserved slot (with an associated agent) that
currently uses the resource. An agent has an objective, which is a collection of
resources an agent will attempt to reserve (all at the same time) before using
and eventually releasing them.

SAF1 | A resource will not be allocated to different agents at the same time.
SAF2 | An agent will not use a resource until all requested resources are allo-
cated.
LIV1 | An agent must be eventually allocated requested set of resources.
LIV2 | Resource allocation must be guaranteed in the presence of message
delays.

Requirements 1: High-level systems safety and liveness requirements
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The main objective of the protocol is to enable safe and deadlock-free dis-
tributed atomic reservation of collection of resources. Where by a safe resource
reservation we mean that no two different agents have reserved the same resource
at the same time. The protocol must also guarantee that each agent eventually
gets all requested resources - partial request satisfaction is not permitted. The
main high-level safety and liveness requirements of the distributed system are
expressed in Requirements 1.

The following section attempts to justify the need for an adequate distribute
protocol by discussing problematic distributed resource allocation scenarios.

2.2 Problematic Distributed Resource Allocation Scenarios

Let us consider Scenarios 1–2 (visualised in Fig. 1) to see how requirement LIV1

could not be guaranteed (while ensuring SAF2) without an adequate distributed
resource allocation protocol.

Scenario 1. In this scenario, agents a0 and a1 are attempting to reserve the
same set of resources {r0, r1}. Agents start by firstly sending request messages
to both resources. Once a resource receives a request message, it replies with the
current value of the promised pointer (ppt(rk)) and then increments the ppt(rk).
For instance, in this scenario, resource r0 firstly received a request message from
agent a0 and thus replied with the value ppt(r0) = 0, which was then followed
by a message to a1 with an incremented ppt(r0) value of 1. In Figure, we denote
a*n as the ppt(rk) value sent to an. Request messages at resource r1 have been
received and replied in the opposite order.

In this preliminary protocol, after an agent receives promised pointer values
from all requested resources, it sends messages to requested resources to lock them
at the promised queue-slot. In this scenario, agent a0 was promised queue-slots
{(r0, 0), (r1, 1)} while a1 queue-slots {(r0, 1), (r1, 0)}. If agents would lock these
exact queue-slots, resource r0 would allow a0 to use it first, while r1 would con-
currently allow a1. The distributed system would deadlock and fail to satisfy LIV2

requirement as both agents would wait for the second use message to ensure SAF2.

a0 a1

r0 r1

a0 a1

r0 r1

slot r0
0 a∗

0

1 a∗
1

dl0 2 a0
dl1 3 a1

·
n

slot r1
0 a∗

1

1 a∗
0

2 a0
3 a1
·
n

slot r0
0 a∗

0

1 a∗
0

2
3
·
n

slot r1
dl0 0 a1

1 a∗
0

2 a∗
0

3
·
n

Fig. 1. Problematic scenarios: Scenario 1 (left) and Scenario 2 (right)
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In order to prevent the cross-blocking type of deadlocks, an agent should
repeatedly re-request the same set of resources (and not lock them) until all
received promised queue slot values are the same. We define a process of an
agent attempting to receive the same promised queue slots as an agent forming
a distributed lane (dl).

A distributed lane of agent an is dl(an) = {(rk, s), (rk+1, s), . . . , (rk+m, s)},
where {rk, rk+1, . . . , rk+m} are all resources requested by agent an and s is the
queue slot value promised by all requested resources. Important to note, that
this solution relies on the assumption, that there is a non-zero probability of
distinct messages arriving at the same destination in different orders, even if
they are simultaneously sent by different sources.

The modified situation is depicted in Scenario 1, where, after agents {a0, a1}
initially receiving {(r0, 0), (r1, 1)} and {(r0, 1), (r1, 0)} slots, mutually re-request
resources again. This time they receive {(r0, 2), (r1, 2)} and {(r0, 3), (r1, 3)} slots,
and are able to form distributed lanes dl0(a0) and dl1(a1).

Scenario 2. However, simply re-requesting the same resources might result in a
different problem. In Scenario 2, agent a1 has requested and has been allocated
a single resource r1 which in turn modified ppt(r1) to 1 while ppt(r0) remained
0. If another agent a0 attempts to reserve resources {r0, r1}, it will never receive
the same promised pointer values from both resources, and hence, will not be
able to lock them.

To address the two issue described above, we developed a two-stage protocol,
where the stage1 of the distributed protocol specifies how an agent forms a dis-
tributed lane. Stage2 of the protocol, which is out of this paper scope, addresses
other deadlock scenarios, which can occur after agents form distributed lanes.
In the following subsection we semi-formally describe the stage1 of the protocol.

2.3 Semi-formal Description of the Stage1

An agent, which intends to reserve a set of resources starts by sending request
messages to resources. The messages are sent to those resources which are part
of agents current objective. In the provided pseudocode excerpt, we first denote
relations sent requests and objective where they are mappings from agents to
resource collections (ln. 1–3 Algorithm 1). The messages request are sent by an
agent an to a resource rk (rk ∈ objective[an]) until sent requests[an] = objective[an]
(images are equal). When a resource rk receives a request message from an agent
an it responds with a reply message which contains the current promised pointer
value of resource ppt(rk) to that agent and increments the promised pointer (ln.
2–4 Algorithm 2). After sending all request messages an agent waits until reply
messages are received from requested resources and then makes a decision.
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Algorithm 1 Agent stage1 communication algorithm
1: while sent requests[an] �= objective[an] do
2: request(an) → rk sending request message from agent an to resource rk
3: end
4: wait until received replies[an] = objective[an]
5: while |replies[an]| �= 1 do cardinality of agents received slot indices
6: m′ = max(replies[an]) + 1
7: sent srequests[an]′ = ∅ reset sent special request messages buffer
8: received replies[an]′ = ∅ reset received reply messages buffer
9: while sent srequests[an] �= objective[an] do
10: srequest(an,m) → rk
11: end
12: wait until received replies[an] = objective[an]
13: end
14: while sent write[an] �= objective[an] do
15: m′ = max(replies[an])
16: write(an,m) → rk
17: end The end of stage1 of the protocol.

When all received promised pointer values are the same (a distributed lane
can be formed) an agent completes the stage1 by sending write, to all requested
resources, messages which contain the negotiated index (ln. 14–17 Algorithm 1).
But if one of the received promised pointer values is different an agent will start a
renegotiation cycle (ln 5–13 Algorithm 1). By sending a srequest messages which
contain a desired slot index to resources. A desired index is computed by taking
the maximum of all received promised pointer values and adding a constant (one
is sufficient) - ln. 6 Algorithm 1. A resource will reply to srequest message with
the higher value of the current ppt(rk) or received srequest message value and will
update the promised pointer (ln. 5–7 Algorithm 2). After sending all srequest
messages, an agent waits for reply messages and then restarts the loop if received
slot indices are not the same.

Algorithm 2 Resource stage1 communication algorithm
1: switch received message do
2: case request(an)
3: reply(ppt(rk), rk) → an
4: ppt(rk)′ = ppt(rk) + 1
5: case srequest(an, n)
6: reply(max(ppt(rk), n), rk) → an
7: ppt(rk)′ = max(ppt(rk), n) + 1

SAF3 | An agent will not send write (form a distributed lane) messages until
all receive promised pointer values are identical.
SAF4 |Agents with overlapping resource objectives will negotiate distributed
lanes with different index.
LIV3 | An agent will eventually negotiate a distributed lane.
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Requirements 2: Low-level protocol stage1 safety and liveness requirements
It is important to note that the stage1 protocol solution to the described

deadlock scenarios has a stochastic nature and one needs to guarantee that a
desirable state is probabilistically reachable. In Requirements 2 we summarise
requirements for the stage1 of the protocol.

After an agent completes stage1 and thus negotiates a distributed lane it will
start protocol stage2 to prevent other deadlock scenarios. Predominantly because
of papers verification focus towards properties from stage1 (all complimentary
verification/analysis techniques used) we provide protocol stage2 description in
the online appendix2.

3 Multifaceted Modelling and Verification Framework

As stated before, the long-term objectives of our research are to reduce mod-
elling and verification effort of distributed systems and to have a multifaceted
framework to study protocols from all relevant perspectives. In the introduction,
we defined key formal concepts the framework should rely on and in the following
section we discussed protocol requirements we need to guarantee.

The following subsections proposes an engineering process with different for-
mal techniques each of which is efficient to handle parts of above requirements
and help to manage modelling and verification complexity.

3.1 Formalised Multifaceted Verification Framework

For any adequate formal system development, system requirements should be
clearly stated, and so, this is the first step (Step 1 in Fig. 2) in the modelling
process. Currently, we do not suggest or provide a specific structural approach
for defining distributed system requirements. The next step (Step 2) in the pro-
cess is developing and verifying a pivotal formal model. The purpose of formally
modelling a distributed system is to have a formal artefact, which can be ani-
mated, analysed and formally verified.

Requirements

Event-B

ProB ATPs PRISM

Stochastic Sim.

Step 2

Step 1

Step 3

Fig. 2. Multifaceted modelling and verification framework

2 A complete protocol description and formal models can be found at http://stankaitis.
uk/2019/02/.

http://stankaitis.uk/2019/02/
http://stankaitis.uk/2019/02/
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For the development and verification of pivotal functional system models
we selected the Event-B [2] specification language, which has previously been
successfully used for modelling and verification of various distributed protocols
[5,15,16]. The Event-B method provides an expressive modelling language, flex-
ible refinement mechanism and is also proof driven, meaning model correctness
is demonstrated by generating and discharging proof obligations with available
automated theorem provers [6,17]. The method is supported by tools such as
ProB [19] which enable animating and model-checking a model. On the other
hand, the Event-B method does not have an adequate probabilistic reasoning
support, which, for example, was essential for verifying the distributed railway
section reservation protocol. Therefore, it was decided to integrate the well-
known PRISM [14] stochastic model checker into the framework, so stochastic
system’s properties can be verified.

The last step (Step 3) in the proposed engineering process is analysing a
developed distributed system’s performance. For that, we have implemented a
high-fidelity protocol simulator which could help to evaluate protocols under
normal or stressed conditions. Following subsections provide more detail on how
each of the formal techniques would be used in the development and verification
of a distributed protocol.

3.2 Step 2: Developing Functional Pivot Models in Event-B

A formal functional Event-B model can have a multitude of uses, but the main
application is for formally proving properties about the distributed system. The
completed distributed system’s model in Step 2 should cover all requirements
and specifications, and would be considered correct when all generated proof
obligations are proved.

The model development approach we propose is a rather standard and starts
with the abstract model which formally specifies the objective of the distributed
protocol. In fact, distributed aspects of the system are ignored at this model level
and the abstract model considers a centralised configuration. The abstract model
is then iteratively refined by introducing more details about the distributed
protocol, primarily by modelling communication aspects. To reduce modelling
effort we previously developed communication modelling patterns and described
a generic model refinement plan in [23]. A key aspect of our methodology is
the scenario validation and analysis. Particularly, in early protocol development
stages, it might be too onerous to verify a model only to discover design mistakes.
To facilitate design exploration we apply animation and model-checking enabled
by ProB. Nonetheless, the final (concrete) model should be proved by adding
invariants to the model and proving generated proof obligations with available
automated theorem provers.

3.3 Step 2: Proving Stochastic Properties with PRISM

As the distributed signalling protocol had a stochastic nature it was important
to formally demonstrate that a satisfying state could be reached. Probabilistic
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or liveness properties are hard to formalise and prove in the Event-B method.
Therefore, it was decided to prove progress of the protocol outside of Event-B
by redeveloping part of the model (stage1) in the PRISM model checker.

The drawback of using PRISM model checker, if a bounded problem abstrac-
tion cannot be found, the verification is limited to bounded models. As we could
not find protocol’s stage1 abstraction, we created a skeleton model, which then
could be instantiated to model specific scenarios of stage1 with n agents, m
resources and other initial conditions. Additionally, we developed a model gen-
erator, which can automatically instantiate the skeleton model to capture a
random scenario and run probabilistic verification conditions.

3.4 Step 3: Analysing System’s Performance

With Event-B and PRISM we aim to demonstrate that the protocol addresses
the formulated requirements but it is necessary in our application domain to
understand how the protocol is going to perform under various conditions if it
were deployed in a real system. To conduct such a simulation we have imple-
mented a high fidelity protocol simulator that can be populated with any number
of resources and agents while realising any conceivable agents’ goal formation
and message delivery policies.

The simulator is parametrised with a function of probability of picking a
certain message out of a pool of available messages. The probability function
is itself parametrised by message source, destination, timestamp and type. The
simulation would help to answer how fast, in terms of vital steps such as messages
sent, a protocol’s stage1 can be completed and how the performance is affected
by messages delays. With function D we can simulate slow agents and resources,
fair, arbitrary and unfair delivery policies, agents that operate much faster than
others and so on.

4 Formal Protocol Modelling, Verification and Analysis

In this section we present the application of previously introduced modeling and
verification framework for developing distributed railway signalling protocol. In
Sect. 2 we defined protocol’s requirements (Step 1), thus following subsections
focuses on formal methodology aspects.

4.1 Step 2. Formal Protocol Model Development in Event-B

We apply the Event-B formalism to develop a high-fidelity functional model and
prove the protocol functional correctness requirements. We follow the modelling
process presented in Sect. 3.2. Important to note that the protocol model was
redeveloped multiple times as various deadlock scenarios were found with ProB
animator and model-checker. Below, we overview the final (verified) model.

Modelling was started by creating an abstract model context which contains
constants, given sets and uninterpreted functions. In the abstract context, we
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introduced three (finite) sets, to respectively represent agents (agt), resources
(res) and objectives (obj). The context also contains an objective function which
is a mapping from objectives to a collection of resources (ob ∈ obj → P(res)) and
an enumerated set for agents status counter.

The dynamic protocol parts, such as messages exchanges, are modelled as
variables and events computing next variable states and contained in a machine.
According to the proposed model development process, the initial machine
(abstract) should summarise the objective of protocol, which is an agent complet-
ing an objective (locking all necessary resources). To capture that, the abstract
protocol machine contains two events, respectively modelling an agent locking
and then releasing a free objective (ob ∈ obj). The abstract model is refined by
mostly modelling communication aspects of the distributed signalling protocol
and for that we use a backward unfolding style where the next refinement step
introduces preceding protocol step. Below, we overview the refinement chain and
properties we proved at that modelling stage.

Refinement 1 (Abstract ext.). In this refinement we introduce resources into
the model and now an agent tries to fulfill the objective by locking resources.
Previous two events (lock/release) are now decomposed to two for each and
capture iterative locking and releasing of resources.

Refinement 2. The abstract models are firstly refined with stage2 part of the
protocol. In the refinement, r 2, we introduced lock, response and release mes-
sages and associated events into the model. In this step we also demonstrated
that the protocol stage2 ensures safe distributed resource reservation by proving
an invariant. The invariant states that no two agents will be both at resource
consuming stage if both requested intersecting collections of resources.

Refinement 3. Model r 3, is the bridge between protocol stages stage1 and
stage2 and introduces two new messages write and pready into the model.

Refinement 4. The final refinement step - r 4 - models stage1 of the distributed
protocol which is responsible for creating distributed lanes. Remaining messages
request, reply, srequest and associated events are introduced together with the
distributed lane data structure. In this refinement we prove that distributed
lanes are correctly formed (req. SAF3-4).

4.2 Step 2: Proving Functional Correctness Properties in Event-B

As shown in Sect. 2.2 (Scenarios 1 - 2) high-level system’s requirements can
only be met if an agent invariably and correctly forms a distributed lane. The
probabilistic lane forming eventuality (LIV3) is discussed separately while in the
following paragraphs we focus on the proof regarding requirements SAF3-4.

SAF3 is required to ensure that agent’s resource objectives are not satisfied or
satisfied on full. The model addresses this via event guards restricting enabling
states of the event that generates an outgoing write message. To cross-check this
implementation we add an invariant that directly shows that SAF3 is maintained
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in the model. For illustrative purposes we focus on details of verifying a slightly
more interesting case of SAF4 and assume that SAF3 is proven.

Requirement SAF4 addresses potential cross-blocking deadlocks or resource
double locking due to distributed lane overriding. The strategy is to prove the
requirement is to show that agents that are interested in at least one common
resource (related) always form distributed lanes with differing indices. We start
by assuming that agents only form distributed lanes if all received indices are
the same (proved as SAF3). Then, if a resource (or resources) shared between
any two related agents send unique promised pointer values to these agents,
these indices will be distributed lane deciders as all other indices from different
resources must be the same to form a distributed lane. Hence, to prove SAF4 it is
enough to show that each resource replies to a request or special request message
with a unique promised pointer value.

resource reply general =̂
ANY

rq, rp
WHERE

grd1 rq ∈ req take a sent request message
grd2 rp ∈ REQ \ rep create a new reply message
grd3 repd(rp) = reqs(rq) destination of reply message is source of request message
grd4 reps(rp) = reqd(rq) source of reply message is destination of request message
grd5 repn(rp) = ppt(reps(rp)) reply message contains promised pointer

THEN
act1 rep := rep ∪ {rp} add new message to reply channel
act2 req := req \ {rq} remove request message from request channel
act3 ppt(res) := ppt(res) + 1 increment promised pointer
act4 hisppt(res) := hisppt(res) �− {(hiswr(res)) �→ ppt(res)}
act5 hiswr(res) := hiswr(res) + 1

END

Fig. 3. Event-B model excerpt of a resource sending a reply message (Color figure
online)

To prove that all resources replies to a request or special request message
with a unique promised pointer value, we firstly introduced a history variable
hisppt of type hisppt ∈ (res → (N �→ N)) into our model. The main idea behind
the history variable was to chronologically store the promised pointer values
sent by a resource. We also introduced a time-stamp variable hiswr of the type
hiswr ∈ res → N to chronologically order the promised pointer values stored in
the history variable.

After introducing history variables, we modified events resource reply general
and resource reply special, which in the protocol update the promised pointer
variables, by adding two new actions (see Fig. 3). The first action act4 updates
the history variable with the promised pointer value (ppt(res)) that was sent
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to the agent at the time stamp (hiswr(res)). The second action, act5, simply
increments resource’s res time-stamp (hiswr(res)) variable.

inv saf 4 ∀r, n1, n2 · r ∈ RES ∧ n1, n2 ∈ dom(hisppt(r)) ∧ n1 < n2 ⇒
hisppt(r)(n1) < hisppt(r)(n2)

Action act4 updates a history variable for a resource res with the current write
stamp and promised pointer (ppt(res)) value sent. The next action act5 simply
updates the resource’s write stamp. We can then add the main invariant to
prove (inv saf 4) which states that if we take any two entries n1, n2 of the
history variable for the same resource where one is larger, then that larger entry
should have larger promised pointer value.

inv his ppt ∀res· (hiswr(res) = 0 ∧ hisppt(res) = ∅)
∨( dom(hisppt(res)) = 0 .. hiswr(res) − 1

∧ hisppt(res)(hiswr(res) − 1) = ppt(res) − 1)

To prove that resource reply {general, special} preserve inv saf 4, the follow-
ing properties play the key role: (1) the domain of hisppt (i.e., ‘indices’ of hisppt) is
{0, . . . , hiswr − 1}, (2) hisppt(hiswr − 1) < hisppt(hiswr). Property (2) holds because
hisppt(hiswr) is the maximum of promised pointer (ppt) and special request slot
number and promised pointer is incremented as resource reply {general, special}
occurs. We also specified these properties as an invariant (inv his ppt) and
proved they are preserved by the events which helped to prove inv saf 4.

Proof Statistics. In Table 1 we provide an overall proof statistics of the Event-
B protocol model which may be used as a metric for models complexity. The
majority of the generated proof obligations were automatically discharged with
available solvers and even a large fraction of interactive proofs required minimum
number of steps. We believe that a high proof automation was due to modelling
patterns [23] use and SMT-based verification support [6,17].

Table 1. Event-B protocol model proof statistics

Model No. of POs Aut. discharged Int. discharged

context c0 0 0 0

context mes. 9 9 0

machine m0 12 12 0

machine m1 23 21 2

machine m2 59 43 16

machine m3 43 32 11

machine m4 103 57 46

Total 249 174 75
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4.3 Step 2: Proving Liveness (req. LIV3) with PRISM

In this subsection, we discuss stochastic model checking results with which we
intend to prove level that LIV3 requirement is preserved. In particular, we focus
on showing that LIV3 requirement is ensured in Scenario 2 (Sect. 2.2).

In order to demonstrate that LIV3 requirement holds in Scenario 2 (Sect. 2.2)
we used stage1 protocol’s skeleton PRISM model to replicate Scenario 2. In this
experiment we were interested in observing the effects a promised pointer offset
has on an probability of agent forming a distributed lane while the upper limit of
the promised pointer is increased3 (n in Scenario 2). Early experiments showed
that verification would not scale well (several hours for a single data-point) if we
would increase the number of resources and agents above two resources and three
agents (each agent trying to reserve both resources) so we kept these parameters
constant.

For each scenario, we would run a quantitative property: P = ? [F dist0 > -1]
which asks what is the probability of an agent negotiating a distributed lane until
the upper promised pointer limit is reached. The three curves (red, green and
violet) in Fig. 4 show the effect a promised pointer offset has on negotiation
probability as queue depth is increased. Results suggest that increasing the off-
set reduces the probability of negotiating a distributed lane as queue depth is
increased, but the probability still approaches one as the number of rounds is
increased (Fig. 4).

Fig. 4. Scenario 2 with varied resource promised pointer offset and queue depth.

To further see the effects of the offset, we considered a different experiment
where the same quantitative property would be run when the number of possible
renegotiations value is kept constant and offset is increased (light blue plot).

3 Instead, of ppt upper limit we decided plot the probability against the queue depth,
(offset - n) as it directly shows how many times an agent can renegotiate resources.
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Results indicate that offset has only effect until a specific threshold and after
that the probability of agent negotiating a distributed lane is not affected by
the offset. These results suggest that the situation in Scenario 2 does not violate
LIV3 requirement as distributed lanes can be negotiated.

4.4 Step 3: Analysing Performance

The goal of this part is to study the protocol performance under various stress
conditions and thus provide assurances of its applicability in real life situations.
To build simulation, we simply capture protocol’s stage1 behaviour using a pro-
gram. We are also able to obtain bounds on the number of messages required to
form lanes in different setups. This can be directly translated into real-life time
bounds on the basis of point to point transmission times.

Simulation Construction. Simulation is setup as a collection of actors of two
types - agents and resources - and an orchestration component observing and
recording message passing among the actors. A message is said to be in transit
as soon as it is created by an actor. Every act of message receipt (and receipt
only) advances the simulation (world) clock by one unit. Hence, any number
of computations leading to message creation can occur in parallel but message
delivery is sequential. To model delays we define a function that probabilistically
picks a message to be delivered among all the messages currently in transit. A
special message, called skip, is circulated to simulate idle passage of time. This
message is resent immediately upon receipt by an implicit idle actor.

Fig. 5. Time to form all or first lanes, logarithmic scale.

Let M be set of all messages that can be generated by agents and resources.
Also, let skip /∈ M denote the skip message and M

′ = M ∪ {skip}. By its
structure, set M

′ is countable (each message identified by unique integer) and
one can define a measure space over M

′. Let D signify the probability that
some message m ∈ M ⊆ M

′ from message pool M is selected for reception.
We shall define D via the current message pool, the attributes of m such
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its source, destination, time stamp and protocol stage, and the world time:
D = D(M,m, t) = D(M,m.s,m.d,m.c,m.o, t). Here M is the set of available
message, m.s and m.d are the message source and destination agent or resource,
m.c is the message type (e.g., WRITE), m.o is the message timestamp (the point
of its creation) and t is the world clock. Defining differing probabilities D we are
able to address most scenarios of interest.

Uniform Distribution. With D(M,m, t) = card(M)−1 the simulator picks
a message from M using a uniform distribution. It is an artificial setting as
the time in transit bears no influence over the probability of arrival. Counter-
intuitively, the said probability may decrease with the passage of time when
new messages are created quicker than they are delivered. The skip message has
equal probability with the rest so the system “speeds up” when M is large. The
plots in Fig. 5 shows how the protocol performance changes when the number of
resources (Resource line), agents (Agent lines), and resources an agent attempts
to acquire (Agent goal) increase. We plot separately time to form all lanes and
any first lane. The values plotted are averaged over 10000 runs.

5 Conclusions and Future Work

In this paper we proposed a multifaceted framework with which we aim to reduce
modelling and verification of distributed (railway signalling) systems. The frame-
work was applied in the development of the novel distributed signalling protocol.
Starting only with high-level system requirements we developed an early formal
protocol prototype which with the help of ProB was refined as subtle deadlock
scenarios were discovered. This in part is the advantage of a stepwise develop-
ment supported by Event-B as complex distributed models can be decomposed
into smaller problems and errors found earlier. The stepwise distributed pro-
tocol development as also shown before [5,15,16] together with adequate tools
[6,17] helped to achieve fairly high verification automation. On the other hand,
protocol verification was complicated by the need of stochastic reasoning and
not adequate Event-B support for reasoning about probabilistic properties. The
current solution relied on a model redevelopment in stochastic model checker
PRISM which did not scale well for verification of larger scenarios. As a future
direction it is essential to address this problem by most likely improving stochas-
tic reasoning in Event-B. In the future we would also like to a much closer tool
integration and support an automatic translation to PRISM and the stochastic
simulator.
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