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Abstract This chapter consists of two sections. The first part covers a brief expla-
nation of convolutional neural networks. We discuss the motivation behind using
convolution in a neural network and present some of the common operations used
in practice alongside with convolution. Then, we list some variations of the convo-
Iution layer and we set the guidelines as to when the types of CNN layer are used
to manage certain tasks. In the latter section, we will demonstrate the application
of a CNN on skin melanoma segmentation with the written approaches and steps
to train our model. We provide succinct explanations and hopefully, this will give
a better understanding of CNNs in the context of medical imaging. We encourage
readers to follow along on their own and try the actual code available from the GitHub
repository provided in the second section.
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16.1 Introduction

The power of artificial intelligence (AI) has thrust it to the forefront as the next
transformative technology in conventional business practices. To date, billions of
dollar have been invested to drive the accuracy and predictability of Al algorithms
in acquiring information, processing, and understanding images like MRI, CT, or
PET scans. While much of the data in clinical medicine continues to be incredibly
obfuscated and challenging to appropriately leverage, medical imaging is one area
of medicine where the pure processing power of today’s computers have yielded
concrete beneficial results. In 2017, Andrew Ng, the former head of Al research at
Baidu and adjunct professor at Stanford University, reported in his research that his
group had developed an algorithm that outperformed trained radiologists in iden-
tifying pneumonia (Rajpurkar et al. 2017). Because computers have the capacity
to process and remember countless petabytes of data more than a human could in
their lifetime, machines have the potential to be more accurate and productive than
even a trained clinician. Meanwhile, we also see a growing number of Al start-ups
who have created algorithms that achieve commercial operating standards in spot-
ting abnormalities in medical images. Be it detecting or diagnosing various diseases
ranging from cardiovascular and lung diseases to eye diseases, these Al companies
have been rendering services to help health providers to manage the ever increasing
workload. Rejoice to the world as we celebrate the triumph of Al in opening endless
possibilities in the field of medical imaging.

Medical imaging seeks to visualize the internal structures hidden by the skin
and bones, providing clinicians with additional information to diagnose and treat
patients. Standard practice establishes a database of normal physiology and anatomy
to potentially differentiate the abnormalities in disease. Imaging is often crucial in
detecting early stages of disease, where obvious signs and symptoms are sometimes
obscured. Al can now process millions of data points, practically instantaneously,
to sort through the troves of medical data and discern subtle signs of disease. The
machine does this using a class of deep learning networks called “convolutional
networks” to simulate the learning of how humans would perceive images. This
allows the machine to gain a high level understanding from digital images or videos.
In this case, we will focus more on how to build a machine to process medical images.

Convolutional neural networks (CNN) are a specific group of neural networks
that perform immensely well in areas such as image recognition and classification.
They have proven to be effective in producing favourable results in several medical
applications. Such examples include skin melanoma segmentation, where machines
use CNNs to detect lesion area from the normal skin. Certainly, we can also apply
these to MRI or CT scan for problems like brain tumour segmentation or classification
of brain cancer with limitless application to medical disorders. The purpose of this
article serves as a guide to readers who are interested in studying medical images and
are keen to find solutions that assist with diagnosis through artificial intelligence.

We present a semantic-wise CNN architecture in Fig. 16.1 as a motivation to
this chapter. We will learn how to build such a model and put them into practice
in segmenting a region of skin lesion. Leading up to that, we will explore the main
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Fig. 16.1 Semantic-wise CNN architecture for brain tumour segmentation task. The left is the
input of brain MRI scan and the right is the predicted output by the CNN model. Source Akkus
etal. (2017)

mechanisms of the networks and show that these are the fundamentals to most state of
the art CNN models. However, our goal is to provide the readers with an introduction
to the basic structures of the networks. Therefore we will not go beyond the basics
nor cover more advanced models that obtain higher performance.

This chapter consists of two sections where the first part covers an intuitive expla-
nation to convolutional networks. We discuss the motivation behind using convolu-
tion in a neural network and we talk about some of the common operations used in
practice alongside with convolution. Then, we list some variations of the convolution
layer and we set the guidelines as to when the types of CNN layer are used to man-
age certain tasks. In the latter section, we have demonstrated the application of CNN
on skin melanoma segmentation with the written approaches and steps to train our
model. We provide succinct explanations and hopefully, this will give a better under-
standing of CNN in the context of medical imaging. We strongly encourage readers
to try the code on their own from the GitHub link provided in the second section.

16.2 Introduction to Convolutional Networks

Every image can be represented by a matrix of pixel values. A color image, can be
represented in three channels (or 2D matrices) stacked over each other in the RGB
color space in which red, green and blue are combined in various ways to yield an
extensive array of colours. Conversely, a greyscale image is often represented by a
single channel with pixel values ranging from 0 to 255, where 0 indicates black and
255 indicates white.

16.2.1 Convolution Operation

Suppose that we are trying to classify the object in Fig. 16.2. Convolutional networks
allow the machine to extract features like paws, small hooded ears, two eyes and so on
from the original image. Then, the network makes connections with all the extracted
information to generate a likelihood probability of its class category. This feature
extraction is unique to CNN and is achieved by introducing a convolution filter, or



266 D. Ng and M. Feng

RGB Channels

Fig. 16.2 Representation of the RGB channels (Red, Green and Blue) of a dog. Each pixel has a
value from 0 to 255

the kernel, which is defined by a small two dimensional matrix. The kernel acts
as feature detector by sliding the window over the high-dimensional input matrices
of the image. At each point, it performs a point-wise matrix multiplication and the
output is summed up to get the elements to the new array. The resulting array of
this operation is known as the convolved feature or the feature map. A feature map
conveys a distinct feature drawn from the image activated by the kernel. In order for
our networks to perform, we often assign sufficiently large number of kernels in the
convolution function to allow our model to be good at recognizing patterns in the
unseen images.

Besides, after every convolution, the resolution of the output becomes smaller
as compared to the input matrix. This is due to the arithmetic computation using a
sliding window of size greater than 1 x 1. As a result, information are summarized
at the cost of losing some potentially important data. To control this, we can utilize
zero padding which appends zero values around the input matrix.

To illustrate, we refer to the example as shown below. The dimension of the
original output after convolution is a 3 x 3 array. For us to preserve the original
resolution of the 5 x 5 matrix, we can add zeros around the input matrix to make
it 7 x 7. Then it can be shown that the final output is also a 5 x 5 matrix. This
does not affect the quality of the dataset as adding zeros around the borders does not
transform nor change the information of the image.

A formula to calculate the dimension of the output from a square input matrix is
given as follows (Fig. 16.3),

Widthinpu — Widthgemer + 2(padding) 41

Widthfealuremap = stride

From Figure 16.4, we show the typical learned filters of a convolutional network.
As mentioned previously, the filters in convolutional networks extract features by
activating them from the matrices. We would like to highlight that the first few layers
of the network are usually very nice and smooth. They often pick-up lines, curves
and edges of the image as those would fundamentally define the important elements
that are crucial for processing images. In the subsequent layers, the model will start
to learn more refined filters to identify presence of the unique features.
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Fig. 16.3 A 3 x 3 kernel is introduced in this example. We adopt stride of 1, i.e. sliding the kernel
by one pixel at a time to perform the convolution operation. Note that the overlay region of the
kernel and the input matrix over the matrix multiplication is called the receptive field

In comparison to the traditional neural network, convolution achieves better image
learning system by exploiting three main attributes of a convolutional neural network:
1. sparse interactions, 2. parameter sharing and 3. equivariant representation.

Sparse interactions refer to the interactions between the input and the kernel. It is
the matrix multiplication as described earlier, and sparse refers to the small kernel
since we construct our kernel to be smaller than the input image. The motivation
behind choosing a small filter is because machines are able to find small, meaningful
features with kernels that occupy only tens or hundreds of pixels. This reduces the
parameters used, which cuts down the memory required by the model and improves
its statistical computation.

Furthermore, we applied the same kernel with the same parameters over all posi-
tions during the convolution operation. This means that instead of learning a dis-
tinctive set of parameters over every location, machines only require to learn one set
of filter. As a result, it makes the computation even more efficient. Here, the idea is
also known as parameter sharing. Subsequently, combining the two effects of sparse
interaction and parameter sharing, we have shown in Fig. 16.4 that it can drastically
enhance the efficiency of a linear function for detecting edges in an image.

In addition, the specific form of parameter sharing enables the model to be equiv-
ariant to translation. We say that a function is equivariant if the input changes and
the output changes in the same way. In this way, it allows the network to generalise
texture, edge and shape detection in different locations. However, convolution fails
to be equivariant to some transformations, such as rotation and changes in the scale
of an image. Other mechanisms are needed to handle such transformations, i.e. batch
normalisation and pooling.



268 D. Ng and M. Feng

a
Activations

First layer of the convolutional network

Filters of the first layer

ol B 2w e

Activations Second layer of the convolutional network

Fllters of the seoond layer

“pMEH AL o

Activations Third layer of the convolutional network
. . . .

Fulters of the third layer

Activations Fourth layer of the convolutional network

Filters of the fourth layer

rlhlﬂiTﬂ

Fig. 16.4 a Visualization of the first eight activations, filters of layers 1, 2, 3 and 4 in the VGG16
network trained with ImageNet. b Visualization of the filters in AlexNet (Krizhevsky et al. 2012)
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Fig. 16.4 (continued)

16.2.2 Non-linear Rectifier Unit

After performing convolution operation, an activation function is used to select and
map information from the current layer. This is sometimes called the detector stage.
Very often, we use a non-linear rectifier unit to induce non-linearity in the computa-
tion. This is driven by the effort to simulate the activity of neurons in human brain
as we usually process information in a non-linear manner. Furthermore, it is also
motivated by the belief that the data in the real world are mostly non-linear. Hence,
it enables better training and fitting of deeper networks to achieve better results. We
have listed a few commonly used activation functions as shown below.

16.2.2.1 Sigmoid or Logistic Function

A sigmoid function is a real continuous function that maps the input to the value
between the range of zero and one. This property gives an ideal ground in predicting
a probabilistic output since it satisfies the axiom of probability. Moreover, considering
the output value between zero and one, it is sometimes used to access the weighted
importance of each feature, by assigning a value to each component. To elaborate, a
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Fig. 16.5 Some commonly used activation functions in deep learning models

value of zero removes the feature component in the layer while a value of one keeps
every information in the layer. The preserved information will be used for computing
prediction in the subsequent event. This attribute is helpful when we work with data
that are sequential in event i.e. RNN, LSTM model.

16.2.2.2 ReLU (Rectified Linear Unit)

ReLU is the most frequently used activation function in deep learning. It is reported
to be the most robust in terms of model performance. As we can see in Fig. 16.5,
ReLU function sets the output to zero for every input value that is negative or else,
it returns the input value. However, a shortcoming with ReLU is that all negative
values become zero immediately which may affect the capacity of the model to train
the data properly.

16.2.2.3 Hyperbolic Tangent (TanH)

The last activation function that we have on the list is tanh. It is very similar to a
sigmoid function with the range from negative one to positive one. Hence, we would
usually use it for classification. This maps the input with strong prior in which a
negative input will be strongly negative and zero inputs will be close to zero in the
tanh graph.

Here, the execution of the activation function takes place element wise, where the
individual element of each row and column from the feature map is passed into the
function. The derived output has the same dimensionality as the input feature map.

16.2.3 Spatial Pooling

Typical block of a classifying CNN model that achieves state of the art would consist
of three stages. First, a convolution operation finds acute patterns in the image.
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Fig. 16.6 Featuring steps to max pooling. Here, we use kernel size of 2 x 2 and stride of 1. i.e. we
slide the kernel window by one pixel length for every pooling step. The output of this max pooling
has a dimension of 2 x 2

Then, the output features are handed over to an activation function in the second
stage. At the last stage, we would implement a pooling function that trimmed the
dimensionality (down sampling) of each feature map while keeping the most critical
information. This would in turn reduce the number of parameters in the network and
prevent overfitting of our model.

Spatial pooling comes in various forms and the most frequently used pooling
operation is max pooling. To illustrate the process of max pooling, we use a kernel
of a definite shape (i.e. size = 2 x 2) and then carry out pointwise operation to pull
the maximum value of the location. A diagram is drawn in Fig. 16.6 to visualize the
process.

One of the most important reasons of using pooling is to make the input fea-
ture invariant to small translations. This means that if we apply local translation to
Fig. 16.2, max pooling helps to maintain most of the output value. Essentially, we
are able to acquire asymptotically the same output for convoluting a cat that sits on
top of a tree versus the same cat that sleeps under the tree. Hence, we conclude that
pooling ignores the location of subjects and places more emphasis on the presence
of the features, which will be the cat in this example.

16.2.4 Putting Things Together

Until now, we have covered the main operating structures found in most typical CNN
model. The CNN block is usually constructed in the checklist as listed below:
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Fig. 16.7 Sample network architecture of a functional CNN model
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The last component of CNN is usually the fully connected layer (Fig. 16.7). This
layer connects all the sophisticated features extracted at the end layer of the con-
volution with a vector of individual parameters specifying the interactions between
each pixels of the feature maps. The weights for the parameter are learned to reduce
inaccuracy in the prediction. This is similar to the concepts of a regression model
as we fit the parameter weights with the least square solution to explain the target
outcome. However, our predictors in this case are the flatten vector of the convolved
map. Finally, we use a sigmoid function to generate the likelihood of the classes for
the input image of a two classes problem or else, we will use a Softmax function in
the case of multiclass.

16.2.5 Back-Propagation and Training with Gradient
Descent

During backpropagation, we conduct supervised learning as we train our model
with gradient descent algorithm to find the best fitted parameters that gives optimal
prediction. Gradient descent is a first order iterative optimization method where we
can find a local minimum that minimizes the loss function. Here, the loss function
defines an evaluating metric that measures how far off the current model performs
against the target in our dataset. This is also sometimes referred to as the error or
the cost function. If we know the local minimum, our job is almost done and we
conclude that the model is optimized at that region.

To understand the motivation behind gradient descent, suppose we are learning
the parameters of a multiple linear regression, i.e. y = X + €. The least square



16 Medical Image Recognition: An Explanation and Hands ... 273

estimate of B is the minimizer of the square error L(B) = (Y — XB)'(Y — XB). The
first and second order derivatives of IL(B) with respect to p is given by

oL , 9°LL ,
— =-2X'(Y - XB), —— =2X'X
op dpIp’

Since X'X is positive semi-definite and if we assume X'X is of full rank, the least
square solution of LL(B) is given by

Brow = (X'X) " (X'Y)

Suppose now that X'X is non full rank, i.e. p >> n. This is often the case for an
image dataset where the number of features is usually very large. We can’t simply
inverse the matrix and it turns out that there is no unique solution in this case.
However, we do know that IL(B) is a strictly convex function and the local minimum
is the point where error minimizes, i.e. least square solution. As such, we take another
approach to solve this problem with the ‘descending stairs’ approach to find our
solution.

This approach is an iterative process that begins with a random location, x¢, on the
convex curve that is not the minimum. Our aim is to find the optimum x + that gives
the minimum loss, argmin, — F(x) by updating x; in every ith iteration. We choose a
descent direction such that the dot product of the gradient is negative,(V F (x); d) <
0, where VF(x) = % Z,N: Vi L(x, y;). This ensures that we are moving towards
the minimum point where the gradient is less negative.

To show this, we refer to the identity of the dot product given

a-b
lal|b]

cos(f) =

Suppose vector a, b is a unit vector and the identity is reduced to cos6 = a.b.
We know that taking cosine of any angle larger than 90° is negative. Since gradient
is pointing towards the ascent direction as shown in Fig. 16.8, we can find any
descent directions of more than 90° and the dot product computed to be negative, i.e.
cos O = negative.

(VF(x); =VF(x)) = —|[VF(x)]* <0
Hence a naive descent direction,
d=-VF(x)

This guarantees a negative value which indicates a descent direction.
Then, the steps to compute the new x is given by

Xn+1 = Xn + nndn
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Fig. 16.8 Contour plot of a convex function on the left, where the gradient is less negative towards
the origin of the axes. Cross sectional visualisation of a convex curve on the right

OR
Xn+1 = Xp + nan(Xn)

where 1), is the learning rate.

The learning rate (or step-size) is a hyper-parameter that controls how much we are
adjusting x,, position with respect to the descent direction. It can be thought of as how
far should we move in the descending direction of the current loss gradient. Taking
too small of a step would result in very slow convergence to the local minimum and
too big of a step would overshoot the minimum or even cause divergence. Thus, we
have to be careful in choosing a suitable learning rate for our model. Then after, we
iterate through the algorithm as we let it computationally alter towards the optimum
point. The solution is asymptotically close to the estimated Ploss.

However, this is computationally expensive as we are aggregating losses for every
observed data point. The complexity increases as the volume of the dataset increases.
Hence, a more practical algorithm would sample a smaller subset from the original
dataset and we would estimate the current gradient loss based on the smaller subset.
The randomness in sampling smaller sample is known as stochastic gradient descent
(SGD) and we can also prove that E[Vﬁ (x)] = VF(x). In practice, the estimated
loss converge to the actual loss if we sample this large enough of times by the law
of large numbers.

Hence, we prefer that n < N.

R
VF(x) = ;ZVxL(xvyik)
k=1
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This results in updating x with

Xn+1 = Xn — nnvf()en)

Lastly, there are a few commonly used loss functions namely, cross entropy, Kull-
back Leibler Divergence, Mean Square Error (MSE), etc. The first two functions
are used to train a generative model while MSE is used for a discriminative model.
Since the performance of the prediction model improves with every updated param-
eters from the SGD, we expect the loss to decrease in all iterations. When the loss
converges to a significantly small value, this indicates that we are ready to do some
prediction.

16.2.6 Other Useful Convolution Layers

In this section, we discuss some innovation to the convolution layer to manage certain
tasks more effectively.

16.2.6.1 Transposed Convolution

Transposed convolution works as an up sampling method. In some cases where we
want to generate an image from lower resolution to higher resolution, we need a
function that maps the input without any distortion to the information. This can be
processed by some interpolation methods like nearest neighbour interpolation or bi-
linear interpolation. However, they are very much like a manual feature engineering
and there is no learning taking place in the network. Hence, if we hope to design a
network to optimize the up sampling, we can refer to a transposed convolution as it
augments the dimension of our original matrix using learnable parameters.

As shown in Fig. 16.9, suppose we have a 3 x 3 matrix and we are interested
to obtain a matrix with 5 x 5 resolution. We choose a transposed convolution with
3 x 3 kernel and stride of 2. Here, the stride is defined slightly different from the
convolution operation. When stride of 2 is called upon, each pixel is bordered with
a row and a column of zeros. Then, we slide a kernel of 3 x 3 down every pixels
and carry out the usual pointwise multiplication. This will eventually resultina 5 x
5 matrix.

16.2.6.2 Dilated Convolution

Dilated convolution is an alternative to the conventional pooling method. It is usually
used for down sampling tasks and we can generally see an improvement in perfor-
mance like for an image segmentation problem. To illustrate this operation, the input
is presented with the bottom matrix in Fig. 16.10 and the top shows the output of a
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Fig. 16.9 Structure of a transposed convolution with 3 x 3 kernel and stride of 2. Inputisa 3 x 3
matrix and output is a 5 X 5 matrix

Fig. 16.10 Structure of a dilated convolution with 3 x 3 kernel and stride of 2. Inputisa 7 x 7
matrix and output is a 3 x 3 matrix

dilated convolution. Similarly, when we set a 3 x 3 kernel and the stride to be two, it
does not slide the kernel two pixels down for every matrix multiplication. Instead, a
stride of two slots zeros around every pixel row wise and column wise of the kernel
and the multiplication involves a 5 x 5 kernel matrix (larger receptive field with
same computation and memory costs while preserving resolution). Then, pointwise
matrix multiplication is done in every pixel interval and we can show that our final
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outputis a 3 x 3 matrix. The main benefit of this is that dilated convolutions support
exponential growth of the receptive field without loss of resolution or coverage.

16.3 Application of CNN on Skin Melanoma Segmentation

In this section, our aim is to build a semantic segmentation model to predict the
primary lesion region of the melanoma skin. The model that we will be constructing
is based on the 2018 ISIC challenge dataset and we mainly focus on task 1 of the
image segmentation problem.

In this task, all lesion images comprise of exactly one primary lesion. We do not
consider any of the other smaller secondary lesions or other pigmented regions as it
lies beyond our interest for this tutorial. The image datasets are created with several
techniques. However, all data are reviewed and curated by practicing dermatologists
with expertise in dermoscopy. The distribution of the dataset follows closely to the
real world setting where we get to observe more benign lesion as opposed to malignant
cases. Furthermore, the response data is a binary mask image containing a single skin
lesion class (primary) indicated by 255 and the background indicated by zero. Take
note that the mask image must possess the exact same resolution as its corresponding
lesion image. More details can be found from the challenge webpage.

The evaluating metric (loss function) used for this training is the threshold Jaccard
index metric. The score is a piecewise function,

Score(index) = {0’ index = 0.65
index, index > 0.65

To kick start, you can first download the code to the tutorial from the textbook
repository at: https://github.com/crticaldata/globalhealthdatabook.

Next, download the data from the official challenge page provided (https://
challenge2018.isic-archive.com/task1/) and save it in a folder called data. Ensure
that the name of the downloaded skin dataset is unchanged and correctly labelled or
you may face run error in reproducing the code. It should be titled as

‘ISIC2018_Taskl-2_Training Input’,

‘ISIC2018_Taskl-2_Validation_Input’,

‘ISIC2018_Taskl-2_Test_Input’

and ' ISIC2018_Taskl_Training GroundTruth’.

Thereafter, place the data folder in /U-net/Datasets/ISIC_2018/ and
we are done with the setup. To try running this code on your own, we suggest that
the readers open segmentation. ipynb and run the cells in jupyter notebook or
alternatively, run segmentation.py in the terminal with

Spython segmentation.py.

In this tutorial, we build our model with the following environment.

1. python version 3.6.5
2. keras version 2.2.4


https://github.com/crticaldata/globalhealthdatabook
https://challenge2018.isic-archive.com/task1/
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3. Tensorflow version 1.11.0
The dependencies for this tutorial include

tgdm version 4.29.1
skimage version 0.14.1
pandas version 0.23.4
numpy version 1.15.4

bl

Before we begin to build our CNN model, we import modules to be used in our
code.

In [1]:

import tensorflow as tf

from keras.preprocessing.image import ImageDataGenerator
from models import *

from Datasets.ISIC2018 import *

import numpy as np

import os as os

import matplotlib.pyplot as plt

matplotlib inline

16.3.1 Loading Data

To load data in the environment, we run load_training data() from
the models module. This function reads the skin image from the data folder
and performs image pre-processing to adopt the resolution of our input model. We
set our model’s input shape as 224 x 224 x 3 and this will resize all images to
the same dimension. Next, the function will do a data split to form our training and
validating set by choosing the ith partition from the k number of folds we defined.

In [2]:

(x_train, y train), (x valid, y valid), _ = load training data(
output size=224,
num partitions=num folds,
idx _partition=k fold)

Here are some samples of the skin image as shown below. The bottom row shows
our targets which are checked by the specialists of the segmented boundary of the
skin lesion. The goal of this exercise is to come up with a model that learns the seg-
mentation such that our model can come up with its own segmentation that performs
close to the target.
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In [124]:
fig, axs = plt.subplots(2,4, figsize=(12,7))
fig.subplots adjust (hspace=0.1, wspace=0.05)

for i in range(4):

axs[0,1i].imshow(x_train[i + 50])
axs[1,1].imshow(y_train[i+50]
axs[0,1i].axis('off")
axs[l,1].axis('off")

4

M

In practice, we often carry out data augmentation as a pre-processing stage before
we fit our model. This is because deep learning algorithms achieve better results with
large datasets. Since deep learning networks have parameters in the order of millions,
it would be ideal to have a proportional amount of examples. The bottom line is to
have at least a few thousands of images before our model attains good performance.
However, we are sometimes limited by the natural constraint that certain diseases are
not commonly found in patients or we just simply do not have that many observations.
Hence, we can try to augment our data artificially by flipping images, rotation or
putting small translation to the image. The machine would treat it as if they were
new distinct data points so that it would get enough realisations to tune its parameters
during training. Here, we used keras function to do this.

First, we define the type of alterations we planned to do on the existing image.
Some suggestions would be listed as follows:

1. horizontal flip = True,
random activating horizontal flip of image
2. vertical flip = True,

random activating vertical flip of image
3. rotation angle = 180,
random image rotation that covers up to 180°
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4., width_shift_range = 0.1,

random horizontal translation of image up to 0.1 unit
5. height_shift_range = 0.1

random vertical translation of image up to 0.1 unit

We show some augmentations processed by the function as seen below

In [149]:

image_datagen = ImageDataGenerator (**data_gen_args)

image generator = image datagen.flow(x=x train, seed= 609)
fig, axs = plt.subplots(l,4, figsize=(12,7))
fig.subplots_adjust (hspace=0.1, wspace=0.05)

for i1 in range(4):

axs[i].imshow (np.array(image_generator[1] [i+5]) .astype (np.uint8))

axs[i].axis('off")

16.3.2 Our segmentation Model

We introduce a semantic segmentation model called U-net in this tutorial. The model
owes its name to the symmetric shape of its architecture. It can be largely divided
into two parts, the encoder and decoder part. The encoder part is the typical CNN
structure that we often see in most classification models which extract more abstract
features from an input image by passing through a serious of convolutions, nonlin-
earities and poolings. The output of the encoder is a feature map which is smaller
in spatial dimension but richer in abstract features. You can see from the illustration
in Fig. 16.11 below that after passing through an encounter input image which was
572 x 572 x 1 in size, it has been encoded to a feature map of a size 30 x 30 x
channel size. The next task is to decode this encoded feature back to the segmenta-
tion image which we want to predict. Decoder is similar to encoder in a sense that
they both have a series of convolutions and nonlinearities. However, the interpolation
layer is used instead of the pooling layer to up-sample the encoded feature back to
the dimension that is identical to the outcome segmentation label. There are many
possible candidates for the interpolation layer. One possible way is to simply project
features from each pixel to 2 x 2 with bilinear interpolation. Another way is to use
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Fig. 16.11 Architecture of U-Net (Example for 32 x 32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted on top of that
box. The x-y size is provided at the lower left edge of the box. White boxes represent copied feature
maps. The arrows denote the different operations

transposed convolution with learnable parameters as we have discussed previously
so that the networks learn what is the best way to up-sample and make a better pre-
diction. Then, we implement skip connections to provide local information to the
global information while up sampling. This combines the location information from
the down sampling path with the contextual information in the up sampling path to
finally obtain a general information combining localisation and context, which is
necessary to predict a good segmentation map.

To build this model, we have written the framework in the model script that takes
in the parameter of the loss function, learning rate, evaluating metrics and the number
of classes. We train our model for 10 epochs and the results are shown as follows.

In [6]:
model = unet (loss='crossentropy', lr=le-4 ,metrics= metrics, num classes=1)
model.fit generator (generator= train_generator,

steps_per epoch= steps per epoch,

epochs = 10,

initial epoch = initial epoch,

verbose= 1,

validation data= (x_valid, y_valid),

workers = 16,

use multiprocessing= False)
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Epoch 1/10
129/129 [ ] - 73s 565ms/step - loss: 0.4866 -
binary jaccard index: 0.5171 - binary pixelwise sensitivity: 0.7696 - binar

y pixelwise specificity: 0.6413 - val loss: 0.4977 - val binary jaccard ind
ex: 0.5825 - val binary pixelwise sensitivity: 0.8912 - val binary pixelwis
e specificity: 0.6560

Epoch 2/10

129/129 [ ] - 66s 512ms/step - loss: 0.3857 -
binary jaccard index: 0.6362 - binary pixelwise sensitivity: 0.8501 - binar

y_pixelwise specificity: 0.6859 - val loss: 0.3636 - val_binary jaccard_ind
ex: 0.6869 - val binary pixelwise sensitivity: 0.8978 - val binary pixelwis

e specificity: 0.6951

Epoch 3/10
129/129 [ ] - 65s 50lms/step - loss: 0.3645 -
binary jaccard index: 0.6623 - binary pixelwise sensitivity: 0.8565 - binar

y pixelwise specificity: 0.7006 - val loss: 0.3304 - val binary jaccard ind
ex: 0.7106 - val binary pixelwise sensitivity: 0.8908 - val binary pixelwis
e_specificity: 0.7167

Epoch 4/10
129/129 [ ] - 65s 505ms/step - loss: 0.3456 -
binary jaccard index: 0.6886 - binary pixelwise sensitivity: 0.8675 - binar

y pixelwise specificity: 0.7134 - val loss: 0.3944 - val binary jaccard ind
ex: 0.6222 - val _binary pixelwise_sensitivity: 0.8472 - val binary pixelwis
e _specificity: 0.6898

Epoch 5/10

129/129 [ ] - 65s 50lms/step - loss: 0.3271 -

binary jaccard index: 0.7047 - binary pixelwise sensitivity: 0.8727 - binar

y_pixelwise_ specificity: 0.7258 - val loss: 0.2942 - val binary jaccard_ind
ex: 0.7452 - val binary pixelwise_ sensitivity: 0.8581 - val binary pixelwis
e specificity: 0.7541

Epoch 6/10

129/129 [ ] - 65s 504ms/step - loss: 0.3135 -

binary jaccard index: 0.7199 - binary pixelwise sensitivity: 0.8737 - binar

y_pixelwise specificity: 0.7384 - val loss: 0.2806 - val binary jaccard_ind
ex: 0.7554 - val binary pixelwise sensitivity: 0.8523 - val binary pixelwis

e specificity: 0.7663

Epoch 7/10
129/129 [ ] - 65s 503ms/step - loss: 0.2994 -
binary jaccard index: 0.7319 - binary pixelwise_sensitivity: 0.8793 - binar

y_pixelwise specificity: 0.7486 - val loss: 0.2848 - val binary jaccard_ind
ex: 0.7338 - val binary pixelwise sensitivity: 0.8638 - val binary pixelwis

e_specificity: 0.7614

Epoch 8/10
129/129 [ ] - 65s 505ms/step - loss: 0.2923 -
binary jaccard index: 0.7347 - binary pixelwise_sensitivity: 0.8808 - binar

y pixelwise specificity: 0.7573 - val loss: 0.2783 - val binary jaccard ind
ex: 0.7337 - val binary pixelwise sensitivity: 0.8381 - val binary pixelwis
e_specificity: 0.7733
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Epoch 9/10

129/129 [ ] - 65s 503ms/step - loss: 0.2814 -

binary jaccard_index: 0.7415 - binary pixelwise sensitivity: 0.8823 - binar
y pixelwise specificity: 0.7673 - val loss: 0.2508 - val binary jaccard ind

ex: 0.7796 - val binary pixelwise_sensitivity: 0.8502 - val binary pixelwis
e _specificity: 0.7934

Epoch 10/10

129/129 [ ] - 65s 505ms/step - loss: 0.2651 -

binary jaccard index: 0.7569 - binary pixelwise sensitivity: 0.8805 - binar
y_pixelwise specificity: 0.7781 - val loss: 0.2525 - val binary jaccard_ind
ex: 0.7280 - val binary pixelwise sensitivity: 0.8506 - val binary pixelwis
e specificity: 0.7886

out[6]:
<keras.callbacks.History at 0x7£55bc5d64e0>

16.3.3 Making Prediction

To make the prediction of a new image, we call the predict function and send the
original image to the function. We have printed an example of segmenting image
below.

In [7]:

predict img = model.predict (np.expand dims (x valid[20],axis=0)
predict img.shape

out[7]:

(1, 224, 224, 1)

In [17]:
fig, axs = plt.subplots(l,3, figsize=(12,7))

axs[0].imshow (np.squeeze (predict_img))
axs[0].axis('off")
axs[0].set_title('Predicted Segmentation')
axs[1].imshow (np.squeeze (x_valid[20]))
axs[l].axis('off")

axs[1l].set_title('Input Image')
axs[2].imshow (np.squeeze (y_valid[20]))
axs[2].axis('off")
axs[2].set_title('Target Truth')

Out[1l7]:

Text (0.5, 1.0, 'Target Truth')
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Predicted Segmentation Input Image

X
»

-

Target Truth

On the left, we see that our model has performed well as compared to the target
truth on the right. It has achieved Jaccard index of more than 0.7 in the validating
set and attained a score of above 0.75 for both pixel-wise sensitivity and specificity.
We conclude that the model has learned well in this segmenting task.

References

Akkus, Z., Galimzianova, A., Hoogi, A., et al. (2017). Journal of Digital Imaging, 30, 449. https://
doi.org/10.1007/s10278-017-9983-4.

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). Imagenet classification with deep convolu-
tional neural networks. In: Advances in Neural Information Processing Systems (pp. 1097-1105).

Rajpurkar, P, Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., et al. (2017). Chexnet: Radiologist-
level pneumonia detection on chest x-rays with deep learning. http://arxiv.org/abs/1711.05225.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://doi.org/10.1007/s10278-017-9983-4
http://arxiv.org/abs/1711.05225
http://creativecommons.org/licenses/by/4.0/

	16 Medical Image Recognition: An Explanation and Hands-On Example of Convolutional Networks
	16.1 Introduction
	16.2 Introduction to Convolutional Networks
	16.2.1 Convolution Operation
	16.2.2 Non-linear Rectifier Unit
	16.2.3 Spatial Pooling
	16.2.4 Putting Things Together
	16.2.5 Back-Propagation and Training with Gradient Descent
	16.2.6 Other Useful Convolution Layers

	16.3 Application of CNN on Skin Melanoma Segmentation
	16.3.1 Loading Data
	16.3.2 Our segmentation Model
	16.3.3 Making Prediction

	References




