
ExaStencils: Advanced Multigrid Solver
Generation

Christian Lengauer, Sven Apel, Matthias Bolten, Shigeru Chiba, Ulrich Rüde,
Jürgen Teich, Armin Größlinger, Frank Hannig, Harald Köstler, Lisa Claus,
Alexander Grebhahn, Stefan Groth, Stefan Kronawitter, Sebastian Kuckuk,
Hannah Rittich, Christian Schmitt, and Jonas Schmitt

Abstract Present-day stencil codes are implemented in general-purpose program-
ming languages, such as Fortran, C, or Java, Python or derivates thereof, and
harnesses for parallelism, such as OpenMP, OpenCL or MPI. Project ExaStencils
pursued a domain-specific approach with a language, called ExaSlang, that is
stratified into four layers of abstraction, the most abstract being the formulation
in continuous mathematics and the most concrete a full, automatically generated
implementation. At every layer, the corresponding language expresses not only
computational directives but also domain knowledge of the problem and platform to
be leveraged for optimization. We describe the approach, the software technology

C. Lengauer (�) · A. Größlinger · A. Grebhahn · S. Kronawitter
University of Passau, Passau, Germany
e-mail: christian.lengauer@uni-passau.de; armin.groesslinger@uni-passau.de;
grebhahn@fim.uni-passau.de; kronast@fim.uni-passau.de

S. Apel
University of Passau, Passau, Germany
Saarland University, Saarbrücken, Germany
e-mail: apel@cs.uni-saarland.de

M. Bolten · L. Claus
University of Wuppertal, Wuppertal, Germany
e-mail: bolten@math.uni-wuppertal.de; claus@math.uni-wuppertal.de

S. Chiba
The University of Tokyo, Tokyo, Japan
e-mail: chiba@is.titech.ac.jp

U. Rüde · J. Teich · F. Hannig · H. Köstler · S. Groth · S. Kuckuk · C. Schmitt · J. Schmitt
University of Erlangen-Nuremberg, Erlangen, Germany
e-mail: ulrich.ruede@fau.de; juergen.teich@fau.de; frank.hannig@fau.de;
harald.koestler@fau.de; stefan.groth@fau.de; sebastian.kuckuk@fau.de;
christian.j.schmitt@fau.de; jonas.schmitt@fau.de

H. Rittich
Forschungszentrum Jülich, Jülich, Germany
e-mail: h.rittich@fz-juelich.de

© The Author(s) 2020
H.-J. Bungartz et al. (eds.), Software for Exascale Computing - SPPEXA
2016–2019, Lecture Notes in Computational Science and Engineering 136,
https://doi.org/10.1007/978-3-030-47956-5_14

405

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47956-5_14&domain=pdf
mailto:christian.lengauer@uni-passau.de
mailto:armin.groesslinger@uni-passau.de
mailto:grebhahn@fim.uni-passau.de
mailto:kronast@fim.uni-passau.de
mailto:apel@cs.uni-saarland.de
mailto:bolten@math.uni-wuppertal.de
mailto:claus@math.uni-wuppertal.de
mailto:chiba@is.titech.ac.jp
mailto:ulrich.ruede@fau.de
mailto:juergen.teich@fau.de
mailto:frank.hannig@fau.de
mailto:harald.koestler@fau.de
mailto:stefan.groth@fau.de
mailto:sebastian.kuckuk@fau.de
mailto:christian.j.schmitt@fau.de
mailto:jonas.schmitt@fau.de
mailto:h.rittich@fz-juelich.de
https://doi.org/10.1007/978-3-030-47956-5_14

406 C. Lengauer et al.

behind it and several case studies that demonstrate its feasibility and versatility:
high-performance stencil codes can be engineered, ported and optimized more
easily and effectively.

1 Overview of ExaStencils

1.1 Project Vision

ExaStencils1 takes a revolutionary, rather than evolutionary, approach to software
engineering for high performance. It seeks to provide a proof of concept that
programming can be simplified considerably and that program optimization can be
made much more effective by concentrating on a limited application domain. In the
case of ExaStencils, it is a subdomain of geometric multigrid algorithms [84]. The
idea is to write a program in a domain-specific programming language (DSL). In our
case, it is an external DSL (i.e., a DSL built from scratch rather than embedded in
an existing language), called ExaSlang [72]. ExaSlang is stratified into four layers
of abstraction. Each layer provides a different view of the problem solution and
can be enriched with information to allow for particular optimizations at that layer.
ExaSlang’s most abstract layer specifies the problem as a set of partial differential
equations (PDEs) defined on a continuous domain. The most concrete layer allows
the user to specify low-level details for an efficient implementation on the execution
platform at hand. Ideally, the domain expert should only be dealing with the first
layer (plus some menu-driven options). The ExaStencils code generator should
be able to generate all lower code layers while applying a set of optimizations
autonomously before producing efficient target code.

1.2 Project Results

This subsection summarizes the challenges that drove the development of Exa-
Stencils and how far we got in the period of SPPEXA funding.

We begin with the delineation of the domain and the mathematical challenges,
distinctly from the computer science challenges, that ExaStencils addressed (see
Sect. 2). We restricted our attention to the development of smoothers for geometric
multigrid methods and the required analysis tools. In this domain, local Fourier
analysis (LFA) is the method of choice to analyze the developed smoothers and
the entire multigrid method. To make LFA useful for our purpose, we extended the
method to periodic stencils, covering block smoothers and varying coefficients [10].

1www.exastencils.org.

www.exastencils.org

ExaStencils: Advanced Multigrid Solver Generation 407

The first major computer science challenge was to cover, with one single source
program, a wider range of multigrid solvers than is possible with contemporary
implementations based on general-purpose host languages such as Fortran or C++
(see Sect. 3). To this end, we decided not to build ExaSlang on an existing, general-
purpose host language but to make it an external DSL. We were able to demonstrate
its flexibility already early on in the project by providing a common ExaSlang
program for Jacobi, Gauss-Seidel, and red-black solvers for finite differences and
finite volumes with constant and linear interpolation and with restriction [53].
Later on, we introduced a way to specify data layout transformations simply by a
linear expression—a feature that can aid the development process significantly [46]
(see Sects. 3.1–3.2). A smaller task was to decide how to describe aspects of the
execution platform in a platform-description language (TPDL) [75] (see Sect. 3.3).

The second major computer science challenge was to reach high performance
with our approach to code generation on a wide range of architectures (see Sect. 4).
One important aspect here is what information to provide at which layer (see
Sect. 4.1). While the syntax of ExaSlang is partly inspired by Scala, Matlab and
LaTeX, our target language is C++ with additional features that depend on the
execution platform (see Sect. 4.2). We demonstrated that, with the help of our
optimization techniques (see Sects. 4.3–4.5), weak scaling could be achieved on
traditional cluster architectures such as the JUQUEEN supercomputer at the Jülich
Supercomputing Center (JSC) [48, 72]. We also achieved weak scaling on the
GPU cluster Piz Daint at the Swiss National Supercomputing Centre (CSCS).
Furthermore, we demonstrated the automatic generation of solvers that can be
executed on emerging architectures such as ARM [51] and FPGA platforms [73, 77].

One new concept that ExaStencils introduced into high-performance computing
is that of feature-based domain-specific optimization [5] (see Sect. 4.6). The central
idea is to view a source code, such as a stencil implementation or an application,
as a member of a program family or software product line rather than as an isolated
individual, and to describe the source code by its commonalities and variabilities
with respect to the other family members in terms of features. A feature represents
a concept of the domain (e.g., a type of smoother or grid) that may be selected
and combined with others on demand. With this approach, a large search space of
configuration choices can be reviewed automatically at the level of domain concepts
and the most performant choices for the application and execution platform at hand
can be identified. To this end, we devised a framework of sampling and machine
learning approaches [36, 39, 80] that allow us to derive a performance model of
a given code that is parameterized in terms of its features. This way, we can
express performance behavior in terms of concepts of the domain and automatically
determine optimal configurations that are tailored to the problem at hand, which we
have demonstrated in the domain of stencil codes [29, 30, 32, 36, 39, 59, 80] and
beyond (e.g., databases, video encoders, compilers, and compression tools). Our
framework integrates well with the other parts of ExaStencils that use and gather
domain and configuration knowledge in different phases.

Project ExaStencils came with several case studies whose breadth was to
demonstrate the practicality and flexibility of the approach (see Sect. 5). The case

408 C. Lengauer et al.

studies are a central deliverable of ExaStencils. They include studies close to real-
world problems: the simulation of non-Newtonian and non-isothermal fluids (see
Sect. 5.3) and a molecular dynamics simulation (see Sect. 5.4).

We conducted two additional studies at the fringes of ExaStencils, exploring
alternative approaches (see Sect. 6). In one, the option of an internal rather
than external DSL was explored: ExaSlang 4 was embedded in the mutual host
languages Java and Ruby to study the trade-off between the effort of the language
implementation and the performance gain of the target code [17]. The outcome
was that an embedding is possible but, as expected, with a loss of performance
(see Sect. 6.1). In the second study, we implemented a simple multigrid solver in
SPIRAL [11] (see Sect. 6.2). The success of the SPIRAL project [24, 61] a decade
ago was a strong motivator for project ExaStencils. SPIRAL can handle simple
algebraic multigrid solvers but would have to be extended for more complex ones.

1.3 Project Peripherals

Attempts of abstraction and automation in programming have received increased
attention in the past two decades in the area of software engineering. High-
performance computing has been comparatively conservative in going down this
road. The reason is that the demands on performance are much higher than in
general software engineering, and the architectures used to achieve it are more
complex, notably with large numbers of loosely coupled processors.

The potential of an effective automation grows as the application domain
shrinks. Promising domains are much smaller than those of any general-purpose
programming language. The extreme is the compiler FFTW [25] that targets a
single numerical problem, the fast Fourier transform. As just mentioned, SPIRAL
widened the domain to linear transforms (and, lately, beyond [81]). By now, quite a
number of optimizing code generators have been proposed that target stencil codes.
Patus [18] has a strong focus on autotuning. The strong point of Pochoir [82] is
the cache obliviousness of its target code. Pochoir addresses constant stencils and
is based on the C dialect Intel Cilk with limited portability to other platforms.
Devito [52] performs symbolic computation via SymPy and targets shared-memory
architectures, just like Snowflake [90]. Firedrake [63] is primarily for finite-element
methods and has adopted multigrid lately. One recent component of it is Coffee [54],
which addresses the local assembly in finite-element methods. STELLA [34] and its
spiritual successor GridTools generate code for stencil computations on distributed
structured grids for climate and weather modeling.

For the domain of image processing, many approaches based on code generation
exist that are conceptually similar to the idea behind project ExaStencils. Notable
projects include Halide [62], HIPAcc [57], PolyMage [58], and Mint [85]. The
specification of image filter kernels is related to the concept of stencils, and
many of the basic parallelization techniques are comparable. However, ExaSlang
is fundamentally based on computational domains that are multidimensional, as

ExaStencils: Advanced Multigrid Solver Generation 409

opposed to the usually two-dimensional data structures used to represent images.
Image processing DSLs usually target shared-memory parallel systems, i.e., single
compute nodes such as multi-core CPUs or a single GPU. On the other hand,
ExaStencils aims at the domain of HPC and, consequently, supports distributed-
memory systems and respective parallelization techniques.

2 The Domain of Multigrid Stencil Codes

2.1 Multigrid

The goal of the ExaStencils project has been the automatic generation of efficient
stencil codes for geometric multigrid solvers [84] on (semi-)structured grids.
Multigrid methods form a class of iterative solvers for large and sparse linear
systems. These methods have originally been developed in the context of the
numerical solution of partial differential equations, which often involves the solution
of such linear systems.

Multigrid methods combine two complementary processes: a smoothing process
and a coarse-grid correction. While each of the two processes is by itself not
sufficient to solve the problem efficiently, their combination yields a fast solver.

The smoothing process is usually a straightforward iterative method that con-
verges rather slowly when used on its own. Combining such a process with a
coarse-grid correction accelerates the convergence of the resulting method by
augmenting the iteration with information obtained on a coarser grid. Since the
grid determines the resolution at which the solution is being computed, a multigrid
method considers the problem at different resolutions.

A multigrid method performs stencil computations on a hierarchy of fine to
successively coarser grids. The overall cost of the method can be reduced further by
applying this idea recursively, i.e., instead of two grids, we consider a hierarchy of
successively coarser grids. The recursion follows a so-called cycling strategy, e.g.,
a V -cycle or a W -cycle (see Fig. 1). The cycling strategy determines how much
work is performed at what level of the grid hierarchy, which also has an effect on
the convergence rate of the method. On the coarser grids, less processing power is
required.

In summary, to construct a multigrid method, one must choose a set of compo-
nents: a smoother, an interpolation, a restriction, a coarse-grid approximation, and
a cycling strategy. The choice of components influences the number of iterations
required to obtain an adequate solution, the computational cost per iteration, and
the communication pattern of the method. Furthermore, the behavior of the method
depends on the linear system to be solved.

410 C. Lengauer et al.

Ω2h

Ω4h

Ωh

...

(a)

Ω2h

Ω4h

Ωh

...

(b)

Fig. 1 Cycling strategies across the grid hierarchy. The hierarchy levels are denoted by �h, �2h,
and �4h, progressing from the finest to the coarsest grid. Light circles solve the coarse-grid
system directly, and dark circles solve the coarse-grid system recursively. Down arrows symbolize
restrictions, up arrows interpolations. (a) V -cycle. (b) W -cycle

2.2 Advancing the Mathematical Analysis of Multigrid
Methods

At the start of project ExaStencils stood the search for a way to estimate the number
of iterations that a multigrid method requires to produce an adequate solution. The
choice of multigrid components determines the operations that must be performed
per iteration. Hence, to estimate the time required per iteration, one just needs to
place these operations in an appropriate order and estimate the duration time of
their execution. While this is by no means a trivial endeavor, estimating the number
of iterations needed is inherently different. In this section, we deal with the latter
problem.

To estimate the number of iterations, we must consider the mathematical
properties of a given multigrid method for a given set of components and problem.
For this purpose, we must determine the contraction properties of the iteration
operator of the multigrid method for a given configuration. To this end, local
Fourier analysis (LFA) tells us whether the repeated application of the iteration
operator lets the error converge to zero. In particular, we are interested in the
resulting rate of convergence.

For project ExaStencils, we had to extend the capabilities of LFA. We wanted
to analyze block smoothers, which have a higher arithmetic density than standard
smoothers (see Sect. 2.3), and complex problems for which no feasible way of
applying LFA was known. Furthermore, we aimed at an automation of the analysis.

At the beginning of project ExaStencils, we considered using and expanding
an existing LFA software [88]. However, in the course of the project, it became
quickly evident that we needed a more general approach, something beyond a
collection of templates that allow to fill in some blank spots but do not facilitate the
reuse or recombination of components. Since we intended to explore many possible
combinations of various multigrid components, it was not feasible to program an
individual LFA by hand for every combination. We developed the LFA Lab [65],

ExaStencils: Advanced Multigrid Solver Generation 411

which is based on the principle of combining a set of primitive expressions to
complicated ones, enabling a much more flexible analysis.

A multigrid method, as well as its components, can be characterized by their
iteration operators. An iteration operator describes the propagation of the approx-
imation error during the execution of the method. If we denote the error after the
k-th iteration with e(k) and the iteration matrix of the method with E, we have the
following equation:

e(j+1) = Ee(j)

The spectral radius ρ(E) and the operator norm ‖E‖ of E characterize the
asymptotic and worst-case error reduction factors of the method, respectively. LFA
determines these quantities in a simplified setting.

Let h, with 0 < h ∈ R, be the step size of the infinite d-dimensional grid
Gh := h · Zd . We consider stencil operators on the space of bounded grid
functions �2(Gh) := {u : Gh → C | ∑

x∈Gh
|u|2 < ∞}. A stencil operator

A : �2(Gh) → �2(Gh) is a linear operator given by a family {sk}k∈Zd , sk ∈ R, such
that

Au (x) :=
∑

k∈Zd

sku(x + hk) for x ∈ Gh and u ∈ �2(Gh) .

Stencil operators have a particularly simple form when transformed via the discrete-
time Fourier transform.

The discrete-time Fourier transform (DTFT) F is a linear isometry that maps the
space �2(Gh) onto L2(�h) := {u : �h → C | ∫

�h
|u(x)|2 dx < ∞}, where �h :=

[0, 2π
h

)d . In other words, it represents a function on an infinite grid by a function on
a continuous and bounded interval. A stencil operator A in Fourier space, i.e., the
operator FAF−1, is just the multiplication by a function â : L2(�h) → C. We call
the function â the symbol of A. Thus, the symbol of a stencil operator is a function
that encodes the entire behavior of the infinite-dimensional operator.

The symbol â of a stencil operator reveals the desired information about the
operator A. We have that

ρ(A) = ess-supθ∈�h
|â(θ)| and ‖A‖ = ess-supθ∈�h

|â(θ)| ,

where ess-sup denotes the essential supremum. These formulas mean that, to
compute the spectral radius or the operator norm of a stencil operator, we must just
compute the largest value of the absolute modulus of its symbol â. Note that, in the
definition of stencil operators, we have assumed that stencil s does not depend on
position x. However, it can be useful to consider operators whose stencil is allowed
to change with the position.

A stencil that depends arbitrarily on the position has no particularly simple form
in the Fourier domain. However, we were able to show that periodic stencils do have

412 C. Lengauer et al.

a simple representation [10, 66]. A periodic stencil depends on the position, but has
the same entries repeated periodically across the entire domain. While this does not
represent stencils accurately that are variable in the entire domain, at least some
variability is reflected in the analysis. We showed that a periodic stencil operator is
described, after a proper reordering of the frequency domain, by a matrix of ordinary
symbols—more precisely, by matrix symbols from the space Ln×m

2 (θh′) for some
appropriate positive h′. Furthermore, we were able to show that there is a one-to-
one relationship between matrix symbols and periodic stencils.

Using matrix symbols, similar results for the spectral radius and operator norm
hold. For an operator given by a periodic stencil, we have that

ρ(A) = ess-supθ∈�h′ ‖â(θ)‖ and ‖A‖ = ess-supθ∈�h′ ρ(â(θ)) .

Thus, to obtain the norm and spectral radius of the operator, we must find the largest
value of the norm and spectral radius of the matrix â(θ).

The framework of periodic stencils and matrix symbols allows for more advanced
problems to be analyzed. It also lends itself to automation via software. Operators
that have a matrix symbol can be combined in many ways such that the combination
also has a matrix symbol. Thus, we can create a flexible LFA software by using the
idea of providing first a set of primitive expressions and then means of combination
and abstraction [1].

For example, the iteration operator of the weighted Jacobi method is

EJ = I − D−1A ,

where A is the system matrix, D the diagonal part of A, I the identity matrix and
ω ∈ R a weighting factor. If we assume that the behavior of A can be modelled
sufficiently accurately by a (periodic) stencil operator on an infinite grid, we can
replace each matrix by the infinite-dimensional operator given by the corresponding
(periodic) stencils to simplify the analysis. Listing 1 shows the computation of the
spectral radius of the iteration operator of the Jacobi method for the stencil resulting
from the discretization of the Poisson equation using our software LFA Lab [65].

LFA Lab can be used as a simple Python [86] library, but it is more or less an
embedded DSL for LFA. The user provides the (periodic) stencils, which yield the
corresponding operators. Then, the user combines these operators with interpolation
and restriction to an expression describing the desired iteration operator.
� �

1from lfa_lab import *
2g = Grid(2, [1.0/32, 1.0/32])
3A = gallery.poisson_2d(g)
4I = operator.identity(g)
5omega = 0.8
6E = I - omega * A.diag().inverse() * A
7print((E.symbol().spectral_radius()))

� �

Listing 1 Implementation of an LFA of the weighted (ω = 0.8) Jacobi smoother for the solution
of the Poisson equation using LFA Lab

ExaStencils: Advanced Multigrid Solver Generation 413

The code in Listing 1 is essentially a direct implementation of the formula for
the iteration operator. However, keep in mind that this formula describes actually a
combination of infinite-dimensional operators. When calling the symbol method,
the software determines automatically a way to represent the given iteration operator
via its Fourier matrix symbol, which is a non-trivial procedure.

To compute the matrix symbol of an expression given by the user, appropriate
sampling parameters must be determined. For this purpose, LFA Lab has two stages.
The first stage extracts and analyzes the expression tree of the formula that the user
entered. The second stage then samples the matrix symbol to obtain the spectral
radius and operator norm. The power of the software lies in the fact that arbitrarily
complex expressions can be analyzed.

A more complex example is the analysis of the two-grid method. It has the
iteration operator

ETG = S (I − PA−1
c RA) S ,

where Ac is the coarse-grid operator, P the interpolation, R the restriction, and S

the iteration operator of the smoother. Assume that we already have an analysis for
the smoother. If we can express P , R, and Ac using Fourier matrix symbols, we
can combine these with the analysis of the smoother we already have to analyze the
two-grid method in its entirety.

In summary, we have constructed a powerful and flexible LFA software. The
flexibility comes from a small set of primitive expressions and means of combina-
tion and abstraction. The periodic stencil operators are the primitive expressions,
mathematical operations are a means of combination, and the Python programming
language provides the opportunity of abstraction. The software is used to estimate
the convergence rate of a multigrid method for a given set of components and a
given problem. The estimate comes as a number of iterations a multigrid method
needs to achieve adequate accuracy.

2.3 Advancing Multigrid Components

The choice of the smoothing component in a multigrid method is not always
straightforward. Some problems require advanced smoothers. This can be easily
appreciated when considering that, since the system contains a zero block, a
pointwise relaxation is not possible [84]. The steady-state Stokes equations can be
written as follows:

−	u + ∇p = f, in �

∇ · u = 0, in �

414 C. Lengauer et al.

(a) (b)

Fig. 2 Unknowns that are included in the blocks of the smoothing steps. (a) Vanka smoother. (b)
Triad smoother

for a given domain � with boundary ∂�. Here, u is the vector-valued fluid velocity,
p is the pressure, and f describes an external force.

This linear system of PDEs can be discretized on staggered grids or by using
appropriate finite elements. Here, we consider staggered grids in two dimensions.
For the Stokes equations, the efficient Vanka smoother has a relatively high
computational cost and unsatisfactory parallelization properties due to a process
of overlapping block-smoothing steps (see Fig. 2). This made us consider the Triad
smoother as an alternative: it provides low computational cost in combination with
good parallelization properties [19].

Both block smoothers are based on a collective updating process of unknowns
inside one block [87]. As depicted in Fig. 2, the Vanka blocks consist of five
unknowns including one pressure and two velocity components in each direction
while the Triad smoother comprises the simultaneous update of three unknowns
including one unknown of each kind.

Numerical results for periodic boundary conditions in combination with par-
allelization properties and computational work show the potential of the Triad
relaxation method. However, numerical results for the Stokes system with Dirichlet
boundary conditions show that the Triad method in its original form has one issue:
the convergence rate deteriorates tremendously. To illustrate this, we applied the
method to the Stokes equation discretized on a staggered grid in the unit square,
with periodic and with Dirichlet boundary conditions. As right-hand side, we
chose in both cases fux (x, y) = 2π2 sin(πx) sin(πy) + π cos(πx), fuy (x, y) =
2π2 cos(πx) cos(πy) − π sin(πy), and fp ≡ 0; the initial guess was zero. Figure 3
shows the different convergence behaviors.

The convergence properties of the Triad smoother can be improved with the fol-
lowing idea: repeat the relaxation process four times while changing the unknowns
contained in one block after each iteration, i.e., rotating the “L”-shaped pattern that
describes the block to be relaxed. This algorithm, illustrated in Fig. 4, improves
the convergence significantly. When applying the four iterations of the proposed
smoother, it is very similar to one iteration of Vanka. Thus, a smoother that has not
been considered as an option before becomes a viable alternative to established
smoothers for systems of PDEs. In addition, the order in which the boxes are
updated can be varied. For more details and further results, see the dissertation of
Lisa Claus [19].

ExaStencils: Advanced Multigrid Solver Generation 415

0 2 4 6 8 10
iterations

10 -5

10 0

2-
no

rm
 o

f r
es

id
ua

l

Vanka
Triad

(a)

0 2 4 6 8 10
iterations

10 -5

10 0

2-
no

rm
 o

f r
es

id
ua

l

Vanka
Triad

(b)

Fig. 3 Convergence behaviors of the two block smoothers applied to the Stokes equations dis-
cretized using staggered grids in the unit square with periodic and Dirichlet boundary conditions.
(a) Dirichlet boundary conditions. (b) Periodic boundary conditions

(a) (b) (c) (d)

Fig. 4 Order of iterations of the advanced block smoother. (a) Step 1. (b) Step 2. (c) Step 3. (d)
Step 4

3 Stencil-Specific Programming in ExaStencils

The central element in the ExaStencils approach is its stencil-specific programming
language ExaSlang and its code generator. Then there is also a language for
specifying properties of the execution platform. The two languages are discussed
in this section. The code generator is the subject of the following section.

3.1 The Domain-Specific Language ExaSlang

The idea of ExaStencils is to support the domain-specific programming and opti-
mization of stencil codes by providing different layers of abstraction, specifying the
various aspects of the stencil code at the respectively suitable layer, and exploiting
domain information available at that layer for an optimization of the specification.
ExaSlang comes in four layers: from ExaSlang 1, the most abstract, to ExaSlang 4,
the most concrete (see Fig. 5).

• Layer 1: the continuous problem
This is the layer for the scientist or engineer who needs the solution of the PDE.
The problem is specified as a continuous equation. The present implementation
supports Unicode and LaTeX symbols. Optional inputs are the specification of

416 C. Lengauer et al.

abstract

concrete

1

2

3

4

IR

out

Continuous Domain & Continuous Model

Discrete Domain & Discrete Model

Algorithmic Components & Parameters

Complete Program Specification

Intermediate Representation

C++ Target Code

P
latform

D
escription

Fig. 5 ExaSlang layers of abstraction

discretization and solver options used to autogenerate lower layers. There is also
support for an automatic finite-difference discretization of operators.

• Layer 2: the discrete problem
This is the most abstract layer that provides an executable description. Discretized
functions are fields (data type, grid location), tied to a computational domain.
Geometric information is provided in the form of virtual fields resolved to
constants or field accesses. Discretized operators are provided as stencils or stencil
templates.

• Layer 3: the solver
At this layer, multigrid appears in the form of the specification of a solver
for the discrete problem, either provided by hand or set up automatically. The
implementation supports a Matlab-like syntax.

• Layer 4: the application
This layer of ExaSlang can describe a full application, including communication,
input/output, evaluation and visualization, but is still more abstract than C++ or
Java in that it contains language constructs specific to multigrid. Optimizations
at this layer include the tuning of communication patterns and data structure
layouts.

ExaStencils: Advanced Multigrid Solver Generation 417

Yet more concrete, but not accessible to the user, is an intermediate representation
(IR) in which most code refinements take place and which forms the base for the
generating of the target C++ code.

One may write one’s program at the ExaSlang layer of one’s choice and let
the code generator refine it to a more concrete layer. One may also modify
generated code to implement certain aspects that cannot be expressed at the chosen
programming layer. However, the IR representation is not meant to be modified by
the user.

Through its four layers, ExaSlang evolves from a declarative language at layer 1
to an imperative programming language at layer 4. Besides the standard data types
that represent floating-point and integer numbers or strings, domain-specific data
types represent vectors and matrices to be used for coupled systems of equations.
Assembly of global vectors and matrices is not supported since we focus on local
computations using stencils. In contrast, stencils are declared globally in ExaSlang
programs. Furthermore, fields—corresponding to vectors that may represent the
PDE’s right-hand side or an approximation of the unknown function—are declared
globally as well. Via declaration, certain settings important to parallelization may
be specified by the user. One example is the size of ghost layers (also called halo
layers), as depicted in Listing 5 in Sect. 3.2.

3.2 An ExaSlang Example

To illustrate how our language stack can be used to implement different aspects of
partial differential equations (PDEs) solvers, let us take the Poisson equation

−	u = f in � ,

u = g on ∂�

for a given domain �—here the unit square—Dirichlet boundary conditions g =
cos(πx) − sin(2πy) and the right-hand side f = π2cos(πx) − 4π2sin(2πy).
Listing 2 shows an exemplary layer 1 code for this specification. From it, our
generator is able to derive representations at subsequent layers. The refinement
methods employed in this process are described in Sect. 4.1 further below. Listings 3
and 4 illustrate variants similar to the autogenerated ones expressing the discretized
version of the given equation (Listing 3) and the multigrid algorithm used to solve
for it (Listing 4). Based on them, a complete layer 4 program can be assembled,
comparable to the one illustrated in Listing 2. In the example code at the lower
layers, parts of the source code have been omitted for the sake of compactness. A
complete specification and examples of other PDEs are part of Sebastian Kuckuk’s
dissertation [47].

418 C. Lengauer et al.

� �

1� = (0, 1) × (0, 1)
2

3u ∈ � = 0.0
4u ∈ ∂ � = cos (π x) - sin (2 π y)
5

6f ∈ � = π^2 cos (π x) - 4 π^2 sin (2 π y)
7

8op = - 	

9

10uEq: op * u == f
11

12/* discretization and solver hints (see Subsection 4.1) */
� �

Listing 2 ExaSlang 1 code for the complete specification of the 2D Poisson problem

� �

1global from [0, 0] to [1, 1]
2

3Solution with Real on Node of global = 0.0
4Solution@finest on boundary =
5 cos (PI * x) - sin (2.0 * PI * y)
6Solution@(all but finest) on boundary = 0.0
7

8RHS with Real on Node of global =
9 PI**2 * cos (PI * vf_nodePos_x) -

10 4.0 * PI**2 * sin (2.0 * PI * vf_nodePos_y)
11

12Laplace from Stencil {
13 [0, 0] => 2.0 / (vf_gridWidth_x**2) +
14 2.0 / (vf_gridWidth_y**2)
15 [-1, 0] => -1.0 / (vf_gridWidth_x**2)
16 [1, 0] => -1.0 / (vf_gridWidth_x**2)
17 [0, -1] => -1.0 / (vf_gridWidth_y**2)
18 [0, 1] => -1.0 / (vf_gridWidth_y**2)
19}
20

21SolEq {
22 Laplace * Solution == RHS
23}

� �

Listing 3 ExaSlang 2 code for a complete specification of the 2D Poisson problem

� �

1Field Residual from Solution
2override bc for Residual with 0.0
3

4Operator Restriction from default restriction
5 on Node with 'linear'
6Operator Prolongation from default prolongation
7 on Node with 'linear'
8

9Function Smoother@all {
10 repeat 3 times {

ExaStencils: Advanced Multigrid Solver Generation 419

11 Solution += diag_inv (Laplace) * (RHS -
12 Laplace * Solution) where (i0 + i1) % 2 == 0
13 Solution += diag_inv (Laplace) * (RHS -
14 Laplace * Solution) where (i0 + i1) % 2 == 1
15 }
16}
17

18Function VCycle@coarsest {
19 /* implementation of a coarse-grid solver */
20}
21

22Function VCycle@(coarsest + 1 to finest) {
23 Smoother ()
24

25 Residual = RHS - Laplace * Solution
26 RHS@coarser = Restriction * Residual
27

28 Solution@coarser = 0.0
29 VCycle@coarser ()
30

31 Solution += Prolongation@coarser * Solution@coarser
32

33 Smoother ()
34}

� �

Listing 4 ExaSlang 3 implementation of a V(3, 3)-cycle using an RBGS smoother

� �

1Layout DefLayout<Real, Node >@all {
2 duplicateLayers = [1, 1] with communication
3 ghostLayers = [1, 1] with communication
4}
5

6Field Solution< global, DefLayout, /* bc's */ >@finest
7Field Solution< global, DefLayout, 0.0 >@(all but finest)
8Field RHS < global, DefLayout, None >
9Field Residual< global, DefLayout, 0.0 >

10

11/* operators as on layers 2 and 3 */
12

13Function Smoother@all {
14 color with (i0 + i1) % 2 {
15 loop over Solution {
16 Solution += omega * diag_inv (Laplace) *
17 (RHS - Laplace * Solution)
18 }
19 communicate Solution
20 }
21}
22

23/* VCycle functions */
24

25Function Application {
26 /* initialization */

420 C. Lengauer et al.

27

28 repeat 10 times {
29 VCycle@finest ()
30 }
31

32 /* de-initialization */
33}

� �

Listing 5 ExaSlang 4 code of a full application with a fixed number of V-cycles to solve for
Poisson’s equation discretized with finite differences

3.3 The Target-Platform Description Language

To be able to optimize a code adequately, one must know details of the execution
platform. Our code generation process is governed by more than one hundred
parameters that allow to select specific code refinements or to set device-specific
properties. Examples include the use of vector units on CPUs and the corresponding
instruction set to use, e.g., SSE or AVX on ×86 CPUs, NEON on ARM-based CPUs
or even QPX for IBM’s POWER architecture. This yields a design space that is too
large for users to be able to specify a (near-)optimal configuration of code generation
settings. However, we may be able to derive sensible parameters from a structured
description of the target platform. To this end, one element of ExaSlang is the so-
called target platform description language (TPDL) [75]. One design goal was to
increase the modularity and reusability of hardware component descriptions, such
as CPUs or accelerators, to let users compose systems based on a repository of
ready-made parametric snippets. By treating these in a fashion similar to the class
concept in object-oriented programming languages, users can infer instantiations
with parameters set appropriately. A short example describing an accelerator card is
provided in Listing 6. It enumerates a number of technical hardware details, but also
contains the important software information on the compute capability, i.e., which
features of the target technology CUDA may be used.
� �

1<gpu name="Tesla_V100" role="worker">
2 <param name="compute_capability" value="7.0" />
3 <param name="api" value="cuda" />
4 <memory size="16" unit="GigaByte" Type="HBM2">
5 <param name="bandwidth" value="900" unit="GigaBps"/>
6 </memory>
7 <core quantity="5120" frequency="1246"
8 frequency_unit="MegaHz" />
9</gpu>

� �

Listing 6 ExaSlang description of an accelerator card

ExaStencils: Advanced Multigrid Solver Generation 421

� �

1val workers = predefinedQuery(tpdlTree, GetWorkingUnits)
2val workers50 = workers.filter(w => w.power > Watt(50))
3workers50.foreach(System.out.println(_))

� �

Listing 7 Query to enumerate working units consuming more than 50 W of power

A small, yet flexible library supports information retrieval from a TPDL specifi-
cation. This enables DSL developers to check for certain information and aggregate
or evaluate characteristics of the target platform. Developers need not worry about
the instantiations and their parameters but may just use the discrete specification,
since all the processing required has already been done. For many recurring tasks,
predefined queries are available. Listing 7 shows a predefined query to return all
working units in a system. Its result is filtered to retain only working units that
consume more than 50 W of electrical power.

4 The ExaSlang Code Generator

4.1 Refinement of ExaSlang Programs

The overall goal of ExaStencils has been to enable users to choose the layer
most appropriate for them and code exclusively at this layer, e.g., by providing a
continuous formulation of the problem to be solved at layer 1 and nothing more.
Ideally, our framework would then automatically derive suitable discretizations
(layer 2), solver components (layer 3) and parallelism particulars (layer 4). However,
in practice, this requires domain knowledge whose automatic inference is beyond the
capabilities of present software technology. We address this issue by introducing
hint specifications which allow us to progress automatically to subsequent layers of
ExaSlang. For example, at layer 1, discretization hints may be supplied. As Listing 8
shows, continuous functions are discretized at certain points of a computational grid,
such as node positions. We also support the specification of operator discretization
using finite differences. An optional renaming is also possible at this stage.
� �

1DiscretizationHints {
2 u => Solution on Node
3 op => Laplace with "FiniteDifferences" on � order 2
4 uEq
5}

� �

Listing 8 A discretization hint block for a scalar equation in ExaSlang 1

Then, we combine the equation provided at layer 1 and the discretization hints to
synthesize a discretized form of the equation at layer 2. While layer 2 expresses the
problem to be solved, its solution is specified at layer 3. This can be achieved either
by implementing a suitable iterative solver by hand or by issuing a directive for our
generate solver interface. Listing 9 illustrates such a directive.

422 C. Lengauer et al.

� �

1generate solver for Solution in SolEq with {
2 solver_smoother_numPre = 3
3 solver_smoother_numPost = 3
4 solver_smoother_coloring = "red-black"
5 solver_cgs = "ConjugateGradient"
6}

� �

Listing 9 A generate solver statement in ExaSlang 3

For cases in which no further modification is required, matching solver hints may be
provided at the upper layers to set up the code in Listing 9 automatically, allowing
users to work exclusively at one layer. The generated solver is by default a geometric
multigrid variant. In the concrete case of Listing 9, our framework would generate
a standard V-cycle using three pre- and post-smoothing steps of a red-black Gauss-
Seidel (RBGS) and a conjugate gradient (CG) coarse-grid solver. Frequently, minor
adaptations of the generated solver are necessary. They can either be implemented
by taking the implementation generated at layer 3, adapting it and replacing the
original generate solver directive with the result. A more generic approach is to add
modifiers to the generate solver directive. They target usually a certain stage of the
multigrid solver, e.g., the restriction or the correction, at one or more levels of the
hierarchy. These stages can either be replaced completely with custom layer 3 code,
or arbitrary layer 3 statements may be added to be executed before or after the stage.
A more complex option exists for smoother stages, as illustrated in Listing 10 for
the case of a block smoother to be used when solving for the Stokes equations on a
staggered grid (see Sect. 5).
� �

1smootherStage {
2 loopBase p solveFor {
3 u@[0, 0] u@[1, 0]
4 v@[0, 0] v@[0, 1]
5 p
6 }
7}

� �

Listing 10 ExaSlang 3 code for a smoother stage for the 2D Stokes problem

After the algorithmic specification at layer 3 is completed, it must be transformed
to a program at layer 4. This requires, most importantly, the addition of data
layout information for fields, loops to compose kernels, and suitable communication
statements. Listings 11 and 12 illustrate the first half of an RBGS smoother.
� �

1Solution += (diag_inv (Laplace)
2 * (RHS - Laplace * Solution)
3) where (i0 + i1) % 2 == 0

� �

Listing 11 ExaSlang 3 code for the first half of an RBGS smoother

ExaStencils: Advanced Multigrid Solver Generation 423

� �

1communicate Solution
2loop over Solution where (i0 + i1) % 2 == 0 {
3 Solution += diag_inv (Laplace) * (RHS - Laplace *

Solution)
4}

� �

Listing 12 ExaSlang 4 code for the first half of an RBGS smoother derived from its ExaSlang 3
counterpart in Listing 11

This description of features is by no means complete. More detail is available in
Sebastian Kuckuk’s dissertation [47].

We designed the language stack of ExaSlang to enable maximum flexibility for
users. They can either work at one level exclusively and make use of the hint system
to generate more concrete specifications automatically, or implement different parts
of their application at multiple levels, or mix both approaches.

4.2 Generation of Target Code

After the domain-specific program has been refined to a complete program spec-
ification (ExaSlang 4), the IR code is subjected to many non-algorithmic trans-
formations (recall Fig. 5 on page 416). Among others, parallelization techniques
are applied to the code (see Sect. 4.4), memory layouts are selected and applied
to variables (see Sect. 4.3), required code fragments are inserted, and finally the
program is written to disk as C++ files.

To express all these steps in a short syntax, we developed the code-transformation
framework Athariac [76]. It allows to modify the tree-based representation of a
program—called the abstract syntax tree (AST)—by using simple, yet powerful
rewrite rules. Essentially, we specify a pattern in the AST, such as the node that
represents a certain ExaSlang statement, and then define a structure with which
to replace it. Of course, we can also remove nodes by specifying an empty
replacement. A single rewrite rule is called a transformation, and a group of
transformations is called a strategy. In Listing 13, a simple strategy for code-
generation time evaluation of mathematical expressions is presented. First, the two
identifiers E and PI are replaced by their constant numerical values. Then, we look
for constant numerical values to be summed, e.g., 2.1 + 3.1415, and replace them
with the actual result of the addition. Note that the constant-folding transformation
must be applied multiple times for expressions involving multiple additions.
� �

1var s = new DefaultStrategy("simple strategy")
2s += new Transformation("resolve constants", {
3 case Identifier("PI") => RealConstant(3.1415)
4 case Identifier("E") => RealConstant(2.7183)
5})

424 C. Lengauer et al.

6s += new Transformation("constant folding", {
7 case Addition(a : RealConstant, b : RealConstant)
8 => RealConstant(a + b)
9})

10s.apply
� �

Listing 13 A strategy with two simple transformations

By chaining and conditional execution of strategies in a fixed order, ExaSlang
programs can be refined for specific program configurations. Depending on the
selected code-generation parameters and input-program size, between 200 and 300
transformations are required to generate C++ code. In Fig. 6, the trajectory of a
program from the intermediate representation to C++ output is depicted to illustrate
the basic approach that applies to every program. Most of the optimizations are

collect
domain knowledge

simplify expressions

setup
comm. infrastructure

resolve special functions

resolve special
field accesses

simplify expressions

resolve stencils
resolve higher-dim.

data types

update communication
specialization for

heterogeneous targets

polyhedral optimization
linearize

memory layouts

simplify expressions
vectorization

& loop unrolling

shared-memory
parallelization

function inlining

Fig. 6 The transformation trajectory of an ExaSlang program from its IR to C++

ExaStencils: Advanced Multigrid Solver Generation 425

ExaSlang 4
parsing

C++
output

0

0.88

1.75

2.63

3.5
.105

code-generation progress

n
o
d
es

in
A
S
T

plain
OpenMP

MPI, OpenMP
AVX2

OpenMP, AVX2
MPI, OpenMP, AVX2

SYCL

Fig. 7 AST size (number of nodes) during code generation for different variants of the 3D optical
flow application, starting at ExaSlang 4

applied in this trajectory. Naturally, a concrete code-generation path may differ, as
users can skip certain optimizations, or transformations may not be applied because
the preconditions required are not satisfied. For example, it does not make sense to
generate code for heterogeneous target devices if none exist.

In Fig. 7, program sizes during the code-refinement process of the three-
dimensional optical flow application (see Sect. 5.3) are depicted for a selection
of different parallelization techniques. For all variants, we see different stages of
the process. First, information on the program is gathered and preparations are
done, i.e., setting array sizes and memory layouts. Next, minor code refinements are
applied, such as the replacement of stencil convolutions with their corresponding
computational rules. Then, depending on the parallelization technique, memory
layouts are imposed and loops are generated, respectively modified. The execution
times of Athariac’s code generator are usually on the same order of magnitude as an
invocation of the target C++ compiler, i.e., within a few seconds to minutes. More
detail on Athariac can be found in a recent issue of the Proceedings of the IEEE [76]
and in Christian Schmitt’s dissertation [71].

4.3 Target-Specific Optimization

Stencil codes have a very simple structure but they are difficult to optimize since
the memory bandwidth usually acts as a performance brake. In project ExaStencils,
a diverse set of optimizations has been developed to overcome this. We describe a

426 C. Lengauer et al.

small selection briefly here. More detail on all implemented techniques, including
those not presented here, can be found in Stefan Kronawitter’s dissertation [43].

Data Layout Transformations Much effort of adapting stencil codes from one
application or execution platform to another goes into making the data layout
fit for best efficiency. One major limiting factor is usually the available memory
bandwidth. Examples of such adaptations are color splitting for multi-color kernels
or switching between an array of structs (AoS) and a struct of arrays (SoA).

ExaSlang admits flexible layout transformation directives for the specification
of arbitrary affine transformations that are then applied automatically by the code
generator [46]. Even though different variants of a color splitting or an SoA-to-
AoS transformation may be most commonly used, the ExaStencils code generator
is by no means restricted to them. Moreover, the only modification required to adapt
the memory layout of any field is the insertion of an affine function that specifies
the transformation. No other part of the application, including data initialization
and communication, must be modified to make the new layout generally available.
Explicit albeit very simple modifications to other parts are only necessary if they
are meant to use different data arrangements. In this case, additional fields must be
inserted for each layout and copy kernels are necessary.

This approach avoids unnecessary changes in the source code and constitutes a
big advance in the ease of testing and evaluating different memory layout schemes in
order to identify the best memory layout. There are other systems that offer similar
transformation devices but not in this generality.

Polyhedral Code Exploration Besides a layout modification, an affine transfor-
mation can lead to the most efficient implementation of a frequent structure in
stencil codes: the loop nest. A popular approach to selecting such transformations
automatically is the polyhedron model for loop optimization [22]. As for the data
layout, the search is also here for best data locality. However, established automatic
transformation techniques based on the PLuTo algorithm [6, 12, 13] fail to yield
optimal results.

Our first attempt to select better transformations was a specialized variant of the
PLuTo algorithm available in the ExaStencils code generator. While it is capable
of detecting very good schedules for some stencil codes, it can also encounter
problematic ones. For example, it fails completely for RBGS kernels. Thus, we
developed a new, optimized, multi-dimensional polyhedral search space exploration
for the ExaStencils code generator [44] that obtains in several cases better results
than existing approaches, such as different PLuTo variants or PolyMage [58]. It
also has the capability of specializing the search for the domain of stencil codes,
which reduces the exploration effort dramatically without significantly impairing
performance. An extreme but still beneficial approach is to choose the first schedule
selected by our specialized search without any further evaluation. This may not lead
to the best performance but it avoids the overhead of a complete exploration—and
the performance improvement is still satisfactory: in most experiments it was only
a few percentage points below the best variant explored.

ExaStencils: Advanced Multigrid Solver Generation 427

Vectorization A third optimization focuses on the vector units available in most
processor architectures that provide single-instruction-multiple-data (SIMD) paral-
lelism. Their use is typically mandatory for highest performance. However, each
architecture comes with its own vector instruction set. Intel ×86 features Streaming
SIMD Extensions (SSE) or Advanced Vector Extensions (AVX) in several different
versions, IBM’s BlueGene/Q provides Quad Processing eXtension (QPX), and some
ARM processors implement the Neon instruction set. Even though all of these sets
target the same problem, their implementations differ not only in detail but also in
key aspects, such as the way in which data can be fetched from main memory.

As a remedy, contemporary compilers are equipped with rudimentary automatic
vectorization capabilities most of which are, unfortunately, not very effective. On
top, the more advanced compilers can exclude some popular architectures and be
costly or not widely available. Since the ExaStencils code generator comes with
its own vectorization phase [43, 76], it avoids any dependence on a special target
compiler. Currently, it supports Intel SSE3, AVX, and AVX2, as well as IBM’s QPX
and ARM Neon.

4.4 Parallelization

To parallelize ExaSlang applications automatically, mainly two concepts must be
implemented [48]. First, data must be partitioned and distributed across the available
compute resources and, second, data between the partitions must be synchronized
periodically. We realize the former by splitting our computational domain into
blocks which are further subdivided into fragments. Each fragment holds a part of
the computational grid and all data associated with it. This hierarchical approach is
depicted in Fig. 8 and permits an efficient mapping to different execution platforms.
For instance, blocks can be mapped to MPI ranks while each fragment inside is
handled by a distinct OpenMP thread. Mapping single fragments to accelerators is
also possible, as explained later on. The synchronization of data can be controlled
by users at layer 4 via communicate directives. They specify the field to be
communicated and can additionally be parameterized to communicate only certain
parts, e.g., specific ghost layers. Each communicate directive triggers the generation

Block(s) (regular)
Fragments

Unit
Fragments

Leaf Elements
(Grid Points/Cells)

Fig. 8 Partitioning of the computational domain in ExaStencils [48]

428 C. Lengauer et al.

of a function that implements the corresponding behavior. This permits the reuse of
functions, which can become quite lengthy if the same communication is reissued
throughout an application. The function contains code specifying an MPI exchange
for fragments residing in different blocks and simple copy kernels for fragments
inside the same block. For the interblock case, this includes copying the required
data to buffers, calling the appropriate MPI functions, waiting for their completion
and copying back data received. The communication buffers required are set up
automatically by our framework and, additionally, are shared between multiple
communication routines where possible. This minimizes the memory footprint as
well as the allocation and deallocation overhead.

Kernels updating data in one fragment can additionally be parallelized. This can
be done either with OpenMP or, if available, via an accelerator, e.g., a GPU or
reconfigurable hardware such as an FPGA.

Accelerators To accelerate computations with Nvidia GPUs, we require multiple
steps during code generation and developed a back-end to emit corresponding
CUDA2 code. First, fields must be extended to manage a CPU and a GPU version.
We also introduce flags that keep track of field data being changed on the host or
device side at this point. Next, compute kernels are transformed to their CUDA
counterparts and wrapped by an interface function passing variables and fields,
used inside the kernel, as parameters. Then we replace the original kernel with
a user-controlled condition branching to either the original CPU kernel or the
new GPU kernel. Both variants are extended to set the flags previously described
after execution. The same flags can also be used to control the use of added copy
operations between host and device. This ensures that data is always synchronized
correctly while the overhead is minimized.

As an alternative to CUDA, SYCL is a new technology for the inclusion of
the OpenCL ecosystem into the world of C++. It strives to combine the strengths
of both worlds, e.g., by allowing to use custom data structures and templates
inside computational kernels, or by providing an implementation of the parallel
C++ Standard Template Library that can be executed not only on multicore CPUs,
but also on accelerators. Furthermore, it aims at a reduction of OpenCL boiler-
plate code by enabling the direct issuance of parallel_for statements instead of
forcing the user to declare kernels, map their arguments, etc. Additionally, it detects
automatically and initiates memory transfers between host and device.

We had to specialize our code generation workflow slightly to address the
characteristics of SYCL. While, in ExaSlang, the dimensionality of a kernel can
be arbitrarily large, SYCL only supports up to three-dimensional kernels, i.e., 3D
iteration domains. Because of this, we implemented a custom mapping to linearize
a kernel with more than three dimensions to a single dimension while maintaining
correct indexing. Furthermore, SYCL has currently no built-in support for reduction
operators, such as the sum of all data items. Since multigrid methods depend on

2CUDA is a proprietary application programming interface and de-facto standard for Nvidia GPUs.

ExaStencils: Advanced Multigrid Solver Generation 429

reduction operators for the computation of norms used to approximate the reduction
of the residual, we implemented our own reduction operator and used a template
function that is called in the corresponding places. Our approach uses standard
parallelization techniques that should perform well on CPUs and GPUs.

SYCL separates work items into work groups in the same sense in which these
concepts are used by CUDA and OpenCL. While this concept is not paramount, our
code generator can optionally specify the granularity of work groups and modify
data accesses inside the computational kernels correspondingly.

SYCL is merely a specification, as of yet without a complete and optimized
implementation. We verified our SYCL back-end with the commercial product
ComputeCpp by Codeplay and also with the experimental open-source implemen-
tation triSYCL3 [33]. Although SYCL still needs to mature, it has great potential as
a unified middleware for a multitude of devices: in addition to targeting CPUs and
GPUs, the two major vendors of reconfigurable hardware, Xilinx and Intel/Altera,
are actively working to accept SYCL code. This will allow us to extend the pool
of ExaSlang-supported hardware targets without having to develop a separate code-
generator back-end, such as the one presented in the next paragraph.

Reconfigurable Hardware A particularly interesting target platform for scientific
computing is reconfigurable hardware, such as in field-programmable gate arrays
(FPGAs). They are increasingly used in high-performance computing because of
their high throughput and energy efficiency. We started with extending an existing
code generator for imaging processing to produce a description of a simple V-cycle
for further processing using C/C++-based high-level synthesis via Vivado HLS for
Xilinx FPGAs [69, 70]. This laid the base for a custom Vivado HLS back-end in
our code generator, resulting in the ability to emit algorithm descriptions for Vivado
HLS stemming from user input in ExaSlang [73]. To test the capabilities of the HLS
back-end, we considered a starting grid of size 4096×4096 and used a V(2,2)-cycle.
For the coarse-grid solution at a size of 32 × 32, a corresponding number of Jacobi
smoother iterations was applied. The biggest difference to the execution on a CPU
or GPU is that all multigrid operators were laid out spatially on the FPGA chip.
Another essential consideration in mapping algorithms to reconfigurable hardware
is the handling of memory and data transfers. FPGAs provide only very scarce
amounts of on-chip memory, called block RAM, that can be accessed with full
speed. This implies that data needs to be stored off-chip, e.g., in RAM that can be
found on the FPGA board or even in the host computer’s memory. As a consequence,
these transfers need to be supported by the hardware with corresponding buffers,
which are mapped to first-in-first-out (FIFO) hardware buffers. In an FPGA, FIFO
buffers can be either composed of registers or implemented by on-chip block RAM.

Another important concern of designing reconfigurable hardware descriptions is
the usage of computational resources on the chip. For our initial experiments, we
used single-precision floating-point data types and were able to fit the complete

3https://github.com/triSYCL/triSYCL.

https://github.com/triSYCL/triSYCL

430 C. Lengauer et al.

design on a mid-range Kintex 7 FPGA. On this chip, our design was able to
outperform an Intel i7-3770 in terms of throughput by a factor of approximately
3. Switching from single to double precision does not change any performance
aspects but merely requires more chip resources. As a result, we had to switch to the
larger Virtex 7 FPGA to house the design but were able to retain the performance
advantage.

Based on these results, we worked on incorporating a more relevant coarse-
grid solution algorithm into our hardware designs. By a clever arrangement of the
required memory buffers and transfers, we were able to implement a conjugate-
gradient solver and map it to the Virtex 7 using double-precision floating-point
numbers [77]. This algorithm is usually not well-suited for FPGAs because of its
random memory-access patterns that break the preferable pipelining model. As a
consequence, data needs to be stored on-chip in block RAM to retain performance.
However, this takes away resources required by other multigrid components, e.g.,
smoothers and inter-grid operators. We conducted several experiments and were
able to outperform an Intel Xeon E5-1620 v3 in many cases [77]. As an opti-
mization, we overlapped successive V-cycles, i.e., we were able to reuse multigrid
operators on the FPGA when they were no longer required by the previous V-cycle
iteration provided the data dependences were respected. Theoretically, this should
nearly double the throughput, which was confirmed in our numerical experiments.

4.5 Compositional Optimization

The ExaStencils framework enables the automatic generation of geometric multigrid
solvers from a high-level representation either by using the generate solver interface
or by means of a direct specification of its algorithmic components at layer 3. How-
ever, in many cases, the construction of an efficient and scalable multigrid method is
a difficult task requiring extensive knowledge in numerical mathematics. Therefore,
it is typically performed manually by a domain expert. Part of ExaStencils’ vision is
to automate all steps from the specification of a problem in the continuous domain
(layer 1) to the generation of an efficient implementation on the target platform. To
achieve this goal, we construct geometric multigrid methods for solving systems
of linear equations as program optimization tasks. We have developed a context-
free grammar for the automatic construction of solver instances from a given
set of algorithmic options, whose production rules are shown in Fig. 9 for the
case of pointwise smoothers. Each rule defines the list of expressions by which
a certain production symbol, denoted 〈•〉, can be replaced. To generate a multigrid
expression, starting with the symbol 〈S〉, this process is repeated recursively until the
produced expression contains only terminal symbols or the empty string λ. A more
detailed description, including the semantics of the expressions generated following
this grammar, can be found elsewhere [78].

The effectiveness of an iterative method is determined by two objectives: its rate
of convergence and its compute performance on the target platform. To estimate

ExaStencils: Advanced Multigrid Solver Generation 431

����S = (����c h �, w, ��� �)
������c h = (�Bh �, �c h �) | (Ah , �s h �)
������s h = (�c h �, w, � �)
������s h = ((P2h , �c2h �, w), w, l) | (u h

0 , f h
0 , l, l)

�������Bh = ((Ah))

��������c2h = (�B2h �, �c2h �) | (A2h , �s2h �)
��������c2h = (A2h , u 2h

0 , (Rh , �c h �))

�������s2h = (�c2h �, w, � �) | ((P 4h , �c4h �), w, l)

��������B2h = ((A2h))

��������
�����

c4h = (A−1
4h , (R2h , �c2h �))

|

|

|

|

|

|

|

|

|

|

|= | l

ITERATE

ITERATE

ITERATE

ITERATE ITERATE

INVERSE

INVERSE DIAGONAL

DIAGONAL

COARSE-GRID-CORRECTION

APPLY

APPLY

APPLY

RESIDUAL

RESIDUAL

APPLY

APPLY

RED-BLACK PARTITIONING

COARSE-CYCLE

APPLY

Fig. 9 A formal grammar for the generation of multigrid solvers

both objectives for a given multigrid solver expression in reasonable time, we
employ automated local Fourier analysis (LFA), as described in Sect. 2.2, for the
first and a roofline performance model [89] for the second objective. Our goal is
to obtain the set of Pareto-optimal solvers with respect to both objectives. A direct
enumeration and evaluation of all possible configurations leads to an exponential
operation increase with the number of multigrid levels. Thus, a brute-force search
is infeasible in most cases. As a remedy, we employ evolutionary computation,
a family of stochastic optimization methods stemming from the field of artificial
intelligence and inspired by the principle of biological evolution. These methods
evolve a population of candidate solutions, which are iteratively improved through
the use of so-called genetic operators. The operators are specifically designed for
the given problem representation, in our case the set of expressions that can be
generated according to the grammar described in Fig. 9. After the optimization
is completed, we transform the expression of each Pareto-optimal solver to an
algorithmic representation which is emitted in the form of ExaSlang 3 code that can
then serve to evaluate the solver’s rate of convergence and compute performance on
the target hardware. As a first step, we have implemented our optimization approach
in Python,4 using the libraries LFA Lab [65] and DEAP [23]. We point the interested
reader to preliminary results of the optimization of multigrid solvers for the steady-
state heat equation on a multi-core CPU [78].

In the future, we intend to integrate this implementation into the generate solver
interface for the automatic construction of efficient and scalable geometric multigrid
solvers based on a given specification.

4https://github.com/jonas-schmitt/evostencils.

https://github.com/jonas-schmitt/evostencils

432 C. Lengauer et al.

4.6 Feature-Based Domain-Specific Optimization

One new concept that ExaStencils introduced into high-performance computing is
that of feature-based domain-specific optimization [5]. The central idea is to look at
a source program (e.g., a stencil code or application) not as an isolated individual
but as a member of a program family or software product line and to specify it by its
commonalities and variabilities with respect to the other family members in terms
of features. A feature represents a domain concept (e.g., a type of smoother or grid)
that may be selected and combined with others on demand. With this approach, a
wide search space of configuration choices can be reviewed automatically at the
level of domain concepts and the most performant choices for the application and
execution platform at hand can be identified.

Features and configuration options can have a significant influence on the
performance of the generated code. The influences of some might already be
known to the developer of the system, but other influences may be opaque and
likewise may be influences that arise from interactions among features, called
feature interactions. Also, the influences that one may expect based on theory and
domain knowledge may not match the actual influences in the program, which often
depend on implementation details.

Ideally, a developer or user knows the optimal choices for all features. The goal
must then be to exploit domain knowledge to identify the most performant con-
figuration. But since, as just explained, domain knowledge is unevenly developed
and remains often incomplete, ExaStencils resorts to machine learning to derive a
feature-specific performance model [80] that provides a comprehensible description
of the effects of features and feature interactions on performance. The machine-
learning techniques employ a set of configurations, the learning set or sample set,
as input to learn from.

To this end, we have developed a framework of configuration sampling and
machine learning approaches [36, 39, 59, 80] that allow us to derive a performance
model of a given code that is parameterized in terms of its features. This way, we
can express performance behavior in terms of concepts of the domain and determine
automatically optimal configurations that are tailored to the problem at hand, which
we have demonstrated in the domain of stencil codes [29, 30, 32] and beyond (e.g.,
databases, video encoders, compilers, and compression tools) [36, 39, 80]. Our
framework integrates well with the other parts of ExaStencils that use and gather
domain and configuration knowledge in different phases. It is similar in spirit to
the performance modeling tool Extra-P, developed in the SPPEXA projects Catwalk
und ExtraPeak [14], though we concentrate on flexibility in choosing and combining
different sampling and learning techniques.

To demonstrate the usefulness of the machine-learning approach, we performed
experiments on a large number of configurable software systems from different
domains, among them different multigrid solvers including an implementation in
ExaSlang [29, 30, 32]. To settle on a suitable learning set, we analyze the influence

ExaStencils: Advanced Multigrid Solver Generation 433

of different sampling strategies on the accuracy of the performance-influence
models [80].

Performance-influence models are not only meant to determine optimal configu-
ration but also to validate and refine domain knowledge. We must be sure that the
observed influences on the performance of the system match with our postulated
knowledge, otherwise the system or the knowledge base must be revised. In a case
study of a multigrid system working on triangular meshes, albeit not written in
ExaSlang, we were able to validate the domain knowledge of the developers of the
system [32].

For complex systems, learning a performance-influence model that captures
accurately the performance behavior of all individual configurations is often time-
consuming and the resulting models can become very large (i.e., many terms
describing only a small influence on the performance). However, it is not always
necessary to learn such a complex model; it might be beneficial to learn faster a
simpler model that is less accurate but accurate enough for a given use-case [39].
In a set of experiments, we have demonstrated the tradeoff between accuracy,
complexity, and time to learn a performance-influence model and shown that even
simple models can predict all configurations with high accuracy. Depending on the
use case of the performance-influence model, it can be of greater value to get quickly
a rough impression of the most relevant influences of configuration options rather
than waiting for a long time for a more detailed but also more complex model.

5 Case Studies

An essential ingredient of ExaStencils was a collection of case studies to test
our approach for performance, target performance, and versatility. The more
illustrative ones are sketched in this section. Section 5.1 deals with scalar elliptic
PDEs, Sect. 5.2 with image processing applications and Sect. 5.3 with aspects of
computational fluid dynamics. Section 5.4 details how generated solvers can be
coupled with existing code, in our case molecular dynamics simulations. Finally,
Sect. 5.5 goes beyond code generation and discusses a design decision study of
porous media applications.

5.1 Scalar Elliptic Partial Differential Equations

A prominent and well-researched PDEs example that describes the steady state of
the distribution of a physical quantity u : Rd → R, such as heat in a solid medium,
is

−∇ · (a∇u) = f in � ,

u = g on ∂�

434 C. Lengauer et al.

for a given domain � of dimensionality d , suitable boundary conditions, right-hand
side f : Rd → R and a thermal conductivity a : Rd → R of the material to be
simulated. Assuming a finite-difference discretization on a uniform grid, it can be
observed that a constant a leads to a stencil with constant coefficients, whereas a
variable a leads to one with variable coefficients. In the latter case, we always store
all stencil coefficients, rather than values of a, unless specified otherwise. Lastly, if
a is 1, the equation simplifies to the Poisson equation introduced in Sect. 3.2, which
is given by −∇2u = −	u = f .

In previous publications [43, 46, 48, 72], we demonstrated our ability to generate
highly optimized and massively parallel geometric multigrid solvers for this model
problem. For example, we achieve weak scalability up to the full JUQUEEN
supercomputer, i.e., using up to 458,752 cores across 28,867 nodes, for moderately
sized problems of 1–16 million unknowns per core. This is a good result considering
that the ratio of data to be communicated, e.g., via MPI, is quite high compared to
the required amount of computation. Figure 10 summarizes the obtained time to
solution for up to 7.3 · 1012 unknowns using a hybrid MPI/OpenMP parallelization
for which one V(3, 3)-cycle takes about 3.6 s. A similar scaling behavior can also be
observed in a scaling experiment on Piz Daint (see Fig. 11). With a largest problem
of 7.3 · 1012 unknowns solved, the ExaStencils software reaches for the Poisson
equation a size comparable to the finite-element approach [27] developed in the
TerraNeo project [8], where the solution of a stabilized tetrahedral linear finite-
element discretization of a Stokes system is demonstrated with 1.7 ·1013 unknowns.
This is based on a Uzawa-type smoother [20] for the Stokes system. A first direct
comparison has been made recently [41].

In a further single-node case study, we compared ExaStencils against the High-
Performance Geometric Multigrid (HPGMG) benchmark [2]. Here, on one core of
an Intel Xeon E5-2630 v2, the vectorized code generated by Athariac (see Sects. 4.2

16 512 16 384 458 752

20

25

30

number of cores

tim
e

to
so

lu
tio

n
in

s

Fig. 10 Weak scaling for generated multigrid solvers using V(3, 3)-cycles to solve for Poisson’s
equation in 3D on JUQUEEN [47, 48]. The largest problem solved consists of 7.3 ·1012 unknowns

ExaStencils: Advanced Multigrid Solver Generation 435

4 32 256 2 048
0

1 000

2 000

3 000

number of nodes

tim
e

pe
rc

yc
le

in
m

s

CC - GPU CC - CPU VC - GPU VC - CPU

Fig. 11 Weak scaling on Piz Daint for constant coefficients (CC) and variable coefficients (VC).
In all cases, the number of iterations required is nearly constant. Performance differences between
CPU and GPU reflect the hardware characteristics

and 4.3) was able to solve 14.6 times as many unknowns per second as HPGMG. A
closer inspection, using LIKWID [83], revealed that this performance gain is mainly
due to a higher MFLOPS rate and a much better memory bandwidth exploitation
of the solvers generated by ExaStencils. Further details, including also software
productivity metrics (e.g., lines of code and Halstead complexity measures), are
available elsewhere [76]. As an example, see also our case study on molecular
dynamics (Sect. 5.4).

5.2 Image Processing

Next, we consider applications in variational image processing. State-of-the-art
denoising algorithms based on total generalized variation have been implemented in
ExaSlang [26] using a preconditioned Douglas-Rachford iteration for the underlying
saddle-point problem. Results show a speedup of more than 4 compared to a
reference Matlab implementation on CPU. As an indication of the capability of
solving systems of PDEs as well, our most prominent imaging case study is the
implementation of optical flow solvers.

Computation of the optical flow refers to the approximation of the apparent
motion between two or more images which are part of an image sequence I . We
used this application to illustrate ExaSlang’s higher-dimensional data types [74].

Let us assume that I (x, y, t) refers to a specific pixel (x, y) in an image sequence
at time t , where t could refer to a certain frame in a video stream. Furthermore, we
assume that a moving object’s intensity does not change over time. Then, for small
movements (corresponding to small time differences between two images), we may

436 C. Lengauer et al.

describe the movement of an intensity value at a pixel (x, y, t) as follows:

I (x, y, t) = I (x + dx, y + dy, t + dt)

After performing a Taylor expansion and reordering factors, we can define the
partial image derivatives Ix = ∂I

∂x
, Iy = ∂I

∂y
and It = ∂I

∂t
. This leads to the temporal

gradient ∇θ I = (Ix, Iy, It)
T and the optical flow vector (u, v) =

(
dx
dt

,
dy
dt

)
, which

can be transformed to the following system of PDEs to be solved:

−α	u + Ix(Ixu + Iyv) = −IxIt

−α	v + Iy(Ixu + Iyv) = −IyIt

Here, α denotes the diffusion coefficient, which we set to 1 in this example.
Furthermore, we set the time gradient It also to 1 for simplification purposes. After
discretization, we obtain the following stencil:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(−α

−α

)

(−α

−α

) (
4α + I 2

x IxIy

IxIy 4α + I 2
y

) (−α

−α

)

(−α

−α

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This stencil can be directly mapped to Exaslang and used in a smoother kernel, as
illustrated in Listing 14.

All corresponding variables, such as the unknowns u and v, are represented in
ExaSlang as vectors of corresponding dimensionality. Thanks to our code generation
approach, we can easily conduct parameter studies. For example, we varied the
number of pre- and post-smoothing steps between 0 and 6 to study their influence
on the convergence rate (see Christian Schmitt’s dissertation [71] for details).
Furthermore, we switched vectorization for Intel’s AVX2 instruction set on and
off. For our measurements, we used a single compute node equipped with an Intel
i7-6700 CPU. We varied the number of threads between one (1T) and eight (8T)
and used LIKWID [83] for our measurements, which is a supported back-end for
ExaSlang’s profiling capabilities.

A comparison of the energy consumption in relation to the application’s exe-
cution time is depicted in Fig. 12. Clearly, the application is limited by the
available memory bandwidth, as a speedup can be observed when going from one
to two threads, but additional usage of CPU cores does not improve the speedup
further. The use of AVX2 yields a small performance improvement compared to
the scalar variants and, consequently, results in lower energy consumption. The V-
cycle configurations that performed best in this case study are the V(4,2)-cycle, the
V(3,3)-cycle, and the V(2,4)-cycle.

ExaStencils: Advanced Multigrid Solver Generation 437

� �

1loop over fragments {
2loop over Flow@current {
3 Flow[next]@current = Flow[active]@current + (
4 (inverse (diag (SmootherStencil@current))) *
5 (RHS@current -
6 SmootherStencil@current * Flow[active]@current)
7)
8}}
9advance Flow@current

� �

Listing 14 Jacobi smoother definition using slots for the flow field

0 3 6 9 12 15
0

100

200

300

400

500

run-time [s]

en
er
gy

[J
]

1T
2T
4T
6T
8T

1T (AVX2)

2T (AVX2)

4T (AVX2)

6T (AVX2)

8T (AVX2)

Fig. 12 Parameter study of different parallelization approaches and V-cycle configurations for the
two-dimensional optical flow application

5.3 Computational Fluid Dynamics

Our next area of application is computational fluid dynamics (CFD), where we
considered the solution of Stokes and Navier-Stokes equations [47, 50].

Let us turn first to the Stokes equations as introduced in Sect. 2.3. We dis-
cretized the given linear system of PDEs using finite differences and volumes on
staggered grids. Additionally, more advanced multigrid components are required.
This includes overlapping block smoothers that may additionally be colored. In
ExaSlang, both can be expressed concisely and intuitively, as demonstrated in
Sect. 4.1. Choosing a suitable coarse-grid solver is also a highly efficient process in
our framework as it can be configured via our generate solver directive. Currently,
we support conjugate gradient (CG), conjugate residual (CR), biconjugate gradient
stabilized (BiCGSTAB) and minimal residual (MINRES), all with optional restart
mechanisms, as well as simply applying the smoother. Of course, implementing

438 C. Lengauer et al.

one’s own solver at layer 3 or layer 4 is still possible. We found that, in the collection
of variants above, a BiCGSTAB with an added restart mechanism works reasonably
well for the present test case [47].

Extending this work towards the full Navier-Stokes equations is the next step.
For incompressible fluids, they can be given as

∂u

∂t
+ (u · ∇)u − ν∇2u + 1

ρ
∇p = fu

∇ · u = 0,

on a given domain �, which is square in 2D and cubic in 3D, with suitable boundary
conditions and with u, p and fu as before, ρ as the density and ν as the kinematic
viscosity given by the ratio of the dynamic viscosity μ and ρ. The switch from
Stokes to Navier-Stokes raises two challenges. First, since the equations become
time-dependent, a suitable time integration is required. We choose a traditional
implicit Euler, which can be implemented easily at layer 3 or layer 4. For each time
step, one can then call either a generated solver variant or a custom implementation.
Second, the employed solver has to be able to deal with non-linear equations. To this
end, we allow expressing suitable linearizations, such as those based on Newton’s
method and Picard iterations [21, 47], at layer 2. The linearization chosen can be
applied either locally or globally, and both variants can be expressed in tandem
with the discretization approach at layer 2. Then, non-linear multigrid solvers based
on the full approximation scheme can be tailored at layer 3 automatically. Scaling
tests on the JUWELS supercomputer exhibit good strong scalability for 2.7 · 108

unknowns and good weak scalability on up to 24,576 cores, the largest amount
available to us at the time of the experiment [47]. The results are summarized in
Figs. 13 and 14.

This approach can also be extended to the scope of our most sophisticated
application, namely the simulation of non-Newtonian and non-isothermal fluids.
Originally, we ported a legacy FORTRAN code to ExaSlang 4 [50] resulting not
only in a considerable reduction in code complexity and size of about one order of
magnitude, but also in a reasonable gain in performance of also about one order
of magnitude on average [50]. One prerequisite is the support of staggered non-
uniform grids by our code generation framework and DSL, which we extended
accordingly. After implementing fully parallel grid setup routines, we are now also
able to generate applications executable on GPUs and cluster architectures from
the same ExaSlang code. This application also serves as a motivation to extend
our generator to apply domain-specific optimizations, such as our sophisticated
loop-carried common subexpression elimination [45], which are able to improve
performance even further. Finally, using the previously described layer 2 and layer 3
capabilities allows for even more expressive and concise specifications, which have
moreover a greater ability to reflect concepts familiar to domain scientists.

Lastly, we should mention that we invested some time to explore alternative
approaches, such as the Lattice-Boltzmann method, which can also be implemented

ExaStencils: Advanced Multigrid Solver Generation 439

48 384 3 072 24 576
0

20

40

60

80

number of cores

tim
e

to
so

lu
tio

n
in

s

2D 3D

Fig. 13 Weak scaling of generated multigrid solvers for the Navier-Stokes equations in 2D and
3D on JUWELS [47]

48 384 3 072 24 576
101

102

103

104

number of cores

tim
e

to
so

lu
tio

n
in

s

2D 3D ideal

Fig. 14 Strong scaling of generated multigrid solvers for the Navier-Stokes equations in 2D and
3D on JUWELS [47]

in our DSL [64]. An early evaluation showed that applications generated with the
ExaStencils framework are about a factor of 2 slower compared to the state-of-the-
art multiphysics framework waLBerla.5

5www.walberla.net.

www.walberla.net

440 C. Lengauer et al.

5.4 Molecular Dynamics Simulation

To illustrate the versatility of the ExaStencils approach, we demonstrated that the
ExaStencils compiler could be used to generate a multigrid solver that integrates
into a large, existing simulation code. For this purpose, we considered a molecular
dynamics simulation code used in practice [67, 68], a simulation that computes the
motion of the electrons and nuclei of molecules or groups of molecules.

The simulation is a so-called real-space density functional theory (RSDFT)
simulation. A simulation in real space computes the wave functions on a discretized
Cartesian grid, which avoids costly computations of the fast Fourier transform
(FFT) that methods which work in Fourier space have to perform. The simulation
computes the motion of the particles using the Kohn-Sham density functional
theory, which is implemented using a Car-Parrinello molecular dynamics scheme.

The RSDFT simulation requires the computation of the electron-electron
Coulomb interaction potential of the charge density. This potential is computed
efficiently by solving the corresponding Poisson equation using a multigrid method.
The RSDFT code contains a manually derived multigrid solver, which we wanted
to replace by a solver generated by the ExaStencils compiler.

However, integrating a solver into an existing code base requires some additional
steps above the ones necessary to generate a stand-alone solver. The RSDFT code
has its own set of grid data structures for storage of the wave functions. To obtain
optimal performance, the ExaStencils compiler generates a set of internal data
structures that are the most suitable for the computation (see Sect. 4.3). These data
structures are usually not compatible with the ones an application code uses. While it
would be possible to force the compiler to use the RSDFT data structures, it would
deprive the compiler of some of its optimization opportunities. As a workaround,
we used the compiler to generate a set of data transfer routines that copy the grid
functions from the RSDFT data structures to the internal ones and vice versa.

In Table 1, we compare the performance of the automatically generated multigrid
solver and the legacy solver that was manually written in C. Note that both solvers
implement different coarse-grid solution strategies. Thus, the overall timings are
not directly comparable, because the number of iterations change between the
implementations. However, the time per iteration is indicative for the quality of
the code of the generated solver, and we see that it is comparable to the time per
iteration of the legacy code. The generated code is often slightly faster.

We can conclude that the ExaStencils approach is also feasible in situations that
involve an already existing codebase.

5.5 Porous Media

A further study, in cooperation with SPPEXA project EXA-DUNE [7], concerned
the design decision made for stencil codes in the domain of porous media [31].
The goal of this study was to help application engineers understand the complexity

ExaStencils: Advanced Multigrid Solver Generation 441

Table 1 Timings of the solution of the Poisson equation discretized on a grid of n points on
JURECA [42] using the legacy solver and an automatically generated multigrid solver

Legacy ExaStencils

Cores Iterations Time Time/iteration Iterations Time Time/iteration

n = 1273

1 6 0.87 s 1.4 × 10−1 s 6 0.76 s 1.3 × 10−1 s

2 6 0.51 s 8.5 × 10−2 s 6 0.39 s 6.4 × 10−2 s

4 6 0.31 s 5.1 × 10−2 s 6 0.27 s 4.5 × 10−2 s

8 6 0.27 s 4.4 × 10−2 s 6 0.13 s 2.1 × 10−2 s

n = 2553

1 28 32.3 s 1.15 s 6 6.00 s 1.00 s

2 28 17.2 s 0.61 s 6 3.01 s 0.50 s

4 28 9.70 s 0.35 s 6 1.67 s 0.28 s

8 28 5.72 s 0.20 s 6 1.01 s 0.17 s

16 28 3.86 s 0.14 s 6 0.84 s 0.14 s

24 28 2.94 s 0.10 s 6 0.44 s 7.3 × 10−2 s

of stencil computations and the relation between the mathematical model of an
application and the stencil used to solve the partial differential equation underlying
the application. To model these design decisions, we use feature orientation as
introduced in Sect. 4.6. An example of a design decision is the choice of the type of
boundary conditions that have to be satisfied by a given application. We differentiate
between decisions at the mathematical and the stencil level, and we devise one
feature model for each of these levels. Since decisions at the mathematical level
may affect decisions that can be made at the stencil level, we also include constraints
between these two levels.

To demonstrate the usefulness of feature modeling, we considered a set of
applications that deviate from the standard 5-point stencil used in many benchmarks.
We demonstrated that feature models can be used beyond simple mathematical
problems by considering problems of different complexity. Specifically, we started
with the simple heat equation and went on to more complex equations, such as the
advection-diffusion equation with operator splitting or Richard’s equation. For all
of these equations, we were able to express the design decisions at the mathematical
and the stencil level as well as their dependences. The result is a comprehensive
set of feature models that can be uses to formally reason about the variabilities in
stencil codes (e.g., to identify dependencies among configuration decisions).

442 C. Lengauer et al.

6 Variants of the ExaStencils Approach

6.1 ExaSlang 4 Embedded, Not External

In the second funding period, ExaStencils was part of an international collaboration
with Shigeru Chiba, co-funded by the Japan Science and Technology Agency (JST).
This project has already been reported to and reviewed by JST as part of the
Japanese strategic basic research programme CREST [17]. The summary is also
available at the author’s Web site.6

The project aimed at a software architecture for embedded domain-specific
languages. The cooperation of the DFG and JST in SPPEXA gave Chiba’s team
the opportunity to explore the applicability of its software architecture in the
context of ExaStencils. ExaSlang 4 is a stand-alone language that needs its own
compiler and development environments, such as an editor and a debugger, and
that has a relatively large development cost. The principle of embedding is an
approach to reduce the size and cost of the infrastructure needed. An embedded
DSL is implemented on top of a general-purpose host language as a library with
a programming interface that looks like a language. Since an embedded DSL is
a library, its development cost is usually smaller and programmers can reuse the
environments of the host language.

The result of the project was an embedded-DSL architecture based on run-time
metaprogramming. In this architecture, a part of the running program is reified at run
time; that is, its abstract syntax tree is dynamically extracted. Then it is translated to
efficient binary code to be run. For example, the host language could be Java, while
the program is translated to C/C++ and compiled to machine code. The idea is to
view the extracted code as a program not in the host language, but in the DSL with
a slightly different semantics. Hence, we can apply domain-specific optimization,
such as partial evaluation, during translation.

To evaluate this architecture, Chiba’s team developed two software systems.
One is Bytespresso [16], which they used to implement an embedded DSL that
mimics Exaslang 4. They were successful in developing the DSL with a similar
programming interface and then measured the execution performance. Although
the computational part alone experienced a loss by a factor of 3, the total execution
including compilation was twice as fast in the largest case measured: 12 grid levels,7

which is still small-scale. This demonstrates that, for small-scale problems, the
embedded version of Exaslang 4 is more suitable for interactive execution than the
external version.

6https://post-peta-crest.github.io/chiba/.
7Figures of the measurements can be found in the CREST report [17].

https://post-peta-crest.github.io/chiba/

ExaStencils: Advanced Multigrid Solver Generation 443

� �

1Fragments.loop_over do
2 Flow_u.current.loop_over do
3 Flow_u[:next].current = Flow_u[:active].current +
4 ((1.0 / diag(SmootherStencil_u.current)) *
5 (RHS_u.current - SmootherStencil_u.current *
6 Flow_u[:active].current))
7 end
8end

� �

Listing 15 Specification of an optical flow solver in Ruby-embedded ExaSlang 4

Chiba’s team also explored the expressive power of the architecture it proposed
in Yadriggy [15], a framework for embedding DSLs in Ruby. Compared to the
ExaSlang 4 implementation in Java using Bytespresso, exhibiting a source code
syntax far from the original, the Ruby-embedded version on Yadriggy features a
syntax much closer to the original. This is due to the flexible syntax of Ruby and
the development support by Yadriggy. For example, the code fragment depicted in
Listing 15 is ExaSlang 4 code taken from the optical flow case study (Sect. 5.2,
Listing 14) embedded in Ruby. This internal DSL code is not interpreted as Ruby
code and, hence, the language does not have to adhere to Ruby’s semantics.

6.2 A Multigrid Solver in SPIRAL

Forerunner and motivator for the vision of ExaStencils was the US project SPIRAL
[24, 61]. SPIRAL’s initial and foremost domain has been linear transformations.
Recently it went on to small-scale linear algebra [81]. ExaStencils’ domain is a
subdomain of multigrid computations. At project halftime, we put a very simple
case of multigrid on SPIRAL: a solver with a Richardson smoother for a discretized
square 2D Poisson equation with Dirichlet boundary conditions [11]. The central
step is to bring the smoother into an algebraic form of about a dozen rewrite
equations. It was an effort of a few days, but the present implementation of
SPIRAL does not support the broader domain of ExaStencils. For the generation of
efficient code, special adaptations are required as illustrated in the Bachelor thesis
of Sebastian Schweikl [79]. This is a consequence of the fact that SPIRAL’s target
domain has been signal processing and not the solution of PDEs. The applicability
of SPIRAL in its present form to our domain is very limited.

444 C. Lengauer et al.

7 The Legacy of ExaStencils

7.1 Effort

ExaStencils was not the only project in SPPEXA to address the solution of PDEs
via multigrid methods. However, it was the only one that took a revolutionary rather
than evolutionary software approach, i.e., that did not build on existing software
tools or application software but started afresh with the automatic, domain-specific
synthesis and optimization of application software via a set of dedicated domain-
aware software tools. The challenge was to identify the domain knowledge that is
useful in helping an optimization, to build the domain-aware tools and to generate
some target codes that demonstrate that this approach is realistic and promising.

A central ingredient of the approach is the stratification of the DSL ExaSlang into
four layers of abstraction, each addressing a different set of aspects of the stencil
code. The domain knowledge is twofold. Knowledge of the application problem is
provided by hints that enable the ExaSlang compiler to optimize at the next-more
concrete layer. These hints can be supplied as code annotations or conceptually by
other means, e.g., configuration files or GUIs, as is the case in the ExaSlang Level 1
editor documented in Tim Ammenhäuser’s Bachelor’s thesis [4]. Knowledge of the
execution platform is provided by a dedicated platform description language.

The main effort in the project concerned the design and implementation of the
ExaSlang compiler and code generator which had to be built from scratch, since
ExaSlang is an external DSL. This effort led to three dissertations of the six that
emerged from the project [43, 47, 71] and two habilitation theses [35, 40]. In a
sideline, a comparative study was made with an internal DSL mimicking the most
concrete layer of the external ExaSlang, which proved the approach doable but not
the first choice for exascale software.

Another major effort was to drive the development of performance prediction
further. On the software side, this will soon be realized by one cumulative dis-
sertation introducing the, also revolutionary, generation of performance prediction
models via machine learning in the setting of software product line engineering
[28]. On the mathematics side, a dissertation drove local Fourier analysis for the
convergence prediction of multigrid codes further [66]. Another dissertation in the
realm of multigrid math drove the technology of multigrid smoothers forward [19].

The final major element was the case studies conducted to illustrate the impact
of the ExaStencils approach.

7.2 Outreach

Let us sketch how ExaStencils profited from and nurtured other research projects.
There was a bilateral exchange of ideas and best practices with SPPEXA

project TerraNeo [8] that deals with multigrid solvers on block-structured grids

ExaStencils: Advanced Multigrid Solver Generation 445

for applications in geoscience. Both ExaStencils and TerraNeo have dealt in loose
collaboration with high-performance multigrid codes. One result was an evaluation
from the perspective of code generation technology [41]. A further systematic
comparison of the performance regarding the algorithms, data structures and
their implementation is left to the future. However, the generative programming
technologies of ExaStencils are already being leveraged for the redesign of the
TerraNeo code basis [38], where they help to simplify the software structure and
to reduce the coding effort.

In cooperation with SPPEXA project EXA-DUNE [7], we developed a semi-
automatic variability extraction approach that generates a family of applications
based on a given application [31]. An ExaStencils-generated application solves the
same problem as the EXA-DUNE application but uses sets of methods different
from the DUNE framework [9] with the goal of optimizing performance. For exam-
ple, applications might use different grid implementations or different finite-element
maps provided by the DUNE framework. The goal of this approach is to ease
the burden of having to understand the DUNE framework when adapting a given
application to new use cases and optimizing performance. In a first evaluation, the
approach was able to identify over 90% of the alternative but compatible methods a
developer of the framework has identified. Using this automated approach, we were
even able to identify a bug and an inconsistency in the DUNE framework.

A molecular dynamics simulation on the application platform RSDFT [67]
profited from the ExaStencils approach. The port of a development in ExaSlang
to RSDFT was successful.

Applied researchers in triangular meshes profited from the ExaStencils
approach of validating and refining domain knowledge via a performance-influence
model [32]. In simpler words, an automatic learning procedure confirmed their
design choices and their effects on performance and made them aware of others.

In a technically related BMBF-funded project, called HighPerMeshes, which
also aims at creating a DSL but for the scientific-computing domain of unstructured
meshes [37], the parallelization technology SYCL was evaluated [3]. This fueled our
interest in creating a SYCL back-end for our code generator which, in turn, provided
valuable insights into possible code generation strategies and optimizations for
project HighPerMeshes.

SPIRAL [24, 61] was ExaStencils’ main motivator and an orientation point for
positioning its contribution [11]. At present, SPIRAL is not as serious a platform
for multigrid solver development as ExaStencils and it would support the algebraic
rather than the geometric form of multigrid.

Similarly, HIPAcc [55, 57], a DSL embedded in C++ and a source-to-source
translator for image processing applications that can target a wide variety of
parallel accelerator architectures, inspired us on how to deal with both domain and
architecture knowledge. In turn, at the start of ExaStencils, we introduced language
constructs to HIPAcc to process and represent data at different resolutions, which
enables the specification of applications that work on image pyramids as well as 2D
stencil-based multigrid methods. By decoupling the algorithm from its schedule,

446 C. Lengauer et al.

HIPAcc allows the generation of efficient stencil-code implementations for single
accelerators [56].

A recent DFG-funded project on ocean modeling (grant. no 320126236) chal-
lenges the extensibility of ExaStencils’ application domain by considering time-
dependent hyperbolic partial differential equations, discretized using finite-volume
or higher-order discontinuous Galerkin methods on block-structured triangular
grids. Since, so far, an explicit time-stepping scheme is being applied, no solvers
like multigrid are required. However, it has been shown already that the ExaStencils
framework is capable of generating efficient and scalable code for such applications
on GPU clusters [49].

7.3 Potential

The ExaSlang compiler and code generator remain at the stage of a prototype, but
we believe that they have demonstrated that a stratified optimizing DSL approach
can provide dramatically increased convenience for the application programmer and
high flexibility concerning the execution platform. The effort of adapting a complex
code to a different application or platform can be reduced significantly. The price
to be paid is good knowledge of the theory on which the application rests and a
significant development cost in implementing the DSL. The latter can be reduced by
going the internal rather than the external way, at the price of reduced expressiveness
and flexibility in terms of target code optimization.

Our choice not to go with an embedded DSL tends to be not popular in present-
day DSL development but is essential. We did not want to be bound by any language
limitations in exploring the potential of the ExaStencils approach to domain-
specific programming and optimization. To achieve high portability and execution
performance of generated programs, we selected C/C++ as the target language.

Our case studies covered the range from textbook examples to realistic appli-
cations. The latter are represented by a simulation of non-Newtonian flow, fully
developed in the ExaSlang world, and a molecular dynamics simulation which used
an ExaStencils solver through an automatically generated compatibility interface.
We have demonstrated that we can reach the expected performance, achieve porta-
bility to most contemporary HPC platforms, and profit from a substantial decrease
of development time of new PDE models that can be expressed in ExaSlang.

Since the start of our project, code generation has become a standard technique
in many HPC codes and, thus, the concepts developed in ExaStencils are used or
can be adapted to other domains. Currently, a popular approach is the generation of
single compute kernels from an embedded DSL for existing software frameworks.
In addition, C++ template-based embedded DSLs are common. Frequently, both the
concrete DSL and the resulting implementations are very application-specific, but
the intermediate representations and code transforms can be defined quite generally
and then optimized for the specific case. In the future, it should be possible to

ExaStencils: Advanced Multigrid Solver Generation 447

extend the ExaStencils approach to other HPC applications to enable more holistic
optimizations than currently established approaches.

Acknowledgments Project ExaStencils received generous funding from the Deutsche
Forschungsgemeinschaft (DFG) in its priority programme SPP 1648 “Software for Exascale
Computing” under grant numbers AP 206/7, BO 3405/2, LE 912/15, RU 422/15 and TE 163/17.
We thank the Jülich Supercomputing Center (JSC) for providing access to the supercomputers
JUQUEEN and JURECA and the Swiss National Supercomputing Centre (CSCS) for providing
computational resources and access to the supercomputer Piz Daint. We are grateful to Rochus
Schmid for letting us have the RSDFT code for the molecular dynamics simulation.

References

1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer Programs,
2nd edn. The MIT Press, Cambridge (1996)

2. Adams, M.F., Brown, J., Shalf, J., Straalen, B.V., Strohmaier, E., Williams, S.: HPGMG 1.0:
a benchmark for ranking high performance computing systems. Tech. Rep. LBNL-6630E,
Lawrence Berkeley National Laboratory (2014)

3. Afzal, A., Schmitt, C., Alhaddad, S., Grynko, Y., Teich, J., Förstner, J., Hannig, F.: Solving
Maxwell’s equations with modern C++ and SYCL: a case study. In: Proceedings of the Annual
IEEE International Conference on Application-Specific Systems, Architectures and Processors
(ASAP), pp. 49–56. IEEE, New York (2018)

4. Ammenhäuser, T.: Online-editor und visualisierung für ExaStencils. Bachelor’s thesis,
University of Wuppertal (2019)

5. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer, Berlin (2013)

6. Bandishti, V., Pananilath, I., Bondhugula, U.: Tiling stencil computations to maximize
parallelism. In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis (SC), pp. 40:1–40:11. IEEE Computer Society, Washington (2012)

7. Bastian, P., Altenbernd, M., Dreier, N.A., Engwer, C., Fahlke, J., Fritze, R., Geveler, M.,
Göddeke, D., Iliev, O., Ippisch, O., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D.,
Turek, S.: EXA-DUNE: flexible PDE solvers, numerical methods and applications (in this
volume)

8. Bauer, S., Bunge, H.P., Drzisga, D., Ghelichkhan, S., Huber, M., Kohl, N., Mohr, M., Rüde, U.,
Thönnes, D., Wohlmuth, B.: TerraNeo: mantle convection beyond a trillion degrees of freedom
(in this volume)

9. Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J., Flemisch, B., Gersbacher, C.,
Gräser, C., Gruber, F., Grüninger, C., Kempf, D., Klöfkorn, R., Malkmus, T., Müthing, S.,
Nolte, M., Piatkowski, M., Sander, O.: The distributed and unified numerics environment,
version 2.4. Arch. Numer. Softw. 4(100), 13–29 (2016)

10. Bolten, M., Rittich, H.: Fourier analysis of periodic stencils in multigrid methods. SIAM J.
Sci. Comput. 40(3), A1642–A1668 (2018)

11. Bolten, M., Franchetti, F., Kelly, P.H.J., Lengauer, C., Mohr, M.: Algebraic description and
automatic generation of multigrid methods in SPIRAL. Concurr. Comput. Pract. Exp. 29(17),
4105:1–4105:11 (2017). Special issue: Advanced Stencil-Code Engineering

12. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic polyhedral
parallelizer and locality optimizer. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp. 101–113. ACM, New York
(2008)

448 C. Lengauer et al.

13. Bondhugula, U., Bandishti, V., Pananilath, I.: Diamond tiling: tiling techniques to maximize
parallelism for stencil computations. IEEE Trans. Parallel Distrib. Syst. 28(5), 1285–1298
(2017)

14. Calotoiu, A., Copik, M., Hoefler, T., Ritter, M., Wolf, F.: ExtraPeak: advanced automatic
performance modeling for HPC applications (in this volume)

15. Chiba, S.: Foreign language interfaces by code migration. In: 18th ACM SIGPLAN
International Conference on Generative Programming: Concepts & Experiences (GPCE), pp.
1–13. ACM, New York (2019)

16. Chiba, S., Zhuang, Y., Scherr, M.: Deeply reifying running code for constructing a domain-
specific language. In: Proceedings of the 13th International Conference on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools
(PPPJ), pp. 1:1–1:12. ACM, New York (2016)

17. Chiba, S., Zhuang, Y., Dao, T.C.: A development platform for embedded domain-specific
languages. In: Sato, M. (ed.) Advanced Software Technologies for Post-Peta Scale Computing,
chap. 8, pp. 139–161. Springer, Singapore (2019)

18. Christen, M., Schenk, O., Burkhart, H.: PATUS: a code generation and autotuning framework
for parallel iterative stencil computations on modern microarchitectures. In: Proceedings of the
25th IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 676–687
(2011)

19. Claus, L.: Multigrid smoothers for saddle point systems. Ph.D. thesis, University of Wuppertal
(2019). 133 pp.

20. Drzisga, D., John, L., Rüde, U., Wohlmuth, B., Zulehner, W.: On the analysis of block
smoothers for saddle point problems. SIAM J. Matrix Anal. Appl. 39(2), 932–960 (2018)

21. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers.
Numerical Mathematics and Scientific Computation, 2nd edn. Oxford University Press, Oxford
(2014)

22. Feautrier, P., Lengauer, C.: Polyhedron model. In: Padua, D.A., et al. (eds.) Encyclopedia of
Parallel Computing, pp. 1581–1592. Springer, New York (2011)

23. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary
algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

24. Franchetti, F., Low, T.M., Popovici, D.T., Veras, R.M., Spampinato, D.G., Johnson, J.R.,
Püschel, M., Hoe, J.C., Moura, J.M.F.: SPIRAL: extreme performance portability. Proc.
IEEE 106(11), 1935–1968 (2018). Special issue: From High-Level Specification to High-
Performance Code

25. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–
231 (2005). Special issue: Program Generation, Optimization, and Platform Adaptation

26. Gerecke, M.: Implementierung des TGV Algorithmus mithilfe von ExaSlang. Bachelor’s
thesis, Friedrich-Alexander University Erlangen-Nürnberg (2017)

27. Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.: A quantitative performance study
for Stokes solvers at the extreme scale. J. Computat. Sci. 17, 509–521 (2016)

28. Grebhahn, A.: Performance prediction of highly configurable software systems: multigrid
systems and beyond. Ph.D. thesis, Faculty of Computer Science and Mathematics, University
of Passau (2020, to be submitted)

29. Grebhahn, A., Kuckuk, S., Schmitt, C., Köstler, H., Siegmund, N., Apel, S., Hannig, F., Teich,
J.: Experiments on optimizing the performance of stencil codes with SPL Conqueror. Par. Proc.
Lett. 24(3), 19 pp. (2014). Article 1441001

30. Grebhahn, A., Siegmund, N., Köstler, H., Apel, S.: Performance prediction of multigrid-solver
configurations. In: Software for Exascale Computing – SPPEXA 2013–2015. Lecture Notes in
Computational Science and Engineering, vol. 113, pp. 69–88. Springer, New York (2016)

31. Grebhahn, A., Engwer, C., Bolten, M., Apel, S.: Variability of stencil computations for porous
media. Concurr. Computat. Pract. Exp. 29(17), 4119:1–4119:14 (2017). Special issue:
Advanced Stencil-Code Engineering

ExaStencils: Advanced Multigrid Solver Generation 449

32. Grebhahn, A., Rodrigo, C., Siegmund, N., Gaspar, F.J., Apel, S.: Performance-influence
models of multigrid methods: a case study on triangular meshes. Concurr. Comput. Pract.
Exp. 29(17), 4057:1–4057:13 (2017). Special issue: Advanced Stencil-Code Engineering

33. Groth, S., Schmitt, C., Teich, J., Hannig, F.: SYCL code generation for multigrid methods. In:
Proceedings of the 22nd International Workshop on Software and Compilers for Embedded
Systems (SCOPES), pp. 41–44. ACM, New York (2019)

34. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: Stella: a domain-specific tool for
structured grid methods in weather and climate models. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis (SC), pp.
41:1–41:12. ACM, New York (2015)

35. Hannig, F.: Domain-specific and resource-aware computing (2017). Habilitation thesis,
Friedrich-Alexander University Erlangen-Nürnberg, 444 pp.

36. Kaltenecker, C., Grebhahn, A., Siegmund, N., Guo, J., Apel, S.: Distance-based sampling of
software configuration spaces. In: Proceedings of the IEEE/ACM International Conference on
Software Engineering (ICSE), pp. 1084–1094. IEEE Computer Society, Washington (2019)

37. Kenter, T., Mahale, G., Alhaddad, S., Grynko, Y., Schmitt, C., Afzal, A., Hannig, F., Förstner,
J., Plessl, C.: OpenCL-based FPGA design to accelerate the nodal discontinuous Galerkin
method for unstructured meshes. In: Proceedings of the 26th IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 189–196. IEEE, New York
(2018)

38. Kohl, N., Thönnes, D., Drzisga, D., Bartuschat, D., Rüde, U.: The HyTeG finite-element
software framework for scalable multigrid solvers. Int. J. Parallel Emergent Distrib. Syst.
1–20 (2018).

39. Kolesnikov, S., Siegmund, N., Kästner, C., Grebhahn, A., Apel, S.: Tradeoffs in modeling
performance of highly-configurable software systems. Softw. Syst. Model. 18(3), 2265–2283
(2019)

40. Köstler, H.: Effiziente numerische Algorithmen und Softwareentwicklung für hochparal-
lele Rechensysteme (2014). Habilitation thesis, Friedrich-Alexander University Erlangen-
Nürnberg, 94 pp.

41. Köstler, H., Heisig, M., Kohl, N., Kuckuk, S., Bauer, M., Rüde, U.: Code generation approaches
for parallel geometric multigrid solvers. Analele Stiintifice ale Universitatii Ovidius, Seria
Matematica (2019, accepted for publication)

42. Krause, D., Thörnig, P.: JURECA: modular supercomputer at Jülich Supercomputing Centre.
J. Large-Scale Res. Fac. 4, A132, 9 pp. (2018)

43. Kronawitter, S.: Automatic optimization of stencil codes. Ph.D. thesis, University of Passau
(2019), 130 pp.

44. Kronawitter, S., Lengauer, C.: Polyhedral search space exploration in the ExaStencils code
generator. ACM Trans. Archit. Code Op. 15(4), 40:1–40:25 (2019)

45. Kronawitter, S., Kuckuk, S., Lengauer, C.: Redundancy elimination in the ExaStencils code
generator. In: Carretero, J., et al. (eds.) Algorithms and Architectures for Parallel Processing
(ICA3PP), Collocated Workshops. Lecture Notes in Computer Science, vol. 10049, pp. 159–
173. Springer, New York (2016). First International Workshop on Data Locality in Modern
Computing Systems (DLMCS)

46. Kronawitter, S., Kuckuk, S., Köstler, H., Lengauer, C.: Automatic data layout transformations
in the ExaStencils code generator. Parallel Proc. Lett. 28(3), 18 pp. (2018). Article 1850009

47. Kuckuk, S.: Automatic code generation for massively parallel applications in computational
fluid dynamics. Ph.D. thesis, Friedrich–Alexander-Universität Erlangen-Nürnberg (2019), 243
pp.

48. Kuckuk, S., Köstler, H.: Automatic generation of massively parallel codes from ExaSlang.
Computation 4(3), 20 pp. (2016). Article 27. Special issue: High Performance Computing
(HPC) Software Design

49. Kuckuk, S., Köstler, H.: Whole program generation of massively parallel shallow water
equation solvers. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 78–87. IEEE, New York (2018)

450 C. Lengauer et al.

50. Kuckuk, S., Haase, G., Vasco, D., Köstler, H.: Towards generating efficient flow solvers with
the ExaStencils approach. Concurr. Comput. Pract. Exp. 29(17), 4062:1–4062:17 (2017).
Special issue: Advanced Stencil-Code Engineering

51. Kuckuk, S., Leitenmaier, L., Schmitt, C., Schönwetter, D., Köstler, H., Fey, D.: Towards virtual
hardware prototyping for generated geometric multigrid solvers. Tech. Rep. CS 2017-01,
Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (2017).
10 pp.

52. Lange, M., Kukreja, N., Louboutin, M., Luporini, F., Vieira, F., Pandolfo, V., Velesko, P.,
Kazakas, P., Gorman, G.: Devito: towards a generic finite difference DSL using symbolic
Python. In: Proceedings of the Workshop on Python for High-Performance and Scientific
Computing (PyHPC), pp. 67–75. IEEE, New York (2016)

53. Lengauer, C., Apel, S., Bolten, M., Größlinger, A., Hannig, F., Köstler, H., Rüde, U., Teich, J.,
Grebhahn, A., Kronawitter, S., Kuckuk, S., Rittich, H., Schmitt, C.: ExaStencils: advanced
stencil-code engineering. In: Lopes, L., et al. (eds.) Euro-Par 2014: Parallel Processing
Workshops, Part II. Lecture Notes in Computer Science, vol. 8806, pp. 553–564. Springer,
New York (2014)

54. Luporini, F., Varbanescu, A.L., Rathgeber, F., Bercea, G.T., Ramanujam, J., Ham, D.A., Kelly,
P.H.J.: Cross-loop optimization of arithmetic intensity for finite element local assembly. ACM
Trans. Archit. Code Op. 11(4), 57:1–57:25 (2015)

55. Membarth, R., Hannig, F., Teich, J., Körner, M., Eckert, W.: Generating device-specific GPU
code for local operators in medical imaging. In: Proceedings of the 26th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 569–581. IEEE, New York
(2012)

56. Membarth, R., Reiche, O., Schmitt, C., Hannig, F., Teich, J., Stürmer, M., Köstler, H.: Towards
a performance-portable description of geometric multigrid algorithms using a domain-specific
language. J. Parallel Distrib. Comput. 74(12), 3191–3201 (2014)

57. Membarth, R., Reiche, O., Hannig, F., Teich, J., Körner, M., Eckert, W.: HIPAcc: a domain-
specific language and compiler for image processing. IEEE Trans. Parallel Distrib. Syst.
27(1), 210–224 (2016)

58. Mullapudi, R.T., Vasista, V., Bondhugula, U.: PolyMage: automatic optimization for image
processing pipelines. SIGARCH Comput. Archit. News 43(1), 429–443 (2015)

59. Nair, V., Yu, Z., Menzies, T., Siegmund, N., Apel, S.: Finding faster configurations using
FLASH. IEEE Trans. Softw. Eng. (2018) [Online first]

60. Padua, D.A., et al. (eds.): Encyclopedia of Parallel Computing. Springer, New York (2011)
61. Püschel, M., Franchetti, F., Voronenko, Y.: Spiral. In: Padua, D.A., et al. (eds.) Encyclopedia

of Parallel Computing, pp. 1920–1933. Springer, New York (2011)
62. Ragan-Kelley Jonathan, E.A.: Halide: a language and compiler for optimizing parallelism,

locality, and recomputation in image processing pipelines. ACM SIGPLAN Not. 48(6), 519–
530 (2013). Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI)

63. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A.T.T., Bercea, G.T.,
Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing
abstractions. ACM Trans. Math. Softw. 43(3), 24:1–24:27 (2017)

64. Ribica, D.: Code generation vs. HPC framework. Bachelor’s thesis, Friedrich-Alexander
University Erlangen-Nürnberg (2018)

65. Rittich, H.: LFA Lab. https://hrittich.github.io/lfa-lab/
66. Rittich, H.: Extending and automating Fourier analysis for multigrid methods. Ph.D. thesis,

Faculty of Mathematics and Natural Sciences, University of Wuppertal (2017). 202 pp.
67. Schmid, R.: Car-Parrinello simulations with a real space method. J. Comput. Chem. 25(6),

799–812 (2004)
68. Schmid, R., Tafipolsky, M., König, P.H., Köstler, H.: Car-Parrinello molecular dynamics using

real space wavefunctions. Phys. Status Solidi (B) 243(5), 1001–1015 (2006)

https://hrittich.github.io/lfa-lab/

ExaStencils: Advanced Multigrid Solver Generation 451

69. Schmid, M., Reiche, O., Schmitt, C., Hannig, F., Teich, J.: Code generation for high-level
synthesis of multiresolution applications on FPGAs. In: Proceedings of the First International
Workshop on FPGAs for Software Programmers (FSP), pp. 21–26 (2014). arXiv:1408.4721

70. Schmid, M., Schmitt, C., Hannig, F., Malazgirt, G.A., Sönmez, N., Yurdakul, A., Cristal, A.:
Big Data and HPC acceleration with Vivado HLS. In: Koch, D., Hannig, F., Ziener, D. (eds.)
FPGAs for Software Programmers, chap. 7, pp. 115–136. Springer, New York (2016)

71. Schmitt, C.: A domain-specific language and source-to-source compilation framework for geo-
metric multigrid methods. Ph.D. thesis, Friedrich-Alexander University Erlangen-Nürnberg
(2019). Verlag Dr. Hut, 203 pp.

72. Schmitt, C., Kuckuk, S., Hannig, F., Köstler, H., Teich, J.: ExaSlang: a domain-specific
language for highly scalable multigrid solvers. In: Proceedings of the 4th International
Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance
Computing (WOLFHPC), pp. 42–51. IEEE Computer Society, Washington (2014)

73. Schmitt, C., Schmid, M., Hannig, F., Teich, J., Kuckuk, S., Köstler, H.: Generation of
multigrid-based numerical solvers for FPGA accelerators. In: Größlinger, A., Köstler, H. (eds.)
Proceedings of the 2nd International Workshop on High-Performance Stencil Computations
(HiStencils), pp. 9–15 (2015). www.viaprinto.de

74. Schmitt, C., Kuckuk, S., Hannig, F., Teich, J., Köstler, H., Rüde, U., Lengauer, C.: Systems of
partial differential equations in ExaSlang. In: Bungartz, H.J., Neumann, P., Nagel, W.E. (eds.)
Software for Exascale Computing – SPPEXA 2013-2015, Lecture Notes in Computational
Science and Engineering, vol. 113, pp. 47–67. Springer, Heidelberg (2016)

75. Schmitt, C., Hannig, F., Teich, J.: A target platform description language for code generation in
HPC. In: Workshop Proceedings of the 31st GI/ITG International Conference on Architecture
of Computing Systems (ARCS), pp. 59–66. VDE, Berlin (2018)

76. Schmitt, C., Kronawitter, S., Hannig, F., Teich, J., Lengauer, C.: Automating the development
of high-performance multigrid solvers. Proc. IEEE 106(11), 1969–1984 (2018). Special issue:
From High-Level Specification to High-Performance Code

77. Schmitt, C., Schmid, M., Kuckuk, S., Köstler, H., Teich, J., Hannig, F.: Reconfigurable
hardware generation of multigrid solvers with conjugate gradient coarse-grid solution. Parallel
Process. Lett. 28(4), 20 pp. (2018). Article 1850013

78. Schmitt, J., Kuckuk, S., Köstler, H.: Optimizing Geometric Multigrid Methods with Evolution-
ary Computation (2019). arXiv:1910.02749

79. Schweikl, S.: Multigrid for the SPIRAL prototype in Scala. Bachelor’s thesis, University of
Passau (2017)

80. Siegmund, N., Grebhahn, A., Apel, S., Kästner, C.: Performance-influence models for highly
configurable systems. In: Proceedings of the European Software Engineering Conference
and ACM SIGSOFT International Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp. 284–294. ACM Press, New York (2015)

81. Spampinato, D., Fabregat-Traver, D., Bientinesi, P., Püschel, M.: Program generation for small-
scale linear algebra applications. In: Proceedings of the International Symposium on Code
Generation and Optimization (CGO), pp. 327–339. ACM, New York (2018)

82. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The Pochoir stencil
compiler. In: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 117–128. ACM, New York (2011)

83. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented tool suite
for ×86 multicore environments. In: Proceedings of the 39th International Conference on
Parallel Processing Workshops (ICPPW), vol. 1, pp. 207–216 (2010). International Workshop
on Parallel Software Tools and Tool Infrastructures (PSTI)

84. Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Academic, London (2001)
85. Unat, D., Cai, X., Baden, S.B.: Mint: realizing CUDA performance in 3D stencil methods with

annotated C. In: Proceedings of the International Conference on Supercomputing (ICS), pp.
214–224. ACM, New York (2011)

86. van Rossum, G.: Python Reference Manual. Tech. Rep. CS-R9525, Centrum voor Wiskunde
en Informatica (CWI) (1995)

www.viaprinto.de

452 C. Lengauer et al.

87. Vanka, S.: Block-implicit multigrid solution of Navier-Stokes equations in primitive variables.
J. Comput. Phys. 65(1), 138–158 (1986)

88. Wienands, R., Joppich, W.: Practical Fourier Analysis For Multigrid Methods. Chapman
Hall/CRC Press, Boca Raton (2005)

89. Williams, S., Watermann, A., Patterson, D.: Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

90. Zhang, N., Driscoll, M., Markley, C., Williams, S., Basu, P., Fox, A.: Snowflake: a lightweight
portable stencil DSL. In: Proceedings of the IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 795–804. IEEE, New York (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	ExaStencils: Advanced Multigrid Solver Generation
	1 Overview of ExaStencils
	1.1 Project Vision
	1.2 Project Results
	1.3 Project Peripherals

	2 The Domain of Multigrid Stencil Codes
	2.1 Multigrid
	2.2 Advancing the Mathematical Analysis of Multigrid Methods
	2.3 Advancing Multigrid Components

	3 Stencil-Specific Programming in ExaStencils
	3.1 The Domain-Specific Language ExaSlang
	3.2 An ExaSlang Example
	3.3 The Target-Platform Description Language

	4 The ExaSlang Code Generator
	4.1 Refinement of ExaSlang Programs
	4.2 Generation of Target Code
	4.3 Target-Specific Optimization
	4.4 Parallelization
	4.5 Compositional Optimization
	4.6 Feature-Based Domain-Specific Optimization

	5 Case Studies
	5.1 Scalar Elliptic Partial Differential Equations
	5.2 Image Processing
	5.3 Computational Fluid Dynamics
	5.4 Molecular Dynamics Simulation
	5.5 Porous Media

	6 Variants of the ExaStencils Approach
	6.1 ExaSlang 4 Embedded, Not External
	6.2 A Multigrid Solver in SPIRAL

	7 The Legacy of ExaStencils
	7.1 Effort
	7.2 Outreach
	7.3 Potential

	References

