
1© The Author(s) 2021
J. D. Oury, F. E. Ritter, Building Better Interfaces for Remote Autonomous
Systems, Human–Computer Interaction Series,
https://doi.org/10.1007/978-3-030-47775-2_1

Chapter 1
Introducing Interface Design for Remote
Autonomous Systems

Abstract This chapter presents a high-level overview of how designers of com-
plex systems can address risks to project success associated with operator perfor-
mance and user-centered design. Operation Centers for remote, autonomous
systems rely on an interconnected process involving complex technological sys-
tems and human operators. Designers should account for issues at possible points
of failure, including the human operators themselves. Compared to other system
components, human operators can be error-prone and require different knowledge
to design for than engineering components. Operators also typically exhibit a wider
range of performance than other system components. We propose the Risk-Driven
Incremental Commitment Model as the best guide to decision-making when
designing interfaces for high-stakes systems. Designers working with relevant
stakeholders must assess where to allocate scarce resources during system develop-
ment. By knowing the technology, users, and tasks for the proposed system, the
designers can make informed decisions to reduce the risk of system failure. This
chapter introduces key concepts for informed decision- making when designing
operation center systems, presents an example system to ground the material, and
provides several broadly applicable design guidelines that support the development
of user-centered systems in operation centers.

1.1 Introduction

Our increasingly complex society relies on an interconnected network of systems,
each responsible for carrying out its own role effectively. The most important com-
ponents within the systems of systems are called critical systems. Critical systems
are defined by the cost of their failure; critical systems are called as such because
their failure will lead to loss of life, destruction of the system, or failure for the
organization as a whole. For example, failure in central command for the space mis-
sions may leave astronauts without the information (and oxygen!) they need if their
oxygen tank were to fail a few days into the mission. Air traffic control is another
example of a critical system; even minor mistakes can have devastating conse-
quences. Not every critical system, however, needs to be part of a large international
organization. A 911 emergency call center is responsible for triaging calls,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47775-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-47775-2_1#DOI

2

dispatching appropriate services, and providing support for the caller; loss of the
call center means local fire, medical, and police services lose their ability to coordi-
nate and respond.

Whether it’s NASA’s Christopher C. Kraft Jr. Mission Control Center in Houston,
the Indianapolis Air Route Traffic Control Center, or a local 911 dispatcher, these
critical systems all contain some form of an operation center at the heart of their
operation, and these operation centers are vital communication hubs for the transfer
of information. Within any given op center, there are going to be different stake-
holders, tasks, and priorities that must be considered in their design. A single room
or even a single screen could be the link between the op center and multiple com-
plex systems. Figure 1.1 shows a montage of the types of system components this
book addresses. This book primarily examines operation centers that manage
remote, autonomous, asynchronous systems.

The book is designed to be useful to managers, designers, and implementors of
op centers. Managers can use it to adjust their process to account for a wider range
of risks caused by failing to support their users and their tasks. Designers can use it
to manage the process, learn about users, and become more aware of useful types of
shared representations. Implementers can use it to provide context for seemingly
small decisions within an interface that are too minor to be described formally or
have not been specified. Where we can, we also identify design principles and
aspects of the operator, interface, or process that suggest prescriptive actions to cre-
ate better interfaces.

This introductory chapter makes the case for including knowledge about users as
part of the system and design process. It will then briefly describe a way to include
this knowledge (the Risk-Driven Spiral Model) and how this knowledge could be
applied to operation centers. The rest of the book will use an example system called
the Water Detection System (WDS) to help illustrate the principles, concepts, and
practical implications derived from the material covered. The introduction con-
cludes with some example guidance that can be used as an executive summary or as
a summary for readers who might not have time to read the whole book. The remain-
der of the book provides support for the guidelines. The appendices include a
worked example that shows how the guidance is applied. Table 1.1 defines some

common terms used throughout this book.
The design approach that results from this book will be primarily a human–com-

puter interaction (HCI) approach to make the system usable. Aspects of improving the
system through user-centered design (UCD) and making the system more enjoyable

(while maintaining usability) with user experience (UX) design will be included as well.

1.2 The Role of Operators

Operators can greatly influence operation center success. In a study of errors in air
traffic control, a type of op center, Jones and Endsley (1996) found that seven out
of ten times system failures are due to operator error. Their error analysis for

1 Introducing Interface Design for Remote Autonomous Systems

3

Fig. 1.1 Technological advancement has expanded our ability to use and control complex systems
in new ways and from new locations. To make full use of these powerful new systems, usability is
paramount. (Image by Kenan Zekić)

1.2 The Role of Operators

4

aviation disasters organized the contributing errors by operators using Endsley’s
(1995) theory of situation awareness. The situation awareness framework predicts
operator performance by rating the operator’s awareness of necessary information.
When the errors were organized into their stage of situational awareness, they found
that misperception or non-perception of the necessary information was the primary
cause of air disasters about 75% of the time. Going up in complexity, failing to suc-
cessfully comprehend the meaning or the importance of information was the pri-
mary cause in only about 20% of air disasters. Finally, at the lowest error rate,
projection into near-future system states is the key in less than 5% of disasters.
Breaking down these failures into more specific types of failure showed that atten-
tional failure (35%; operator has information but fails to attend to it), working
memory failure (8.4%; operator attends to information but forgets it), and mental
model failure (18%; operator’s understanding of the situation does not match real-
ity) account for the most common events that contribute to operator errors in op
centers.

Operators of complex systems use a set of cognitive mechanisms that are fallible
in predictable ways. Systems engineers, developers, and designers can begin miti-
gating the risks associated with fallible cognitive behavior by learning about the
factors and mechanisms that influence operator performance and reliability. Not all
these mechanisms can be ameliorated by system design, but they do shed light on
design opportunities where systems could be improved and better support operators.
This book suggests ways to do that.

Modifying op center designs could help reduce these types of system failures by
providing the information more clearly, making information more comprehensible,
requiring less attention (perhaps by reducing other less useful information), and
appropriately matching and supporting the operator’s mental model and tasks. How
can these issues be addressed throughout the development cycle of complex sys-
tems? We propose a design process based on understanding the operator, their tasks,
and the technology.

Table 1.1 Common terms and definitions

Term Definition

Operation center
(op center)

A centralized location used to monitor and exert control over a system,
situation, or event. Can sometimes be used interchangeably with command
center or control room

Human–computer
interaction (HCI)

A broad term for research into the design and use of computer technology,
particularly as it relates to human–machine interactions. HCI typically
includes user-centered design and user experience design under its purview

User-centered
design (UCD)

A design process focused on fitting the goals, tasks, and needs of the user to
support optimal performance for the overall human–machine system

User experience
design (UX)

A design process that extends HCI to include all design aspects that are
perceived and felt by the user to build systems that are desirable to use in
both function and experience

1 Introducing Interface Design for Remote Autonomous Systems

5

1.3 How to Improve Designs

The variety and complexity of work being performed in op centers prevents strict
design guidelines from being a “silver bullet” for every system design issue. The
different goals, priorities, and tasks across op centers will likely add up to being
nearly equal to the number of op centers itself. However, the common element
across op centers is the role of human operators. Operators serve as the interface
between the wide range of information sources and the higher command structure.
This can involve a vast variety of tasks ranging from call intake and prioritization
within an emergency response center to monitoring radar for airborne threats.
Furthermore, the task variety is compounded by having a single operator be respon-
sible for multiple tasks. For example, an operator at a 911 dispatch center will often
be simultaneously responsible for (a) providing emotional support and guidance to
the caller, (b) recording crucial information about the situation, (c) alerting appro-
priate emergency responders, and (d) answering questions for emergency respond-
ers while en route.

The complexity and variety of tasks within an op center means that the system
designers will need to know their users, their users’ tasks, and the technology and
then combine these using their judgment within the design process. At all times,
designers must be aware that interfaces that are hard to read, use, understand, or
predict from are constant risks to project success; however these issues are not
always easily solvable. Designers will have to use judgment when aspects of the
users and their tasks are not fully known. They will also have to use judgment to
prioritize tasks or user types and to balance different design requirements. Designers
face many challenges when balancing human and system factors, and this book will
help guide their decision-making when solutions are not immediately clear.

Simply providing a set of design guidelines will not suffice, because one size
does not fit all. Due to the varied nature of tasks and systems across operation cen-
ters, we will need to provide a suitable foundation for designers to guide their
decision- making when there is no direct solution. Thus, this book summarizes a
useful process and design issues to keep in mind when designing operation centers.
It goes further, however, by providing a worked example of design and design steps
for an example system.

This book spends more time defining a useful interface design process than giv-
ing simple guidelines for design. This user-and-task-oriented process should lead to
better interfaces that support operators and do this in a better way than simply pro-
viding a set of ten “rules” about font size, which might need to vary and which will
conflict at times with rules about how many objects need to be visible on the inter-
face. And, yet, in providing background knowledge about operators and their tasks,
there will inevitably be sensible conclusions that look like and work like guidelines.
The design recommendations will often provide “safe” recommendations for
designers. Design recommendations will be accompanied by brief supporting
details meant to substantiate the information. This self-contained book will provide
system designers with a framework for improving user experience and performance

1.3 How to Improve Designs

6

by incorporating human-centered design principles into the design and implementa-
tion of critical systems.

System designers will benefit greatly from understanding the foundational con-
cepts and literature that support this guidance. This book provides a simple review
of the literature to support this guidance. This review serves several purposes: (a)
offering motivation for including the topics chosen, (b) describing the related
research that has contributed to the high-level guidance, and (c) providing readers
with a convenient method to learn more about a topic if needed. While not every
system developer will choose to read this book, it provides interested readers with a
more condensed treatment than available from reading several books on user-cen-
tered design and users. The final review and guidance should be detailed enough to
provide further guidance in a standalone format.

1.4 Risk-Driven Design

The design and performance of an operation center will depend on financial consid-
erations, task constraints, and the goals of the designers. However, clearly there are
limitations on what is possible for any given design process (e.g., deadlines, access
to user testing, ambiguous information). In an ideal world, every project would have
ample time, personnel, and funding to be able to create the best product possible:
clearly this is an unrealistic scenario. Thus, designers and other stakeholders must
make decisions about how to ensure project success throughout the design process.

We propose that the Risk-Driven Incremental Commitment Model (RD-ICM) pro-
vides the best framework for creating effective systems, including assessing the risks
associated with design choices (Pew and Mavor 2007). Figure 1.2 shows the RD-ICM
in spiral form. Implementation of RD-ICM involves assessing the risk associated
with a given decision. Boehm and Hansen (2001) define risks within the RD-ICM as
“situations or possible events that can cause a project to fail.” RD-ICM uses an itera-
tive, flexible procedure to prompt the stakeholders to make candid assessments of
what the risks are at each stage of the project. Implementing RD-ICM effectively
leads to decisions contrary to the dogmatic idea that UX be prioritized at every stage,
but this is because UX issues are only explored once their risks are relatively large.

The RD-ICM and risk-driven design require four key features:

 1. Systems should be developed through a process that considers and satisfices the
needs of stakeholders, that is, provides a good and achievable, but not necessar-
ily the best solution.

 2. Development is incremental and performed iteratively. The five stages (explora-
tion, valuation, architecting, development, and operation) are performed for each
project’s lifecycle.

 3. Development occurs concurrently across various project steps through simulta-
neous progress on individual aspects of the project; however, effort towards each
aspect varies over time.

1 Introducing Interface Design for Remote Autonomous Systems

7

 4. The process explicitly takes account of risks during system development and
deployment to determine prioritization for resource deployment: minimal effort
for minimal-risk decisions, high effort for high-risk decisions.

Within the spiral, each stage has phases of (a) stakeholder valuation and eval-
uation; (b) determination of objectives, alternatives, and constraints; (c) evalua-
tion of alternatives and identification and resolution of risks; and (d) development
and verification of the next-level product. This approach allows work on risks
to proceed in parallel and comes back to value the alternatives with the
stakeholders.

Here is an example of how the RD-ICM could shape design choices. During the
early design process of a complex system, the risks of not getting the system up and
running (e.g., failure to meet expectations for funders or other high-level stakehold-
ers or technical connection issues) may outweigh the risks associated with having a
nonideal interface design (e.g., frustrated users). The stakeholders have determined

1

2

3

4

5

6

STAKEHOLDER
COMMITMENT
REVIEW POINTS:

Opportunities to
proceed, skip
phases, backtrack,
or terminate

Exploration Commitment Review

Valuation Commitment Review

Architecture Commitment Review

Development Commitment Review

Operations1 and Development2
Commitment Review

Operations2 and Development3
Commitment Review

Cumulative Level of Understanding, Cost,Time, Product, and
Process Detail (Risk-Driven)

Concurrent
Engineering of
Products and
Processes

2345

ARCHITECTINGARCHITECTING

VALUATION

DEVELOPMENT

1

OPERATION2

16

OPERATION

ARCHITECTING

EXPLORATION

Fig. 1.2 The Risk-Driven Incremental Commitment Model as a spiral of development.
(Reprinted from Pew and Mavor 2007, p. 48)

1.4 Risk-Driven Design

8

that functionality (the task-related aspects of the design) should be prioritized over
the user experience (UX, the users’ feelings, emotions, values, and responses to the
system). Instead, the UX design choices could be pushed down the pipeline and
then reassessed at a later stage. This would enable the engineering team to focus on
creating something that “works.” However, once a functional system is formed, the
team would reassess the risks associated with a frustrating user interface. If the
interface fails to convey critical information in a consistent manner to most users,
the risks of a user misinterpreting a signal may outweigh the benefits of adding
further features to the system.

Each stage has its own iterative assessments of how to successfully complete the
project. Further information on this approach is available from a National Research
Council Report (Pew and Mavor 2007), a special issue of the Journal of Cognitive
Engineering and Decision Making (Pew 2008), and an overview in the Foundations
for Designing User-Centered Systems textbook (Ritter et al. 2014).

So, if you adopt a risk-driven process that includes human operator-related risks,
you still must be able to recognize and reduce these risks. This book seeks to pro-
vide background knowledge to help developers judge and ameliorate the risks to
system success that developers face during the design and implementation process
of op centers. We hope to provide knowledge and guidance that can help designers
understand how their design choices may affect task performance throughout the
lifetime of the system.

Thus, we suggest following a risk-driven spiral model. This includes formal
reviews with stakeholders at each cycle to assess risks and work focused to reduce
risks, not just build a system. This approach uses a range of design documents as
shared representations between the stakeholders and the designers and implement-
ers. We include an example set in Appendix 1.

1.5 The Design Problem Space for Op Centers

This book reviews how the risks of failures due to human performance can be allevi-
ated throughout the design process of interfaces within operation centers. Because
designing an interface for an op center is the design problem, we briefly review this
design space and provide an overview of an example before addressing further com-
mon risks and issues that apply to operator interactions with the systems.

Op centers act as the nervous system within a larger body, directed to monitor or
respond to a set of events. The op center aggregates information input and output to
facilitate a rapid response to changing conditions. The specific procedures used are
typically guided by senior staff, while operators themselves will be responsible for
interpreting information, transmitting orders, and following preset procedures for
specific situations.

There are three components to this design problem: the technology to support
and implement the system, the users, and the users’ tasks. The first item is briefly

1 Introducing Interface Design for Remote Autonomous Systems

9

noted as an important component that will support and constrain designs. The final
two are the focus of this book, so we address them together.

1.5.1 Know Your Technology

Across the range of stakeholders involved with the design of a system, the most
influential stakeholders will likely prioritize system functionality over concerns of
operator-related risks like improving user-centered design. While this may irk the
designers of human-facing subsystems, this basic fact should influence how the
design process is conducted. Thus, system designers should have at least some
understanding of how the technology within their system functions.

The underlying, unmanned technology within op centers processes and transmits
the information that is presented to an operator. So, the first issue in design is to
know what the technology can and cannot do. The technology in an op center is
likely built from varied inputs and outputs, ranging from manually entered paper
documentation to antenna arrays linked to distant sensors. On its own, a component
like an oxygen sensor simply outputs an associated metric. However, once inte-
grated into an environmental monitoring station in an op center, additional design
features to support human use (i.e., an interface, optional controls, and memory for
time series) become apparent. Interface designers may not need to understand the
intricacies of each component but should have some knowledge of the technology
associated with their system.

The types of systems built for op centers are likely to differ greatly in their under-
lying technology and purpose. In some cases, designers can grasp the underlying
technology well enough to create effective systems, but this may not always be the
case. Building an electrical circuit monitoring system and building a hydrothermal
monitoring system may require incorporating subject matter experts into the design
process, especially for high-stakes systems like a nuclear power plant.

Finally, designers should understand the tools they need to build interfaces as
well. The interface tools need to be able to support the designers in creating usable
interfaces, which not all tools support well (Pew and Mavor 2007; Ritter et al. 2014).
To our previous example, an electrical circuit monitoring system may require
designers to reference an unfamiliar program used by electrical engineers like
Pspice (Personal Simulation Program with Integrated Circuit Emphasis).
Stakeholders should ensure that system designers can successfully understand and
utilize the necessary information.

Understanding the technology within the system and used to build the system
will help with the inevitable design choices. The typical issue is where designers
should fit the person to the machine vs. fit the machine to the person. Sometimes,
technological or personal constraints will prevent designers from optimizing the fit
in one direction or another, but knowing the technology will help reduce problems
of fit in both directions.

1.5 The Design Problem Space for op Centers

10

1.5.2 Know Your Users and Their Tasks

On the other hand, designs that do not support users to do their tasks can fail for this
reason as well, so system designers need to study the user and how to design for
users. The focus of this book is to explain how to know the users of the op centers,
the operators, and their tasks. Human operators and their tasks, in many cases, will
be as complex as the technology. The only difference is that many technology
designers have been trained in technology design, but not in the science of how
operators think, learn, and do their tasks. This book notes some of the literature,
results, and methods for understanding operators to help in the design process.
Similarly, it describes methods for improving the work process, like task analysis
(TA), which is a useful tool for specifying, implementing, and checking op center
designs.

The technology may be able to deliver, but will the operator be able to under-
stand and use the system at the expected speeds? Will the tasks, including their
microstructure and dependencies, be supported? Or will the operator have to correct
and store information (in a more fragile memory than computer memory)? These
types of mismatches between operator and system are frequent causes of system
failure.

The gold standard in design (Card et al. 1983; Pew and Mavor 2007; Ritter et al.
2014) is to know the operators, know what tasks they are trying to perform, and then
use the technology as best as it can be used, to support the tasks based on the opera-
tor’s capabilities. Designers who use their own understanding of a system as a refer-
ence (instead of that of the actual users) commit the fundamental attribution error
and risk-creating systems that are unwieldy or outright unusable by the intended
users (Baxter et al. 2014). The fundamental attribution error of design refers to
when designers assume all users are just like themselves. As we note in our example
system in this book, this is often a mistake and leads to problems in usability because
the designer and the operator have different knowledge, skills, and abilities. In addi-
tion, leaving out tasks or making them less easy to perform, or making state infor-
mation visible only upon query, are all mistakes that are easily avoided, but require
knowing the operators and their tasks.

Knowing the frequency and importance of tasks is also important. Common and
important tasks should be more easily and safely accomplished than less common
and less important tasks. When the two factors of frequency and importance collide,
then possible design choices become apparent. At this point designers can assess the
situation through the RD-ICM and reduce risk by getting feedback from stakehold-
ers, researching similar design problems, or testing multiple designs depending on
the risks associated with each choice.

There are numerous guidelines on how to create task analyses (e.g., Cox 2007;
Ritter et al. 2014, Ch. 11). There are tools to support TA (i.e., Cogulator1), but often
plain text documents provide the best value and are useful enough for most designs.

1 http://cogulator.io/

1 Introducing Interface Design for Remote Autonomous Systems

http://cogulator.io/

11

TA is a lot like pizza—while the balance of contents may vary in approaches, most
versions are usable and enjoyable.

1.5.3 Test Designs Broadly and with Cognitive Walkthroughs

During design and implementation, there may be unknown aspects of the users,
their tasks, or the interactions between the two. A way to reduce the risk of system
failure is to test the resulting system. The test can be quite simple, for example,
simply to see if the tasks can be performed. Alternatively, there are more complex
methods, like running a small A/B experiment with two possible designs or measur-
ing task performance with actual users under realistic conditions. Pew and Mavor
(2007) review the range of these tests, and there are multiple textbooks describing
them (e.g., Cairns and Cox 2008; Lewis and Rieman 1994). Testing interfaces will
reduce the range of usability risks, but test methods vary by how much of a time and
resource commitment is required to get useful results. Asking someone unfamiliar
with the project to review the proposed interface mockup may be essentially free,
whereas conducting an A/B test with expected users may take weeks (if not months)
to fully set up, run, and analyze, but will be much more useful.

The simplest test is to have naïve operators use the interface and observe them.
This approach is explained in many textbooks, including Ritter et al. (2014). Such
tests with naïve users could last as little as 10 min and cost next to nothing (i.e., ask
a colleague to use the interface and provide comments) or could take multiple
months and cost $100 k (i.e., conducting a formal study on task performance under
realistic conditions). Stakeholders should consider system requirements and risks to
determine how their system should be tested.

We also support using “cognitive walkthroughs” (Polson et al. 1992) to examine
the usability of the system. A cognitive walkthrough is a method for evaluating the
learnability and usability of an interface by simulating the cognitive activities of a
typical user during normal tasks. The typical process for performing cognitive walk-
throughs begins with describing the goals and tasks that are required by the system.
First, the goal structure of the model is generated from expert interviews, prior
research, and other forms of information gathering. The goal structure, like a task
analysis, is arranged into a hierarchy. The top-level goals represent the overall task.
Each top-level goal is composed of intermediate-level goals (subtasks), each of
which is composed of a set of individual actions.

Cognitive walkthroughs, when performed successfully, should determine
whether the operator of a system is making the correct connections between each
level of the goal. That is, the analyst compares the goals with the interface and
attempts to map how a typical user would accomplish each goal, subtask, and action.
If the analyst cannot make some mapping of a goal to the interface, this will suggest
an area of the interface that requires improvement or further work. One potential
pitfall here can occur if the analyst is too familiar with the interface (relative to a
true “typical user”), as they will not see the same problems that users will see, at

1.5 The Design Problem Space for op Centers

12

least novice users. The data collected from cognitive walkthroughs can enable
developers to provide supplementary “clues” or signals to the operator at specific
locations to ensure that each goal, sub-goal, and individual action provide a coher-
ent information set capable of being understood and followed by the operator
(Blackmon et al. 2002; Polson et al. 1992).

Cognitive walkthroughs require a task analysis and thus will take between an
hour and a short working day to perform in most cases. The length of time is based
on the number of tasks and how difficult they are to perform. Cognitive walk-
throughs may require domain knowledge and thus may be performed in teams com-
prised of an analyst working through the task analysis and a domain expert making
the decisions.

Whenever detailed time predictions are useful, we recommend using the
keystroke- level model (KLM) of Card et al. (1980, 1983). This approach provides
time estimates based on the keystrokes, mouse moves, mental operators, system
response time, and other possible cognitive operators. The times are engineering
estimates (i.e., ± 20%), but basically support fair comparisons of different inter-
faces. The KLM time predictions suggest where and how time is spent on an inter-
face and can help identify ways to improve performance. The regularity of the
interactions across subtasks also suggests how much needs to be learned by the
users and where knowledge may be misapplied.

There are numerous ways to reduce system failure due to usability problems.
This section noted a few and how to find more. Next, an example system is intro-
duced to ground this discussion and show examples of how potentially abstract
principles can be put into practice.

1.6 Example Task: The Mars Water Detection System

This book provides context for readers through a hypothetical use case for a
semiautonomous system that searches for water. The scenario is based on design-
ing an op center for command and control of a remote Water Detection System
(WDS) to accompany a manned mission to Mars. The WDS is a mostly autono-
mous mobile robot that searches Mars for signs of water, but the WDS sometimes
requires human intervention to respond to novel or risky scenarios. The WDS
will arrive alongside the mission team and begin operation following its assem-
bly by the team. Following its activation and an initial system check, the op
center on Earth will take over sole command of the WDS for a 10-year mission.
Scientists in the program office will make high-level decisions to support the
mission of finding water, while the Earth- based operators implement action plans
and monitor the various systems for any current or upcoming issues. The rest of
this chapter provides a brief review of the WDS and its design requirements

1 Introducing Interface Design for Remote Autonomous Systems

13

before concluding with some design recommendations that arise from this chap-
ter. A detailed description is presented in Appendix 1.

1.6.1 Operation Center Organization

The WDS is one part within the larger structure of an op center hosting dozens of
systems that require constant oversight. While the WDS is important for the mis-
sion, it may not be the primary focus for the workers at any given time. The com-
mand structure of the op center involves bidirectional communication between
scientists from the Program Office who funded the WDS and the operators respon-
sible for direct interaction with the systems. Figure 1.3 shows a few example inter-
face prototypes for the WDS. While the design will vary depending on the needs of
the system, these systems present many different metrics of system performance.
Operators will monitor the system, pass along alerts, and update the alerts depend-
ing on their risk assessment for a given situation. Scientists will take this informa-
tion and pass back commands for the operators to transmit. Certain tasks will be

Fig. 1.3 Two example interface designs for the Water Detection System monitoring screen
(second example on next page)

1.6 Example Task: The Mars Water Detection System

14

able to be completed without direct contact with a supervisor, while others will need
direct response from supervisors prior to action.

1.6.2 Water Detection System Structure

The WDS is comprised of several subsystems. The core system in the WDS is the
main control element (MCE). The MCE acts as the brain in the field by enacting
orders from Earth, monitoring other subsystems, and linking the subsystems
together. The other subsystems each perform specialized tasks (e.g., communicat-
ing with Earth, navigating the WDS, or collecting physical samples). However, all
subsystems share a set of key features that the operators may interact with over the
course of the mission. These features are shown in Table 1.2 and a diagram of the
WDS–Earth link is shown in Fig. 1.4.

1.6.3 Example Issues

System designers may be unable to anticipate every risk to system success; how-
ever, the Risk-Driven Incremental Commitment Model drives the designers to try to
understand what risks are most likely to arise. Table 1.3 shows some example prob-
lems that could arise throughout the lifecycle of the WDS system, the risk of these
problems occurring, the solution, and who handles them.

Fig. 1.3 (continued)

1 Introducing Interface Design for Remote Autonomous Systems

15

The WDS is designed to autonomously handle most issues that arise, but human
interaction is required on a regular basis. Many of these tasks are simple mainte-
nance and acknowledgement of warnings. For example, when batteries are low, the
operator is required to acknowledge the low battery threshold. No action is required

Table 1.2 Key features built into each subsystem of the WDS

Feature Description

Status The current state and functionality of the subsystem, subsystem-specific
information, and environmental measures. The MCE checks and stores the status
of other subsystems until information is passed to Earth

Event logs Each subsystem records detailed event logs from all executed commands. Event
logs are periodically transferred to the MCE before being passed to Earth

Configuration Subsystems maintain a set of configuration fields that determine how the
subsystem performs its tasks. For example, the MCE will have a modifiable field
for checking a subsystem’s status that determines how long to wait for a
response before initiating troubleshooting procedures

Commands Commands for subsystems will include a time reference and may include
additional data if needed. Commands are first sent to the MCE before being
passed to the appropriate subsystem

Redundancy Nearly every subsystem has an A and B side to provide a backup element in case
of any issues; however only one side of each subsystem operates at any given
time. These redundant systems are an identical copy of the original system

Fig. 1.4 Diagram of the Water Detection System (WDS) and its connection to the operation center

1.6 Example Task: The Mars Water Detection System

16

other than clearing the notification. Occasionally, however, the WDS will face an
urgent problem that requires human input. These scenarios are rare, so the operator
has limited training in how to address the issues.

1.7 Principles for Design

Based on the target system description, the example system, and the design process,
we can provide an overview of the book as a set of design principles. These princi-
ples provide guidance on high-level concepts that the designers can use to improve
the systems they create. We aggregate the most important design principles described
in this book in Appendix 3. Though generally directed towards improving perfor-
mance across the human–machine interface, these principles will often apply to the
entire process of designing complex systems.

Principle 1.1: Don’t Assume the User to Be How You Think You Are
One of the most important considerations for designers is to dispel the assumption
that your users are just like you or how you think you are (we make the distinction
because you might not think or work exactly like you think you do). Unless your
user is a software developer, systems engineer, or astronaut, you will almost always

Table 1.3 Example problems faced by the WDS that require operator intervention

Problem description Risk Solution Personnel

WDS is navigating in a crater and
gets stuck. The operators need to
escalate the issue quickly because the
WDS witnessed unexpected terrain.
The mappings of Mars must be
updated appropriately

High Operator from Earth takes over
navigation and assumes manual
control. The typical operator is
not trained in this task, so the
supervising manager must take
control

Operator,
supervisor

Dust storm prevents batteries from
charging. The main control element
cannot complete all the scheduled
commands for the day

Moderate Communications element sends
an alert the NASA operators of
the low battery status. Operator
must re-task the day’s
commands because the
autonomous navigation element
would use all the remaining
power

Operator,
supervisor

Within the op center, the wall of
screens has many other systems
represented at the same time. If the
WDS has a problem, it might take a
few days for the engineers to remote
in to fix the issue. Therefore, the
overview screen will remain in a
degraded state. The problem arises
when something else goes wrong on
the system

Low Modify interface to facilitate
proper information presentation.
While issues may not be
initially present, the possibility
of other errors being missed due
to clutter is increased

Operator

1 Introducing Interface Design for Remote Autonomous Systems

17

need to adapt your design to meet the operator’s system-related needs, capabilities,
and wants (in that order).

Designers often (perhaps due to the ready availability of themselves and the
unavailability of example operators) make the risky assumption that the operator is
just like them—this is almost never the case. It is therefore important to provide
designers and engineers with the ability to consult users and other stakeholders
throughout the design process. Methods for learning about users can include talking
with them, watching them work, having them use your interfaces, reading their
autobiographies, or watching movies about their work environments (whether docu-
mentaries or even fictional accounts). Each of these methods for understanding
users will gather only a subset of the useful information; casting a wide net can
reduce the risk of overgeneralization and improve the breadth of the knowledge
gleaned from users.

Understanding the operator enables engineers to mold the system design around
the capabilities and constraints of its operators. Countless studies have shown that
engineers often fail to understand their users. This knowledge is the foundation of
user-centered design and leads to increased performance, financial savings, and
safer systems (e.g., Bias and Mayhew 2005; Lewis and Rieman 1994; Pew and
Mavor 2007; Ritter et al. 2014).

Principle 1.2: All Design Choices Have Trade-offs—Don’t Go in Blind
Most design choices have trade-offs. This basic fact will provide engineers with
difficult decisions throughout the design process. For example, increased font size
may increase readability by sacrificing some valuable interface “real estate” and
limiting the total amount of information displayed. Effectively resolving these dif-
ficult design choices requires designers to use knowledge of the tasks and users to
make informed decisions. Use of the risk-driven spiral model helps engineers make
the best decision given the constraints by consulting with stakeholders and using
what others have already learned. Designers will be presented with problems like
this, both big and small, throughout the design process, and not every individual
design choice is worthy of a full user study.

For example, consider a system that requires operators to search for digital files
while performing other tasks. An informed designer may realize that recognition
memory (i.e., “Is ‘book_manuscriptV47_final.docx’ the file you are looking for?”)
is more robust than recall memory (i.e., “What is the exact name of the file you are
looking for?”). While searching for files on a system, it is usually easy and familiar
to point and click around a series of folders to find some item, as in the standard
desktop operating system. Using a keystroke-based system (like a command line)
might be faster, but typically will require more experienced users or more training.
Stakeholders should consider which design would be best suited for their system
needs, users, and tasks.

As another example, consider a system that tasks operators with monitoring
incoming pings and classifying them as friendly, hostile, or unknown. An informed
designer will know that speed and accuracy are traded off when improving perfor-
mance. Emphasizing speed will require sacrificing accuracy (i.e., more errors), and

1.7 Principles for Design

18

the inverse is true as well. Stakeholders can use this knowledge to analyze how to
reach an acceptable balance between accuracy and speed. Although ideal solutions
are not always possible, designers can meet expectations by understanding the
expectations for task time and error rate.

Finally, almost any point-and-click system will use menu trees to support naviga-
tion. Many studies have explored how users’ decision-making, reaction time, and
error rate change in response to changing the menu design. The Hick–Hyman Law
(Hick 1952; Hyman 1953) predicts that choosing between more options (e.g., five
menu choices vs. three menu choices) takes longer, but the menu is more likely to
contain the correct choice. Signal detection theory shows a similar trade-off between
hits, misses, false alarms, and correct rejections.

When possible, engineers should make informed decisions about the trade-offs
between outcomes caused by different design choices.

Principle 1.3: Use and Test Multiple Designs
When designing a new display or component, create and consider multiple versions.
Get feedback on the possible designs from a source (or sources) that is as objective
as possible.

When you create a new display, particularly high stakes or main displays, you
should consider multiple versions. Considering multiple versions of designs tends
to lead to better designs at least in the tasks that have been studied (Dow 2011). The
best objective source for feedback is often actual users’ behavior.

Research by Steven Dow examined the design process in the egg drop task. In
this task, designers were given a set of standard materials and asked to design a
protective cradle for an egg so it will survive a large vertical drop. Groups that
designed more examples and that tested more often had reliably higher distances
from which their eggs could be safely dropped. Dow argues that the beneficial
outcomes seen from multiple designs will apply to other design tasks, and
we agree.

1.8 Conclusion

Throughout the design of an op center such as the WDS system and interface, the
engineers’ top priority will be the creation of a working product. However, engi-
neers must account for the risks associated with all aspects of the project. Often, the
risks associated with some module’s reliability or function may trump the human
element: human error requires a task on which to err. However, as the iterative
design process advances, and the technology itself becomes more reliable, the
human operator becomes more likely to be the point of failure within a system.
Systems engineers will be neglecting a crucial component of their system if they do
not account for the system’s compatibility with the human operators. Although this
process will have any number of constraints and variations in its implementation,
the designers should be confident that their system can be effectively used by the

1 Introducing Interface Design for Remote Autonomous Systems

19

target population. The user interface should facilitate high performance without
undue stress on the operators.

Table 1.4 notes some questions that designers might have in mind when design-
ing and implementing control rooms, op centers, and other similar systems. The
next two chapters will review the psychology and human factors concepts and theo-
ries that give rise to the principles described above and should be considered to help
answer the questions in Table 1.4. In the conclusion to this book, we will note how
these questions have been answered.

References

Baxter, G. D., Churchill, E. F., & Ritter, F. E. (2014). Addressing the fundamental attribution error
of design using the ABCS. AIS SIGCHI Newsletter, 13(1), 76–77.

Bias, R. G., & Mayhew, D. J. (2005). Cost-justifying usability: An update for the internet age. San
Francisco: Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-095811-5.X5000-7.

Blackmon, M. H., Polson, P. G., Kitajima M, & Lewis, C. (2002). Cognitive walkthrough for the
web. In CHI 2002: Proceedings of the Conference on Human Factors in Computing Systems,
(pp. 463–470). New York: ACM Press.

Boehm, B., & Hansen, W. (2001). The spiral model as a tool for evolutionary acquisition.
CrossTalk, 14(5), 4–11.

Cairns, P., & Cox, A. L. (2008). Research methods for human-computer interaction (1st ed., eds.
P. Cairns & A. L. Cox). New York: Cambridge University Press.

Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for user performance
time with interactive systems. Communications of the ACM, 23(7), 396–410. https://doi.
org/10.1145/358886.358895.

Table 1.4 Questions to be answered by this book for systems like the WDS

Process performance

1. Which user interface features reduce user stress and improve and maintain level of
performance?

2. Which user interface design factors mitigate performance degradation (speed, accuracy)
during the execution of detailed procedures for troubleshooting?

High-throughput reaction times

3. Which features in fast and complex interfaces impair or enhance user reaction time and
accuracy?

4. What are the reaction time and accuracy for a user to react to an alert and respond to the alert
with the correct actions using the task user interface? What are the upper limits of number
and speed of alerts before performance degrades?

5. What are the reaction time and accuracy for a user to distinguish between levels of criticality
using the task user interface?

6. What are the effects of time-on-task (i.e., work shift length) on reaction time and accuracy for
a user using the system?

Interface generalizability and individualized effectiveness

7. Which interface design elements vary and do not vary in effectiveness across various
demographics?

8. Which of the above questions are affected by age and prior education?

References

https://doi.org/10.1016/B978-0-12-095811-5.X5000-7
https://doi.org/10.1145/358886.358895
https://doi.org/10.1145/358886.358895

20

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction.
Hillsdale: Lawrence Erlbaum.

Cox, D. (2007). Task analysis, usability and engagement. In Human-computer interaction.
Interaction design and usability (pp. 1072–1081). Springer, Berlin, Heidelberg. https://doi.
org/10.1007/978-3-540-73105-4_117.

Dow, S. (2011). How prototyping practices affect design results. ACM interactions, 18(5), 54–59.
Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human

Factors, 37(1), 32–64. https://doi.org/10.1518/001872095779049543.
Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental

Psychology, 4(1), 11–26. https://doi.org/10.1080/17470215208416600.
Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental

Psychology, 45(3), 188–196. https://doi.org/10.1037/h0056940.
Jones, D. G., & Endsley, M. R. (1996). Sources of situation awareness errors in aviation. Aviation,

Space, and Environmental Medicine, 67(6), 507–512. https://doi.org/10.1039/c4qo00187g.
Lewis, C., & Rieman, J. (1994). Task-centered user interface design: A practical introduction.

Retrieved from http://www.hcibib.org/tcuid/
Pew, R. W. (2008). Some new perspectives for introducing human-systems integration into the

system development process. Journal of Cognitive Engineering and Decision Making, 2(3),
165–180. https://doi.org/10.1518/155534308X377063.

Pew, R. W., & Mavor, A. S. (2007). Human-system integration in the system development process.
Washington, DC: The National Academies Press. https://doi.org/10.17226/11893.

Polson, P. G., Lewis, C., Rieman, J., & Wharton, C. (1992). Cognitive walkthroughs: A method
for theory-based evaluation of user interfaces. International Journal of Man-Machine Studies,
36(5), 741–773. https://doi.org/10.1016/0020-7373(92)90039-N.

Ritter, F. E., Baxter, G. D., & Churchill, E. F. (2014). Foundations for designing user-centered
systems. London: Springer. https://doi.org/10.1007/978-1-4471-5134-0.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

1 Introducing Interface Design for Remote Autonomous Systems

https://doi.org/10.1007/978-3-540-73105-4_117
https://doi.org/10.1007/978-3-540-73105-4_117
https://doi.org/10.1518/001872095779049543
https://doi.org/10.1080/17470215208416600
https://doi.org/10.1037/h0056940
https://doi.org/10.1039/c4qo00187g
http://www.hcibib.org/tcuid/
https://doi.org/10.1518/155534308X377063
https://doi.org/10.17226/11893
https://doi.org/10.1016/0020-7373(92)90039-N
https://doi.org/10.1007/978-1-4471-5134-0
http://creativecommons.org/licenses/by/4.0/

	Chapter 1: Introducing Interface Design for Remote Autonomous Systems
	1.1 Introduction
	1.2 The Role of Operators
	1.3 How to Improve Designs
	1.4 Risk-Driven Design
	1.5 The Design Problem Space for Op Centers
	1.5.1 Know Your Technology
	1.5.2 Know Your Users and Their Tasks
	1.5.3 Test Designs Broadly and with Cognitive Walkthroughs

	1.6 Example Task: The Mars Water Detection System
	1.6.1 Operation Center Organization
	1.6.2 Water Detection System Structure
	1.6.3 Example Issues

	1.7 Principles for Design
	1.8 Conclusion
	References

