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Chapter 1
Introducing Interface Design for Remote 
Autonomous Systems

Abstract This chapter presents a high-level overview of how designers of com-
plex systems can address risks to project success associated with operator perfor-
mance and user-centered design. Operation Centers for remote, autonomous 
systems rely on an interconnected process involving complex technological sys-
tems and human operators. Designers should account for issues at possible points 
of failure, including the human operators themselves. Compared to other system 
components, human operators can be error-prone and require different knowledge 
to design for than engineering components. Operators also typically exhibit a wider 
range of performance than other system components. We propose the Risk-Driven 
Incremental Commitment Model as the best guide to decision-making when 
designing interfaces for high-stakes systems. Designers working with relevant 
stakeholders must assess where to allocate scarce resources during system develop-
ment. By knowing the technology, users, and tasks for the proposed system, the 
designers can make informed decisions to reduce the risk of system failure. This 
chapter introduces key concepts for informed decision- making when designing 
operation center systems, presents an example system to ground the material, and 
provides several broadly applicable design guidelines that support the development 
of user-centered systems in operation centers.

1.1  Introduction

Our increasingly complex society relies on an interconnected network of systems, 
each responsible for carrying out its own role effectively. The most important com-
ponents within the systems of systems are called critical systems. Critical systems 
are defined by the cost of their failure; critical systems are called as such because 
their failure will lead to loss of life, destruction of the system, or failure for the 
organization as a whole. For example, failure in central command for the space mis-
sions may leave astronauts without the information (and oxygen!) they need if their 
oxygen tank were to fail a few days into the mission. Air traffic control is another 
example of a critical system; even minor mistakes can have devastating conse-
quences. Not every critical system, however, needs to be part of a large international 
organization. A 911 emergency call center is responsible for triaging calls, 
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dispatching appropriate services, and providing support for the caller; loss of the 
call center means local fire, medical, and police services lose their ability to coordi-
nate and respond.

Whether it’s NASA’s Christopher C. Kraft Jr. Mission Control Center in Houston, 
the Indianapolis Air Route Traffic Control Center, or a local 911 dispatcher, these 
critical systems all contain some form of an operation center at the heart of their 
operation, and these operation centers are vital communication hubs for the transfer 
of information. Within any given op center, there are going to be different stake-
holders, tasks, and priorities that must be considered in their design. A single room 
or even a single screen could be the link between the op center and multiple com-
plex systems. Figure 1.1 shows a montage of the types of system components this 
book addresses. This book primarily examines operation centers that manage 
remote, autonomous, asynchronous systems.

The book is designed to be useful to managers, designers, and implementors of 
op centers. Managers can use it to adjust their process to account for a wider range 
of risks caused by failing to support their users and their tasks. Designers can use it 
to manage the process, learn about users, and become more aware of useful types of 
shared representations. Implementers can use it to provide context for seemingly 
small decisions within an interface that are too minor to be described formally or 
have not been specified. Where we can, we also identify design principles and 
aspects of the operator, interface, or process that suggest prescriptive actions to cre-
ate better interfaces.

This introductory chapter makes the case for including knowledge about users as 
part of the system and design process. It will then briefly describe a way to include 
this knowledge (the Risk-Driven Spiral Model) and how this knowledge could be 
applied to operation centers. The rest of the book will use an example system called 
the Water Detection System (WDS) to help illustrate the principles, concepts, and 
practical implications derived from the material covered. The introduction con-
cludes with some example guidance that can be used as an executive summary or as 
a summary for readers who might not have time to read the whole book. The remain-
der of the book provides support for the guidelines. The appendices include a 
worked example that shows how the guidance is applied. Table 1.1 defines some 

common terms used throughout this book.
The design approach that results from this book will be primarily a human–com-

puter interaction (HCI) approach to make the system usable. Aspects of improving the 
system through user-centered design (UCD) and making the system more enjoyable 

(while maintaining usability) with user experience (UX) design will be included as well.

1.2  The Role of Operators

Operators can greatly influence operation center success. In a study of errors in air 
traffic control, a type of op center, Jones and Endsley (1996) found that seven out 
of ten times system failures are due to operator error. Their error analysis for 
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Fig. 1.1 Technological advancement has expanded our ability to use and control complex systems 
in new ways and from new locations. To make full use of these powerful new systems, usability is 
paramount. (Image by Kenan Zekić)
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aviation disasters organized the contributing errors by operators using Endsley’s 
(1995) theory of situation awareness. The situation awareness framework predicts 
operator performance by rating the operator’s awareness of necessary information. 
When the errors were organized into their stage of situational awareness, they found 
that misperception or non-perception of the necessary information was the primary 
cause of air disasters about 75% of the time. Going up in complexity, failing to suc-
cessfully comprehend the meaning or the importance of information was the pri-
mary cause in only about 20% of air disasters. Finally, at the lowest error rate, 
projection into near-future system states is the key in less than 5% of disasters. 
Breaking down these failures into more specific types of failure showed that atten-
tional failure (35%; operator has information but fails to attend to it), working 
memory failure (8.4%; operator attends to information but forgets it), and mental 
model failure (18%; operator’s understanding of the situation does not match real-
ity) account for the most common events that contribute to operator errors in op 
centers.

Operators of complex systems use a set of cognitive mechanisms that are fallible 
in predictable ways. Systems engineers, developers, and designers can begin miti-
gating the risks associated with fallible cognitive behavior by learning about the 
factors and mechanisms that influence operator performance and reliability. Not all 
these mechanisms can be ameliorated by system design, but they do shed light on 
design opportunities where systems could be improved and better support operators. 
This book suggests ways to do that.

Modifying op center designs could help reduce these types of system failures by 
providing the information more clearly, making information more comprehensible, 
requiring less attention (perhaps by reducing other less useful information), and 
appropriately matching and supporting the operator’s mental model and tasks. How 
can these issues be addressed throughout the development cycle of complex sys-
tems? We propose a design process based on understanding the operator, their tasks, 
and the technology.

Table 1.1 Common terms and definitions

Term Definition

Operation center 
(op center)

A centralized location used to monitor and exert control over a system, 
situation, or event. Can sometimes be used interchangeably with command 
center or control room

Human–computer 
interaction (HCI)

A broad term for research into the design and use of computer technology, 
particularly as it relates to human–machine interactions. HCI typically 
includes user-centered design and user experience design under its purview

User-centered 
design (UCD)

A design process focused on fitting the goals, tasks, and needs of the user to 
support optimal performance for the overall human–machine system

User experience 
design (UX)

A design process that extends HCI to include all design aspects that are 
perceived and felt by the user to build systems that are desirable to use in 
both function and experience

1 Introducing Interface Design for Remote Autonomous Systems



5

1.3  How to Improve Designs

The variety and complexity of work being performed in op centers prevents strict 
design guidelines from being a “silver bullet” for every system design issue. The 
different goals, priorities, and tasks across op centers will likely add up to being 
nearly equal to the number of op centers itself. However, the common element 
across op centers is the role of human operators. Operators serve as the interface 
between the wide range of information sources and the higher command structure. 
This can involve a vast variety of tasks ranging from call intake and prioritization 
within an emergency response center to monitoring radar for airborne threats. 
Furthermore, the task variety is compounded by having a single operator be respon-
sible for multiple tasks. For example, an operator at a 911 dispatch center will often 
be simultaneously responsible for (a) providing emotional support and guidance to 
the caller, (b) recording crucial information about the situation, (c) alerting appro-
priate emergency responders, and (d) answering questions for emergency respond-
ers while en route.

The complexity and variety of tasks within an op center means that the system 
designers will need to know their users, their users’ tasks, and the technology and 
then combine these using their judgment within the design process. At all times, 
designers must be aware that interfaces that are hard to read, use, understand, or 
predict from are constant risks to project success; however these issues are not 
always easily solvable. Designers will have to use judgment when aspects of the 
users and their tasks are not fully known. They will also have to use judgment to 
prioritize tasks or user types and to balance different design requirements. Designers 
face many challenges when balancing human and system factors, and this book will 
help guide their decision-making when solutions are not immediately clear.

Simply providing a set of design guidelines will not suffice, because one size 
does not fit all. Due to the varied nature of tasks and systems across operation cen-
ters, we will need to provide a suitable foundation for designers to guide their 
decision- making when there is no direct solution. Thus, this book summarizes a 
useful process and design issues to keep in mind when designing operation centers. 
It goes further, however, by providing a worked example of design and design steps 
for an example system.

This book spends more time defining a useful interface design process than giv-
ing simple guidelines for design. This user-and-task-oriented process should lead to 
better interfaces that support operators and do this in a better way than simply pro-
viding a set of ten “rules” about font size, which might need to vary and which will 
conflict at times with rules about how many objects need to be visible on the inter-
face. And, yet, in providing background knowledge about operators and their tasks, 
there will inevitably be sensible conclusions that look like and work like guidelines. 
The design recommendations will often provide “safe” recommendations for 
designers. Design recommendations will be accompanied by brief supporting 
details meant to substantiate the information. This self-contained book will provide 
system designers with a framework for improving user experience and performance 
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by incorporating human-centered design principles into the design and implementa-
tion of critical systems.

System designers will benefit greatly from understanding the foundational con-
cepts and literature that support this guidance. This book provides a simple review 
of the literature to support this guidance. This review serves several purposes: (a) 
offering motivation for including the topics chosen, (b) describing the related 
research that has contributed to the high-level guidance, and (c) providing readers 
with a convenient method to learn more about a topic if needed. While not every 
system developer will choose to read this book, it provides interested readers with a 
more condensed treatment than available from reading several books on user-cen-
tered design and users. The final review and guidance should be detailed enough to 
provide further guidance in a standalone format.

1.4  Risk-Driven Design

The design and performance of an operation center will depend on financial consid-
erations, task constraints, and the goals of the designers. However, clearly there are 
limitations on what is possible for any given design process (e.g., deadlines, access 
to user testing, ambiguous information). In an ideal world, every project would have 
ample time, personnel, and funding to be able to create the best product possible: 
clearly this is an unrealistic scenario. Thus, designers and other stakeholders must 
make decisions about how to ensure project success throughout the design process.

We propose that the Risk-Driven Incremental Commitment Model (RD-ICM) pro-
vides the best framework for creating effective systems, including assessing the risks 
associated with design choices (Pew and Mavor 2007). Figure 1.2 shows the RD-ICM 
in spiral form. Implementation of RD-ICM involves assessing the risk associated 
with a given decision. Boehm and Hansen (2001) define risks within the RD-ICM as 
“situations or possible events that can cause a project to fail.” RD-ICM uses an itera-
tive, flexible procedure to prompt the stakeholders to make candid assessments of 
what the risks are at each stage of the project. Implementing RD-ICM effectively 
leads to decisions contrary to the dogmatic idea that UX be prioritized at every stage, 
but this is because UX issues are only explored once their risks are relatively large.

The RD-ICM and risk-driven design require four key features:

 1. Systems should be developed through a process that considers and satisfices the 
needs of stakeholders, that is, provides a good and achievable, but not necessar-
ily the best solution.

 2. Development is incremental and performed iteratively. The five stages (explora-
tion, valuation, architecting, development, and operation) are performed for each 
project’s lifecycle.

 3. Development occurs concurrently across various project steps through simulta-
neous progress on individual aspects of the project; however, effort towards each 
aspect varies over time.

1 Introducing Interface Design for Remote Autonomous Systems
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 4. The process explicitly takes account of risks during system development and 
deployment to determine prioritization for resource deployment: minimal effort 
for minimal-risk decisions, high effort for high-risk decisions.

Within the spiral, each stage has phases of (a) stakeholder valuation and eval-
uation; (b) determination of objectives, alternatives, and constraints; (c) evalua-
tion of alternatives and identification and resolution of risks; and (d) development 
and verification of the next-level product. This approach allows work on risks  
to proceed in parallel and comes back to value the alternatives with the  
stakeholders.

Here is an example of how the RD-ICM could shape design choices. During the 
early design process of a complex system, the risks of not getting the system up and 
running (e.g., failure to meet expectations for funders or other high-level stakehold-
ers or technical connection issues) may outweigh the risks associated with having a 
nonideal interface design (e.g., frustrated users). The stakeholders have determined 
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(Reprinted from Pew and Mavor 2007, p. 48)

1.4 Risk-Driven Design



8

that functionality (the task-related aspects of the design) should be prioritized over 
the user experience (UX, the users’ feelings, emotions, values, and responses to the 
system). Instead, the UX design choices could be pushed down the pipeline and 
then reassessed at a later stage. This would enable the engineering team to focus on 
creating something that “works.” However, once a functional system is formed, the 
team would reassess the risks associated with a frustrating user interface. If the 
interface fails to convey critical information in a consistent manner to most users, 
the risks of a user misinterpreting a signal may outweigh the benefits of adding 
further features to the system.

Each stage has its own iterative assessments of how to successfully complete the 
project. Further information on this approach is available from a National Research 
Council Report (Pew and Mavor 2007), a special issue of the Journal of Cognitive 
Engineering and Decision Making (Pew 2008), and an overview in the Foundations 
for Designing User-Centered Systems textbook (Ritter et al. 2014).

So, if you adopt a risk-driven process that includes human operator-related risks, 
you still must be able to recognize and reduce these risks. This book seeks to pro-
vide background knowledge to help developers judge and ameliorate the risks to 
system success that developers face during the design and implementation process 
of op centers. We hope to provide knowledge and guidance that can help designers 
understand how their design choices may affect task performance throughout the 
lifetime of the system.

Thus, we suggest following a risk-driven spiral model. This includes formal 
reviews with stakeholders at each cycle to assess risks and work focused to reduce 
risks, not just build a system. This approach uses a range of design documents as 
shared representations between the stakeholders and the designers and implement-
ers. We include an example set in Appendix 1.

1.5  The Design Problem Space for Op Centers

This book reviews how the risks of failures due to human performance can be allevi-
ated throughout the design process of interfaces within operation centers. Because 
designing an interface for an op center is the design problem, we briefly review this 
design space and provide an overview of an example before addressing further com-
mon risks and issues that apply to operator interactions with the systems.

Op centers act as the nervous system within a larger body, directed to monitor or 
respond to a set of events. The op center aggregates information input and output to 
facilitate a rapid response to changing conditions. The specific procedures used are 
typically guided by senior staff, while operators themselves will be responsible for 
interpreting information, transmitting orders, and following preset procedures for 
specific situations.

There are three components to this design problem: the technology to support 
and implement the system, the users, and the users’ tasks. The first item is briefly 
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noted as an important component that will support and constrain designs. The final 
two are the focus of this book, so we address them together.

1.5.1  Know Your Technology

Across the range of stakeholders involved with the design of a system, the most 
influential stakeholders will likely prioritize system functionality over concerns of 
operator-related risks like improving user-centered design. While this may irk the 
designers of human-facing subsystems, this basic fact should influence how the 
design process is conducted. Thus, system designers should have at least some 
understanding of how the technology within their system functions.

The underlying, unmanned technology within op centers processes and transmits 
the information that is presented to an operator. So, the first issue in design is to 
know what the technology can and cannot do. The technology in an op center is 
likely built from varied inputs and outputs, ranging from manually entered paper 
documentation to antenna arrays linked to distant sensors. On its own, a component 
like an oxygen sensor simply outputs an associated metric. However, once inte-
grated into an environmental monitoring station in an op center, additional design 
features to support human use (i.e., an interface, optional controls, and memory for 
time series) become apparent. Interface designers may not need to understand the 
intricacies of each component but should have some knowledge of the technology 
associated with their system.

The types of systems built for op centers are likely to differ greatly in their under-
lying technology and purpose. In some cases, designers can grasp the underlying 
technology well enough to create effective systems, but this may not always be the 
case. Building an electrical circuit monitoring system and building a hydrothermal 
monitoring system may require incorporating subject matter experts into the design 
process, especially for high-stakes systems like a nuclear power plant.

Finally, designers should understand the tools they need to build interfaces as 
well. The interface tools need to be able to support the designers in creating usable 
interfaces, which not all tools support well (Pew and Mavor 2007; Ritter et al. 2014). 
To our previous example, an electrical circuit monitoring system may require 
designers to reference an unfamiliar program used by electrical engineers like 
Pspice (Personal Simulation Program with Integrated Circuit Emphasis). 
Stakeholders should ensure that system designers can successfully understand and 
utilize the necessary information.

Understanding the technology within the system and used to build the system 
will help with the inevitable design choices. The typical issue is where designers 
should fit the person to the machine vs. fit the machine to the person. Sometimes, 
technological or personal constraints will prevent designers from optimizing the fit 
in one direction or another, but knowing the technology will help reduce problems 
of fit in both directions.

1.5 The Design Problem Space for op Centers
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1.5.2  Know Your Users and Their Tasks

On the other hand, designs that do not support users to do their tasks can fail for this 
reason as well, so system designers need to study the user and how to design for 
users. The focus of this book is to explain how to know the users of the op centers, 
the operators, and their tasks. Human operators and their tasks, in many cases, will 
be as complex as the technology. The only difference is that many technology 
designers have been trained in technology design, but not in the science of how 
operators think, learn, and do their tasks. This book notes some of the literature, 
results, and methods for understanding operators to help in the design process. 
Similarly, it describes methods for improving the work process, like task analysis 
(TA), which is a useful tool for specifying, implementing, and checking op center 
designs.

The technology may be able to deliver, but will the operator be able to under-
stand and use the system at the expected speeds? Will the tasks, including their 
microstructure and dependencies, be supported? Or will the operator have to correct 
and store information (in a more fragile memory than computer memory)? These 
types of mismatches between operator and system are frequent causes of system 
failure.

The gold standard in design (Card et al. 1983; Pew and Mavor 2007; Ritter et al. 
2014) is to know the operators, know what tasks they are trying to perform, and then 
use the technology as best as it can be used, to support the tasks based on the opera-
tor’s capabilities. Designers who use their own understanding of a system as a refer-
ence (instead of that of the actual users) commit the fundamental attribution error 
and risk-creating systems that are unwieldy or outright unusable by the intended 
users (Baxter et  al. 2014). The fundamental attribution error of design refers to 
when designers assume all users are just like themselves. As we note in our example 
system in this book, this is often a mistake and leads to problems in usability because 
the designer and the operator have different knowledge, skills, and abilities. In addi-
tion, leaving out tasks or making them less easy to perform, or making state infor-
mation visible only upon query, are all mistakes that are easily avoided, but require 
knowing the operators and their tasks.

Knowing the frequency and importance of tasks is also important. Common and 
important tasks should be more easily and safely accomplished than less common 
and less important tasks. When the two factors of frequency and importance collide, 
then possible design choices become apparent. At this point designers can assess the 
situation through the RD-ICM and reduce risk by getting feedback from stakehold-
ers, researching similar design problems, or testing multiple designs depending on 
the risks associated with each choice.

There are numerous guidelines on how to create task analyses (e.g., Cox 2007; 
Ritter et al. 2014, Ch. 11). There are tools to support TA (i.e., Cogulator1), but often 
plain text documents provide the best value and are useful enough for most designs. 

1 http://cogulator.io/
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TA is a lot like pizza—while the balance of contents may vary in approaches, most 
versions are usable and enjoyable.

1.5.3  Test Designs Broadly and with Cognitive Walkthroughs

During design and implementation, there may be unknown aspects of the users, 
their tasks, or the interactions between the two. A way to reduce the risk of system 
failure is to test the resulting system. The test can be quite simple, for example, 
simply to see if the tasks can be performed. Alternatively, there are more complex 
methods, like running a small A/B experiment with two possible designs or measur-
ing task performance with actual users under realistic conditions. Pew and Mavor 
(2007) review the range of these tests, and there are multiple textbooks describing 
them (e.g., Cairns and Cox 2008; Lewis and Rieman 1994). Testing interfaces will 
reduce the range of usability risks, but test methods vary by how much of a time and 
resource commitment is required to get useful results. Asking someone unfamiliar 
with the project to review the proposed interface mockup may be essentially free, 
whereas conducting an A/B test with expected users may take weeks (if not months) 
to fully set up, run, and analyze, but will be much more useful. 

The simplest test is to have naïve operators use the interface and observe them. 
This approach is explained in many textbooks, including Ritter et al. (2014). Such 
tests with naïve users could last as little as 10 min and cost next to nothing (i.e., ask 
a colleague to use the interface and provide comments) or could take multiple 
months and cost $100 k (i.e., conducting a formal study on task performance under 
realistic conditions). Stakeholders should consider system requirements and risks to 
determine how their system should be tested.

We also support using “cognitive walkthroughs” (Polson et al. 1992) to examine 
the usability of the system. A cognitive walkthrough is a method for evaluating the 
learnability and usability of an interface by simulating the cognitive activities of a 
typical user during normal tasks. The typical process for performing cognitive walk-
throughs begins with describing the goals and tasks that are required by the system. 
First, the goal structure of the model is generated from expert interviews, prior 
research, and other forms of information gathering. The goal structure, like a task 
analysis, is arranged into a hierarchy. The top-level goals represent the overall task. 
Each top-level goal is composed of intermediate-level goals (subtasks), each of 
which is composed of a set of individual actions.

Cognitive walkthroughs, when performed successfully, should determine 
whether the operator of a system is making the correct connections between each 
level of the goal. That is, the analyst compares the goals with the interface and 
attempts to map how a typical user would accomplish each goal, subtask, and action. 
If the analyst cannot make some mapping of a goal to the interface, this will suggest 
an area of the interface that requires improvement or further work. One potential 
pitfall here can occur if the analyst is too familiar with the interface (relative to a 
true “typical user”), as they will not see the same problems that users will see, at 
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least novice users. The data collected from cognitive walkthroughs can enable 
developers to provide supplementary “clues” or signals to the operator at specific 
locations to ensure that each goal, sub-goal, and individual action provide a coher-
ent information set capable of being understood and followed by the operator 
(Blackmon et al. 2002; Polson et al. 1992).

Cognitive walkthroughs require a task analysis and thus will take between an 
hour and a short working day to perform in most cases. The length of time is based 
on the number of tasks and how difficult they are to perform. Cognitive walk-
throughs may require domain knowledge and thus may be performed in teams com-
prised of an analyst working through the task analysis and a domain expert making 
the decisions.

Whenever detailed time predictions are useful, we recommend using the 
keystroke- level model (KLM) of Card et al. (1980, 1983). This approach provides 
time estimates based on the keystrokes, mouse moves, mental operators, system 
response time, and other possible cognitive operators. The times are engineering 
estimates (i.e., ± 20%), but basically support fair comparisons of different inter-
faces. The KLM time predictions suggest where and how time is spent on an inter-
face and can help identify ways to improve performance. The regularity of the 
interactions across subtasks also suggests how much needs to be learned by the 
users and where knowledge may be misapplied.

There are numerous ways to reduce system failure due to usability problems. 
This section noted a few and how to find more. Next, an example system is intro-
duced to ground this discussion and show examples of how potentially abstract 
principles can be put into practice.

1.6  Example Task: The Mars Water Detection System

This book provides context for readers through a hypothetical use case for a 
semiautonomous system that searches for water. The scenario is based on design-
ing an op center for command and control of a remote Water Detection System 
(WDS) to accompany a manned mission to Mars. The WDS is a mostly autono-
mous mobile robot that searches Mars for signs of water, but the WDS sometimes 
requires human intervention to respond to novel or risky scenarios. The WDS 
will arrive alongside the mission team and begin operation following its assem-
bly by the team. Following its activation and an initial system check, the op 
center on Earth will take over sole command of the WDS for a 10-year mission. 
Scientists in the program office will make high-level decisions to support the 
mission of finding water, while the Earth- based operators implement action plans 
and monitor the various systems for any current or upcoming issues. The rest of 
this chapter provides a brief review of the WDS and its design requirements 
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before concluding with some design recommendations that arise from this chap-
ter. A detailed description is presented in Appendix 1.

1.6.1  Operation Center Organization

The WDS is one part within the larger structure of an op center hosting dozens of 
systems that require constant oversight. While the WDS is important for the mis-
sion, it may not be the primary focus for the workers at any given time. The com-
mand structure of the op center involves bidirectional communication between 
scientists from the Program Office who funded the WDS and the operators respon-
sible for direct interaction with the systems. Figure 1.3 shows a few example inter-
face prototypes for the WDS. While the design will vary depending on the needs of 
the system, these systems present many different metrics of system performance. 
Operators will monitor the system, pass along alerts, and update the alerts depend-
ing on their risk assessment for a given situation. Scientists will take this informa-
tion and pass back commands for the operators to transmit. Certain tasks will be 

Fig. 1.3 Two example interface designs for the Water Detection System monitoring screen  
(second example on next page)
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able to be completed without direct contact with a supervisor, while others will need 
direct response from supervisors prior to action.

1.6.2  Water Detection System Structure

The WDS is comprised of several subsystems. The core system in the WDS is the 
main control element (MCE). The MCE acts as the brain in the field by enacting 
orders from Earth, monitoring other subsystems, and linking the subsystems 
together. The other subsystems each perform specialized tasks (e.g., communicat-
ing with Earth, navigating the WDS, or collecting physical samples). However, all 
subsystems share a set of key features that the operators may interact with over the 
course of the mission. These features are shown in Table 1.2 and a diagram of the 
WDS–Earth link is shown in Fig. 1.4.

1.6.3  Example Issues

System designers may be unable to anticipate every risk to system success; how-
ever, the Risk-Driven Incremental Commitment Model drives the designers to try to 
understand what risks are most likely to arise. Table 1.3 shows some example prob-
lems that could arise throughout the lifecycle of the WDS system, the risk of these 
problems occurring, the solution, and who handles them.

Fig. 1.3 (continued)
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The WDS is designed to autonomously handle most issues that arise, but human 
interaction is required on a regular basis. Many of these tasks are simple mainte-
nance and acknowledgement of warnings. For example, when batteries are low, the 
operator is required to acknowledge the low battery threshold. No action is required 

Table 1.2 Key features built into each subsystem of the WDS

Feature Description

Status The current state and functionality of the subsystem, subsystem-specific 
information, and environmental measures. The MCE checks and stores the status 
of other subsystems until information is passed to Earth

Event logs Each subsystem records detailed event logs from all executed commands. Event 
logs are periodically transferred to the MCE before being passed to Earth

Configuration Subsystems maintain a set of configuration fields that determine how the 
subsystem performs its tasks. For example, the MCE will have a modifiable field 
for checking a subsystem’s status that determines how long to wait for a 
response before initiating troubleshooting procedures

Commands Commands for subsystems will include a time reference and may include 
additional data if needed. Commands are first sent to the MCE before being 
passed to the appropriate subsystem

Redundancy Nearly every subsystem has an A and B side to provide a backup element in case 
of any issues; however only one side of each subsystem operates at any given 
time. These redundant systems are an identical copy of the original system

Fig. 1.4 Diagram of the Water Detection System (WDS) and its connection to the operation center

1.6 Example Task: The Mars Water Detection System
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other than clearing the notification. Occasionally, however, the WDS will face an 
urgent problem that requires human input. These scenarios are rare, so the operator 
has limited training in how to address the issues.

1.7  Principles for Design

Based on the target system description, the example system, and the design process, 
we can provide an overview of the book as a set of design principles. These princi-
ples provide guidance on high-level concepts that the designers can use to improve 
the systems they create. We aggregate the most important design principles described 
in this book in Appendix 3. Though generally directed towards improving perfor-
mance across the human–machine interface, these principles will often apply to the 
entire process of designing complex systems.

Principle 1.1: Don’t Assume the User to Be How You Think You Are
One of the most important considerations for designers is to dispel the assumption 
that your users are just like you or how you think you are (we make the distinction 
because you might not think or work exactly like you think you do). Unless your 
user is a software developer, systems engineer, or astronaut, you will almost always 

Table 1.3 Example problems faced by the WDS that require operator intervention

Problem description Risk Solution Personnel

WDS is navigating in a crater and 
gets stuck. The operators need to 
escalate the issue quickly because the 
WDS witnessed unexpected terrain. 
The mappings of Mars must be 
updated appropriately

High Operator from Earth takes over 
navigation and assumes manual 
control. The typical operator is 
not trained in this task, so the 
supervising manager must take 
control

Operator, 
supervisor

Dust storm prevents batteries from 
charging. The main control element 
cannot complete all the scheduled 
commands for the day

Moderate Communications element sends 
an alert the NASA operators of 
the low battery status. Operator 
must re-task the day’s 
commands because the 
autonomous navigation element 
would use all the remaining 
power

Operator, 
supervisor

Within the op center, the wall of 
screens has many other systems 
represented at the same time. If the 
WDS has a problem, it might take a 
few days for the engineers to remote 
in to fix the issue. Therefore, the 
overview screen will remain in a 
degraded state. The problem arises 
when something else goes wrong on 
the system

Low Modify interface to facilitate 
proper information presentation. 
While issues may not be 
initially present, the possibility 
of other errors being missed due 
to clutter is increased

Operator

1 Introducing Interface Design for Remote Autonomous Systems
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need to adapt your design to meet the operator’s system-related needs, capabilities, 
and wants (in that order).

Designers often (perhaps due to the ready availability of themselves and the 
unavailability of example operators) make the risky assumption that the operator is 
just like them—this is almost never the case. It is therefore important to provide 
designers and engineers with the ability to consult users and other stakeholders 
throughout the design process. Methods for learning about users can include talking 
with them, watching them work, having them use your interfaces, reading their 
autobiographies, or watching movies about their work environments (whether docu-
mentaries or even fictional accounts). Each of these methods for understanding 
users will gather only a subset of the useful information; casting a wide net can 
reduce the risk of overgeneralization and improve the breadth of the knowledge 
gleaned from users.

Understanding the operator enables engineers to mold the system design around 
the capabilities and constraints of its operators. Countless studies have shown that 
engineers often fail to understand their users. This knowledge is the foundation of 
user-centered design and leads to increased performance, financial savings, and 
safer systems (e.g., Bias and Mayhew 2005; Lewis and Rieman 1994; Pew and 
Mavor 2007; Ritter et al. 2014).

Principle 1.2: All Design Choices Have Trade-offs—Don’t Go in Blind
Most design choices have trade-offs. This basic fact will provide engineers with 
difficult decisions throughout the design process. For example, increased font size 
may increase readability by sacrificing some valuable interface “real estate” and 
limiting the total amount of information displayed. Effectively resolving these dif-
ficult design choices requires designers to use knowledge of the tasks and users to 
make informed decisions. Use of the risk-driven spiral model helps engineers make 
the best decision given the constraints by consulting with stakeholders and using 
what others have already learned. Designers will be presented with problems like 
this, both big and small, throughout the design process, and not every individual 
design choice is worthy of a full user study.

For example, consider a system that requires operators to search for digital files 
while performing other tasks. An informed designer may realize that recognition 
memory (i.e., “Is ‘book_manuscriptV47_final.docx’ the file you are looking for?”) 
is more robust than recall memory (i.e., “What is the exact name of the file you are 
looking for?”). While searching for files on a system, it is usually easy and familiar 
to point and click around a series of folders to find some item, as in the standard 
desktop operating system. Using a keystroke-based system (like a command line) 
might be faster, but typically will require more experienced users or more training. 
Stakeholders should consider which design would be best suited for their system 
needs, users, and tasks.

As another example, consider a system that tasks operators with monitoring 
incoming pings and classifying them as friendly, hostile, or unknown. An informed 
designer will know that speed and accuracy are traded off when improving perfor-
mance. Emphasizing speed will require sacrificing accuracy (i.e., more errors), and 

1.7 Principles for Design
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the inverse is true as well. Stakeholders can use this knowledge to analyze how to 
reach an acceptable balance between accuracy and speed. Although ideal solutions 
are not always possible, designers can meet expectations by understanding the 
expectations for task time and error rate.

Finally, almost any point-and-click system will use menu trees to support naviga-
tion. Many studies have explored how users’ decision-making, reaction time, and 
error rate change in response to changing the menu design. The Hick–Hyman Law 
(Hick 1952; Hyman 1953) predicts that choosing between more options (e.g., five 
menu choices vs. three menu choices) takes longer, but the menu is more likely to 
contain the correct choice. Signal detection theory shows a similar trade-off between 
hits, misses, false alarms, and correct rejections.

When possible, engineers should make informed decisions about the trade-offs 
between outcomes caused by different design choices.

Principle 1.3: Use and Test Multiple Designs
When designing a new display or component, create and consider multiple versions. 
Get feedback on the possible designs from a source (or sources) that is as objective 
as possible.

When you create a new display, particularly high stakes or main displays, you 
should consider multiple versions. Considering multiple versions of designs tends 
to lead to better designs at least in the tasks that have been studied (Dow 2011). The 
best objective source for feedback is often actual users’ behavior.

Research by Steven Dow examined the design process in the egg drop task. In 
this task, designers were given a set of standard materials and asked to design a 
protective cradle for an egg so it will survive a large vertical drop. Groups that 
designed more examples and that tested more often had reliably higher distances 
from which their eggs could be safely dropped. Dow argues that the beneficial 
outcomes seen from multiple designs will apply to other design tasks, and 
we agree.

1.8  Conclusion

Throughout the design of an op center such as the WDS system and interface, the 
engineers’ top priority will be the creation of a working product. However, engi-
neers must account for the risks associated with all aspects of the project. Often, the 
risks associated with some module’s reliability or function may trump the human 
element: human error requires a task on which to err. However, as the iterative 
design process advances, and the technology itself becomes more reliable, the 
human operator becomes more likely to be the point of failure within a system. 
Systems engineers will be neglecting a crucial component of their system if they do 
not account for the system’s compatibility with the human operators. Although this 
process will have any number of constraints and variations in its implementation, 
the designers should be confident that their system can be effectively used by the 
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target population. The user interface should facilitate high performance without 
undue stress on the operators.

Table 1.4 notes some questions that designers might have in mind when design-
ing and implementing control rooms, op centers, and other similar systems. The 
next two chapters will review the psychology and human factors concepts and theo-
ries that give rise to the principles described above and should be considered to help 
answer the questions in Table 1.4. In the conclusion to this book, we will note how 
these questions have been answered.
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