
Chapter 4
On the Formalism and Properties of
Timing Analyses in Real-Time Embedded
Systems

Jian-Jia Chen, Wen-Hung Huang, Georg von der Brüggen, Kuan-Hsun Chen,
and Niklas Ueter

4.1 Introduction

The advanced development of embedded computing devices, accessible networks,
and sensor devices has triggered the emergence of complex cyber-physical sys-
tems (CPS). In such systems, advanced embedded computing and information
processing systems heavily interact with the physical world. Cyber-physical systems
are integrations of computation, networking, and physical processes to achieve
high stability, performance, reliability, robustness, and efficiency [26]. A cyber-
physical system continuously monitors and affects the physical environment which
also interactively imposes feedback to the information processing system. The
applications of CPS include healthcare, automotive systems, aerospace, power grids,
water distribution, disaster recovery, etc.

Due to their intensive interaction with the physical world, in which time
naturally progresses, timeliness is an essential requirement of correctness for CPS.
Communication and computation of safety-critical tasks should be finished within
a specified amount of time, called deadline. Otherwise, even if the results are
correctly delivered from the functional perspective, the reaction of the CPS may
be too late and have catastrophic consequences. One example is the release of an
airbag in a vehicle, which only functions properly if the bag is filled with the correct
amount of air in the correct time interval after a collision, even in the worst-case
timing scenario. While in an entertainment gadget a delayed computation result is
inconvenient, in the control of a vehicle it can be fatal. Therefore, a modern society
cannot adopt a technological advance when it is not safe.

J.-J. Chen (�) · W.-H. Huang · G. von der Brüggen · K.-H. Chen · N. Ueter
TU Dortmund, Dortmund, Germany
e-mail: Jian-Jia.Chen@tu-dortmund.de; Wen-Hung.Huang@tu-dortmund.de;
Georg.von-der-Brueggen@tu-dortmund.de; Kuan-Hsun.Chen@tu-dortmund.de;
Niklas.Ueter@tu-dortmund.de

© The Author(s) 2021
J.-J. Chen (ed.), A Journey of Embedded and Cyber-Physical Systems,
https://doi.org/10.1007/978-3-030-47487-4_4

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47487-4_4&domain=pdf
mailto:Jian-Jia.Chen@tu-dortmund.de
mailto:Wen-Hung.Huang@tu-dortmund.de
mailto:Georg.von-der-Brueggen@tu-dortmund.de
mailto:Kuan-Hsun.Chen@tu-dortmund.de
mailto:Niklas.Ueter@tu-dortmund.de
https://doi.org/10.1007/978-3-030-47487-4_4

38 J.-J. Chen et al.

Cyber-physical systems that require both functional and timing correctness are
called cyber-physical real-time systems. Since cyber-physical real-time systems are
replacing mechanical and control units that are traditionally operated manually,
providing both predictability and efficiency for such systems is crucial to satisfy the
safety and cost requirements in our society. Real-time computing for such systems
is to provide safe bounds for deterministic or probabilistic timing properties.
For providing deterministic timing guarantees, worst-case bounds are pursued.
Specifically, the worst-case execution time (WCET) of a program (when it is
executed exclusively in the system, i.e., without any interference) has to be safely
calculated, for details the reader is referred to [31]. The WCETs of multiple
programs are then used for analyzing the worst-case response time (WCRT) when
multi-tasking in the system.

The strongest deterministic timing guarantee ensures that there is no deadline
miss of a task by validating whether the WCRT is less than or equal to the specified
relative deadline. When the deadlines of all tasks in a system are satisfied, the
hard real-time requirements are met and the system is a hard real-time system.
The assumption behind the requirements of hard real-time guarantees is that a
deadline miss can result in fatal errors of the system. Ensuring worst-case timing
properties has been an important topic for decades. Initially, such worst-case
guarantees were achieved by constructing cyclically repetitive static schedules. The
timing properties of static schedules can be analyzed easily, but the constructed real-
time systems were inflexible to accommodate any upgrades or changes that were not
planned in advance.

The seminal work by Liu and Layland [23] provided fundamental knowledge to
ensure timeliness and allow flexibility for scheduling periodic real-time tasks in a
uniprocessor system. A periodic task τi is an infinite sequence of task instances,
called jobs, where two consecutive jobs of a task should arrive recurrently with a
period Ti (i.e., the time interval length between the arrival times of two consecutive
jobs is always Ti), all jobs of a task have the same relative deadline Di = Ti (i.e.,
the absolute deadline of a job arriving at time t is t + Di), and each job has the
same worst-case execution time (WCET) Ci [23]. The utilization Ui of a task τi

is hence defined as Ui = Ci/Ti . Although the periodic real-time task model is
not always suitable for industrial applications, the exploration of the fundamental
knowledge in the past decades provides significant insights. Specifically, Liu and
Layland proved the applicability of preemptive dynamic-priority and fixed-priority
scheduling algorithms and provided worst-case utilization analysis. To be precise,
they showed that as long as the utilization

∑n
i=1 Ci/Ti of the given n tasks is no

more than n(2
1
n − 1), which is ≥ 69.3%, then the worst-case response time of a

task τi is guaranteed to be no longer than Ti if the priorities are assigned in the
rate-monotonic (RM) order, i.e., τi has a higher priority when its period is shorter.
Similarly, under preemptive earliest-deadline-first (EDF) scheduling, the utilization
bound is guaranteed to be 100%.

However, in many scenarios occasional deadline misses are possible and accept-
able. Systems that can still function correctly under these conditions are called soft

4 On the Formalism and Properties of Timing Analyses in Real-Time. . . 39

real-time systems. When the deadline misses are bounded and limited, the term
weakly hard real-time system is used. For such cases, safe and tight quantitative
properties of deadline misses have to be analyzed so that the system designers
can verify whether the occasional deadline misses are acceptable from the sys-
tem’s perspective. For this purpose, probabilistic timing properties can be very
useful, in which the probability of deadline misses or miss rates are pursued. In
safety standards, e.g., IEC-61508 and ISO-26262, the probability of failure has
to be proved to be sufficiently low. Probabilistic timing properties are important
to assure the service level agreements in many applications that require real-
time communication and real-time decision-making, such as autonomous driving,
smart building, internet of things, and industry 4.0. Deterministic guarantees
of interest for weakly hard real-time systems include the quantification of the
number of deadline misses within a specified time window length, the worst-
case tardiness, and the worst-case number of consecutive deadline misses. Such
deadline misses may be allowed and designed on purpose, especially to verify
the controller for the physical plant in a CPS. With potential deadline misses
in mind, suitable control approaches that can systematically account for data
losses can be applied. Such weakly hard real-time systems have been proposed
as a feature towards timing-aware control software design for automotive systems
in [33].

To design a timing predictable and rigorous cyber-physical real-time system, two
separate but co-related problems have to be considered:

1. how to design scheduling policies to feasibly schedule the tasks on the platform
and system model, referred to as the scheduler design problem, and

2. how to validate the schedulability of a task system under a scheduling algorithm,
referred to as the schedulability test problem, to ensure deterministic and/or
probabilistic timing guarantees.

The real-time systems research results in the past half-century have a significant
impact on the design of cyber-physical systems. Allowing system design flexibility
by using dynamic schedules (either fixed-priority or dynamic-priority schedules)
has not only academic values but also industrial penetration. Nowadays, most real-
time operating systems support fixed-priority schedulers and allow periodic as
well as sporadic task activations. When task synchronization or resource sharing
is necessary, the priority inheritance protocol and the priority ceiling protocol
developed by Sha et al. [27] are part of the POSIX Standards (in POSIX.1-2008).

Existing analyses and optimizations for scheduling algorithms and resource
management policies in complex real-time systems are usually ad-hoc solutions for
a specific studied problem. In this chapter, we challenge this design and analytical
practice, since the future design of real-time systems will be more complex, not
only in the execution model but also in the parallelization, communication, and
synchronization models.

40 J.-J. Chen et al.

Our Conjecture
We strongly believe that the future design of real-time systems require formal
properties that can be used modularly to compose safe and tight analysis
as well as optimization for the scheduler design and schedulability test
problems. This chapter summarizes our recent progress at TU Dortmund for
property-based analyses of real-time embedded systems with respect to both
deterministic and probabilistic properties.

4.2 Formal Analysis Based on Schedule Functions

For uniprocessor systems, at most one job is executed at a time. Therefore, a
scheduling algorithm (or scheduler) determines the order, in which jobs are
executed on the processor, called a schedule. A schedule is an assignment of
the given jobs to the processor, such that each job is executed (not necessarily
consecutively) until completion. Suppose that J = {J1, J2, . . . Jn} is a set of
n given jobs. A schedule for J can be defined as a function σ : R → J ∪{⊥}, where
σ(t) = Jj denotes that job Jj is executed at time t , and σ(t) = ⊥ denotes that the
system is idle at time t .

If σ(t) changes its value at some time t , the processor performs a context switch
at time t . For a schedule σ to be valid with respect to the arrival time, the absolute
deadline, and the execution time of the given jobs, we need to have the following
conditions for each Jj in J for hard real-time guarantees:

• σ(t) �= Jj for any t ≤ rj and t > dj and

•
∫ dj

rj
1σ(t)=Jj

dt = Cj , where 1condition is a binary indicator. If the condition
holds, the value is 1; otherwise, the value is 0.

Note that the integration
∫

of 1σ(t)=certain job over time used in this chapter is
only a symbolic representation for summation.

For a given sporadic task set T, each task τi in T can generate an infinite number
of jobs as long as the temporal conditions of arrival times of the jobs generated by
task τi can satisfy the minimum inter-arrival time constraint.

Suppose that the j th job generated by task τi is denoted as Ji,j . Let the set of
jobs generated by task τi be denoted as FJi . A feasible set of jobs generated by a
sporadic real-time task τi satisfies the following conditions:

• By the definition of the WCET of task τi , the actual execution time Ci,j of job
Ji,j is no more than Ci , i.e., Ci,j ≤ Ci .

• By the definition of the relative deadline of task τi , we have di,j = ri,j + Di for
any integer j with j ≥ 1.

• By the minimum inter-arrival time constraint, we have ri,j ≥ ri,j−1 + Ti for any
integer j with j ≥ 2.

4 On the Formalism and Properties of Timing Analyses in Real-Time. . . 41

A feasible set of jobs generated by a periodic real-time task τi should satisfy the
first two conditions above and the following condition:

• By periodic releases, we have ri,1 = Oi and ri,j = ri,j−1 + Ti for any integer j

with j ≥ 2.

A feasible collection FJ of jobs generated by a task set T is the union of the
feasible sets of jobs generated by the sporadic (or periodic) tasks in T, i.e., FJ =
∪τi∈TFJi . It should be obvious that there are infinite feasible collections of jobs
generated by a sporadic real-time task set T.

For a feasible collection FJ of jobs generated by T, a uniprocessor schedule for
FJ can be defined as a function σ : R → FJ ∪ {⊥}, where σ(t) = Ji,j denotes that
job Ji,j is executed at time t , and σ(t) = ⊥ denotes that the system is idle at time
t . Recall that we assume that the jobs of task τi should be executed in the FCFS
manner. Therefore, if σ(t) = Ji,j then σ(t ′) /∈ {

Ji,h|h = 1, 2, . . . , j − 1
}
, for any

t ′ > t and j ≥ 2.
The feasibility and optimality of scheduling algorithms should be defined based

on all possible feasible collections of jobs generated by T.

Definition 4.1 Suppose that we are given a set T of sporadic real-time tasks on a
uniprocessor system. A schedule σ of a feasible collection FJ of jobs generated by
T is feasible for hard real-time guarantees if the following conditions hold for each
Ji,j in FJ:

• σ(t) �= Ji,j for any t ≤ ri,j and t > di,j ,

•
∫ di,j

ri,j
1σ(t)=Ji,j

dt = Ci,j , and

• if σ(t) = Ji,j , then σ(t ′) /∈ {
Ji,h|h = 1, 2, . . . , j − 1

}
, for any t ′ > t and j ≥ 2.

A sporadic real-time task set T is schedulable for hard real-time guarantees under a
scheduling algorithm if the resulting schedule of any feasible collection FJ of jobs
generated by T is always feasible. A scheduling algorithm is optimal for hard real-
time guarantees if it always produces feasible schedule(s) when the task set T is
schedulable under a scheduling algorithm.

4.2.1 Preemptive EDF

For the preemptive earliest-deadline-first (EDF) scheduling algorithm, the job in the
ready queue whose absolute deadline is the earliest is executed on the processor. To
validate the schedulability of preemptive EDF, the demand bound function DBFi (t),
defined by Baruah et al. [1], has been widely used to specify the maximum demand
of a sporadic (or periodic) real-time task τi to be released and finished in a time
interval with length equal to t :

DBFi (t) = max

{

0,

⌊
t − Di

Ti

⌋

+ 1

}

× Ci. (4.1)

42 J.-J. Chen et al.

To prove the correctness of such a demand bound function, we focus on all
possible feasible sets of jobs generated by a sporadic/periodic real-time task τi .
Recall that a feasible set FJi of jobs generated by a sporadic/periodic real-time task
τi should satisfy the following conditions:

• The actual execution time Ci,j of job Ji,j satisfies Ci,j ≤ Ci .
• di,j = ri,j + Di for any integer j with j ≥ 1.
• ri,j ≥ ri,j−1 + Ti for any integer j with j ≥ 2.

Lemma 4.1 For a given feasible set FJ i of jobs generated by a sporadic/periodic
real-time task τi , let FJ i,[r,r+t] be the subset of the jobs in FJ i arriving no earlier
than r and have absolute deadlines no later than r + t . That is,

FJ i,[r,r+t] = {
Ji,j | Ji,j ∈ FJ i , ri,j ≥ r, di,j ≤ r + t

}
. (4.2)

For any r and any t > 0,

∑

Ji,j ∈FJ i,[r,r+t]
Ci,j ≤ DBFi (t). (4.3)

Proof By definition, DBFi (t) ≥ 0. Therefore, if FJi,[r,r+t] is an empty set, we reach
the conclusion.

We consider that FJi,[r,r+t] is not empty for the rest of the proof. Let Ji,j∗ be the
first job generated by task τi in FJi,[r,r+t]. By the definition of FJi,[r,r+t] in Eq. (4.2),
the arrival time ri,j∗ of job Ji,j∗ is no less than r , i.e., ri,j∗ ≥ r . Since FJi,[r,r+t] is
not empty, ri,j∗ + Di ≤ r + t .

Since ri,j ≥ ri,j−1 +Ti for any integer j with j ≥ 2 for the jobs in FJi as well as
the jobs in FJi,[r,r+t], the absolute deadlines of the subsequent jobs in FJi,[r,r+t] are
at least ri,j∗ + Ti + Di, ri,j∗ + 2Ti + Di, ri,j∗ + 3Ti + Di, Therefore, there are

at most
⌊

r+t−(ri,j∗+Di)

Ti

⌋
+ 1 ≤

⌊
t−Di

Ti

⌋
+ 1 jobs in FJi,[r,r+t] since r ≤ ri,j∗ . Since

the actual execution time Ci,j of each job Ji,j is no more than Ci by the definition
of the jobs in FJi , we reach the conclusion. ��

With the help of Lemma 4.1, the following theorem holds.

Theorem 4.1 A set T of sporadic tasks is schedulable under uniprocessor preemp-
tive EDF if and only if

∀t > 0,
∑

τi∈T

DBFi (t) ≤ t. (4.4)

Proof Only-if part, i.e., the necessary schedulability test. We prove the condition
by contrapositive. Suppose that there exists a t > 0 such that

∑
τi∈T DBFi (t) > t ,

for contrapositive.
For each task τi , we create a feasible set of jobs generated by task τi by releasing

the jobs periodically starting from time 0, and their actual execution times are all set

4 On the Formalism and Properties of Timing Analyses in Real-Time. . . 43

to Ci . By the definition of a uniprocessor system in our scheduling model, at most
one job is executed at a time. Therefore, the demand of the jobs that are released no
earlier than 0 and must be finished no later than t is strictly more than the amount
of available time since

∑
τi∈T DBFi (t) > t . Therefore, (at least) one of these jobs

misses its deadline no matter which uniprocessor scheduling algorithm is used.
Therefore, we can conclude that if the task set T is schedulable under EDF-P,

then
∑

τi∈T DBFi (t) ≤ t,∀t > 0.
If part, i.e., the sufficient schedulability test: We prove the condition by

contrapositive. Suppose that the given task set T is not schedulable under EDF-P
for contrapositive.

Then, there exists a feasible collection of jobs generated by T which cannot be
feasibly scheduled under EDF-P. Let FJ be such a collection of jobs, where FJi is
its subset generated by a sporadic real-time task τi in T. Let σ : R → FJ ∪ {⊥} be
the schedule of EDF-P for FJ. Since at least one job misses its deadline in σ , let job
Jk,� be the first job which misses its absolute deadline dk,� in schedule σ . That is,

∫ dk,�

rk,�

1σ(t)=Jk,�
dt < Ck,� ≤ Ck. (4.5)

Let t0 be the earliest instant prior to dk,�, i.e., t0 < dk,�, such that the processor
only executes jobs with absolute deadlines no later than dk,� in time interval
(t0, dk,�] under EDF-P. That means, immediately prior to time t0, i.e., t = t0 − ε

for an infinitesimal ε, σ(t) is either ⊥ or a job whose absolute deadline is (strictly)
greater than dk,�. We note that t0 exists since it is at least the earliest arrival time of
the jobs in FJ. Moreover, since EDF-P does not let the processor idle unless there is
no job in the ready queue, t0 ≤ rk,�.

Let FJi,[t0,dk,�] be the subset of the jobs in FJi arriving no earlier than t0 and have
absolute deadlines no later than dk,�. That is, we define FJi,[t0,dk,�] by setting r to
t0 and t to dk,� − t0 in Eq. (4.2). Let FJ[t0,dk,�] be ∪τi∈T FJi,[t0,dk,�] for notational
brevity.

By the definition of t0, dk,�, and EDF-P, the processor executes only the jobs in
FJ[t0,dk,�], i.e., σ(t) ∈ FJ[t0,dk,�] for any t0 < t ≤ dk,�. Therefore,

dk,� − t0
1=

(∫ dk,�

t0

1σ(t)=Jk,�
dt

)

+
∑

Ji,j ∈FJ[t0,dk,�]\{Jk,�}

(∫ dk,�

t0

1σ(t)=Ji,j
dt

)

2≤
(∫ dk,�

t0

1σ(t)=Jk,�
dt

)

+
⎛

⎜
⎝

∑

τi∈T

∑

Ji,j ∈FJi,[t0,dk,�]
Ci,j

⎞

⎟
⎠ − Ck,�

3=
(∫ dk,�

rk,�

1σ(t)=Jk,�
dt

)

+
⎛

⎜
⎝

∑

τi∈T

∑

Ji,j ∈FJi,[t0,dk,�]
Ci,j

⎞

⎟
⎠ − Ck,�

44 J.-J. Chen et al.

Eq. (4.5)
< Ck,� +

⎛

⎜
⎝

∑

τi∈T

∑

Ji,j ∈FJi,[t0,dk,�]
Ci,j

⎞

⎟
⎠ − Ck,�

Eq. (4.3)≤
∑

τi∈T

DBFi (dk,� − t0),

where the condition
1= is due to σ(t) ∈ FJ[t0,dk,�] for any t0 < t ≤ dk,�, the condition

2≤ is due to the definition of a schedule of the jobs in FJ[t0,dk,�] \
{
Jk,�

}
, the condition

3= is due to t0 ≤ rk,�, and σ(t) �= Jk,� for t0 < t ≤ rk,�. Hence, there is a certain � =
dk,� − t0 with

∑
τi∈T DBFi (�) > �. We reach our conclusion by contrapositive. ��

4.2.2 Preemptive Fixed-Priority Scheduling Algorithms

Under preemptive fixed-priority (FP-P) scheduling, each task is assigned a unique
priority before execution and does not change over time. The jobs generated by a
task always have the same priority defined by the task. Here, we define hp(τk) as
the set of higher-priority tasks than task τk and lp(τk) as the set of lower-priority
tasks than task τk . When task τi has a higher priority than task τj , we denote their
priority relationship as τi > τj . We assume that the priority levels are unique.

For FP scheduling algorithms, we need another notation

FRJi,[r,r+�) = {
Ji,j | Ji,j ∈ FJi , ri,j ≥ r, ri,j < r + �

}
. (4.6)

That is, for a given feasible set FJi of jobs generated by a sporadic/periodic real-
time task τi , let FRJi,[r,r+�) be the subset of the jobs in FJi arriving in time
interval [r, r +�). By extending the proofs like in Sect. 4.2.1, we can also prove the
following lemma and theorem.

Lemma 4.2 The total amount of execution time of the jobs of τi that are released
in a time interval [r, r + �) for any � ≥ 0 is

∑

Ji,j ∈FRJi,[r,r+�)

Ci,j ≤
⌈

�

Ti

⌉

Ci
def= demandi(�). (4.7)

Theorem 4.2 Let �min > 0 be the minimum value that satisfies

�min = Ck +
∑

τi∈hp(τk)

demandi(�min). (4.8)

The WCRT Rk of task τk in a preemptive fixed-priority uniprocessor scheduling
algorithm is

4 On the Formalism and Properties of Timing Analyses in Real-Time. . . 45

• Rk = �min, if �min ≤ Tk , and
• Rk > Tk , otherwise.

Theorem 4.2 can be re-written into a more popular form, called time-demand
analysis (TDA) proposed by Lehoczky et al. [21]: A (constrained-deadline) task τk

is schedulable under FP-P scheduling if and only if

∃t |0 < t ≤ Dk ≤ Tk, Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉

Ci ≤ t. (4.9)

Theorem 4.2 is a very interesting and remarkable result, widely used in the
literature. It suggests to validate the worst-case response time of task τk by

• releasing the first jobs of the higher-priority tasks in hp(τk) together with a job
of τk and

• releasing the subsequent jobs of the higher-priority tasks in hp(τk) as early as
possible by respecting their minimum inter-arrival times.

To explain the above phenomena, Liu and Layland in their seminal paper [23] in
1973 defined two terms (according to their wording):

• A critical instant for task τk is an instant at which a job of task τk released at
this instant has the largest response time.

• A critical time zone for task τk is a time interval starting from a critical instant
of τk to the completion of the job of task τk released at the critical instant.

Liu and Layland [23] concluded the famous critical-instant theorem as follows:
“A critical instant for any task occurs whenever the task is requested simultaneously
with requests for all higher-priority tasks.” Their proof was in fact incomplete.
Moreover, their definition of the critical-instant theorem was incomplete since the
condition �min > Tk was not considered in their definition. A precise definition of
the critical-instant theorem is revised as follows:

• A critical instant for task τk is an instant such that

– a job of task τk released at this instant has the largest response time if it is no
more than Tk or

– the worst-case response time of a job of task τk released at this instant is more
than Tk .

• A critical time zone for task τk is a time interval starting from a critical instant
of τk to the completion of the job of task τk released at the critical instant.

• In a critical time zone for task τk , all the tasks release their first jobs at a critical
instant for task τk and their subsequent jobs as early as possible by respecting
their minimum inter-arrival times.

46 J.-J. Chen et al.

4.3 Utilization-Based Analyses for Fixed-Priority Scheduling

The TDA in Eq. (4.8) requires pseudo-polynomial-time complexity to check the
time points in (0,Dk] for Eq. (4.8), which can be further generalized for verifying
the schedulability of task τk under fixed-priority scheduling:

∃0 < t ≤ Dk s.t. Ck +
∑

τi∈hp(τk)

σ

(⌈
t

Ti

⌉

Ci + bCi

)

≤ t, (4.10)

where σ > 0 and b ≥ 0. Equation (4.10) can be used in many cases if Dk ≤ Tk ,
such as

• σ = 1 and b = 0 in Eq. (4.10) for uniprocessor sporadic task systems [21],
• σ = 1 and b = 1 in Eq. (4.10) for uniprocessor self-suspending sporadic task

systems [22] (under the assumption that task τk does not suspend itself), and
• σ = 1/M and b = 1 in Eq. (4.10) for multiprocessor global rate-monotonic

scheduling [2] on M identical processors.

Although testing Eq. (4.10) takes pseudo-polynomial time, it is not always
necessary to test all possible time points to derive a safe worst-case response
time or to provide sufficient schedulability tests. The general and key concept to
obtain sufficient schedulability tests in k2U in [7, 8] and k2Q in [6, 10] is to test
only a subset of such points for verifying the schedulability. Traditional fixed-
priority schedulability tests often have pseudo-polynomial-time (or even higher)
complexity. The idea implemented in the k2U and k2Q frameworks is to provide
a general k-point schedulability test, which only needs to test k points under any
fixed-priority scheduling when checking schedulability of the task with the kth
highest priority in the system. Suppose that there are k − 1 higher-priority tasks,
indexed as τ1, τ2, . . . , τk−1, than task τk . Recall that the task utilization is defined
as Ui = Ci/Ti . The success of the k2U framework is based on a k-point effective
schedulability test, defined as follows:

Definition 4.2 (Chen et al. [7, 8]) A k-point effective schedulability test is a
sufficient schedulability test of a fixed-priority scheduling policy that verifies the
existence of tj ∈ {t1, t2, . . . tk} with 0 < t1 ≤ t2 ≤ · · · ≤ tk such that

Ck +
k−1∑

i=1

αitiUi +
j−1∑

i=1

βitiUi ≤ tj , (4.11)

where Ck > 0, αi > 0, Ui > 0, and βi > 0 are dependent upon the setting of the
task models and task τi .

The properties in Definition 4.2 lead to the following lemmas for the k2U
framework which are proven in [8].

4 On the Formalism and Properties of Timing Analyses in Real-Time. . . 47

Lemma 4.3 For a given k-point effective schedulability test of a scheduling
algorithm, defined in Definition 4.2, in which 0 < tk and 0 < αi ≤ α, and
0 < βi ≤ β for any i = 1, 2, . . . , k − 1, task τk is schedulable by the scheduling
algorithm if the following condition holds:

Ck

tk
≤

α
β

+ 1
∏k−1

j=1(βUj + 1)
− α

β
. (4.12)

Lemma 4.4 For a given k-point effective schedulability test of a scheduling
algorithm, defined in Definition 4.2, in which 0 < tk and 0 < αi ≤ α and
0 < βi ≤ β for any i = 1, 2, . . . , k − 1, task τk is schedulable by the scheduling
algorithm if

Ck

tk
+

k−1∑

i=1

Ui ≤ (k − 1)((α + β)
1
k − 1) + ((α + β)

1
k − α)

β
. (4.13)

Example 4.1 Suppose that Dk = Tk and the tasks are indexed by the periods,
i.e., T1 ≤ · · · ≤ Tk . When Tk ≤ 2T1, task τk is schedulable by preemptive rate-
monotonic (RM) scheduling if there exists j ∈ {1, 2, . . . , k} where

Ck +
k−1∑

i=1

Ci +
j−1∑

i=1

Ci = Ck +
k−1∑

i=1

TiUi +
j−1∑

i=1

TiUi ≤ Tj . (4.14)

Therefore, the coefficients in Definition 4.2 for this test are αi = βi = 1 and ti = Ti

for i = 1, 2, . . . , k − 1, and tk = Tk . Based on Lemma 4.3, the schedulability of
task τk under preemptive RM is guaranteed if

Ck

Tk

≤ 2
∏k−1

j=1(βUj + 1)
− 1 ⇒

k∏

j=1

(βUj + 1) ≤ 2. (4.15)

Based on Lemma 4.4, the schedulability condition of task τk under preemptive
RM is

k∑

i=1

Ui ≤ k(2
1
k − 1). (4.16)

The schedulability test in Eq. (4.15) was originally proposed by Bini and But-
tazzo [3], called hyperbolic bound, as an improvement of the utilization bound in
Eq. (4.16) by Liu and Layland in [23]. We note that the original proof in [23] was
incomplete, pointed out and fixed by Goossens [15].

The success of the k2Q framework is based on a k-point effective schedulability
test, defined as follows:

48 J.-J. Chen et al.

Definition 4.3 A k-point last-release schedulability test under a given ordering π

of the k − 1 higher-priority tasks is a sufficient schedulability test of a fixed-priority
scheduling policy that verifies the existence of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk−1 ≤ tk such
that

Ck +
k−1∑

i=1

αitiUi +
j−1∑

i=1

βiCi ≤ tj , (4.17)

where Ck > 0, for i = 1, 2, . . . , k − 1, αi > 0, Ui > 0, Ci ≥ 0, and βi > 0 are
dependent upon the setting of the task models and task τi .

The properties in Definition 4.3 lead to the following lemmas for the k2Q
framework which are proven in [10].

Lemma 4.5 For a given k-point last-release schedulability test of a scheduling
algorithm in Definition 4.3, in which 0 < αi , and 0 < βi for any i = 1, 2, . . . , k−1,
0 < tk ,

∑k−1
i=1 αiUi ≤ 1, and

∑k−1
i=1 βiCi ≤ tk , task τk is schedulable by the fixed-

priority scheduling algorithm if the following condition holds:

Ck

tk
≤ 1 −

k−1∑

i=1

αiUi −
∑k−1

i=1 (βiCi − αiUi(
∑k−1

�=i β�C�))

tk
. (4.18)

Example 4.2 Suppose that Dk = Tk and the tasks are indexed by the periods, i.e.,
T1 ≤ · · · ≤ Tk . When Tk ≤ 2T1, task τk is schedulable by rate-monotonic (RM)
scheduling if there exists j ∈ {1, 2, . . . , k} where

Ck +
k−1∑

i=1

Ci +
j−1∑

i=1

Ci = Ck +
k−1∑

i=1

TiUi +
j−1∑

i=1

Ci ≤ Tj . (4.19)

Therefore, the coefficients in Definition 4.3 for this test are αi = βi = 1 and ti = Ti

for i = 1, 2, . . . , k − 1, and tk = Tk . Based on Lemma 4.5, the schedulability of
task τk under preemptive RM is

Ck

Tk

≤ 1 −
k−1∑

i=1

Ui −
∑k−1

i=1 (Ci − Ui(
∑k−1

�=i C�))

Tk

. (4.20)

The test in Eq. (4.20) is a quadratic form. The first quadratic bound (QB) by Davis
and Burns in Equation (26) in [14] and Bini et al. in Equation (11) in [4] is

k∑

i=1

Ui +
∑k−1

i=1 Ci − ∑k−1
i=1 UiCi

Tk

≤ 1. (4.21)

The test in Eq. (4.20) is superior to the test in Eq. (4.21).

4 On the Formalism and Properties of Timing Analyses in Real-Time. . . 49

The generality of the k2Q and k2U frameworks has been demonstrated in [8, 10].
We believe that these two frameworks, to be used for different cases, have great
potential in analyzing many other complex real-time task models, where the existing
analysis approaches are insufficient or cumbersome.

For the k2Q and k2U frameworks, their characteristics and advantages over other
approaches have been already discussed in [8, 10]. In general, the k2U framework
is more precise by using only the utilization values of the higher-priority tasks.
If we can formulate the schedulability tests into the k2U framework, it is also
usually possible to model it into the k2Q framework. In such cases, the same
pseudo-polynomial-time test is used. When we consider the worst-case quantitative
metrics like utilization bounds, resource augmentation bounds, or speedup factors,
the result derived from the k2U framework is better for such cases. However, there
are also cases, in which formulating the test by using the k2U framework is not
possible. These cases may even start from schedulability tests with exponential-
time complexity. We have successfully demonstrated three examples in [6] by using
the k2Q framework to derive polynomial-time tests. In those demonstrated cases,
either the k2U framework cannot be applied or with worse results (since different
exponential-time or pseudo-polynomial-time schedulability tests are applied).

The automatic procedure to derive the parameters in the k2U can be found
in [9]. Previously, the parameters in all the examples in [8] were manually
constructed. This automation procedure significantly empowers the k2U framework
to automatically handle a wide range of classes of real-time execution platforms
and task models, including uniprocessor scheduling, multiprocessor scheduling,
self-suspending task systems, real-time tasks with arrival jitter, services and vir-
tualizations with bounded delays, etc. We believe that the k2U framework and the
automatic parameter derivations together can be a very powerful tool for researchers
to construct utilization-based analyses almost automatically. Depending on the
needs of the use scenarios, a more suitable schedulability test class should be chosen
for deriving better results.

Utilization-Based Analysis for Dynamic-Priority Scheduling Algorithms
The k2U and k2Q frameworks provide general utilization-based timing
analyses for fixed-priority scheduling. One missing building block is the
utilization-based timing analyses for dynamic-priority scheduling algorithms,
like EDF. The analytical framework in [8, 10] is based on analytical solutions
of linear programming. However, such formulations do not work for EDF.

50 J.-J. Chen et al.

4.4 Probabilistic Schedulability Tests

In many real-time systems, it is tolerable that at least some of the tasks in the system
miss their deadline in rare situations. Regardless, these deadline misses must be
quantified to ensure the system’s safety. We examine the problem of determining
the deadline miss probability of a task under uniprocessor static-priority preemptive
scheduling for an uncertain execution behavior, i.e., when each task has distinct
execution modes and a related known probability distribution.

One important assumption for real-time systems is that a deadline miss, i.e., a
job that does not finish its execution before its deadline, will be disastrous and thus
the WCET of each task is always considered during the analysis. Nevertheless, if
a job has multiple distinct execution schemes, the WCETs of those schemes may
differ significantly. Examples are software-based fault-recovery techniques which
rely on (at least partially) re-executing the faulty task instance, mixed-criticality
systems, and a reduced CPU frequency to prevent overheating. In all these cases,
it is reasonable to assume that schemes with smaller WCET are the common case,
while larger WCETs happen rarely.

We use the example of software-based fault-recovery in the following discussion.
When such techniques are applied, the probability that a fault occurs and thus
has to be corrected is very low, since otherwise hardware-based fault-recovery
techniques would be applied. If re-execution may happen multiple times, the
resulting execution schemes have an increased related WCET, while the probability
decreases drastically. Therefore, solely considering the execution scheme with the
largest WCET at design time would lead to largely overdesigning the system
resources. Furthermore, many real-time systems can tolerate a small number of
deadline misses at runtime as long as these deadline misses do not happen too
frequently. This holds true especially if some of the tasks in the system only
have weakly hard or soft real-time constraints. Hence, being able to predict the
probability of a deadline miss is an important property when designing real-time
systems.

We focus on the probability of deadline misses for a single task here, which is
defined as follows:

Definition 4.4 (Probability of Deadline Misses) Let Rk,j be the response time of
the j th job of τk . The probability of deadline misses (DMP) of task τk , denoted by

k , is an upper bound on the probability that a job of τk is not finished before its
(relative) deadline Dk , i.e.,

k = max
j

{
P(Rk,j > Dk)

}
, j = 1, 2, 3, (4.22)

It was shown in [24] that the DMP of a job of a constrained- or implicit-deadline
task is maximized when τk is released at its critical instant. Hence, the time-demand
analysis (TDA) in Eq. (4.8) can be applied to determine the worst-case response time

4 On the Formalism and Properties of Timing Analyses in Real-Time. . . 51

of a task when the execution time of each job is known. This implicitly assumes that
no previous job has an overrun that interferes with the analyzed job, i.e., we are
searching for the probability that the first job of τk misses its deadline after a longer
interval where all deadlines were met.

When probabilistic WCETs are considered, the WCET obtains a value in
(Ci,1, . . . , Ci,h) with a certain probability Pi (j) for each job of each task τi .
Therefore, TDA for a given t is not looking for a binary decision anymore. Instead,
we are interested in the probability that the accumulated workload St over an interval
of length t is at most t . The probability that τk cannot finish in this interval is denoted
accordingly with P(St > t). The situation where St is larger than t is called an
overload for an interval of length t and hence P(St > t) is the overload probability
at time t . Since TDA only needs to hold for one t with 0 < t ≤ Dk to ensure
that τk is schedulable, the probability that the test fails is upper bounded by the
minimum probability among all time points at which the test could fail. As a result,
the probability of a deadline miss
k can be upper bounded by

k = min
0<t≤Dk

P(St > t). (4.23)

The number of points considered in the TDA can be reduced by only considering
the points of interest, i.e., Dk and the releases of higher-priority tasks.

Therefore, testing the schedulability efficiently requires an efficient routine to
calculate P(St > t) for a given t and a combination of given random variables St .
The research results at TU Dortmund have recently achieved efficient calculations
as follows:

• Chernoff bound in [5, 13]: The calculation of P(St > t) is based on the moment
generating function of the classical Chernoff bound.

• Multinomial-based approach in [30]: The calculation of P(St > t) uses the
multinomial distribution.

We note that the DMP is not identical to the deadline miss rate of a task and that
the deadline miss rate may be even higher than this probability, as detailed by Chen
et al. [11]. However, the approach in [11] utilizes approaches to approximate the
deadline miss probability as a subroutine when calculating the rate.

Generality of Using P(St > t)

The efficient calculation of P(St > t) results in efficient probabilistic
schedulability tests and deadline miss rate analyses for preemptive fixed-
priority uniprocessor systems. The general question is whether this holds also
for other scheduling problems and platforms, like multiprocessor systems.
Whether the applicability can be generalized is an open problem.

52 J.-J. Chen et al.

4.5 Conclusion

The critical-instant theorem has been widely used in many research results. Some
of the extensions of the critical-instant theorem are correct, e.g., the level-i
busy window concept in [20], and some are unfortunately incorrect, e.g., for
self-suspending tasks in [18, 25]. Specifically, the misconception of modeling
self-suspension time of a higher-priority task as its release jitter in the worst-
case response time analysis in [25] and [19] had become a standard approach in
multiprocessor locking protocols in real-time systems since 2009 until the error was
found in 2016, summarized in Section 6 in [12].

In addition to the lack of formalism, the existing properties that have been
widely used in analyzing timing satisfactions in cyber-physical real-time systems
are also biased towards computation. One key assumption used in computation
is that the execution of one cycle on a processor reduces the execution of a task
by one cycle. If the problem under analysis does not have such a property, the
workload characterized by using uniprocessor systems cannot be used at all. To
explain this mismatch, consider the preemptive worm-hole switching protocol in
communication as an example. Suppose that a message has to be sent from node
A to node B by using two switches, called S1 and S2. Namely, the message has to
follow the path A → S1 → S2 → B. Suppose that the message is divided into f

communication units, in which a communication unit can be sent and received in
every time unit. A fast transmission plan is to fully parallelize the communication
if possible. That is, one communication unit from A to S1 for the first time unit,
one communication unit from A to S1 and S1 to S2 for the second time units, etc.
Therefore, the communication time of the message can be modeled as f + 2. This
analysis is correct under the assumption that S1 and S2 are not used by other flows.
However, if the usage of S1 or S2 is blocked during the transmission of the message
flow, using f +2 time units for analysis is problematic. For the fast transmission plan
with f +2 communication time, it is actually possible that the message is transmitted
in 3f time units as the links are blocked for any communication parallelism. To
handle the increase of time, several factors have been introduced into the real-time
analyses for priority-preemptive worm-hole networks, including direct interference,
indirect interference, backpressure, non-zero critical instant, sub-route interference,
and downstream multiple interference (summarized in Table VII in [17]). However,
since the problem under analysis is essentially not the same as a uniprocessor
schedule, applying the uniprocessor timing analysis with extensions is in my opinion
only possible after a rigorous proof of equivalence. This mismatch leads to a
significant amount of flaws in the literature in this topic. Specifically, the analysis
in [28] had been considered safe for a few years until a counterexample was
provided in [32].

To successfully tackle complex cyber-physical real-time systems that involve
computation, parallelization, communication, and synchronization, we believe that
new, mathematical, modulable, and fundamental properties for property-based
(schedulability) timing analyses and scheduling optimizations are strongly needed.

4 On the Formalism and Properties of Timing Analyses in Real-Time. . . 53

They should capture the pivotal properties of cyber-physical real-time systems and
thus enable mathematical and algorithmic research on the topic. The view angles
should not be limited to the processor- or computation-centric perspective. When
there are abundant cores/processors, the bottleneck of the system design becomes
the synchronization and the communication among the tasks [16, 29]. Different
flexibility and tradeoff options to achieve real-time guarantees should be provided in
a modularized manner to enable tradeoffs between execution efficiency and timing
predictability.

Acknowledgments Part of this work has been supported by European Research Council (ERC)
Consolidator Award 2019, PropRT (Number 865170), and Deutsche Forschungsgemeinschaft
(DFG), as part of the priority program “Dependable Embedded Systems”—SPP1500, project
GetSURE, and the Collaborative Research Center SFB 876 (http://sfb876.tu-dortmund.de/),
subprojects A1, A3, and B2.

References

1. S.K. Baruah, A.K. Mok, L.E. Rosier, Preemptively scheduling hard-real-time sporadic tasks on
one processor, in Proceedings of the 11th Real-Time Systems Symposium RTSS, pp. 182–190
(1990). https://doi.org/10.1109/REAL.1990.128746

2. M. Bertogna, M. Cirinei, G. Lipari, New schedulability tests for real-time task sets scheduled
by deadline monotonic on multiprocessors, in 9th International Conference on Principles of
Distributed Systems, OPODIS, pp. 306–321 (2005)

3. E. Bini, G. Buttazzo, G. Buttazzo, A hyperbolic bound for the rate monotonic algorithm, in
13th Euromicro Conference on Real-Time Systems, 2001 (2001), pp. 59–66. https://doi.org/10.
1109/EMRTS.2001.bini01

4. E. Bini, T.H.C. Nguyen, P. Richard, S.K. Baruah, A response-time bound in fixed-priority
scheduling with arbitrary deadlines. IEEE Trans. Comput. 58(2), 279–286 (2009)

5. K.H. Chen, J.J. Chen, Probabilistic schedulability tests for uniprocessor fixed-priority schedul-
ing under soft errors, in 12th IEEE International Symposium on Industrial Embedded Systems,
SIES (2017), pp. 1–8. https://doi.org/10.1109/SIES.2017.7993392

6. J.J. Chen, W.H. Huang, C. Liu, k2Q: a quadratic-form response time and schedulability
analysis framework for utilization-based analysis. CoRR (2015)

7. J.J. Chen, W.H. Huang, C. Liu, k2U: a general framework from k-point effective schedulability
analysis to utilization-based tests. CoRR abs/1501.07084 (2015). http://arxiv.org/abs/1304.
1590

8. J.J. Chen, W.H. Huang, C. Liu, k2u: a general framework from k-point effective schedulability
analysis to utilization-based tests, in IEEE Real-Time Systems Symposium, RTSS (2015), pp.
107–118. https://doi.org/10.1109/RTSS.2015.18

9. J.J. Chen, W.H. Huang, C. Liu, Automatic parameter derivations in k2U framework. Comput-
ing Research Repository (CoRR) (2016). http://arxiv.org/abs/1605.00119

10. J.J. Chen, W.H. Huang, C. Liu, k2q: a quadratic-form response time and schedulability
analysis framework for utilization-based analysis, in IEEE Real-Time Systems Symposium,
RTSS (2016), pp. 351–362. https://doi.org/10.1109/RTSS.2016.041

11. K.H. Chen, G. von der Brüggen, J.J. Chen, Analysis of deadline miss rates for uniprocessor
fixed-priority scheduling, in 24th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2018, Hakodate, August 28–31, 2018 (2018),
pp. 168–178. https://doi.org/10.1109/RTCSA.2018.00028

http://sfb876.tu-dortmund.de/
https://doi.org/10.1109/REAL.1990.128746
https://doi.org/10.1109/EMRTS.2001.bini01
https://doi.org/10.1109/EMRTS.2001.bini01
https://doi.org/10.1109/SIES.2017.7993392
http://arxiv.org/abs/1304.1590
http://arxiv.org/abs/1304.1590
https://doi.org/10.1109/RTSS.2015.18
http://arxiv.org/abs/1605.00119
https://doi.org/10.1109/RTSS.2016.041
https://doi.org/10.1109/RTCSA.2018.00028

54 J.-J. Chen et al.

12. J.J. Chen, G. Nelissen, W.H. Huang, M. Yang, B. Brandenburg, K. Bletsas, C. Liu, P. Richard,
F. Ridouard, N. Audsley, R. Rajkumar, D. de Niz, G. von der Brüggen, Many suspensions,
many problems: a review of self-suspending tasks in real-time systems. Real-Time Syst. 55,
144–207 (2019). https://doi.org/10.1007/s11241-018-9316-9

13. K.H. Chen, N. Ueter, G. von der Bruggen, J.J. Chen, Efficient computation of deadline-miss
probability and potential pitfalls, in Design, Automation & Test in Europe Conference &
Exhibition, DATE 2019, Florence, March 25–29, 2019 (2019), pp. 896–901. https://doi.org/
10.23919/DATE.2019.8714908

14. R.I. Davis, A. Burns, Response time upper bounds for fixed priority real-time systems, in Real-
Time Systems Symposium, 2008 (2008), pp. 407–418. https://doi.org/10.1109/RTSS.2008.18

15. J. Goossens, Scheduling of hard real-time periodic systems with various kinds of deadline and
offset constraints. Ph.D. Thesis, Universite Libre de Bruxelles (1999). http://di.ulb.ac.be/ssd/
goossens/Thesis.pdf

16. W.H. Huang, M. Yang, J.J. Chen, Resource-oriented partitioned scheduling in multiprocessor
systems: how to partition and how to share? in Real-Time Systems Symposium (RTSS) (2016),
pp. 111–122

17. L.S. Indrusiak, A. Burns, B. Nikolic, Analysis of buffering effects on hard real-time priority-
preemptive wormhole networks. CoRR abs/1606.02942 (2016). http://arxiv.org/abs/1606.
02942

18. K. Lakshmanan, R. Rajkumar, Scheduling self-suspending real-time tasks with rate-monotonic
priorities, in Real-Time and Embedded Technology and Applications Symposium (RTAS)
(2010), pp. 3–12. https://doi.org/10.1109/RTAS.2010.38

19. K. Lakshmanan, D. de Niz, R. Rajkumar, Coordinated task scheduling, allocation and
synchronization on multiprocessors, in Real-Time Systems Symposium (RTSS) (2009), pp. 469–
478. http://dx.doi.org/10.1109/RTSS.2009.51

20. J. Lehoczky, Fixed priority scheduling of periodic task sets with arbitrary deadlines, in
Proceedings Real-Time Systems Symposium (RTSS) (1990), pp. 201–209. https://doi.org/10.
1109/REAL.1990.128748

21. J.P. Lehoczky, L. Sha, Y. Ding, The rate monotonic scheduling algorithm: exact characteriza-
tion and average case behavior, in IEEE Real-Time Systems Symposium’89 (1989), pp. 166–171

22. C. Liu, J. Chen, Bursty-interference analysis techniques for analyzing complex real-time task
models, in Real-Time Systems Symposium (RTSS) (2014), pp. 173–183

23. C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973). https://doi.org/10.1145/321738.321743

24. D. Maxim, L. Cucu-Grosjean, Response time analysis for fixed-priority tasks with multiple
probabilistic parameters, in Proceedings of the IEEE 34th Real-Time Systems Symposium,
RTSS 2013, Vancouver, December 3–6, 2013 (2013), pp. 224–235. https://doi.org/10.1109/
RTSS.2013.30

25. L. Ming, Scheduling of the inter-dependent messages in real-time communication, in Proceed-
ings of the First International Workshop on Real-Time Computing Systems and Applications
(1994)

26. R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems: the next computing
revolution, in Proceedings of the 47th Design Automation Conference (ACM, New York,
2010), pp. 731–736. https://doi.org/10.1145/1837274.1837461

27. L. Sha, R. Rajkumar, J.P. Lehoczky, Priority inheritance protocols: an approach to real-time
synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990). http://dx.doi.org/10.1109/
12.57058

28. Z. Shi, A. Burns, Real-time communication analysis for on-chip networks with wormhole
switching, in Proceedings of the Second ACM/IEEE International Symposium on Networks-
on-Chip (NOCS) (2008), pp. 161–170. https://doi.org/10.1109/NOCS.2008.4492735. http://dl.
acm.org/citation.cfm?id=1397757.1397996

https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.23919/DATE.2019.8714908
https://doi.org/10.23919/DATE.2019.8714908
https://doi.org/10.1109/RTSS.2008.18
http://di.ulb.ac.be/ssd/goossens/Thesis.pdf
http://di.ulb.ac.be/ssd/goossens/Thesis.pdf
http://arxiv.org/abs/1606.02942
http://arxiv.org/abs/1606.02942
https://doi.org/10.1109/RTAS.2010.38
http://dx.doi.org/10.1109/RTSS.2009.51
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/RTSS.2013.30
https://doi.org/10.1109/RTSS.2013.30
https://doi.org/10.1145/1837274.1837461
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058
https://doi.org/10.1109/NOCS.2008.4492735
http://dl.acm.org/citation.cfm?id=1397757.1397996
http://dl.acm.org/citation.cfm?id=1397757.1397996

4 On the Formalism and Properties of Timing Analyses in Real-Time. . . 55

29. G. von der Brüggen, J.J. Chen, W.H. Huang, M. Yang, Release enforcement in resource-
oriented partitioned scheduling for multiprocessor systems, in Proceedings of the 25th
International Conference on Real-Time Networks and Systems, RTNS’17 (ACM, New York,
2017), pp. 287–296. https://doi.org/10.1145/3139258.3139287

30. G. von der Brüggen, N. Piatkowski, K.H. Chen, J.J. Chen, K. Morik, Efficiently approximating
the probability of deadline misses in real-time systems, in Euromicro Conference on Real-Time
Systems, ECRTS (2018), pp. 6:1–6:22. https://doi.org/10.4230/LIPIcs.ECRTS.2018.6

31. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C.
Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, P. Stenström,
The worst-case execution-time problem–overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst. 7(3), 36:1–36:53 (2008). http://doi.acm.org/10.1145/1347375.1347389

32. Q. Xiong, Z. Lu, F. Wu, C. Xie, Real-time analysis for wormhole NoC: revisited and revised,
in 2016 International Great Lakes Symposium on VLSI (GLSVLSI), (2016), pp. 75–80. https://
doi.org/10.1145/2902961.2903023

33. D. Ziegenbein, A. Hamann, Timing-aware control software design for automotive systems,
in Proceedings of the 52Nd Annual Design Automation Conference, DAC’15 (2015), pp.
56:1–56:6. http://doi.acm.org/10.1145/2744769.2747947

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/3139258.3139287
https://doi.org/10.4230/LIPIcs.ECRTS.2018.6
http://doi.acm.org/10.1145/1347375.1347389
https://doi.org/10.1145/2902961.2903023
https://doi.org/10.1145/2902961.2903023
http://doi.acm.org/10.1145/2744769.2747947
http://creativecommons.org/licenses/by/4.0/

	4 On the Formalism and Properties of Timing Analyses in Real-Time Embedded Systems
	4.1 Introduction
	4.2 Formal Analysis Based on Schedule Functions
	4.2.1 Preemptive EDF
	4.2.2 Preemptive Fixed-Priority Scheduling Algorithms

	4.3 Utilization-Based Analyses for Fixed-Priority Scheduling
	4.4 Probabilistic Schedulability Tests
	4.5 Conclusion
	References

