
Chapter 2
Testing Implementation Soundness
of a WCET Analysis Tool

Reinhard Wilhelm, Markus Pister, Gernot Gebhard, and Daniel Kästner

2.1 Introduction

Timing verification of a set of hard real-time tasks to be executed on a given
hardware platform attempts to prove that all tasks in the set when executed on that
platform always respect their deadlines, i.e., each task finishes its execution within
its deadline. Traditionally, timing verification is split into two subtasks: a timing
analysis also known as WCET analysis, which statically determines upper bounds
on the execution times of the tasks, and a schedulability analysis, which takes these
upper bounds and attempts to verify that all tasks in the given set, assuming these
upper bounds on their execution times, will respect their deadlines.

A preliminary version of this paper appeared in [16].
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2.1.1 Tool Qualification

WCET analysis is applied to time-critical and safety-critical embedded-system
software in problem-aware parts of the embedded-systems industry. Such systems
have to be developed in accordance with international safety norms, e.g., DO-
178B/C, DO-254, IEC 61508, and ISO 26262. While there are differences between
these norms, in particular regarding prescriptiveness and required level of rigor, they
have many aspects in common. All of them include guidance on the use of software
tools as a part of the development and verification process of safety-critical software.

The criticality level (also known as the design assurance level (DAL) or safety
integrity level (SIL)) of a component determines the effort to invest and the methods
required or recommended to deliver assurance of the correct functioning of the
component. The criticality level is derived from the impact of a failure of the
component on the functioning of the system. Similarly, the required activities to
provide confidence in the correct functioning of a software tool depend on its
criticality with respect to the overall system. For example, DO-178C, the current
international standard for avionics systems, defines five different tool qualification
levels (TQLs). The TQL is determined by the potential tool impact and the design
assurance level of the software. There are three tool-impact categories; the most
critical, Category 1, applies to tools whose output becomes part of the airborne
software. Similar considerations are also made in other norms, e.g., the ISO 26262
defines a tool confidence level (TCL) in a very similar way.

The overall goal of tool qualification is to provide confidence that the tool
operates correctly, i.e., according to its functional specification, in the operational
context of the tool user. In the following, we will focus on the tool qualification
requirements of the avionics industry, which are the most rigid of the safety-
critical industries. Certification of avionics systems is regulated by the international
standard DO-178C [1]. WCET analysis tools fare under verification tools. Veri-
fication tools have no overly rigid certification requirements, unlike development
tools: their impact category is Category 2 or Category 3, mostly depending on
whether the output of the tool is used to justify the elimination or reduction of other
verification or development activities or not. A prerequisite for tool qualification is
a specification of the tool functionality. The tool operational requirements (TOR)
specify the tool functions and technical features, which are stated as low-level
requirements on tool behavior under normal operating conditions. Another required
input is the verification test plan (VTP), which defines test cases demonstrating the
correct functioning of all specified requirements of the TOR. Test-case definitions
include the overall test setup as well as a detailed structural and functional
description of each test case, i.e., how the individual test case works and what the
expected result is.

Certification becomes more challenging through DO-333, the formal-methods
supplement to DO-178C. It asks for a statement that a formal method including the
underlying theory is adequate for solving the corresponding verification problem.
This introduces and enforces soundness of the methods and tools.
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Since the required effort for tool qualification can be high, ideally the software
qualification process is supported by a qualification support kit (QSK) supplied
by the tool provider. It must include TOR and VTP and typically provides a
validation suite, which allows users to execute the relevant test cases in the relevant
operational context. TOR, VTP, and a test execution report become part of the
certification package. Furthermore, it is typically required for a tool provider to
supply qualification software life cycle data to demonstrate that the development
process and the invested efforts to assure correctness, quality, and traceability are
adequate for usage in a safety-critical system context. The qualification software
life cycle is not covered in this article.

DO-178C exhales a test-based spirit: many verification activities are test based.
Well-defined coverage criteria try to capture to which extent the behavior of the
system under test has actually been exerted during testing. Note that in case of a
static verification tool, test coverage does not apply to the code to be analyzed: a
sound static-analysis tool provides full data and control coverage, i.e., it analyses
all paths and takes into account all potential data values for its analyses. What is
needed in case of the microarchitectural analysis, which is the focus of this article, is
to demonstrate the correctness of the microarchitecture model used by the analyzer.
To this end it is the instruction set architecture (ISA) and the set of paths through the
execution platform that need to be covered. Huge sets of test traces in qualification
suites are used at tool-qualification time to cover the sets of paths through the
execution platform.

Note the difference to measurement-based WCET analyses. It is known that they
are in general unsound. In order to provide a sufficient level of confidence in the
real-time behavior of industrial-size code they need an unacceptably huge set of
traces and accordingly an excessive effort at verification time. In the case of a static
WCET analysis tool, the testing effort is applied at tool-qualification time when
ample time is available.

2.1.2 Predictability

Timing predictability [3, 15] has long been recognized as essential for achieving
precise results of timing estimation at reduced analysis effort. In the context of the
current article, it is worth mentioning that it also reduces the number of test cases
for the validation of an abstract architectural model. In general, an increase in the
timing predictability of the underlying architecture leads to a decreasing number
of different instruction flow paths through the processor pipeline since they feature
less average-case performance-enhancing micro-optimizations like instruction and
data queues and buffers, data forwards, etc. Such architectures show a more regular
hardware design.
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2.1.3 WCET Analysis

Performance-enhancing architectural components such as caches, pipelines, and
speculation have made WCET analysis difficult. Execution times of consecutively
executed instructions do not compose easily because instruction execution times are
now dependent on the execution state in which they are executed. In the composition
A;B the execution time of statement B depends on the execution state produced
by executing statement A. The variability of execution times grows with several
architectural parameters, e.g., the cache-miss penalty and the costs for pipeline stalls
and for control-flow mispredictions. As approaches using exhaustive measurements
are infeasible due to the size of the search space, abstraction is applied leading to
an over-approximation of the set of potential executions. This over-approximation
introduces remaining uncertainty in the results of the microarchitectural analysis,
which grows with the same architectural parameters mentioned above unless the
architectural platform is predictable [18], see Sect. 2.1.2.

2.1.4 The Central Idea: Proving Safety Properties

We needed to solve the WCET problem for architectures with state-dependent
execution times. Figure 2.1 shows that this problem could be decomposed into
many subproblems. The main problem, specific for WCET analysis, was the
microarchitectural analysis, a combined cache and pipeline analysis. Let us describe
the central idea behind this phase in our WCET analysis method [17], first in
a conceptual way, i.e., not quite like it is implemented, later closer to how it is
implemented:

• We define any architectural effect that causes an instruction to execute longer
than its fastest execution time to be a timing accident. Typical such timing
accidents are cache misses, pipeline stalls, bus-access conflicts, or branch
mispredictions. Each timing accident is associated with a timing penalty. Timing
penalties may be constant, but may also be execution-state dependent. A cache-
miss penalty may be constant if the bus is always guaranteed to be free for the
cache reload. If this guarantee cannot be given, however, its size depends on
the execution state, namely whether the bus happens to be free.

The property that the execution of an instruction at some program point will
not cause a particular timing accident is then a safety property. The occurrence
of a timing accident thus violates a corresponding safety property.

• We then use an appropriate method for the verification of safety properties
to prove that for the instructions in the program some of the potential timing
accidents will never happen. The goal is to prove as many of such safety
properties as possible. Conceptually, the safety properties shown to hold could
be used to reduce the worst-case execution-time bound for an instruction, which
a naive, sound WCET analysis would have to assume, by the cost for the excluded
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Fig. 2.1 The architecture of the aiT tool

timing accidents. In practice, pipeline analysis drives a cycle-wise transition,
which considers the abstract execution state, e.g., makes no transition under a
cache miss if a cache miss can be excluded.

• We then prove these safety properties by abstract interpretation (AI) [4] in the
following way: Compute invariants at each program point, in our case an over-
approximation of the set of execution states that are possible when execution
reaches this program point. Derive the above mentioned safety properties, that
certain timing accidents will not happen, from these invariants. For example, AI
computes an abstract cache state at each program point, which overapproximates
the sets of concrete cache states that may reach this program point. The abstract
cache states are used to classify some memory accesses as definite hits. Another
cache analysis that underapproximates the set of possible concrete cache states
is able to predict definite misses. Predicted cache hits are then used to prove that
the timing accident, this memory access will miss the cache, will never happen
[8, 10].

This method for the microarchitectural analysis was the main innovation that
made our WCET analysis work for real-life architectures and scale to industrial-
size software [6].

Now follows the description of the microarchitectural analysis that is closer
to the implementation. Driver of this analysis is the pipeline analysis [14]. It
goes through the instruction stream, instruction by instruction, and executes the
current instruction in the current abstract execution state. This abstract execution



10 R. Wilhelm et al.

state contains uncertainty, i.e., it lacks information about some state components.
Transitions to all potential successor states are performed whenever the transition to
the next state depends on such a missing part of the state. The timing contributions of
these transitions are accumulated until an instruction can be retired. In the end, upper
bounds on the execution times of basic blocks are obtained that are coefficients in
an integer linear program representing the control flow of the program [17]. Another
type of result is described below.

2.1.5 Terminology

We consider only sound WCET analysis methods. Soundness means that a method
and associated tool will always produce conservative WCET estimates, i.e., esti-
mates that will never be exceeded in any execution. Being conservative is a Boolean
property. Unfortunately, conservative is often used as a metric property, more
conservative meaning less precise. However, calling results of an unsound method
conservative is a misnomer. The really meant, other dimension, in addition to
soundness, is accuracy. Accuracy of some WCET estimate, obtained by a sound
method, expresses the degree of over-estimation, the difference between a WCET
estimate and the real WCET. It does not make sense to talk about the accuracy of
an unsafe estimate or an unsound method. In case of an unsound method it is not
even clear whether a “more conservative” estimate moves towards the real WCET
from below or is larger than the real WCET and moves further away from it. In
general, WCET estimates are below, i.e., underestimate the real WCET, if end-
to-end measurements are used. On the other hand, if piecewise measurements are
applied whose results are combined to an estimate of the overall execution times,
this often results in over-estimation of the real WCET.

WCET analysis can be seen as the search for a longest path in the state space
spanned by the program under analysis and by the architectural platform. Most real-
time software is written as to guarantee termination. Its state space can thus be easily
abstracted to a finite abstract state space, which is still too large to be exhaustively
explored. We can, therefore, not expect to identify the real WCET, but only safe
upper bounds to all execution times, which we will call WCET estimates. (Safe)
over-approximation is used in several places. In particular, an abstraction of the
execution platform is employed by the WCET analysis. How to convince oneself
(or the certification authorities) of the correctness of this architectural model is the
main subject of the next section.

2.2 Validation of Our WCET Analysis Tool

The claim that our WCET analysis tools produce safe results is a strong one and
often disputed by some proponents of unsound WCET analysis methods. Their
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argument is, to develop an error-free instantiation of the, in principle, sound WCET
analysis technology is so difficult, that one might use a simpler unsound method in
the first place. The main complaint is the complexity of the abstract architectural
models. So, what is the basis for our claims?

Several analyses in the tools are instances of abstract interpretation [4], a
scientific method with a strong underlying theory, relating analysis results to
semantic properties of analyzed programs. Value and loop bound analysis, c.f.
Fig. 2.1, are more or less standard abstract interpretations. The difference is that
these analyses are performed on the binary level and not on the source level. Still,
adequacy of these analyses is easily accepted. The instantiation of the abstract-
interpretation framework for the microarchitectural analysis of a given execution
platform, however, is far from trivial. In particular, it contains an abstraction
of the execution platform. How does one make sure that such an abstraction is
conservative? This will be explained in Sect. 2.2.3.

Let us give short descriptions of the different component analyses alongside
the particular validation activities before we come to the validation of the central
component.

2.2.1 Control-Flow Graph Reconstruction

The reconstruction of the control-flow graph (CFG) from a binary executable
means to compute a safe approximation of the inter-procedural control flow of the
executable [13]. This is achieved by the following two steps after having loaded
the executable:

1. Classification of the loaded byte stream to identify individual assembly instruc-
tions and

2. Recursive reconstruction of the control flow based on this assembly-instruction
classifications.

For Step 1, a specification of the instruction encoding is required. Instruction-
set-architecture manuals provide this information, which is then used to implement
instruction identification in the binary decoder of the aiT tool chain. To validate
the implementation, we perform the so-called decode tests. For each supported
instruction (in each supported addressing mode) we write a test case providing
a reference as the expected result of the decoding. The decoding result is then
compared to this reference.

In Step 2, the decoder uses the identified instruction stream to compose a
safe control-flow approximation. To validate this, we compile a representative set
of control structures (in a high-level language like C) and decode the resulting
executable to compare the reconstructed control flow with a reference result.
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2.2.2 Value Analysis

The value analysis determines safe approximations of the values in processor
registers and memory cells for every program point. These approximations are
used to determine bounds on the iteration number of loops and information about
the addresses of memory accesses. The value analysis is based on the instruction
semantics of the underlying target architecture. Like the instruction encoding,
architecture manuals provide this information.

To validate the instruction-semantics implementation, we create a test case for
each instruction and define pre- and post-conditions according to the expected effect
of the particular instruction. These conditions are expressed by user annotations,
which are read by the value analyzer. Pre-conditions are used to generate the
machine state needed to execute the tested instruction. The post-conditions define
the expected state after having executed the instruction under test.

2.2.3 Microarchitectural Analysis: Trace Validation

The microarchitectural analysis combines a cache and a pipeline analysis. It is
an abstract interpretation of the program’s execution on the underlying cache and
pipeline architecture. The execution of a program is abstractly executed by feeding
instruction sequences from the control-flow graph to the timing model, which then
computes the changes of the abstract execution state at cycle granularity and keeps
track of the elapsing clock cycles. The correctness proofs of the method have been
conducted by Thesing [14] based on the theory of abstract interpretation.

The cache analysis described in [2, 5, 7] is incorporated into the pipeline analysis.
At each memory access, where the concrete hardware would query and update the
contents of the cache(s), the cache analysis applies the corresponding abstract cache
effects to the abstract cache state.

The result of the microarchitectural analysis is either an upper execution-time
bound for every basic block or a prediction graph. In the first case, these upper
bounds are the coefficients in an integer linear program that represents the control
flow of the program. This is the version usually described in publications about
static WCET analysis, as it presents a clean work distribution. However, it has the
disadvantage that too much information is lost at basic-block boundaries, namely the
precise matching of final states at predecessor blocks to initial states at successor
blocks. This loss of information entails a loss in precision. The prediction graph
avoids this loss of precision. It consists of abstract states as nodes and edges for
the transition between states and represents the evolution of the abstract execution
states at processor-clock granularity and beyond basic-block boundaries. Note that
in the description of trace validation a prediction event graph appears, which is the
prediction graph extended by event annotations at its edges.
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ŝ1

ŝ2
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Fig. 2.2 Evolution of abstract hardware states ŝi . Each edge denotes a single cycle transition in
the abstract state space. The gray boxes span the set of states that belong to the same basic block

As an example consider the prediction graph of Fig. 2.2, where the longest path
is four transitions long, i.e., it takes four processor cycles to complete the program.
Adding up the length of each longest path per basic block (denoted by the gray
boxes) would neglect that there is no connection between the abstract states ŝ3 and
ŝ5 and thus yield a worst-case estimate of five processor cycles.

Due to the complexity of the abstract architectural model, validation of the
pipeline analysis cannot be done solely by testing the abstract implementation of
individual instructions as we do it for CFG reconstruction and value analysis.

2.2.3.1 Semi-Automatic Derivation of the Abstract Architecture Model

Nowadays, hardware circuits are automatically synthesized from formal hardware
specifications like VHDL or Verilog. Besides a formalization of the functional
details, such specifications implicitly contain an execution model that also reflects
the timing behavior of the whole system. It was a tempting idea to derive a pipeline
analysis from the formal hardware model such that analysis and synthesized circuit
share the same basis [11, 12].

However, the semi-automatic derivation of a timing model approach has not
proven effective in the industrial context. Even if the hardware manufacturers grant
access to their formal models (which is often not the case), the derivation process
requires to fully understand the design, which might be a complex task for a
complete processor including peripheral devices. Additionally, the quality of the
resulting analysis depends on the coding style of the hardware model [11]. Results
are excellent if the code features minimal dependencies between processes, a clear
logical separation of different functionality into different processes/subprograms
and a sequential logic design. Ideally, the code reflects the structural composition of
the processor pipeline with explicit control signals to steer the flow of instructions
and data. Models not adhering to those design principles complicate state abstrac-
tions and thus result in prohibitively resource-consuming analyses.
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2.2.3.2 Trace Validation

For the reasons given above, the abstract architectural models are hand-crafted by
human experts based on the available hardware reference documentation, which
sometimes contains errors and usually lacks relevant details. Reverse engineering
based on specific runtime measurements needs to fill this gap. Even if it were
semi-automatically derived from a specification, the implementation of the microar-
chitectural analysis would still need to be validated. Trace validation checks for safe
over-approximations of the predictions by matching observable hardware events
recorded during concrete executions of instruction sequences against predictions
of those events produced by the microarchitectural analysis. This is done for a
sufficiently large set of instruction sequences that structurally covers the possible
instruction flows (wrt. the different functional units, instructions, dependencies
between instructions, etc.) of the processor pipeline.

Figure 2.3 shows the trace-validation workflow. An instruction sequence is
executed on the actual hardware, or its execution is simulated using a VHDL model,
to obtain an observed event trace. The microarchitectural analysis is modified to
predict those events and annotate them to the edges of the generated prediction
graph. In this fashion the microarchitectural analysis of an instruction sequence
generates a prediction event graph that describes an over-approximation of all
possible event traces that could occur while executing the instruction sequence. The
observed trace of events, the reached execution state, and the consumed time are
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Prediction
Event Graph

Observed
Event Trace
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Result
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Fig. 2.3 Trace validation according to [9]. The instruction sequences together with the generated
prediction graphs annotated by state and timing information are part of the Qualification Support
Kit
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checked for containment in the prediction graph. Trace validation is successful if
the sequence of traced events is found in the prediction graph, and their predicted
execution time does not underestimate the observed execution time.

The granularity at which the comparison takes place strongly depends on the
debug facilities provided by the hardware. At best, timer interrupts are used to
stop execution after each execution cycle. This way, the execution of instruction
sequences is extended cycle by cycle to observe actual execution states and
execution times.

The behavior of some components of the architectural state, such as the cache
state, is unfortunately not directly observable. These need to be indirectly observed
through executions that are forced to lead to cache hits and cache misses.

Thus a tremendous effort is required to cover both all instructions and all
architectural components. This is essentially achieved by triggering many different
architectural states through the execution of dedicated test cases.

The validation suite of the AbsInt static WCET tool aiT may contain several
hundred individual test cases, even for a simple DLX-like architecture like the
ARM Cortex-M4. For multi-core architectures, such as the TriCore TC275, which
features three different cores, several thousand test cases are necessary to cover all
architectural features.

How many test cases are required to cover the whole architectural behavior
correlates to the complexity of the analyzed hardware, i.e., with the number of
available instructions of the instruction set architecture, the number of components
of the pipeline architecture like functional units, internal buffers, queues, memories,
buses, and their states. Often unexpected (undocumented) hardware behavior is
exposed while trying to understand existing test cases. This leads to additional
test cases. Hence, the number of test cases that are sufficient in order to cover the
(timing) relevant hardware behavior cannot be easily quantified in advance.

2.3 Conclusion

The AbsInt WCET analyzer aiT uses a combination of sound methods to derive safe
upper bounds on execution times. Their implementation is quite complex, such that
it is natural to query the soundness of the implementation of the technology. We
describe the validation efforts employed to convince ourselves, the customers, and
the certification authorities of the soundness of the implementation. The European
Aviation Safety Agency (EASA), obliged to follow the strictest certification rules,
those of DO178-C, has accepted AbsInt’s aiT as a validated WCET analysis tool for
several time-critical subsystems in the Airbus A380 and A350 planes.
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