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Abstract. Transfer learning, which aims to reuse knowledge in differ-
ent domains, has achieved great success in many scenarios via minimiz-
ing domain discrepancy and enhancing feature discriminability. How-
ever, there are seldom practical determination methods for measuring the
transferability among domains. In this paper, we bring forward a novel
meta-transfer feature method (MetaTrans) for this problem. MetaTrans
is used to train a model to predict performance improvement ratio from
historical transfer learning experiences, and can consider both the Trans-
ferability between tasks and the Discriminability emphasized on targets.
We apply this method to both shallow and deep transfer learning algo-
rithms, providing a detail explanation for the success of specific transfer
learning algorithms. From experimental studies, we find that different
transfer learning algorithms have varying dominant factor deciding their
success, so we propose a multi-task learning framework which can learn
both common and specific experience from historical transfer learning
results. The empirical investigations reveal that the knowledge obtained
from historical experience can facilitate future transfer learning tasks.

Keywords: Transfer learning · Meta transfer features ·
Transferability · Discriminability

1 Introduction

In real-world tasks, test data usually differs from training data in the aspects of
distributions, features, class categories, etc. Even there are some cases that the
real applied circumstances occur in different domains without sufficient labels,
i.e., in these cases, we need to exploit the full usage of the original model for
adapting to the target domain, thus transfer learning is proposed.

Transfer learning algorithms can be grouped into two large categories accord-
ing to using deep networks or not. The first category is shallow transfer learning,
such as TCA [12], GFK [6], SA [4], KMM [8], ITL [15] and LSDT [22]. These
algorithms can be further classified into instance-based and subspace-based ones
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according to what to transfer [13]. In the category of deep transfer learning,
discrepancy-based, adversarial-based, and reconstruction-based algorithms are
the three main approaches [19], among which DAN [10] and RevGrad [5] are
classical networks for transfer learning or domain adaptation1.

Although many transfer learning algorithms are proposed, there are still few
researches devoted to the three key issues in transfer learning, that is, when to
transfer, how to transfer and what to transfer [13]. In this paper, we consider the
three issues as one problem, i.e., we need to answer whether tasks can be trans-
ferred (when), and moreover, how to measure the Transferability . The later one
implies the methods to transfer (how) and the information that can be trans-
ferred (what). As proposed in [3], we propose a novel MetaTrans method from
both aspects of Transferability and Discriminability . Transferability means the
similarity between the source and target domains, and Discriminability means
how discriminative are the features extracted from a specific algorithm. In order
to understand the internal mechanism of transfer learning algorithms and explain
why they can improve the performance a lot, we extract some critical features
according to these two dominant factors, which are called Meta Transfer Features.

Inspired by meta-learning methods [21] and the recent work [20], we build
a model mapping Meta Transfer Features to the transfer performance improve-
ment ratio using historical transfer learning experiences. Different from [20], we
propose a multi-task learning framework to use historical experiences, with the
reason that experiences from different algorithms vary a lot.

In this work, we make three contributions as follows:

– We propose a novel method MetaTrans to map Meta Transfer Features to
the transfer performance improvement, from both aspects of Transferability
and Discriminability .

– With the built mapping, we provide a detailed analysis of the success of both
shallow and deep transfer algorithms.

– We propose a multi-task learning framework utilizing varying historical trans-
fer experiences from different transfer learning algorithms as much as possible.

2 Related Works

In this section, we introduce some related works, including basic notations, the-
oretical analysis in transfer learning, deep domain adaptation and some recent
researches.

2.1 Notations

In this work, we focus on the homogeneous unsupervised domain adaptation
problem. The labeled source domain is denoted by DS = {XS ,YS}, and simi-
larly, DT = {XT } for the unlabeled target domain. In order to evaluate a specific
1 In this paper, we do not focus on the difference between transfer learning and domain

adaptation, we refer readers to [13] for details.
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transfer learning algorithm, the real labels of target domain are denoted by YT .
We denote by h ∈ H the hypothesis (a.k.a. classifier in classification tasks)
mapping from sample space X to label space Y.

2.2 Theoretical Bound for Transfer Learning

From the previous theoretical result for domain adaptation [1], we have the
generalization error bound on the target domain of a classifier trained in the
source domain as follows:

Theorem 1. Let H be a hypothesis space, and λ = minh∈H(εS(h) + εT (h)) be
the most ideal error of the hypothesis space on the source and target jointly, then
for any h ∈ H,

εT (h) ≤ εS(h) + dH(DS ,DT ) + λ. (1)

This bound contains three terms. The first one refers to the Discriminability of
the features, being smaller if the learned features become more discriminative.
The second one determines how similar are the source and target domains, the
smaller the better, referred to as Transferability .

2.3 Deep Domain Adaptation

Deep domain adaptation contains adversarial-based and discrepancy-based
methods. The framework of adversarial domain adaptation, such as RevGrad [5]
and ADDA [18], utilizes the domain discriminator to separate the source and
target domain as much as possible, that is, maximize the Transferability between
domains. In addition, the task classifier component is used to maximize the per-
formance of the source domain using the extracted features, in order to preserve
the Discriminability . Similarly, discrepancy-based frameworks, such as DDC [17]
and DAN [10], considering both the discrepancy loss (e.g. MMD loss) between
two domains (Transferability) and the task specific loss (Discriminability).

2.4 Recent Researches

Recently, [3] analyzes the relation between Transferability and Discriminability
in adversarial domain adaptation via the spectral analysis of feature represen-
tations, and proposed a batch spectral penalization algorithm to penalize the
largest singular values to boost the feature discriminability. [20] proposes to use
transfer learning experiences to automatically infer what and how to transfer
in future tasks. [23] first addresses the gap between theories and algorithms,
and then proposes new generalization bounds and a novel adversarial domain
adaptation framework via the introduced margin disparity discrepancy.

3 MetaTrans Method

In this section, we introduce the proposed MetaTrans, including Meta Transfer
Features and the multi-task learning framework.
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3.1 Approximate Transferability

The Transferability refers to the discrepancy between two domains, and we can
approximate it using different distance metrics. In this paper, we select the proxy
A-distance and the MMD distance as two approximations.

Proxy A Distance. The second term in the generalization bound in Eq. 1
is called the H-divergence [9] between two domains. In order to approximate
the H-divergence with finite samples from source and target, the empirical
H-divergence is defined as

dH(DS ,DT ) = 2

⎛
⎝1 − min

h∈H

⎡
⎣ 1

nS

∑
x:h(x)=0

I[x ∈ DS ] +
1

nT

∑
x:h(x)=1

I[x ∈ DT ]

⎤
⎦

⎞
⎠,

(2)
where DS and DT are sets sampled from the corresponding marginal distribution
with the size being nS and nT . I[·] is the identity function.

The empirical H-divergence is also called proxy A distance. We can train a
binary classifier h to discriminate the source and target domain, and the classi-
fication error can be used as an approximation of the proxy A distance,

dA(DS ,DT ) = 2(1 − 2err(h)), (3)

where the err(h) is the classification error of the specific classifier.

Maximum Mean Discrepancy. Another distance commonly used to measure
the difference of two domains is MMD distance [7], a method to match higher-
order moments of the domain distributions. The MMD distance is defined as

dmmd = ‖Ex∈DS
[φ(x)] − Ex∈DT

[φ(x)]‖H , (4)

where φ is a function maps the sample to the reproducing kernel Hilbert space
H. In order to approximate the MMD distance from finite samples, the empirical
MMD distance is defined as

dmmd =

∥∥∥∥∥∥
1

nS

nS∑
i=1

φ(xi) − 1
nT

nT∑
j=1

φ(xj)

∥∥∥∥∥∥
H

. (5)

In order to get the empirical MMD distance, a kernel function is needed, and the
commonly used kernel is the RBF kernel defined as k(x,x′) = exp

(
−‖x−x′‖2

σ2

)
.

To avoid the trouble of selecting the best kernel bandwidth σ, we use multi-kernel
MMD (MK-MMD), and the multi-kernel is defined as a linear combination of N

RBF kernels with the form K =
∑N

k=1 Kk.

3.2 Approximate Discriminability

The Discriminability measures the discriminative ability of feature representa-
tions. We propose three approximate features including the empirical source
error, the supervised discriminant criterion and the unsupervised discriminant
criterion.
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Source Domain Error. In the generalization bound for domain adaptation
(Eq. 1), the source error is an important factor determining the target general-
ization error. The empirical source error is defined as

εS(h) =
1

nS

nS∑
i=1

l(h(xi), yi), (6)

where yi is the real label for the i-th sample and l is the loss function.

Supervised Discriminant Criterion. According to the supervised dimension
reduction methods (such as LDA), the ratio of between-class scatter and inner-
class scatter implies the discriminative level of the features.

Supposing there are C classes in the source domain, and the mean vector for
these classes are {μc}C

c=1 accordingly, then we have the inner-class scatter as

dinner =
1

nS

C∑
c=1

nc∑
j=1

‖xcj − μc‖22 , (7)

where the c-th class has nc samples and xcj is the j-th sample of the c-th class.
Meanwhile, the between-class scatter is defined as

dbetween =
1

nS

C∑
c=1

nc ‖μc − μ0‖22 , (8)

where μ0 is the mean center of all samples in the source domain. We approximate
the source discriminability with the formulation

csdc =
dbetween

dinner + dbetween
(9)

where csdc is the notation of supervised discriminant criterion.

Unsupervised Discriminant Criterion. If no labeled data can be obtained,
the supervised discriminant criterion can not be used. Towards measuring the
discriminant ability of the feature representations in the target domain with no
label, the unsupervised discriminant criterion can be applied. Similarly, there
are two types of scatter in unsupervised discriminant criterion called the local-
scatter and global-scatter.

The local-scatter is defined as

dlocal =
1

n2
T

nT∑
i=1

nT∑
j=1

Hij ‖xi − xj‖22 , (10)

where H is defined as neighbor affinity matrix, being Kij when xi and xj are
neighbors to each other, and being 0 otherwise. Kij is the kernel matrix item
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using the multi-kernel proposed as before. And similarly, the global scatter is
defined as

dglobal =
1

n2
T

nT∑
i=1

nT∑
j=1

(Kij − Hij) ‖xi − xj‖22 . (11)

Therefore, we use the ratio of the global scatter in the total scatter as an
approximation to the discriminability of the feature representations in the target
domain, which is defined as

cudc =
dglobal

dlocal + dglobal
, (12)

and the cudc is the abbreviation of unsupervised discriminant criterion.

3.3 Problem Statements

With the above approximations, the Meta Transfer Features are denoted as a
five-tuple (dA, dmmd, εS , csdc, cudc). In transfer learning, we always focus on the
performance improvement ratio brought by using a specific transfer learning
algorithm compared to the case without using it. We build a machine learning
model in source domain DS = {XS ,YS}, and we denote it as hS . Without
using any transfer learning algorithms, the target domain error is defined as
εwo = 1

nT

∑nT

i=1 l(hS(XTi),YTi), where l is the loss function and XTi is the i-
th sample in target domain. A specific transfer learning algorithm g, with the
input as XS ,XT , could output the aligned data samples as X̂S , X̂T

2. The aligned
source and target domains become {X̂S ,YS} and {X̂T }, and then similarly, we
can get the new target domain error εw = 1

nT

∑nT

i=1 l(ĥS(X̂Ti),YTi), where ĥS

is the model learned from new source domain samples. If εw is smaller than εwo,
we believe that g has made an improvement, and the ratio is defined as rimp:

rimp =
εwo − εw

εwo
(13)

Given the source and target domains DS = {XS ,YS} and DT = {XT }, using
a transfer learning algorithm g, we can get representations D̂S = {X̂S ,YS} and
D̂T = {X̂T }. From DS and DT , we can get a five tuple Meta Transfer Features
denoted as (dA, dmmd, εS , csdc, cudc), and similarly, from D̂S and D̂T , we can get
another five tuple denoted as

(
d̂A, d̂mmd, ε̂S , ĉsdc, ĉudc

)
. We combine this two

tuples together, and get the features denoted as xmeta. Using these features, we
want to regress the transfer improvement ratio rimp denoted as ymeta.

From historical transfer learning experiences, we can get pairs of (xmeta,
ymeta), and then we can build a model mapsMetaTransfer Features to the transfer
improvement ratio. With this obtained model, we can have a better understanding
of the internal mechanism of transfer learning algorithms and provide some prior
knowledge for future transfer learning tasks.
2 We only give the most common case, some algorithms like instance-based ones will

output a group of weights, and we can apply importance sampling to get new source
domain samples.
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3.4 Multi-task Learning Framework

Considering transfer learning algorithms are designed with different mechanisms,
it is not wise to build a single mapping from their experiences, losing the special-
ities. Additionally, we want to learn something common which can be applied to
new transfer learning algorithms so that we can not train models individually.
Therefore, we propose a multi-task learning framework to learn common and
specific knowledge from varying transfer learning experiences.

To be specific, given the transfer learning experiences of T different algo-
rithms denoted as {{(xmeta

ti ,ymeta
ti )}Nt

i=1}T
t=1. For simplicity, we use linear regres-

sion with regularization as our mapping function. We divide mapping functions
into two parts, the common and specific ones, denoted by (w, b) and {(wt, bt)}T

t=1

correspondingly. Then our optimization target is:

min
θ

L =
1
T

T∑
t=1

Nt∑
i=1

(
(w + wt)Txmeta

ti + b + bt − ymeta
ti

)2
+ λR(w, {wt}T

t=1),

(14)
where R(w, {wt}T

t=1) is the regularization term, such as the L2-norm regular-
ization and θ = {w, b, {w}T

t=1, {b}T
t=1} denotes the parameters to be learned. In

order to solve this problem, we use the alternative optimization strategy. First,
we fix the global parameters (w, b) and optimize (wt, bt) for each task, and then
we fix local parameters (wt, bt)T

t=1 and optimize the (w, b) alternatively.

4 Experimental Studies

In this section, we display some experiments with both synthetic and public
data.

4.1 Understanding Meta Transfer Features

One of the contributions of this work is the proposed Meta Transfer Features, so
we will provide some experimental results on synthetic data to understand why
these features matter so much.

In order to understand the Transferability , we sample data from two 2-dim
gaussian distributions as the source and target domain, which is shown in the top
row of Fig. 1. From the figure, the proxy A distance (HDIV in figure) and MMD
distance become larger when two domains become further. As to the Discrim-
inability , we sample data from five gaussian distributions as five classes. From
the bottom row in Fig. 1, it is shown that both the supervised and unsupervised
discriminative criterion become larger with the overlap among classes becomes
smaller, which means the features are more discriminative for classification.
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HDIV=1.0133  MMD=0.0196

SDC=0.5315  UDC=0.9203

HDIV=1.3067  MMD=0.0525 HDIV=1.9467  MMD=0.2026

SDC=0.7435  UDC=0.9283 SDC=0.9661  UDC=0.9375

Fig. 1. Understanding Meta Transfer Features. The first row illustrates the Transfer-
ability between source and target domains, while the second row shows the Discrim-
inability of features with five classes.

4.2 Understanding Transfer Learning Methods

As proposed further, different transfer learning algorithms have their individual
mechanisms, so we will provide experimental results for this finding.

Shallow Transfer Methods. In this section, we implement TCA [12], SA [4]
and ITL [15] as examples, showing the different mechanisms among them.

In order to visualize the learned representations, we use synthetic data con-
structed as follows: we sample data from two 2-dim gaussian distributions as two
classes in source domain (S0, S1 in Fig. 2 (a)), and then we rotate the guassian
means with a definite angle, and the new means are used to sample target data
(T0, T1 in Fig. 2 (a)) with the same covariance. Then we use TCA, SA and ITL
to get aligned distributions in 1-dim space, and for every algorithm, we select
the best parameters to get almost the same 10% improvement in classification
accuracy compared to the case without using this algorithm. Considering the
overlap between two classes in two domains in 1-dim space, we plot them sepa-
rately with different y-axis values as in Fig. 2. From this visualization result, it
is obvious that ITL can get a more discriminative representation then TCA and
SA, for the appearance that the samples in different classes are largely separated
as shown in Fig. 2 (d). The result fits well with the information-theoretic factors
considered in the designation process of ITL, and we refer readers to [15] for
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(a) Raw data (b) TCA (c) SA (d) ITL

Fig. 2. Understanding shallow transfer learning algorithms. From left to right: (a) The
synthetic data. (b) The 1-dim features obtained from TCA. (c) The 1-dim features
obtained from SA. (d) The 1-dim features obtained from ITL.

more details. In addition, TCA can get a better alignment between source and
target domains as shown in Fig. 2 (b).

Deep Transfer Methods. Aside from the shallow transfer learning algorithms,
we explore the change of Meta Transfer Features in the learning process of deep
transfer learning algorithms. We take DAN [10] as an example. We use the Ama-
zon (A) and DSLR (D) in Office [14] dataset as source and target domains. For
each training epoch, we extract Meta Transfer Features from the hidden repre-
sentations learned from DAN network, and we plot the change of these features
as shown in Fig. 3 (a) (the plot is normalized with min-max normalizetion). It
is obvious that MMD distance (MMD in Figure) becomes smaller and smaller
with the optimization process of domain alignment mechanism in DAN, while
proxy A distance (HDIV in Figure) oscillates a lot. In addition, the sdc becomes
smaller, showing that features could be more confusing with the overlap between
two domains becoming larger.

4.3 Prediction Results

Transfer learning experiences are constructed from sub-tasks sampled from the
classical datasets: Office [14], Caltech [6], MNIST (M) and USPS (U). The
Office and Caltech datasets have four domains in total: Amazon (A), Caltech
(C), DSLR (D) and Webcam (W). For a specific source and target combination
such as A → C, we sample tasks with a subset classes in the total 10 classes.
For example, we can sample a 4-classes classification task, and there are will be
210 unique tasks in total can be sampled.

For the prediction experiments, we only focus on shallow transfer learn-
ing algorithms, including RPROJ3, PCA, TCA [12], MSDA [2], CORAL [16],
GFK [6], ITL [15], LSDT [22], GTL [11] and KMM [8]. These algorithms contain
almost all kinds of shallow transfer learning algorithms, such as instance-based,
subspace-based, manifold-based, information-based and reconstruction-based.

3 Dimensional reduction with Random Projection.
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(a) Meta Transfer Features in DAN (b) Task (Transfer Algorithms) Visualization

Fig. 3. (a) Understanding deep transfer learning algorithms: the change of Meta Trans-
fer Features in the training process. (b) Task visualization using MDS, mapping the
learned weights into the 2-dim space.

For each sampled task, we apply all of these algorithms with random selected
hyperparameters and get the (xmeta,ymeta) pairs.

We compare our proposed multi-task learning framework (Meta-MTL) with
two baselines: the first one is training a single model together (Meta-Sin), and the
second one is training a model for each transfer algorithm individually (Meta-
Ind). We use both MSE and MAE as the evaluation criterions. The prediction
results can be found in Table 1, which verifies the validity of our MTL framework.
Our MTL framework can predict the transfer improvement ratio more accurate
for unseen transfer tasks. It also explains that experiences from different transfer
learning algorithms should not be utilized equally. The first column displays the
source and domain pairs we use to obtain transfer learning experiences, and we
find the ignored dataset information also matters a lot, which will be the future
work to research.

Table 1. Prediction results of different methods of utilizing the transfer learning
experiences.

Train and test sets Method MSE MAE

Train: A → C,A → D, · · · ,W → D Meta-Sin 0.0339 0.1573

Test: U → M,M → U Meta-Inv 0.0418 0.1724

Meta-MTL 0.0314 0.1507

Train: A → C Meta-Sin 0.0104 0.0821

Test: A → D Meta-Inv 0.0162 0.1065

Meta-MTL 0.0081 0.0729
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In addition, in order to visualize the difference among transfer learning algo-
rithms, we use MDS to get the lower representations in 2-dim space keeping the
euclidean distances among their specific weights unchanged as much as possible.
We plot the relationships in Fig. 3 (b). From this figure, we can find and search
some similar transfer learning methods for alternative algorithms, and mean-
while, some diverse algorithms can be used for ensemble learning. To be specific,
we find MSDA and TCA may be alternative transfer learning methods in this
experiment.

5 Conclusion

In this paper, we propose MetaTrans from both Transferability and Discrim-
inability aspects and give a comprehensive understanding of both shallow and
deep transfer learning algorithms. As to the use of historical transfer learning
experiences, we propose a multi-task learning framework, and the experimental
results show that it could utilize experiences better and predict future transfer
performance improvement more accurate. Considering more meta-features, tak-
ing the dataset information into consideration or learning task embeddings are
future works.
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