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Abstract. Multiple modality data bring new challenges for sentiment
analysis, as combining varieties of information in an effective manner
is a rigorous task. Previous works do not effectively utilize the rela-
tionship and influence between texts and images. This paper proposes
a fusion-extraction network model for multimodal sentiment analysis.
First, our model uses an interactive information fusion mechanism to
interactively learn the visual-specific textual representations and the
textual-specific visual representations. Then, we propose an information
extraction mechanism to extract valid information and filter redundant
parts for the specific textual and visual representations. The experimen-
tal results on two public multimodal sentiment datasets show that our
model outperforms existing state-of-the-art methods.
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1 Introduction

With the prevalence of social media, social platforms like Twitter and Instagram,
have become part of our daily lives and played an important role in people’s com-
munication. As a result of the increasing multimodality of social networks, there
are more and more multimodal data which combine images and texts in social
platforms. Though providing great conveniences for people communication, mul-
timodal data bring growing challenges for social media analytics. In fact, it is
often the case that the sentiment cannot be reflected with the support of single
modality information. The motivation is to leverage the varieties of information
from multiple sources for building an efficient model.

This paper studies the task of sentiment analysis for social media, which
contains both visual and textual contents. Sentiment analysis is a core task of
natural language processing, and aims to identify sentiment polarity towards
opinions, emotions, and evaluations. Traditional methods [14,21] for text-only
sentiment analysis are mainly statistical methods which highly rely on the quality
of feature selection. With the rapid development of machine learning techniques
and deep neural network, researchers introduce many dedicated methods [7,
13], which achieve significantly improved results. In contrast to single modality
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based sentiment analysis, multimodal sentiment analysis attracts more and more
attention in recent works [20,24,26,28].

However, most previous works cannot effectively utilize the relationship and
influence between visual and textual information. Xu et al. [22] only take the
single-direction influence of image to text into consideration and ignore inter-
active promotion between visual and textual information. A co-memory net-
work [23] then is proposed to model the interactions between visual contents
and textual words iteratively. Nevertheless, the co-memory network only applies
a weighted textual/visual vector as the guide to learn attention weights on
visual/textual representation. It can be seen as a coarse-grained attention mech-
anism and may cause information loss because attending multiple contents with
one attention vector may hide the characteristic of each attended content. Fur-
ther, the previous studies directly apply multimodal representations for final
sentiment classification. However, there is partial redundancy information which
may bring confusion and is not beneficial for final sentiment classification.

This paper proposes a new architecture, named Fusion-Extraction Network
(FENet), to solve the above issues for the task of multimodal sentiment classi-
fication. First, a fine-grained attention mechanism is proposed to interactively
learn cross-modality fused representation vectors for both visual and textual
information. It can focus on the relevant parts of texts and images, and fuse the
most useful information for both single modality. Second, a gated convolution
mechanism is introduced to extract informative features and generate expressive
representation vectors. The powerful capability of Convolution Neural Networks
(CNNs) for image classification has been verified [8,19]. It is a common way that
applying CNNs to extract relativeness of different regions of an image. For tex-
tual information, it deserves to be pointed out that CNNs also have strong ability
to process [25]. CNNs have been observed that they are capable of extracting
the informative n-gram features as sentence representations [10]. Thus, the con-
volution mechanism is quite suitable for the extraction task in the multimodal
sentiment classification. Meanwhile, we argue that there should be a mechanism
controlling how much part of each multimodal representation can flow to the
final sentiment classification procedure. The proposed gate architecture mech-
anism plays the role to modulate the proportion of multimodal features. The
experimental results on two public multimodal sentiment datasets show that
FENet outperforms existing state-of-the-art methods.

The contributions of our work are as follows:

• We introduce an Interactive Information Fusion (IIF) mechanism to learn
fine-grained fusion features. IIF is based on cross-modality attention mecha-
nisms, aiming to generate the visual-specific textual representation and the
textual-specific visual representation for both two modality contents.

• We propose a Specific Information Extraction (SIE) mechanism to extract
the informative features for textual and visual information, and leverage the
extracted visual and textual information for sentiment prediction. To the best
of our knowledge, no CNN-gated extraction mechanism for both textual and
visual information has been proposed in the field of multimodal sentiment
analysis so far.
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2 Related Work

Various approaches [1,4,5] have been proposed to model sentiment from text-
only data. With the prevalence of multimodal user-generated contents in social
network sites, multimodal sentiment analysis becomes an emerging research field
which combines textual and non-textual information. Traditional methods adopt
feature-based methods for multimodal sentiment classification. Borth et al. [2]
firstly extract 1200 adjective-noun pairs as the middle-level features of images for
classification, and then calculate the sentiment scores based on English grammar
and spelling style of texts. However, these feature-based methods highly depend
on the laborious feature engineering, and fail to model the relation between visual
and textual information, which is critical for multimodal sentiment analysis.

With the development of deep learning, deep neural networks have been
employed for multimodal sentiment classification. Cai et al. [3] and Yu et al. [27]
use CNN-based networks to extract feature representations from texts and images,
and achieve significant progress. In order to model the relatedness between text
and image, Xu et al. [22] extract scene and object features from image, and absorb
text words with these visual semantic features. However, they only consider the
visual information for textual representation, and ignore the mutual promotion of
text and image. Thus, Xu et al. [23] propose a co-memory attentional mechanism
to interactively model the interaction between text and image. Though taking the
mutual influence of text and image into consideration, Xu et al. [23] adopt a coarse-
grained attention mechanism which may not have enough capacity to extract suf-
ficient information. Furthermore, they simply concatenate the visual representa-
tion and the textual representation for final sentiment classification. Instead, our
model applies a fine-grained information fusion layer, and introduces an informa-
tion extraction layer to extract and leverage visual and textual information for sen-
timent prediction.

3 Our Model

Given a text-image pair (T, I), where T = {T1, T2, . . . , TM} and I is a sin-
gle image, the goal of our model is to predict the sentiment label y ∈
{positive, neutral, negative} towards the text-image pair.

The overall architecture of the proposed FENet is shown in Fig. 1. The bot-
tom layer includes a text encoding layer and an image encoding layer, which
transforms the text T = {T1, T2, . . . , TM} to X = {x1, x2, . . . , xM} ∈ R

dw×M

and transforms image to a fixed size vector separately, where dw denotes the
dimensions of the word embeddings. The middle part of our model is an inter-
active information fusion (IIF) layer simultaneously used to interactively learn
cross-modality fusion for text and image. The IIF layer contains a fine-grained
attention mechanism and identity mapping [9], which allows fuse one modal-
ity information with another modality data and learns more specific features.
The top part is a specific information extraction (SIE) layer, which consists of
two gated convolution layers and a max-pooling layer. The SIE layer first utilizes
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Fig. 1. The architecture of the proposed FENet.

convolution to extract informative features, and then selectively adjusts and gen-
erates expressive representations with gate mechanisms and a max-pooling layer.
Finally, the visual-specific textual representation and the textual-specific visual
representation from the SIE layer are concatenated for sentiment classification.

3.1 Text Encoding Layer

The function of the text encoding layer is mapping each word into a low dimen-
sional, continuous and real-valued vector, also known as word embedding. Tra-
ditional word embedding can be treated as parameters of neural networks or
pretrained from proper corpus via unsupervised methods such as Glove [17].
Further, a pretrained bidirectional transformer language model, also known as
BERT [6], has shown its powerful capacity as word embedding. We applies Glove-
based embedding for basic embedding and BERT-based embedding for exten-
sion embedding. The model variants are named FENet-Glove and FENet-BERT,
respectively.

• FENet-Glove. It applies Glove as the basic embedding to obtain the word
embedding of each word. Specifically, we employ a word embedding matrix
L ∈ R

dw×|V | to preserve all the word vectors, where dw is the dimension of
word vector and |V | is the vocabulary size. The word embedding of a word
wi can be notated as l ∈ R

dw , which is a column of the embedding matrix L.
• FENet-BERT. It uses BERT as the extension embedding to obtain the word

representation of each word. Specifically, we use the last layer of BERT-base1

to obtain a fixed-dimensional representation sequence of the input sequence.

1 BERT-base contains 12 self-attention blocks, and its hidden dimension is 768.
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3.2 Image Encoding Layer

Given an image Ip, where Ip indicates the image I rescaled to 224 × 224 pixels,
we use Convolutional Neural Networks (CNNs) to obtain the representations of
images. Specifically, the visual embedding V is obtained from the last convolu-
tional layer of ResNet1522 [8] pretrained on ImageNet [18] classification. This
process can be described as follows:

V = ResNet152(Ip), (1)

where the dimension of V is 2048 × 7 × 7. 2048 denotes the number of feature
maps, 7 × 7 means the shape of each feature maps. We then flatten each feature
map into 1-D feature vector vi corresponded to a part of an image.

V = {v1, v2, . . . , v2048}, vi ∈ R
49. (2)

3.3 Interactive Information Fusion Layer

The above encoding representation only considers their single modality, and
the attention mechanism is often applied to capture the interactions between
different modality representations. However, previous works [22,23] adopt coarse-
grained attention which may cause information loss, as the text contains multiple
words and the image presentation contains multiple feature maps. In contrast, as
shown in the middle part of Fig. 1, we adopt the IIF layer to solve this problem
and the detail of the IIF mechanism is shown in Fig. 2(a).

Given two modality inputs, one of them is the target modality input which we
fuse with another modality input named auxiliary input to generate the target
modality output. Specifically, given a target input S = {S1, S2, . . . , Sn} ∈ R

ds×n

and an auxiliary input A = {A1, A2, . . . , Al} ∈ R
da×l, we first project the target

input S and the auxiliary input A into the same shared space. The projecting
process can be depicted as follows:

Sembi = tanh(WSemb
Si + bSemb

), (3)
Aembi = tanh(WAemb

Ai + bAemb
), (4)

where WSemb
∈ R

dh×ds , WAemb
∈ R

dh×da , bSemb
, bAemb

∈ R
dh are trainable

parameters, and dh denotes the dimension of shared space. Then, we use Semb

and Aemb to calculate the fine-grained attention matrix. Formally, we define
the attention matrix as an alignment matrix M ∈ R

n×l, and Mij indicates the
relatedness between the i-th content of target input and the j-th content of
auxiliary input. The alignment matrix M is computed by

Mij = Sembi
TAembj . (5)

2 ResNet152 indicates residual nets with a depth of up to 152 layers.
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Fig. 2. Details of IIF and SIE layer. (a) IIF layer. (b) SIE layer.

For each row of M , a softmax function is applied for quantifying the importance
of each piece of auxiliary input to a specific piece of target input as follows:

Mij =
exp(Mij)

∑l
j=1 exp(Mij)

. (6)

Then, the fine-grained attention output F is formulated as follows:

F = A · MT , (7)

where F ∈ R
da×n and “·” denotes matrix multiplication. Finally, the concatena-

tion of the target input S and the fine-grained attention output F is fed into a
full connection layer to obtain the specific representation G = {G1, G2, . . . , Gn}
of the target input:

Gi = tanh(Wg[Si : Fi] + bg), (8)

where Gi ∈ R
ds and Wg ∈ R

ds×(ds+da). Thus, the overall process of IIF can be
summarized as follows:

G = IIF (S,A). (9)

Therefore, the textual-specific visual representation Vg and the visual-specific
textual representation Xg are obtained as follows:

Vg = IIF (V,X), (10)

Xg = IIF (X,V ). (11)
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3.4 Specific Information Extraction Layer

After interactively fusing two modality information, we need to extract the most
informative representation and control the proportion contributing to the final
sentiment classification. As shown in the top part of Fig. 1, we introduce the SIE
layer for this task and the details of the SIE layer is depicted in Fig. 2(b).

The SIE layer is based on convolutional layers and gated units. Given a
padded input vector Q = {q1, q2, . . . , qk} ∈ R

dq×k, we pass it through the SIE
layer to get the final representation. First, nk one dimensional convolutional ker-
nel pairs are applied to capture the active local features. Each kernel corresponds
a feature detector which extracts a specific pattern of active local features [11].
However, there are differences within the kernel pairs for their different non-
linearity activation function. The first kernel of kernel pairs is adopted to trans-
form the information and obtain informative representation. While the second
kernel of kernel pairs is a gate which controls the proportion of the result of the
first kernel flowing to the final representation. Specifically, a convolution kernel
pair of Wa and Wb maps r columns in the receptive field to a single feature a
and b with tanh and sigmoid activation function, respectively. e is the result of
multiplication of a and b, which stands for the representation after extraction
and adjustment. As the filter slide across the whole sentence, a sequence of new
feature e = {e1, e2, . . . , ek−r+1} is obtained by:

ai = tanh(qi:i+r−1 ∗ Wa + ba), (12)
bi = sigmoid(qi:i+r−1 ∗ Wb + bb), (13)
ei = ai × bi, (14)

where Wa,Wb ∈ R
dq×r are weights of the convolution kernel pair, and ba, bb ∈ R

are bias of the convolution kernel pair. “∗” denotes the convolution opera-
tion. As there are nk kernel pairs, the output features can form a matrix
E ∈ R

(k−r+1)×nk . Finally, we apply a max-pooling layer to obtain the most
informative features for each convolution kernel pair, which results in a fixed-
size vector z whose size is equal to the number of filter pairs nk as follows:

z = [max(e1), . . . ,max(enk
)]T . (15)

The above process can be summarized as follows:

z = SIE(Q). (16)

We treat Vg and Xg as the input of SIE to obtain the final visual and textual
representation, respectively. The process is formulated as follows:

Vz = SIE(Vg), (17)

Xz = SIE(Xg). (18)
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Table 1. Hyper-parameters of our model.

Hyper-parameter Value

IIF shared space size dh 100

SIE convolution kernel pair size nk 50

SIE convolution kernel size r 3

Dropout rate 0.3

3.5 Output Layer

After obtaining the final feature representation vectors for image and text, we
concatenate them as the input of a fully connected layer for classification:

p = Softmax(Wp[Vz : Xz] + bp), (19)

where Wp ∈ R
class×2nk and bp ∈ R

class are learnable parameters.

4 Experiments and Results

4.1 Datasets and Settings

Datasets. We use MVSA-Single and MVSA-Multiple [15] two datasets. The
former contains 5129 text-image pairs from Twitter and is labeled by a single
annotator. The later has 19600 text-image pairs labeled by three annotators. For
fair comparison, we process the original two MVSA datasets on the same way
used in [22,23]. We randomly split the datasets into training set, validation set
and test set by using the split ratio 8:1:1.
Tokenization. On the one hand, to tokenize the sentences for Glove-based
embedding method, we apply the same rule as [16], except we separate the
tag ‘@’ and ‘#’ with the words after. On the other hand, we use the WordPiece
tokenization introduced in [6] for BERT-based embedding method.
Word Embeddings. To initialize words as vectors, FENet-Glove uses the
300-dimensional pretrained Glove embeddings, and FENet-BERT applies 768-
dimensional pretrained BERT embeddings which contains 110M parameters.
Pretrained CNNs. We use the pretrained ResNet152 [8] from Pytorch.
Optimization. The training objective is cross-entropy, and Adam optimizer [12]
is adopted to compute and update all the training parameters. Learning rate is
set to 1e−3 and 2e−5 for Glove-based and BERT-based embedding, respectively.
Hyper-parameters. We list the hyper-parameters during our training process
in Table 1. All hyper-parameters are tuned on the validation set, and the hyper-
parameters collection producing the highest accuracy score is used for testing.
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4.2 Compared Methods

We compare with the following baseline methods on MVSA datasets.
SentiBank & SentiStrength [2] extracts 1200 adjective-noun pairs as the
middle-level features of image and calculates the sentiment scores based on
English grammar and spelling style of texts.
CNN-Multi [3] learns textual features and visual features by applying two indi-
vidual CNN, and uses another CNN to exploiting the internal relation between
text and image for sentiment classification.
DNN-LR [27] trains a CNN for text and employs a deep convolutional neural
network for image, and uses average strategy to aggregate probabilistic results
which is the output of logistics regression.
MultiSentiNet [22] extracts deep semantic features of images and introduces a
visual feature attention LSTM model to absorb the text words with these visual
semantic features.
CoMN [23] proposes a memory network to iteratively model the interactions
between visual contents and textual words for sentiment prediction.

Besides, this paper also presents two ablations of FENet to evaluate the
contribution of our components.
FENet w/o IIF removes the IIF component from the original model, and the
text embedding and image embedding are fed into the SIE layer directly.
FENet w/o SIE replaces the SIE component with a max-pooling layer to get
the final representation vector for sentiment classification.

4.3 Results and Analysis

Table 2 shows the performance comparison results of FENet with other baseline
methods. As shown in Table 2, we have the following observations.

(1) SentiBank & SentiStrength is the worst since it only uses traditional
statistical features to present image and text multimodality information,
which can not make full of the high-level characteristic of multimodal data.
Both CNN-Multi and DNN-LR are better than SentiBank & Sen-
tiStrength and achieve close performances by applying CNN architecture
to learn two modality representation. MultiSentiNet and CoMN get out-
standing results as they take the interrelations of image and context into
consideration. CoMN is slightly better than MultiSentiNet because Mul-
tiSentiNet only considers the single-direction influence of image to text and
ignores the mutual reinforcing and complementary characteristics between
visual and textual information. However, CoMN employs the coarse-grained
attention mechanism which may cause information loss, and directly uses
redundant textual and visual representations for final sentiment classifica-
tion. In contrast, FENet applies an information-fusion layer based on fine-
grained attention mechanisms, and leverages visual and textual information
for sentiment prediction by adopting an information extraction layer. Thus,
FENet variants perform better than CoMN and achieves a new state-of-
the-art performance.
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Table 2. Experimental results of different models on two MVSA datasets. For fair
comparison, ablated FENet is based on Glove embedding. CoMN(6) indicates that
CoMN with 6 memory hops. The results of baseline methods are retrieved from pub-
lished papers and the best two performances are marked in bold. The marker � refers
to p-value < 0.01 when comparing with MultiSentiNet, while the marker � refers to
p-value < 0.01 when comparing with CoMN(6).

Model MVSA-Single MVSA-Multiple

ACC F1 ACC F1

Baselines SentiBank &
SentiStrength

0.5205 0.5008 0.6562 0.5536

CNN-Multi 0.6120 0.5837 0.6630 0.6419

DNN-LR 0.6142 0.6103 0.6786 0.6633

MultiSentiNet 0.6984 0.6963 0.6886 0.6811

CoMN(6) 0.7051 0.7001 0.6892 0.6883

Ablated FENet FENet w/o IIF 0.6920 0.6882 0.6837 0.6795

FENet w/o SIE 0.7120 0.7102 0.6989 0.6964

FENet variants FENet-Glove 0.7254�� 0.7232�� 0.7057� 0.7038��

FENet-BERT 0.7421�� 0.7406�� 0.7146�� 0.7121��

(2) The results of both two ablations of FENet in accuracy and F1 are inferior
to those of FENet variants. On the one hand, after removing the interac-
tive information extraction layer, FENet cannot capture the interrelations
between image and text, which are significant for sentiment analysis. Specif-
ically, the performance of FENet w/o IIF degrades more than FENet
w/o SIE by 2.0% of accuracy in MVSA-Single and 1.5% of accuracy in
MVSA-Multiple. It verifies that the visual-specific textual representation
and the textual-specific visual representation bring useful information for
sentiment classification. On the other hand, FENet w/o SIE removes the
SIE layer from FENet and only contains the IIF layer, which achieves better
performances than CoMN. It is suggested that fine-grained attention can
capture more specific information than coarse-grained attention. Further-
more, the SIE component also plays a key role in our model. FENet-Glove
outperforms FENet w/o SIE in two datasets by 1.3% and 0.7% of accu-
racy respectively, which demonstrates that the SIE layer can exert significant
effects after integrated with the IIF layer.

(3) FENet-BERT remarkably improves the performance of FENet-Glove,
which reflects the powerful embedding capability of BERT.

5 Case Study

Figure 3 shows a example of visual and textual attention visualization. We use
the first feature map of image and the first token of sentence as attention query,
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respectively. With the help of interactive fine-grained attention mechanisms, the
model can successfully focus on appropriate regions based on the associated
sentences and pay more attention to the relevant tokens. For example, Fig. 3(a)
depicts a traffic accident, and the corresponding text describes the casualties. As
shown in Fig. 3(b), our model pay more attention to the head and seat of broken
car according to the sentence context. Also, based on the accident image, the
important words such as “serious” and “injury” have greater attention weight
in Fig. 3(c). Thus, our model correctly catches the important parts of text and
image, and predicts the sentiment of this sample as negative.

(a) (b)

(c)

Fig. 3. An example of visual and textual attention. (a) An example image. The corre-
sponding text of the example image is: “RT @OscarRomeo1268: Only 1 serious injury
from #RTC on the #A64 with a few broken bones but talking. Other 3 walking wounded
#incredible.” (b) Visual attention visualization. (c) Textual attention visualization.

6 Conclusion

This paper proposes FENet for sentiment analysis in multimodal social media.
Compared with the previous works, we employ a fine-grained attention mecha-
nism to effectively extract the relationship and influence between text and image.
Besides, we explore a new approach based on gated convolution mechanisms to
extract and leverage visual and textual information for sentiment prediction.
The experimental results on two datasets demonstrate that our proposed model
outperforms the existing state-of-the-art methods.
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