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Abstract. Knowledge graph completion (KGC) aims to predict miss-
ing information in a knowledge graph. Many existing embedding-based
KGC models solve the Out-of-knowledge-graph (OOKG) entity problem
(also known as zero-shot entity problem) by utilizing textual information
resources such as descriptions and types. However, few works utilize the
extra structural information to generate embeddings. In this paper, we
propose a new zero-shot scenario: how to acquire the embedding vec-
tor of a relation that is not observed at training time. Our work uses
a convolutional transition and attention-based aggregation graph neural
network to solve both the OOKG entity problem and the new OOKG
relation problem without retraining, regarding the structural neighbors
as the auxiliary information. The experimental results show the effective-
ness of our proposed models in solving the OOKG relation problem. For
the OOKG entity problem, our model performs better than the previous
GNN-based model by 23.9% in NELL-995-Tail dataset.

Keywords: Knowledge graph · Zero-shot learning · Graph Neural
Network · Graph Attention Network

1 Introduction

Knowledge graphs (KGs) have been used in many applications such as information
retrieval, question answering and text understanding. Standard KGs are collec-
tions of triplet (h, r, t), where h and t represent head entity and tail entity respec-
tively, and r stands for the relation from h to t. Nowadays, large-scale KGs such
as Freebase [2], WordNet [9] and DBpedia [1] have been constructed and main-
tained for many practical tasks. Although a knowledge graph contains millions
of triplets, there are incompleteness problems, which are divided into two types:
sparsity and poor scalability. Therefore knowledge graph completion (KGC) has
become the most important task in knowledge graph constructions.

One of the significant issues for knowledge graph constructions is the poor
scalability of KGs. Some KGE models are proposed to extend KGs automat-
ically with OOKG entities (also called zero-shot scenario), proposed by [17].
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The zero-shot scenario is summarized as that every testing triplet contains at
least one OOKG entity when doing KGC tasks. These zero-shot KGE models
use additional textual information, such as descriptions and types, to generate
the embedding vectors for OOKG entities.

Fig. 1. OOKG relation problem.

Some KGE models [6,15] utilize additional structural information rather than
textual information at testing time to solve certain OOKG entity. They generate
its embedding vector based on some triplets (called auxiliary triples), and each of
them contains one new entity, another in-KG entity and in-KG relation. However,
the Graph Neural Network (GNN) based model [6] is effective merely on datasets
that contain a small number of relations such as WordNet11 and Freebase13.
Besides, this model can only handle the problem of OOKG entities but cannot
deal with the problem of new relations, which is a new zero-shot scenario for
OOKG relations firstly proposed in our work.

This new scenario is important because the OOKG relation is likely to be
added to the knowledge graph to expand the scale and strengthen the connec-
tions between entities. As shown in Fig. 1, we want to define the new relation
“was-teammate” between basketball players. And we know the extra informa-
tion (“Chris Bosh”,“was-teammate”,“Dwyane Wade”) (auxiliary triplet). Then
we want to infer whether there exists the relation “was-teammate” between
“Dwyane Wade” and “LeBron James”. And it should help us to estimate that
the answer is yes.

To handle the two zero-shot scenarios only using structural information (aux-
iliary triplets), we propose a convolutional transition and attention-based aggre-
gation graph neural network structure. Our proposed model is inspired by GNN
[6] and Graph Attention Networks [14]. We will demonstrate the whole frame-
work in Sect. 3.

Our main contributions can be summarized as follows: (1) We propose a
new approach for generating embedding vectors of Out-of-KG relations; (2) We
develop a Convolutional Transition Function to transfer information for Out-
of-KG entities and Out-of-KG relations in parallel; (3) We propose a Graph
Attention-based Aggregation Function to merge the embeddings effectively; and
(4) We verify the effectiveness of our approaches in several different datasets
with different experiment settings.
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2 Related Work

Knowledge graph embedding (KGE) aims to represent entities and relations into
embedding vectors. Typical KGE models include TransE [3], ConvE [5], TransD
[7] and etc. There are also some methods utilizing relation paths, such as TransE-
NMM [10], ProjE [11]. Some other methods utilize extra textual information to
represent entities and relations, for example, DKRL [17], Open-world KGC [12].
And MetaR [4] concentrate on few-shot link prediction in knowledge graph. In
this problem, few triplets are given at training time, while in OOKG entities and
relations problems, auxiliary triplets are given at testing time.

Recently, some KGE models have involved GNNs for the representation of
OOKG entities, and they are directly related with our work. Hamaguchi et al.
[6] employ GNN to build embeddings based on the knowledge transfer between
neighbor entities. But Basic-GNN [6] defines two transition networks for each
relation. For a knowledge graph with many relations, the triplets are not enough
to fit the transition functions for the relation with few instances. The work
proposed by [15] provides a logic attention network as the aggregation function in
GNN. They mainly compare this LAN aggregation function with average method
and LSTM method. We mainly utilize the graph attention based method as the
aggregation function. In the meantime, our proposed models can deal with the
OOKG scenario for relations.

3 Methodology

3.1 Notations and Problem Formulation

Firstly, we introduce some notations that are used in this paper. Let E be the
set of entities and R be the set of relations. And a typical knowledge graph is
denoted by G = {(h, r, t)} ⊆ E × R × E , where (h, r, t) means the fact or the
relation triplet. Let Ggold be a set of facts. Any triplet in Ggold is called positive
triplets. Otherwise, it is a negative triplet. Generally, we can see that G ⊂ Ggold.

Triplet Classification is a typical KGC task [13] and has become a standard
benchmark for KGE methods. Let H = (E × R × E)\G be the set of facts that
are not in the existing knowledge graph. For each triplet f ∈ H, it is either a
positive triplet (i.e., f ∈ Ggold), or it is a negative triplet (i.e., f /∈ Ggold). A
standard triplet classification limits that E and R only appear in G.

One of the new tasks is called the OOKG (out-of-knowledge-graph) entity
TC. In addition to the knowledge graph G, new triplets Gaux e are given
at test time. Each triplet in Gaux e contains exactly one OOKG entity from
EOOKG = E(Gaux e)\E(G), one entity from E(G), where E(G) = {h|(h, r, t) ∈
G} ∪ {t|(h, r, t) ∈ G} and no new relations are involved. Gaux e gives the rela-
tionship between OOKG entities and old entities in E(G). In this setting, the
task is to correctly identify the test triplets that involve the OOKG entities
EOOKG given the training set G and auxiliary set Gaux e. The other new task
is called OOKG relation TC. Similar to OOKG entity problem, new triplets
Gaux r are given at test time. However, each triplet in Gaux r contains exactly
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one OOKG relation and two old entities from E(G). We denote the OOKG rela-
tions as ROOKG = R(Gaux r)\R(G), where R(G) = {r|(h, r, t) ∈ G}. In this
new zero-shot scenario, our task is to correctly identify triplets that involve the
OOKG relations ROOKG, given the training set G and auxiliary set Gaux r.

3.2 Framework of Our Proposed Model

We propose a framework that can solve the above two zero-shot scenarios. The
designed models can transfer information from E(G) and R(G) to EOOKG and
ROOKG. This framework consists of two models, the propagation model and
the output model. The next two subsections demonstrate how we design the
propagation model to satisfy the information transfer in KGs. The output model
defines an objective function according to given tasks using the embeddings of
entities and relations. Combining the propagation models and the output model,
we can get the complete GNN model. At training time, the propagation models
for entities and relations gather the information from entities’ and relations’
corresponding triplets, to calculate the embeddings of h,r,t in (h, r, t). Then the
output model takes the embeddings and calculates the absolute-margin objective
function. The parameters and embeddings are trained using stochastic gradient
descent with backpropagation.

At testing time, for OOKG entity e, we initialize its embeddings randomly.
Then we can calculate the embedding of e through the propagation model for
entities using auxiliary triplets. The auxiliary triplets define the neighbors of
entity e, and the embeddings of neighbors and relations are trained already so
they can be used in transition functions. For attention-based aggregation, we
can calculate the normalized attention value using the embeddings of neighbors,
relations and the randomly initialized embedding of e. For OOKG relation r,
we can also calculate the embedding of r through the propagation model for
relations, following the same procedure as OOKG entities. That is to say, we
can calculate the embeddings of OOKG entities and relations through extra
structure information without retraining.

3.3 Propagation Model for Entities

Let e ∈ E(G) be an entity, and ve ∈ R
d be the d-dimensional representation

vector of e. We define the propagation model by the following equation:

Shead(e) = {Thead(vh,vr;h, r, e)|(h, r, e) ∈ Nh(e)}, (1)

Stail(e) = {Ttail(vt,vr; e, r, t)|(e, r, t) ∈ Nt(e)}, (2)

ve = P (Shead(e) ∪ Stail(e)), (3)

where head neighbors Nhead(e) = {(h, r, e)|(h, r, e) ∈ G} and tail neighbors
Ntail(e) = {(e, r, t)|(e, r, t) ∈ G}. The Thead and Ttail are the transition function:
R

d×R
d×E(G)×R(G)×E(G) → R

d. The transition function is used to transform
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the vector of a node into the vector of its neighbors, and the transition func-
tion’s parameters depend on the specific node pair and the edge between them.
Shead(e) contains the embeddings transformed from e’s neighbors Nhead(e). And
Stail(e) contains the embeddings transformed from e’s neighbors Ntail(e). The
Eq. (3) represents the information aggregation function of the head set and
tail set.

Transition Function. The purpose of the transition function is to define how to
transfer information between the current node and its neighbors. In Hamaguchi’s
model, they design 2n independent transition functions if there are n relations
in a KG. For the knowledge graph with many relations, such as NELL-995, the
triplets are not enough to fit their transition functions for the relation with few
instances. So we define the following two kinds of transition functions to solve
this problem:

T conv
dir (vei ,vri ;< e, ei, ri >) = ReLU(BN(Convdir(vei ,vri))), (4)

T fcl
dir (vei ,vri ;< e, ei, ri >) = ReLU(BN(FCLdir(vei ,vri))), (5)

where dir = head if ei is a head entity or dir = tail if ei is a tail entity.
Given a triplet (h, r, e), T conv

head and T fcl
head can transform the vh and vr together

into a temporary vector vh,r→e. Similarly, given a triplet (e, r, t), the T conv
tail

and T fcl
tail can transform the vt and vr into a temporary vector vt,r→e. The

difference between functions proposed by Hamaguchi et al. [6] and (4) (5) is
that we substitute the 2n fully-connected layers with 2 designed convolutional
2D layers or 2 fully-connected layers. Besides, the calculation complexity is lower
for (5), but the feature extraction capability is higher for (4), which is tested
through experiments.

The FCLhead function is a fully-connected layer similar to the functions in
[6]. Convhead and Convtail are two convolutional 2D layers. Convhead takes vh

and vh as inputs. Firstly, we concatenate them along the first dimension into a
n × 2 matrix. Then we pad zeros to the matrix along the n-dimension side to get a
(n + 1) × 2 matrix. After that, we use a 2 × 2 filter to extract the feature between
vh and vr. Then the output of Convhead is an n-dimensional vector. Similarly,
Convtail has the same structure with Convtail except that it takes the vectors of t
and r as inputs. After extracting features through convolutional 2D layers or fully-
connected layers, we apply batch normalization and ReLU to the output.

Aggregation Function. Aggregation function P mentioned in Eq. (3) maps a
set of vectors to a vector. The purpose of P is to merge information together
from a set of vectors. For S = {xi ∈ R

d}Ni=1, some simple pooling methods are
as follows:

Psum(S) =
N∑

i=1

xi Pavg(S) =
1
N

N∑

i=1

xi Pmax(S) = max({xi}Ni=1)

where max is the element-wise max function. We apply these three methods
separately to our models.
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In addition to the simple pooling methods, we also propose an attention-
based aggregation network to define the weight value for each temporary infor-
mation vector inspired by the Graph Attention Network [14].

Each information transfer edge attention value is defined as Eq. (6). Entity e
is the target entity. Entity set Eneighbor(e) is the neighbor entities set of e. For
each ei ∈ Eneighbor(e), we denote the relation between ei and e as ri, and e can
be head entity or tail entity. W1 denotes the linear transformation matrix from
3d dimensions to d dimensions. W2 denotes the linear transformation matrix
from d dimensions to 1 dimension. || denotes the concatenation operation. The
neural network mechanism used in [15] takes transformed vectors as inputs but
we take the vectors of entities and relations as inputs

value<e,ei,ri> = LeakyReLU(W2(W1[vei ||ve||vri ])), (6)

For each entity e, there are several neighbor entities and corresponding value.
And we use the softmax function to modify these values as Eq. (7).

AttV<e,ei,ri> =
exp(value<e,ei,ri>)∑

ei∈Eneighbor(e)

exp(value<e,ei,ri>)
, (7)

where (e, ri, ei) ∈ Nhead(e) ∪ Ntail(e) or (ei, ri, e) ∈ Nhead(e) ∪ Ntail(e).
The attention-based aggregation function is defined as Eq. (8). The vtrans(ei)

is the vector calculated by the transition function.

Patt(Shead(e) ∪ Stail(e)) =
∑

ei∈Eneighbor(e)

AttV<e,ei,ri> ∗ vtrans(ei), (8)

Using the above transition functions and aggregation functions, we construct
the information propagation model for entities as shown in Eq. (1)–(3). We gather
the entity e’s neighbors and extract their features along with specific relation r.
Then we merge the information using different aggregation functions to get the
embedding of e.

3.4 Propagation Model for Relations

The second propagation model is designed for relation’s information transfer.
We can transfer the information in G into ROOKG by this model. Intuitively, we
have a basic assumption that the relation’s embedding vector is only related to
the triplets where it shows. That is to say, given the triplets containing relation
r and their corresponding entities embedding, we can represent r’s embedding.
We propose a propagation function based on the above assumption:

Srel(r) = {T conv
rel (vh,vt;h, r, t)|(h, r, t) ∈ Nrel(r)}, vr = P (Srel(r)), (9)



548 M. Zhao et al.

where Srel(r) contains the embeddings that are transformed from r’s correspond-
ing triplets Nrel(r). And Nrel(r) stands for the set of triplets that contains rela-
tion r. The function P is the simple pooling function mentioned in Aggregation
Function.

The T conv
rel transition function: Rd×R

d×E(G)×R(G)×E(G) → R
d transforms

the embeddings of entity h and t into a temporary embedding of relation r. The
specific form is as follows:

T conv
rel (vh,vt;h, r, t) = ReLU(BN(Convrel(vh,vt))), (10)

where Convrel is a convolutional 2D layer similar to Convhead. The inputs are vh

and vt and the parameters are independent of Convhead. For a specific relation r
in R(G), we first collect the triplets that contain r. Then we gather information
from the corresponding entity pairs set {(hi, ti)}, using the transition function
T conv
rel . Then we mix together these temporary embeddings to get the embedding

vr of r.

3.5 Output Model

We use the TransE [3] based objective function as the output model. Our archi-
tecture is not limited to TransE. We can also use other KGE models like ConvE
[5], for the output model.

Score Function. The score function measures the correctness of a triplet (h,r,t).
Smaller scores mean that the triplet is more likely to be true. We use the same
score function as in TransE:

f(h, r, t) = ‖vh + vr − vt‖, (11)

where vh, vr, vt are the embedding vectors of the head, relation and tail, respec-
tively.

Absolute-Margin Objective Function. We utilize the following objective
function called the absolute-margin objective function [6]:

L =
N∑

i=1

f(hi, ri, ti) + [τ − f(h
′
i, ri, t

′
i)]+ (12)

where τ is a hyperparameter, called the margin. []+ means when the expression
is less than zero, we eliminate it. This absolute-margin objective function aims to
train the scores of positive triplets towards zero, whereas the scores of negative
triplets are at least τ .
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Table 1. Specifications of the triplet classification datasets.

Relations Entities Training triplets Validation triplets Test triplets

WordNet11 11 38696 112581 5218 21088

NELL-995 200 75492 149678 1086 7984

Table 2. Standard TC Result. Method with prefix * is our proposed model.

Method WordNet11 NELL-995

TransE 67.6 74.8

TransD 69.4 71.4

NMM 82.4 84.4

Basic-GNN-max 87.4 87.4

*ConvEntity-avg 85.6 79.7

*FCLEntity-Att 87.9 93.2

*ConvEntity-ConvRelation-avg 85.9 86.5

4 Experiment

4.1 Experimental Setup

We evaluate the effectiveness of our model on two datasets WordNet11 and
NELL-995. To shorten the information transfer time, we sample the neighbor
entities randomly when an entity has too many neighbors, and we also sample
the corresponding entity pairs randomly when a relation is related to too many
of entity pairs. The maximum number of corresponding information sources is
set to be 64. The parameters are trained by the stochastic gradient descent
with backpropagation. Specifically, we use the Adam optimization method. The
step size of Adam is α1/(α2 · k + 1.0), where k indicates the number of epochs
performed, α1 = 0.01, and α2 = 0.0001. The mini-batch size is 5000 and the
number of training epochs is 150 in every experiment. Moreover, the dimension of
the embedding space is 200. We implement our models using the neural network
library Chainer http://chainer.org/.

In the experiment part, we define three versions of our model. The first
version ConvEntity-PoolingMethods means that only entity embeddings are
obtained based on the convolutional transition functions and simple pooling
methods. The second version FCLEntity-Att means that only entity embeddings
are obtained based on the fully-connected transition function and attention-
based aggregation function. We use the pretrained TransE embeddings to ini-
tialize the entity and relation embeddings. The third version is ConvEntity-
ConvRelation-PoolingMethods, which means the embeddings of entities and rela-
tions are all obtained based on the convolutional transition functions and simple
pooling methods.

http://chainer.org/
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4.2 Standard Triplet Classification

Firstly, we compare our models with some baselines in the standard setting.
There are no OOKG entities and relations involved at testing time.

Datasets. We use WordNet11, NELL-995 for evaluation. We use corrupted
triplets generated from positive triplets as the negative triplets of validation
and test sets to evaluate Triplet Classification. The specifications on WordNet11
and NELL-995 are shown in Table 1. Half of the validation and test sets are
negative triplets, and they are included in the numbers of validation and test
triplets. During the training time, we also use corrupted triplets as negative sam-
ples. From a positive triplet (h, r, t) in knowledge graph G, a corrupted triplet
is generated by substituting a random entity sampled from E(G) for h or t with
the ‘Bernoulli’ trick [16].

Table 3. Specifications of the OOKG entity datasets.

WN11 NELL-995

Head Tail Both Head Tail Both

Training triplets 99963 78763 71097 137846 138487 128956

Validation triplets 4108 3122 2759 838 485 411

OOKG entities 1034 2627 3319 2178 116 2183

Test triplets 2969 2880 2708 2202 2391 2089

Auxiliary entities 6791 16193 19218 5210 6263 9825

Auxiliary triplets 12376 31770 38285 9900 7853 15068

Table 4. Results of the OOKG entity experiment.

Method WN11 NELL-995

Head Tail Both Head Tail Both

Basic-GNN-avg 82.1 73.5 66.1 54.7 59.6 54.8

LAN 84.5 75.6 72.6 92.8 64.4 65.2

*ConvEntity-avg 71.1 69.5 61.8 80.7 70.2 65.0

*FCLEntity-Att 82.6 72.1 68.6 93.0 88.3 87.3

Results. The results are shown in Table 2. As the table shows, in both Word-
Net11 and NELL-995 datasets, our proposed model FCLEntity-Att achieves the
best accuracy.

4.3 OOKG Entity Experiment

In this part, we compare our model ConvEntity, FCLEntity-Att with Basic-GNN
[6] and LAN [15]. Our proposed models ConvEntity and FCLEntity can solve
the scenario where there are only OOKG entities.
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Datasets. We process NELL-995 dataset to construct several datasets for our
OOKG entity experiment following a similar protocol used in [6]. Also, we
directly use the datasets WN11 released by [6].

We take the NELL-995 as an example to explain the process, which consists
of two steps: choosing OOKG entities, filtering and splitting triplets. The details
of the generated OOKG entity datasets are shown in Table 3.

1. Choosing OOKG entities. We first randomly select 3000 triplets from the
NELL-995 test file. For these 3000 triplets, we choose the initial OOKG can-
didates in three different ways (thereby yielding three datasets in total), called
Head, Tail, and Both settings. For the Head setting, we choose the head enti-
ties of the 3000 triplets as candidates. The Tail setting is similar, but with
tail entities regarded as candidates. In the Both setting, all the head and
tail entities are seen as candidates. We consider the candidates set as Tc and
the final OOKG entity set as T . For every candidate e ∈ Tc, if it does not
have any neighbor in the original training set, such an entity is filtered out,
yielding the final T .

Table 5. Specifications of the OOKG relation datasets.

NELL-995

1000 1500 2000

Training triplets 147088 147546 146422

Validation triplets 653 732 576

Auxiliary triplets 2094 1639 267

OOKG relations 3 3 5

Test triplets 819 1202 1629

Table 6. Results of the OOKG relation experiment.

Method NELL-995

1000 1500 2000

Baseline-sum 58.4 61.5 56.1

Baseline-max 41.8 38.8 44.1

Baseline-avg 58.0 58.7 56.4

*ConvEntity-ConvRelation-avg 84.1 84.8 73.2

2. Filtering and splitting triplets. After getting the OOKG entity set T , we
choose the new training set and auxiliary set. For a triplet in the original
training set, if it only contains non-OOKG entities, it is added to the new
training set. If it only contains one OOKG entity, it is added to the auxiliary
set. For the validation triplets, we remove the triplets containing OOKG
entities. For the test triplets, we use the 3000 triplets in the NELL-995 test
file in step (1), with discarding the triplets that contain removed OOKG
candidates.
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Results. The results are shown in Table 4. In three datasets generated from
NELL-995, our proposed FCLEntity-Att model outperforms other models. In
three datasets generated from WN11, LAN proposed by [15] achieves the best
results. But our proposed model performs better than the original Basic-GNN
method [6]. The results demonstrate that our proposed convolutional transition
function and the attention-based aggregation function are effective for the Out-
of-KG entity experiments in datasets with many relations. Because of its relation-
specific transition function and logic attention mechanism, LAN [15] has better
generalization performance in WN11.

4.4 OOKG Relation Experiment

This part is to verify the effectiveness of our relation information transfer model,
ConvEntity-ConvRelation-PoolingMethods, which can generate zero-shot rela-
tion embeddings.

Datasets. We process the NELL-995 dataset to construct three datasets for our
OOKG relation experiment with different quantities of OOKG relations. The
process consists of two steps: choosing OOKG relations, filtering and splitting
triplets. The details of the generated OOKG datasets are shown in Table 5.

1. Choosing OOKG relations candidates. To decide OOKG relations, we first
randomly select N = 1000, 1500, 2000 triplets from the NELL-995 test file.
For these N triplets, we choose the relations as the initial OOKG relation
candidates set called Kc.

2. Filtering and splitting triplets. After getting the OOKG relations candidates
set Kc, we divide the original training set into two parts. The first part con-
tains the triplets whose relation is not in Kc, called the new training set.
The second part contains the triplets whose relation is in Kc, called auxil-
iary set, with discarding the triplet which contains entities not shown in the
new training set. And for the N test triplets mentioned before, we discard
these triplets which contain entities not shown in the new training set. For
the original validation set, we only choose triplets which only contain entities
and relations shown in the new training set as new validation triplets.

Results. The results are shown in Table 6. We use the following method as
the baseline in this experiment since this zero-shot scenario is proposed firstly
in our work. For an OOKG relation r, based on the auxiliary set, we use the
basic assumption h + r = t to compute the temporary relation embeddings
set {ri|ri = ti − hi}. And we apply the simple pooling function to this set to
get the representation vector of r. We use the hyperparameter and settings of
TransE in the work of [8]. As the table shows, our proposed model ConvEntity-
ConvRelation-avg outperforms the baseline methods in all three datasets gener-
ated from NELL-995. This experiment shows that the convolutional transition
function is also effective in the relation information transfer.
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5 Conclusion

In this paper, we propose the convolutional transition and attention-based aggre-
gation graph neural network structure to solve the two zero-shot scenarios where
entities and relations are not involved at training time. In particular, the zero-
shot scenario for relations is firstly involved in our work. Through the OOKG
entity experiment and the OOKG relation experiment, we evaluate the effec-
tiveness of the convolutional transition function and the graph attention-based
aggregation function. Our proposed models outperform baseline models signifi-
cantly in the three experiment settings.
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