
PEARL: Probabilistic Exact Adaptive
Random Forest with Lossy Counting

for Data Streams

Ocean Wu(B), Yun Sing Koh, Gillian Dobbie, and Thomas Lacombe

The University of Auckland, Auckland, New Zealand
hwu344@aucklanduni.ac.nz, ykoh@cs.auckland.ac.nz,

{g.dobbie,thomas.lacombe}@auckland.ac.nz

Abstract. In order to adapt random forests to the dynamic nature of
data streams, the state-of-the-art technique discards trained trees and
grows new trees when concept drifts are detected. This is particularly
wasteful when recurrent patterns exist. In this work, we introduce a
novel framework called PEARL, which uses both an exact technique and
a probabilistic graphical model with Lossy Counting, to replace drifted
trees with relevant trees built from the past. The exact technique utilizes
pattern matching to find the set of drifted trees, that co-occurred in pre-
dictions in the past. Meanwhile, a probabilistic graphical model is being
built to capture the tree replacements among recurrent concept drifts.
Once the graphical model becomes stable, it replaces the exact technique
and finds relevant trees in a probabilistic fashion. Further, Lossy Count-
ing is applied to the graphical model which brings an added theoretical
guarantee for both error rate and space complexity. We empirically show
our technique outperforms baselines in terms of cumulative accuracy on
both synthetic and real-world datasets.

Keywords: Random Forest · Recurring concepts · Concept drift

1 Introduction

Many applications deal with data streams. Data streams can be perceived as a con-
tinuous sequence of data instances, often arriving at a high rate. In data streams,
the underlying data distribution may change over time, causing decay in the pre-
dictive ability of the machine learning models. This phenomenon is known as con-
cept drift. For example, in a weather prediction model when there is a shift from
one season to another, one may observe a decrease in prediction accuracy.

Moreover, it is common for previously seen concepts to recur in real-world data
streams [3,5,12]. If a concept reappears, for example a particular weather pattern,
previously learnt classifiers can be reused; thus the performance of the learning
algorithm can be improved. Current techniques that deal with recurrent concept
drifts [2,7] are exact methods, relying on meta-information. A drawback of these
techniques is their approach to memory management in storing the classifier pool.
c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12085, pp. 17–30, 2020.
https://doi.org/10.1007/978-3-030-47436-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47436-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-47436-2_2

18 O. Wu et al.

These methods create a new classifier after each drift, which leads to a large pool
of concepts being created early in the process. This makes identifying previously
seen concepts or states more expensive.

Motivated by this challenge, we propose a novel approach for capturing
and exploiting recurring concepts in data streams using both probabilistic and
exact techniques, called Probabilistic Exact Adaptive Random Forest with Lossy
Counting (PEARL). We use an extended Adaptive Random Forest (ARF) as the
base classifier [6]. Like ARF, it contains a set of foreground trees, each with a
drift detector to track warnings and drifts, and a set of background trees that
are created and trained when drift warnings are detected. Beyond that, we keep
all the drifted foreground trees in an online tree repository and maintain a set of
candidate trees. The candidate trees are a small subset of the online tree repos-
itory, which can potentially replace the drifted trees. When the drift warning
is detected, a set of candidate trees are selected from this online tree repos-
itory by either the State Pattern Matching technique or the Tree Transition
Graph. Once the actual drift is detected, the foreground trees are replaced by
either their background trees or the more relevant candidate trees. In addition,
we periodically update the Tree Transition Graph using a Lossy Counting [8]
approximation. The benefit of Lossy Counting is the ability to control the size
of the graph and expire less frequently used trees, thus adapting the graph to
the dynamic environment of the evolving data.

The main contribution of this paper is a novel framework for storing and
reusing concepts effectively and efficiently, by using both an exact pattern match-
ing technique and a probabilistic graphical model. In particular, the graphical
model uses the Lossy Counting approximation for improved performance and
guaranteed space complexity. It is shown empirically to outperform baselines in
terms of cumulative accuracy gains.

The remainder of this paper is organized as follows: in Sect. 2 we provide an
overview of work related to recurring concepts. In Sect. 3 we give an overview
of the PEARL framework. In Sects. 4 and 5 we discuss the implementations of
the State Pattern Matching and the Tree Transition Graph in detail, followed
by a theoretical analysis in Sect. 6. We then evaluate the performance of our
techniques on both synthetic and real world datasets in Sect. 7. Finally, Sect. 8
concludes our work and poses directions for future work.

2 Related Work

There has been some research using probabilistic methods for concept drift adap-
tation to find recurrent patterns. RePro [14] was proposed to predict concept
models for future drifts using historical trends of concept change. The authors
use a Markov Chain to model the concept history and have shown that this
allows the learner to adjust more quickly to concept change in streams with
recurring concepts. Chen et al. [4] proposed a novel drift prediction algorithm to
predict the location of future drift points based on historical drift trends which
they model as transitions between stream volatility patterns. The method uses a

PEARL: Probabilistic Exact Adaptive Random Forest with Lossy Counting 19

probabilistic network to learn drift trends and is independent of the drift detec-
tion technique. ProChange [9] finds both real and virtual drifts in unlabelled
transactional data streams using the Hellinger distance, and models the volatil-
ity of drifts using a probabilistic network to predict the location of future drifts.
The GraphPool framework [1] refines the pool of concepts by applying a merging
mechanism whenever necessary by considering the correlation among features.
Then, they compare the current batch representation to the concept represen-
tations in the pool using a statistical multivariate likelihood test. All of these
techniques use an exact mechanism for managing the number of transitions from
one model to another, which is computationally expensive.

3 PEARL Overview

PEARL extends Adaptive Random Forest (ARF), a classification algorithm for
evolving data streams that addresses the concept drift problem. In ARF, there
are two types of trees, namely the foreground trees and the background trees. The
foreground trees get trained, and make individual predictions. The majority of
the individual predictions forge the final prediction output of the ARF (i.e. vot-
ing). Additionally, each foreground tree is equipped with two drift detectors, one
for detecting drift warnings and the other for detecting actual drifts. The back-
ground trees are created and start training from the root when the foreground
trees have detected drift warnings. When actual drifts are detected, the back-
ground trees then replace the drifted foreground trees. The background trees do
not participate in voting until they replace the drifted foreground trees.

In ARF, the drifted foreground trees simply get discarded when they get
replaced by the background trees. This is particularly wasteful since the same
concepts may recur. Besides, the drift warning period may be too short for the
background trees to model the recurred concept. In contrast to ARF, PEARL
stores drifted foreground trees in an online tree repository, and tries to reuse
these trees to replace the drifted foreground trees when concepts recur. However,
as the size of the repository can grow as large as the memory allows, it is compu-
tationally expensive to evaluate all the repository trees, to find relevant trees to
the potentially recurring concepts. As a result, PEARL introduces a third type
of tree, called the candidate trees, to the random forest. The candidate trees
are a small subset of the repository trees. They are potentially the most rele-
vant trees to the next recurring concept drift. Similar to the background trees,
the candidate trees may replace the drifted foreground trees, and they do not
participate in voting until such replacements happen.

In the PEARL framework, both the background and the candidate trees
perform predictions individually during the drift warning period. When actual
drifts are detected, PEARL tries to replace the drifted foreground trees with
either the background trees or the best performing candidate trees, based on the
κ statistics of their individual prediction performance during the drift warning
period. Figure 1 gives an overview of the PEARL framework.

To find candidate trees efficiently and accurately, PEARL uses a combination
of two techniques: an exact technique called the State Matching Process,

20 O. Wu et al.

Fig. 1. PEARL overview

and a probabilistic technique called the Tree Transition Process, as shown
in the Candidate Tree Selection Phase in Fig. 1. Initially, the state matching
process finds candidate trees by matching patterns stored in a State Pattern
Buffer. Each of the patterns represents a set of trees in the online repository,
that co-occurred in predictions in the past. Meanwhile, PEARL constructs a
probabilistic graphical model that captures the tree replacements when drifts
are detected, as shown in the Update Phase in Fig. 1. When the graph model
becomes stable, i.e., when the reuse rate of candidate trees surpasses a user set
threshold, the state matching process is replaced by the tree transition process
to find potential candidate trees. Conversely, when the graph model becomes
unstable, PEARL switches back to the state matching process. Details of the
two processes are presented in Sects. 4 and 5.

4 State Matching Process

In this section we detail the state matching process for finding candidate trees,
as shown in Fig. 1. This process is used to find exact match for a set of trees that
co-occurred in predictions in the past, and is relevant again when an old concept
reappears. This process is the basis of the tree transition process in Sect. 5.

A state pattern is a snapshot of the status of the repository trees during
a stable period i.e., the interval between two consecutive drift detections. Such
a snapshot is represented by a sequence of bits, denoting whether each of the
repository trees is functioning as a foreground tree during the stable period.
Formally, let b0, b1, b2, . . . , bR−1 be a sequence of bits, with R being the size of
the online tree repository. Each tree in the online tree repository is associated
with an ID in the range of [0, R − 1], which corresponds to its position in the
bit sequence. Here bi = 1 and bi = 0 denote whether the repository tree with
ID = i is functioning as a foreground tree or not, respectively (Note: bi = 0 can
also mean the repository has not yet allocated a spot for a tree with ID = i). For
example, a pattern 0100110 indicates that the size of the online tree repository is
7 (i.e., R = 7). The repository trees with IDs equal to 1, 4 and 5 are functioning
as foreground trees, since the bits at the corresponding positions are set.

PEARL: Probabilistic Exact Adaptive Random Forest with Lossy Counting 21

State Pattern Construction. Initially, the online tree repository allocates
spots for all the foreground trees. These foreground trees get allocated the first
few tree IDs, and they are represented by the first few bits in the state pattern
accordingly. For example, if R = 7 and the random forest consists of 3 foreground
trees, the state pattern is then initialized to 1110000.

The state pattern gets updated during the Update Phase as shown in Fig. 1.
Following the last example, suppose we detect the very first drift on the fore-
ground tree with ID = 0. Firstly, the pattern is updated by turning the first bit
off. There are no candidate trees when the very first drift is detected, therefore
we simply replace it with its background tree that started growing when the
drift warning was detected. The background tree then gets allocated the next
available spot in the online tree repository, as well as getting assigned a new
ID = 3 which corresponds to the allocated spot. As a result, the state pattern is
updated to 0111000.

At a later stage when there are candidate trees outperforming the background
trees, we replace the drifted foreground trees with the candidate trees. Similar
to the last example, the pattern is updated by first turning the bits representing
the drifted trees off, followed by turning on the bits corresponding to the IDs
of the candidate trees. Otherwise, just like the last example, a background tree
gets assigned a new ID, as well as getting allocated a spot in the online tree
repository corresponding to the newly assigned ID.

The updated state pattern is added to a State Pattern Buffer, which keeps all
the updated states, with a user defined limit on size. Each of the state patterns
is associated with the frequencies of it being added. To control the size of the
buffer, the state patterns are evicted by the Least Recently Used (LRU) policy.

State Pattern Matching. Pattern matching is used to find candidate trees
from the online tree repository by comparing the current state pattern with all
the patterns in the State Pattern Buffer. The choice of the best matching state
pattern follows three requirements: (A) the bits representing the drifted trees
must be unset; (B) the pattern must have the lowest edit distance to the current
state pattern; (C) the maximum edit distance must not be greater than a user
defined threshold θ ∈ (d, 2|F |] with d being the number of drifted trees, and F
being the number of foreground trees. For patterns that satisfy all the above
three requirements, the one with the highest frequency gets matched.

The set bits in the matched pattern, that are unset in the current state
pattern, are the IDs of the repository trees to be added to the set of candidate
trees. For instance, suppose the current pattern is 010011 and θ = 1. A drift
warning is detected on the foreground tree with ID = 1, and the state pattern
list contains the following 3 patterns with their frequencies f : (1) 010011 with
f = 5; (2) 100101 with f = 4; (3) 001011 with f = 1. The edit distance for each
pattern is 0, 2, 1, respectively.

Following rule (A), pattern 1 is not matched since the bit corresponding to
the drift tree ID is set. Following rules (B) and (C), pattern 2 is not matched
despite having a higher frequency than pattern 3, since its edit distance is higher.

22 O. Wu et al.

As a result, pattern 3 is matched as its edit distance is no greater than θ. In this
case, the repository tree with ID = 2 is added to the set of candidate trees.

5 Tree Transition Process

In the state matching process, the total number of patterns is 2R with R being
the size of the online tree repository. The patterns are evicted by the LRU scheme
since it is infeasible to store all the patterns in memory. Relevant patterns may
be thrown away due to memory constraints. By introducing a graph that mod-
els the tree transitions during the pattern matching process, we can retain more
information with an addition of polynomial space complexity. As data streams
evolve over time, some trees in the online repository may loose relevancy, while
new trees are built and stored. Therefore we apply Lossy Counting on the graph-
ical model to adapt to changes in the underlying distribution. In addition, Lossy
Counting reduces the space complexity to logarithmic with an error guarantee.

Tree Transition Graph. The Tree Transition Graph is a directed graph
G = (V,E). The set of nodes V0, V1, . . . , VR−1 represents the tree IDs of the
individual trees stored in the online tree repository of size R. A directed edge
(u, v) ∈ E stands for the foreground tree with ID = u is replaced by a reposi-
tory tree with ID = v, when a drift is detected on the foreground tree u. The
edge weight W (u, v) describes the number of times that u transitions to v. The
graph is updated during the Update Phase (Fig. 1). A drifted foreground tree
adds an outgoing neighbour when either its background tree or a candidate tree
replaces it. If such a transition already exits in E, W (u, v) is incremented by
1. If a background tree replaces the drifted tree and gets added to the online
tree repository, a new node representing the background tree is added to the
graph first. The Tree Transition Graph becomes stable and replaces the state
matching process when the last d drifted trees have a reuse rate c

d over a user
defined δ ∈ (0, 1), where c denotes the number of candidate trees replacing the
d drifted trees. When the foreground tree with ID = u detects a drift warning,
it is replaced by one of its outgoing neighbours randomly. The probability of a
transition (u, v) is W (u,v)∑

∀(u,i)∈E W (u,i) where i ∈ V .

Lossy Counting. The Lossy Counting algorithm computes approximate fre-
quency counts of elements in a data stream [11]. We apply this technique to
approximate the edge weights in the Tree Transition Graph, to improve its sum-
marization of the probabilities of tree transitions, under constant changes in the
underlying distribution of the data stream.

Lossy Counting may be triggered when a drift warning is detected, i.e., before
either the state matching and the tree transition processes. Given an error rate
ε, the window size of Lossy Counting is l = 1

ε , meaning the Lossy Counting
is performed after every l drift warning trees. At the window boundaries, all
the edge weights get decremented by 1. If an edge weight becomes 0, the edge is

PEARL: Probabilistic Exact Adaptive Random Forest with Lossy Counting 23

removed from E. This may lead to nodes becoming isolated, i.e., when both out-
degree and in-degree is 0. Such a node is removed from G and its corresponding
repository tree also gets deleted. An example is given in Fig. 2.

Fig. 2. Lossy Counting on the Tree Transition Graph with l = 3. The bold edges
denote tree transitions.

Lossy Counting can potentially mitigate the side effects of undesired transi-
tions. If a node u incorrectly transits to a less performant neighbour v and adds
the corresponding repository tree v to the candidate trees, the foreground tree
u is more likely to be replaced by its background tree instead, when an actual
drift is detected. In this case, a new background tree v′ is added to the online
tree repository, and its representation node v′ and edge (u, v′) are added to the
graph. However at the next window boundary of Lossy Counting, this newly
added node and the corresponding tree are removed due to low edge weight.

6 Theoretical Analysis

First we discuss the Lossy Counting guarantees. Let N be the number of trees
with drift warnings, ε ∈ (0, 1) be the user specified error rate, and s be the
support threshold of the edges such that s > ε, where (u, v) ∈ E if W (u, v) >
(s − ε)N . The window size is 1

ε . The edge weight count is underestimated by at
most εN , i.e., N

window size = N
1/ε = εN . There are no false negatives. If the tree

transition is genuinely frequent, (u, v) ∈ E since W (u,v)
N > ε. False positives may

occur before the edge weight decay. It is guaranteed to have true edge weight at
least (s − ε)N . Secondly we discuss the memory analysis. The memory size for
pattern matching is O(R ·P), with R being the size of online tree repository, and
P being the capacity of the State Pattern Buffer. The Tree Transition Graph
without Lossy Counting introduces an additional polynomial space complexity
O(R · |E|) where |E| has an upper bound of R(R − 1). With Lossy Counting the
space complexity is guaranteed to be reduced by 1

ε log(εN) [11]. As a result, the
Tree Transition Graph with Lossy Counting is O(1ε log(εN) · R · |E|) in terms
of space complexity. Finally we discuss the runtime. One transition in the Tree
Transition Graph only takes O(R) as the transition is randomly selected. One
execution of State Pattern Matching takes O(N · L) where L is a user defined
variable denoting the maximum number of patterns that can be stored in the
State Pattern Buffer.

24 O. Wu et al.

7 Experimental Evaluation

We evaluate the performance of PEARL by classification performance (accuracy
and kappa statistics), runtime and memory usage. The classification performance
is based on prequential evaluation. In our implementation, both the State Pat-
tern Matching and the Tree Transition Graph can be either turned on or off for
evaluation. We compare these approaches with ARF, which is simply PEARL
having both the State Pattern Matching and Tree Transition Graph turned off.
Additionally, we compare with the State Pattern Matching only PEARL(PO).

The experimentation is performed on the following machine and architecture:
Dell PowerEdge R740 with 40 CPUs, 125.42 GiB (Swap 976.00 MiB) and Ubuntu
18.04 with AMD64 4.15.0-46-generic. Our code, synthetic dataset generators and
test scripts are available here1 for reproducible results. In our experiments, the size
of foreground and candidate trees is set to 60 each, and the size of the online tree
repository is set to 9600. The accuracy/kappa sample frequency is set to 1000 data
instances.

Datasets. We use both synthetic and real world datasets in our experiments. The
synthetic data sets include recurrent abrupt and gradual drifts. The sequence of
concepts are generated by the Poisson distribution with λ = 1. The abrupt and
gradual drift width are set to 1 and 3000 data instances, respectively. Each of the
drift types are generated with either 3 or 6 concepts, denoted as Agrawal 3 or
Agrawal 6 in the tables. The real world datasets have been thoroughly used in the
literature to assess the classification performance of data stream classifiers: Cover-
type, Electricity, Airlines2, and Rain3.

Accuracy and Kappa Evaluation. We ran all experiments ten times with
varying seeds for every synthetic dataset configuration. The set of parame-
ters for PEARL has been well tuned although more optimal sets may exist.
Agrawal generator is used, since it is the most sophisticated synthetic data gen-
erator involving classification functions with different complexities. We generate
400,000 instances for each of the Agrawal datasets.

Apart from measuring the accuracy and kappa mean, we calculate the cumu-
lative gain for both accuracy and kappa against ARF over the entire dataset
e.g.,

∑
((accuracy(PEARL) − accuracy(ARF)). A positive value indicates that

the PEARL approach obtained a higher accuracy/kappa as compared to the
baseline ARF. The cumulative gain does not only track the working charac-
teristics over the course of the stream, which is important for evaluating new
solutions to dynamic data streams [10]; but also takes into account the perfor-
mance decay caused by model overfitting at the drift points. We notice that with
our technique, we obtained higher accuracy/kappa mean and positive cumulative
gain values compared with ARF (Table 1).

1 https://github.com/ingako/PEARL.
2 https://moa.cms.waikato.ac.nz/datasets.
3 https://www.kaggle.com/jsphyg/weather-dataset-rattle-package.

https://github.com/ingako/PEARL
https://moa.cms.waikato.ac.nz/datasets
https://www.kaggle.com/jsphyg/weather-dataset-rattle-package

PEARL: Probabilistic Exact Adaptive Random Forest with Lossy Counting 25

T
a
b
le

1
.
A

cc
u
ra

cy
a
n
d

ka
p
p
a

m
ea

n
,
cu

m
u
la

ti
v
e

a
cc

u
ra

cy
g
a
in

a
n
d

ka
p
p
a

g
a
in

(%
)

D
a
ta

se
t

D
ri
ft

ty
p
e

A
c
c
u
ra

c
y
m
e
a
n

K
a
p
p
a
m
e
a
n

A
R
F

P
E
A
R
L

(P
O
)

P
E
A
R
L

A
R
F

P
E
A
R
L

(P
O
)

P
E
A
R
L

A
g
ra
w
a
l
3

A
b
ru

p
t

7
8
.5
0

±
0
.4
2

8
7
.9
3

±
0
.5
1

8
8
.6
0

±
0
.5
5

2
7
.3
8

±
2
.6
8

6
5
.6
3

±
2
.6
6

6
8
.7
4

±
1
.0
0

G
ra

d
u
a
l

7
8
.0
9

±
0
.8
5

8
6
.9
0

±
1
.0
4

8
7
.2
5

±
1
.1
0

2
9
.3
6

±
2
.9
8

6
7
.6
4

±
1
.5
8

6
8
.7
8

±
1
.8
8

A
g
ra
w
a
l
6

A
b
ru

p
t

7
7
.3
5

±
0
.6
3

8
6
.0
2

±
0
.7
0

8
6
.1
3

±
0
.8
0

2
6
.2
7

±
1
.8
7

6
4
.3
4

±
1
.3
9

6
4
.5
5

±
1
.5
7

G
ra

d
u
a
l

7
6
.9
4

±
0
.3
0

8
4
.8
3

±
0
.7
4

8
5
.1
1

±
0
.8
8

2
8
.1
1

±
2
.1
0

6
4
.1
8

±
1
.1
9

6
4
.7
3

±
1
.3
9

D
a
ta

se
t

D
ri
ft

ty
p
e

A
c
c
u
ra

c
y
g
a
in

K
a
p
p
a
g
a
in

–
P
E
A
R
L

(P
O
)

P
E
A
R
L

–
P
E
A
R
L

(P
O
)

P
E
A
R
L

A
g
ra
w
a
l
3

A
b
ru

p
t

–
3
7
6
3
.9
0

±
2
6
2
.7
8

4
0
2
7
.7
0

±
2
2
1
.4
9

–
1
5
2
5
9
.9
0

±
1
6
3
7
.5
5

1
6
5
0
3
.5
7

±
1
0
5
8
.3
9

G
ra

d
u
a
l

–
2
6
3
3
.4
4

±
2
3
4
.3
9

2
7
3
7
.7
1

±
2
6
5
.9
2

–
1
1
4
4
3
.7
3

±
9
3
6
.0
3

1
1
7
8
6
.6
1

±
9
2
5
.5
0

A
g
ra
w
a
l
6

A
b
ru

p
t

–
3
4
5
7
.6
9

±
3
5
5
.0
8

3
5
0
2
.3
0

±
3
5
4
.5
5

–
1
5
1
8
7
.3
2

±
8
5
6
.6
0

1
5
2
7
1
.7
4

±
8
8
9
.4
7

G
ra

d
u
a
l

–
3
1
5
8
.3
7

±
2
8
3
.4
8

3
2
6
7
.4
7

±
3
1
9
.8
1

–
1
4
4
2
9
.9
1

±
1
0
8
3
.3
9

1
4
6
4
8
.2
1

±
1
1
3
9
.6
4

N
O

T
E
:
P
E
A
R
L

(P
O

)
is

P
E
A
R
L

w
it
h

p
a
tt

e
rn

m
a
tc

h
in

g
o
n
ly

.
T
h
e

A
R
F

c
o
lu

m
n
s

h
a
v
e

b
e
e
n

re
m

o
v
e
d

fr
o
m

th
e

g
a
in

ta
b
le

s,
si
n
c
e

it
s

c
u
m

u
la

ti
v
e

a
c
c
u
-

ra
c
y
/
k
a
p
p
a

is
su

b
tr

a
c
te

d
b
y

b
o
th

P
E
A
R
L

(P
O

)
a
n
d

P
E
A
R
L
,
fo

r
c
a
lc

u
la

ti
n
g

g
a
in

s.

26 O. Wu et al.

Memory and Runtime Evaluation. Similar to scikit-multiflow [13] we esti-
mate memory consumption, by adding up the key data structures used by
PEARL and PEARL (PO) (Table 2).

Table 2. Memory and runtime

Dataset Drift type Memory (KB) Runtime (min)

PEARL (PO) PEARL ARF PEARL (PO) PEARL

Agrawal 3 Abrupt 166.10 ± 4.26 347.49 ± 157.69 166.63 ± 11.33 217.92 ± 9.54 218.09 ± 12.65

Gradual 109.88 ± 27.65 243.07 ± 40.52 157.63 ± 36.63 198.89 ± 42.70 199.13 ± 42.95

Agrawal 6 Abrupt 172.26 ± 4.23 274.08 ± 110.19 202.34 ± 74.92 276.96 ± 89.85 276.04 ± 87.77

Gradual 165.09 ± 2.21 301.44 ± 10.92 177.35 ± 9.30 230.67 ± 17.57 216.04 ± 14.24

LossyCountingEvaluation. Table 3 shows that with Lossy Counting, PEARL
consistently obtains a higher gain in both accuracy while consuming less memory
across 10 different seeds, comparing to Lossy Counting disabled. The State Match-
ing parameters are fixed while the Tree Transition parameters have been tuned dif-
ferently on each seed. We examine both 0%, 33% and 66% concept shifts for eval-
uating the performance under decaying concepts. 33% concept shift means 33% of
expiring concepts after an interval (i.e., a number of data instances). For example,
if there are 3 concepts we are transitioning between, a 33% concept shift will expire
1 concept while adding 1 new concept after an interval. Each interval is constituted
of predetermined concepts appearing according to a Poisson distribution of λ = 1.
For each type of concept shift, we generate a total of 300,000 data instances with
2 concept shifts happening at positions 200,000 and 250,000. Table 3 shows that
with concept shifts, the graph with Lossy Counting was able to gain a higher accu-
racy and kappa performance within a similar amount of time, while consuming less
memory.

Table 3. Agrawal gradual concept shift

Shift type w/lossy counting Acc. gain Kappa gain Memory (KB) Runtime (min)

0% False 2927.21 ± 187.76 12177.98 ± 885.27 376.08 ± 17.28 254.19 ± 3.67

True 3065.14 ± 142.82 12435.13 ± 885.75 279.96 ± 57.25 257.27 ± 2.16

33% False 1924.44 ± 221.70 8490.98 ± 709.92 312.27 ± 8.86 209.92 ± 5.76

True 2153.76 ± 263.04 8899.14 ± 811.47 277.18 ± 19.20 209.03 ± 7.04

66% False 1697.06 ± 435.99 8077.79 ± 1156.34 312.28 ± 16.12 229.90 ± 30.49

True 2017.86 ± 477.47 8700.64 ± 1129.36 277.46 ± 20.34 221.94 ± 33.57

Case Study. To better understand the benefits of the probabilistic graphical
model and Lossy Counting, we performed a case study on a 400,000 instance
dataset generated by the Agrawal data generator with abrupt drifts on 3 con-
cepts. We evaluate the three different configurations of PEARL: State Pattern

PEARL: Probabilistic Exact Adaptive Random Forest with Lossy Counting 27

Matching only, Tree Transition Graph only, and Tree Transition Graph with
LC (Lossy Counting). Both of the Tree Transition Graph configurations include
State Pattern Matching as it is the basis of graph construction.

Fig. 3. Accuracy Fig. 4. Cumulative accuracy against ARF

Figure 3 is an example of an execution of Lossy Counting. In this case, before
Lossy Counting was triggered, both the Tree Transition Graph only and the Tree
Transition Graph with Lossy Counting configurations show a dip in accuracy. This
is due to undesired graph transitions, and these undesired transitions happen more
frequently when there are too many similar outgoing neighbours. However after an
execution of Lossy Counting, the graph with Lossy Counting recovers faster than
the graph only configuration. During this recovery period, the pattern matching
process was triggered for the Tree Transition Graph with Lossy Counting because
some nodes were isolated after the Lossy Counting removed rarely used outgoing
neighbours. After that, the graph with Lossy Counting configuration starts to uti-
lize the Tree Transition Graph, and it continues to outperform the Tree Transi-
tion Graph only configuration. Intuitively, there are two factors which contribute
to such performance: firstly, the brief pattern matching activation after the Lossy
Counting helps with the graph construction, which strengthens the stability of
the graph; secondly, confusing similar outgoing neighbours were removed by Lossy
Counting. Figure 4 captures the accuracy gain of the three types of configurations
of PEARL against ARF. All configurations show a continuous gain in accuracy,
but the graph with Lossy Counting tends to gain the most accuracy over time.

Real World Dataset. Table 4 shows the accuracy/kappa mean and cumula-
tive gain values. In these experiments, we used ECPF with Hoeffding Tree (i.e.
ECPF(HT)) and ECPF with Adaptive Random Forest (i.e. ECPF (ARF)). We
noticed that our technique has positive gains on three out of the five datasets.

28 O. Wu et al.

T
a
b
le

4
.
A

cc
u
ra

cy
a
n
d

ka
p
p
a

m
ea

n
,
cu

m
u
la

ti
v
e

a
cc

u
ra

cy
a
n
d

ka
p
p
a

g
a
in

(%
)

D
a
ta

se
t

#
in

st
a
n
c
e
s

A
c
c
u
ra

c
y

m
e
a
n

K
a
p
p
a

m
e
a
n

A
R
F

E
C
P
F

(H
T
)

E
C
P
F

(A
R
F
)

P
E
A
R
L

A
R
F

E
C
P
F

(H
T
)

E
C
P
F

(A
R
F
)

P
E
A
R
L

E
le
c
tr
ic
it
y

4
5
,3
1
2

8
6
.0
4
±

3
.0
8

8
5
.9
4
±

3
.6
0

8
8
.4
3
±

2
.6
8

8
6
.1
3
±

3
.1
7

6
8
.5
3
±

7
.7
1

7
0
.6
9
±

7
.4
3

7
5
.8
7
±

5
.5
8

6
8
.9
3
±

7
.3
3

R
a
in

1
4
2
,1
9
3

9
3
.2
4
±

2
.0
6

9
6
.2
5
±

2
.6
6

9
3
.9
3
±

1
.6
6

9
3
.7
5
±

1
.9
9

7
8
.3
0
±

7
.9
8

8
8
.7
9
±

7
.5
0

8
1
.4
7
±

3
.9
8

8
0
.1
7
±

7
.7
5

A
ir
li
n
e
s

5
3
9
,3
8
3

6
6
.0
7
±

5
.6
5

6
5
.5
6
±

5
.7
9

6
5
.4
2
±

6
.1
2

6
6
.8
5
±

5
.4
3

1
5
.5
9
±

1
1
.5
5

1
7
.8
1
±

1
0
.2
2

1
9
.0
0
±

9
.3
7

1
9
.1
6
±

1
1
.6
4

C
o
v
ty

p
e

5
8
1
,0
1
2

8
8
.7
7
±

5
.8
9

8
6
.5
3
±

5
.0
5

8
8
.4
8
±

5
.1
6

9
0
.1
2
±

5
.4
1

7
4
.2
8
±

1
5
.3
8

7
3
.3
2
±

9
.3
7

7
6
.8
5
±

1
0
.5
3

7
7
.4
3
±

1
4
.3
6

P
o
k
e
rh

a
n
d

8
2
9
,0
1
2

7
4
.0
7
±

6
.2
5

7
3
.7
8
±

6
.4
8

9
0
.0
7
±

6
.7
6

9
0
.0
8
±

9
.0
0

2
6
.7
2
±

1
7
.4
1

3
9
.5
2
±

1
5
.2
8

7
7
.2
8
±

1
7
.3
3

7
2
.8
9
±

2
7
.5
8

D
a
ta

se
t

#
in

st
a
n
c
e
s

A
c
c
u
ra

c
y

g
a
in

K
a
p
p
a

g
a
in

–
E
C
P
F

(H
T
)

E
C
P
F

(A
R
F
)

P
E
A
R
L

–
E
C
P
F

(H
T
)

E
C
P
F

(A
R
F
)

P
E
A
R
L

E
le
c
tr
ic
it
y

4
5
,3
1
2

–
−
7

1
0
6

4
–

9
1

3
2
6

1
8

R
a
in

1
4
2
,1
9
3

–
4
2
4

9
6

7
3

–
1
4
8
1

4
4
6

2
6
5

A
ir
li
n
e
s

5
3
9
,3
8
3

–
−
2
7
1

−
3
4
3

4
1
9

–
1
1
9
5

1
8
4
3

1
9
2
4

C
o
v
ty

p
e

5
8
1
,0
1
2

–
−
1
3
1
1

−
1
8
1

7
8
3

–
−
5
7
6

1
4
7
5

1
8
3
0

P
o
k
e
rh

a
n
d

8
2
9
,0
1
2

–
−
2
4
8

1
3
2
6
1

1
3
2
6
7

–
1
0
5
8
8

4
1
9
2
2

3
8
2
7
1

N
O

T
E
:
T
h
e

A
R
F

c
o
lu

m
n
s
h
a
v
e

b
e
e
n

re
m

o
v
e
d

fr
o
m

th
e

g
a
in

ta
b
le

s,
si
n
c
e

it
s
c
u
m

u
la

ti
v
e

a
c
c
u
ra

c
y
/
k
a
p
p
a

is
su

b
tr

a
c
te

d
b
y

E
C
P
F

a
n
d

P
E
A
R
L
,
fo

r
c
a
lc

u
la

ti
n
g

g
a
in

s.

PEARL: Probabilistic Exact Adaptive Random Forest with Lossy Counting 29

8 Conclusions and Future Work

We presented a novel framework, PEARL, that handles recurrent concept drifts
by capturing the recurrent concepts using probabilistic and exact approaches.
PEARL uses an extended random forest as a base classifier. We applied Lossy
Counting to the Tree Transition Graph to approximate the recurrent drifts. In
the real word experiments, PEARL had a cumulative accuracy gain up to 13267%
compared to the ARF baseline.

As future work, we will adapt the window size of Lossy Counting to increase
the effectiveness of the Tree Transition Graph. Beyond that we can utilize a
memory constrained budget to limit the number of concepts we store from the
stream. In addition, we will explore the feasibility of using other ensemble-based
methods within the PEARL framework.

Acknowledgment. We would like to thank Dr Hiekeun Ko, Science Director at Office
of Naval Research Global, for his support of this project. This work was funded in part
by the Office of Naval Research Global grant (N62909-19-1-2042).

References

1. Ahmadi, Z., Kramer, S.: Modeling recurring concepts in data streams: a graph-
based framework. Knowl. Inf. Syst. 55(1), 15–44 (2017). https://doi.org/10.1007/
s10115-017-1070-0

2. Anderson, R., Koh, Y.S., Dobbie, G., Bifet, A.: Recurring concept meta-learning
for evolving data streams. Expert Syst. Appl. 138, 112832 (2019)

3. Ángel, A.M., Bartolo, G.J., Ernestina, M.: Predicting recurring concepts on data-
streams by means of a meta-model and a fuzzy similarity function. Expert Syst.
Appl. 46, 87–105 (2016)

4. Chen, K., Koh, Y.S., Riddle, P.: Proactive drift detection: predicting concept drifts
in data streams using probabilistic networks. In: IJCNN, pp. 780–787. IEEE (2016)

5. Chiu, C.W., Minku, L.L.: Diversity-based pool of models for dealing with recurring
concepts. In: 2018 IJCNN, pp. 1–8. IEEE (2018)

6. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classifica-
tion. Mach. Learn. 106(9-10), 1469–1495 (2017)

7. Gonçalves Jr., P.M., Barros, R.S.M.D.: RCD: a recurring concept drift framework.
Pattern Recogn. Lett. 34(9), 1018–1025 (2013)

8. Goyal, A., Daumé, H.: Lossy conservative update (LCU) sketch: succinct approxi-
mate count storage. In: 25th AAAI (2011)

9. Koh, Y.S., Huang, D.T.J., Pearce, C., Dobbie, G.: Volatility drift prediction for
transactional data streams. In: 2018 IEEE ICDM, pp. 1091–1096. IEEE (2018)

10. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble
learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

11. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proceedings of the 28th VLDB, VLDB 2002, pp. 346–357. VLDB Endowment
(2002)

12. Masud, M.M., et al.: Detecting recurring and novel classes in concept-drifting data
streams. In: 2011 IEEE 11th ICDM, pp. 1176–1181. IEEE (2011)

https://doi.org/10.1007/s10115-017-1070-0
https://doi.org/10.1007/s10115-017-1070-0

30 O. Wu et al.

13. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output
streaming framework. J. Mach. Learn. Res. 19(72), 1–5 (2018)

14. Yang, Y., Wu, X., Zhu, X.: Mining in anticipation for concept change: proactive-
reactive prediction in data streams. Data Min. Knowl. Disc. 13(3), 261–289 (2006)

	PEARL: Probabilistic Exact Adaptive Random Forest with Lossy Counting for Data Streams
	1 Introduction
	2 Related Work
	3 PEARL Overview
	4 State Matching Process
	5 Tree Transition Process
	6 Theoretical Analysis
	7 Experimental Evaluation
	8 Conclusions and Future Work
	References

