l‘)

Check for
updates

Cross-data Automatic Feature
Engineering via Meta-learning
and Reinforcement Learning

Jianyu Zhang'®™) | Jianye Hao', and Francoise Fogelman-Soulié?

L College of Intelligence and Computing, Tianjin University, Tianjin, China
{edzhang, jianye.hao}@tju.edu.cn
2 Hub France IA, Paris, France
francoise.soulie@hub-franceia.fr

Abstract. Feature Engineering (FE) is one of the most beneficial, yet
most difficult and time-consuming tasks of machine learning projects,
and requires strong expert knowledge. It is thus significant to design
generalized ways to perform FE. The primary difficulties arise from the
multiform information to consider, the potentially infinite number of pos-
sible features and the high computational cost of feature generation and
evaluation. We present a framework called Cross-data Automatic Fea-
ture Engineering Machine (CAFEM), which formalizes the FE problem
as an optimization problem over a Feature Transformation Graph (FTG).
CAFEM contains two components: a FE learner (FeL) that learns fine-
grained FE strategies on one single dataset by Double Deep Q-learning
(DDQN) and a Cross-data Component (CdC) that speeds up FE learning
on an unseen dataset by the generalized FE policies learned by Meta-
Learning on a collection of datasets. We compare the performance of
Fel. with several existing state-of-the-art automatic FE techniques on
a large collection of datasets. It shows that Fel outperforms existing
approaches and is robust on the selection of learning algorithms. Further
experiments also show that CdC can not only speed up FE learning but
also increase learning performance.

1 Introduction

As machine learning becomes more and more widespread, it has been recognized
that feature engineering (FE) is the most critical factor for models performance
[1]. Various researchers have demonstrated the benefit of using additional fea-
tures [11]. FE aims at reducing the model error and making learning easier by
deriving, through mathematical functions (operators), new features from the
original ones. Normally a data scientist combines feature generation, selection
and model evaluation iteratively, generating a long sequence of decisions before
obtaining the “optimal” set of derived features. This process heavily relies on
expert domain knowledge, intuition and technical expertise to handle the com-
plex feedbacks and make best decisions. As a result, the process is difficult,
time-consuming and hard to automate.

© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12084, pp. 818-829, 2020.
https://doi.org/10.1007/978-3-030-47426-3_63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_63&domain=pdf
https://doi.org/10.1007/978-3-030-47426-3_63

Cross-data Automatic Feature Engineering via Meta-learning and RL 819

Most of existing methods of automatic FE either generate a large set of possi-
ble features by predefined transformation operators followed by feature selection
[3,7,15] or apply simple supervised learning (simple algorithm and/or simple
meta-features derived from FE process) to recommend a potentially useful fea-
ture [4,5,9]. The former makes the process computationally expensive, which is
even worse for complex features, while the latter significantly limits the perfor-
mance boost.

A recently proposed FE approach [5] is based on Reinforcement Learning
(RL). It treats all features in the dataset as a union, then applies traditional Q-
learning [14] on FE-augmented examples to learn a strategy for automating FE
under a given computing budget. RL is more promising in providing general FE
solutions. However, this work uses Q-learning with linear approximation and 12
simple manual features, which limits the ability of automatic FE. Furthermore,
it ignores the differences between features and applies a transformation opera-
tor on all of them at each step. Because of this nondiscrimination of different
features, it is computation expensive, especially for large datasets and complex
transformation operators.

To address the above limitations, in this work, we propose FeL. (Feature
Engineering Learner) and CAFEM (Cross-data Automatic Feature Engineering
Machine). The former is a novel approach for automatic FE for one particular
dataset based on off-policy Deep Reinforcement Learning (DRL). In order to
speed up the FE process and take advantage of the FE knowledge learned from a
large set of datasets, the latter extends FeL to cross-data level by Meta-Learning.

We define a Feature Transformation Graph (FTG), a directed graph rep-
resenting relationships between different transformed versions of features, to
organize the FE process. Fel. sequentially trains an agent for each feature by
DRL algorithms to learn the strategy for feature engineering on one dataset and
corresponding FTG representation. We thus view the goal of FE as maximizing
model accuracy by searching through a set of features F'; to generate and a set of
features F_ to eliminate. CAFEM extends this process to cross-data by training
one agent on a large set of datasets to enable the learned policy to perform well
on unseen datasets.

2 Background and Problem Formulation

In this section we review the Reinforcement Learning (RL) [10] background and
describe the problem formulation.

2.1 Reinforcement Learning

RL is a family of algorithms that formalizes the interaction of an agent A with
her environment using a Markov Decision Process (MDP) and allows it to devise
an optimal sequence of actions. An MDP is defined by a tuple (S, A,7,R,~),
where S is a set of states, A a set of actions, 7 : § x A — A(S) a transition
function that maps each state-action pair to a probability distribution over the

820 J. Zhang et al.

possible successor states, R : S x A x § — R a reward function and v € [0, 1]
a discount factor for controlling the importance of future rewards. A policy
m:8S — Ais a mapping from states to actions. At every time step ¢, an agent
in state s; produces an action a; = m(s;). Based on transition function 7 the
agent gets into next state s;y1 with probability 7 (s¢, a;) and obtains immediate
reward 1 = R(St, at, S+4+1). The goal of an agent is to find an optimal policy
m* maximizing her expected discounted cumulated reward E[Rg|so], where R; =
o2, ity is the discounted sum of future rewards.

Q-learning is a well-known model-free RL algorithm for finding an optimal
policy 7* for any finite MDP. In Q-learning we define the Q-function or action-
value function as Q(st, a:) = E[Ry|st, at].

Given an optimal policy 7*, we are interested in the optimal function
Q™ (s,a), or Q*(s,a) for short, where Vrr,s € S,a € A, Q™ (s,a) > Q"(s,a). As
a result, Q* satisfies the following equation:

Q" (st,ar) = ¢ + E [ymaxQ(si41,a)] (1)
st+1~T (st,a¢) a

Double Deep Q-network (DDQN) [12] is a model-free RL algorithm, which
estimates the state-action value approximately through a deep neural network
with parameters 6. It uses an e-greedy policy to get the next action.

During training, the tuples (s, at, 7, st+1) generated by the e-greedy policy
are stored in R, the so-called replay buffer. Then the neural network is trained
by sampling from the replay buffer, using mini-batch, and performing gradient
descent on loss £ = E((Q(s¢, ar) — y¢)?), where y, = ry —|—'ymaaXQ(st+1, a),Q(s,t)

is approximated by the network g with parameter 6.

2.2 Meta-learning

The goal of meta-learning is to quickly train a model for a new task with the
help of data from many other similar tasks.

Model-Agnostic Meta-Learning (MAML) [2] is one of the best meta-learning
algorithms that were trained by gradient descent. We denote {T'} as a set of
tasks. MAML performs one step gradient descent for a task 7; on loss £ with
network g and network parameters and gains 6; as Equation (2). Then it
performs a second gradient descent \/¢ step on loss £ with network parameters
6; as Equation (3). Finally, MAML finds parameters 6 that are close to the
optimal parameters of every task.

0, =0 —a<eLr,(ge) (2)

where « is the learning rate of each task 7T;.

0=0—[5ve Z ﬁTi(Q(a;) 3)

T;e{T}

where 3 is the meta step size.

Cross-data Automatic Feature Engineering via Meta-learning and RL 821

2.3 Problem Formulation

We consider a collection of typical supervised learning tasks (binary classification
or regression) T' = {T1,T5, ...,Tn} and each task T; can be represented as T; =
(D, L,m), where D = (F,y) is a dataset with a set of features F' = { f1, fo, ..., fu}
and a corresponding target variable y, L is a learning algorithm (e.g. Random
Forest, Logistic Regression, Neural Network) to be applied on dataset D and
m is an evaluation measure (e.g. log-loss, relevant absolute error, fl-score) to
measure the performance.

We use P (F,y) or P(D) to denote the cross-validation performance of learn-
ing algorithm L and evaluation measure m on dataset D. The goal of each task
is to maximize P(D).

A transformation operator 7 in FE is a function that is applied on a set of
features to generate a new feature fi = 7({f;}) where the order of the operator
follows the number of features in {f;}. We denote the set of derived features as
F,. For instance, a product transformation applied on two features (Order-2)
generates a new feature fy = product(f;, fj). We use T to denote the set of all
transformation operators.

Feature engineering aims at constructing a subset of features F* = F, | F —
F_, where F, is the set of original features in dataset D, F the set of derived
features and I~ C F, the set of features that we decide to drop out from original
features. For a given dataset D, a feature engineering strategy m specifies a
derived feature set F* = 7(D), where F* = F,|J F;y — F_. The goal of feature
engineering is to find a good policy 7* that maximizes the model performance
for a given algorithm L and measure m on a dataset D.

7 = argmaxPZ (m(D), y) (4)

T

3 Method

In this section, we present a new framework called Cross-data Automatic Feature
Engineering Machine (CAFEM). In order to highlight the differences between
features and integrate feature generation and feature selection effectively, we
propose a Feature Transformation Graph (FTG) to represent the FE process
at feature level. Based on FTG, CAFEM can perform feature engineering for
each particular feature based on the information related with it. Thus, it avoids
the drawback of generating a large set of features at each step in [5], especially
for complex features and large number of features. One component of CAFEM
called FE Learner (FeL) uses Reinforcement Learning to find the optimal feature
set F'* for each feature iteratively, instead of using expensive graph search algo-
rithm [6]. FeL focus on one particular supervised learning task which gives FeL
the ability to dig deeply into that task. However, it loses the opportunity to learn
and integrate useful experiments from other tasks which can speed up FE process
on a similar task. In order to balance performance and speed, another compo-
nent of CAFEM called Cross-data Component (CdC) applies a Model-Agnostic

822 J. Zhang et al.

Meta-Learning (MAML) [2] method, which is originally designed for supervised
learning and on-policy reinforcement learning algorithms, on off-policy reinforce-
ment learning algorithms to speed up FE learning on one particular dataset by
integrating the FE knowledges from a set of datasets.

3.1 Feature Transformation Graph

We propose a structure called Feature Transformation Graph (FTG) G, which
is a directed acyclic dynamic graph, to represent the FE process. Each node f in
FTG corresponds to either one original feature in F, or one feature derived from
original features. An edge from node f; to fj, 7 > 4 > 0, with label 7 indicates
that feature f; is transformed from feature f; by transformation operator 7,
e.8. fnta = square(fn4+1) or transformed partially from f; by 7, e.g. fnis =
product(frnia, fn+e). At the start of FE, G contains n nodes which correspond
to n original features {f1, fa,..., fn}. As FE process goes, FTG dynamically
grows up (adds more nodes and edges). So we denote FTG at time step ¢ as G.
An illustrating example is given in Fig. 1.

round
sguare square

zscare product

Fig. 1. Ezample of FTG

3.2 MDP Formulation

So far, we have introduced the representation of FE with FTG in our automatic
FE framework. After that, what we need to do is to find a suitable strategy to
control the growth of FTG. An important property is that FTG is not designed
for any particular strategy, but to be a general representation of an FE process.
As a result, we can apply many different strategies on the FTG to control it,
such as graph search or RL. In this paper, we choose RL to learn a strategy that
can make a sequence of decisions on top of FTG, due to its efficiency.

Consider the FE process with FTG on one dataset D as an MDP problem
defined as a tuple (S, A,7,R,~). At each time step ¢, a state s; € S consists
of the Feature Transformation graph G; and the features {f;} we are working
on. Due to the complexity of transformation operators, {f;} could contain one
or more features. For example, {f;} contains one feature for Order-1 operators
(e.g. log, square), two features for Order-2 operators (e.g. product, sum).

An action a; € A = Ag |J As comes from the following two groups of actions:

Cross-data Automatic Feature Engineering via Meta-learning and RL 823

— Ag is a set of actions for feature generation, which apply a transformation
7 € T on current features {f;} to derive one new feature.

— Ag contains one action for feature selection by RL, which drops current fea-
ture f; and moves back to the previous feature. One special case is that
current feature f; € {f1, f2,.., fn} belongs to original features. In this case,
feature selection action drops it and stops current FE process.

The learning objective here is to find a state s; with feature set F* in FTG that
maximizes the model accuracy PZ'(F™*,y). The trajectory from original feature
to a new feature f; indicates the final feature engineering strategy for f;.

Since the target of FE is to maximize the performance P(D), the reward r;
of this FE problem in FTG at time step ¢ is set as:

e = P (Di11) — P (Dy) (5)

3.3 CAFEM Framework

Until now, we have introduced the organization of FE process and the MDP
formulation of FE problem. The most critical part is the algorithm to find a
good strategy of FE. We introduce CAFEM framework which mainly contains
two parts: 1) an algorithm called FeL that can apply an off-policy DRL algorithm
A (such as DQN [8], Double DQN [12]) on FTG for one particular dataset to
perform automatic FE; 2) an extended version of model-agnostic meta-learning
[2] algorithm on off-policy DRL to speed up FE learning by taking advantage of
the generalized FE strategies learned from a set of datasets. It is called off-policy,
since the policy being learned can be different from the policy being executed.
In the following sub-section, we will introduce the details of these two parts.

Feature Engineering Learner (FeL): Although FeL works as a component
of CAFEM in this paper, it is also a complete algorithm that sequentially opti-
mizes FE strategies for each feature on one particular dataset. The details of Fel,
algorithm are shown in Algorithm 1. Given a supervised learning task 7" with
n features F' = {f1, fa, ..., fn}, n off-policy DRL agents {A;}, FeL. sequentially
optimizes a FE policy for each feature (line 2 in Algorithm 1). As traditional
training stage of off-policy RL algorithms, FeL starts with performing M episodes
of FE process by e-greedy and stores corresponding transitions in replay buffer
(line 3-10). In this process, FeL either generates a new feature f from feature f
by action a; (a; € Ag) or drops current feature f and moves back to previous
feature f (at € Ag). Then FeL trains the corresponding agent A; by performing
gradient descent on a mini-batch sampled from replay buffer R; (line 11-14).
During test stage the same FE method as Algorithm 1 with € = 0 is used to
perform FE for each feature sequentially. Note that the operators in transfor-
mation operators set T are not of the same complexity level. For example, some
unary features (e.g. log(f;), square(f;)) are less complex than binary features
(e'g' prOdU’Ct(fia fj)7 sum(f“ f]))

As in [15], we introduce features along feature complexity, driving simple
features first (e.g. unary features) then complex features (e.g. binary features).

824 J. Zhang et al.

Algorithm 1. FelL

input: An dataset D = (F,y) with n features F = {fo,...fn}, n replay buffer
{Ri, ..., Rn} for each features, n off-policy DRL agents {A;}, number of epochs
and episodes E, M, batches to train N

1: while epoch =1, E do

2 for f; in F do

3 for episode = 1, M do

4 Get initial state sg

5: while not terminal do

6: f

7

8

Get an action a; by e-greedy and execute a: on f: f = a:(f)
Obtain reward r; and next state si;y1
: Store transition (s¢, as, ¢, s¢+1) in R; and reset current feature: f « f
9: end while

10: end for

11: for t=1,N do

12: Sample a mini-batch from replay buffer R;
13: Perform one optimization step on A;

14: end for

15: end for

16: Reset dataset D = ({fi, ..., fn},)
17: end while

Cross-data Component: In order to speed up FE process and take advantage
of a large set of datasets, we apply Model-agnostic Meta-Learning [2] on off-
policy RL to perform cross-data level automatic feature engineering. The details
of the Cross-data Component (CdC) are shown in Algorithm 2. Given a set of
datasets {D = (F,y)} and an off-policy RL agent A (we use DDQN here as it can
gain relevant a good performance in many tasks [12]) represented by gg, Cross-
data Component samples a batch of features {f;} and corresponding dataset
{Dy,} and constructs a batch of supervised learning tasks {T; = (Dy,, P,m)}
(line 2). For each task T; € {T;}, CdC uses the RL agent A together with e-
greedy exploration to perform M episodes for T; and stores the corresponding
transitions in replay buffer R; (line 4-5). Then CdC samples K transitions from
R; and computes one step gradient descent as Algorithm 2 (line 7-8) where the
loss L is the same as Algorithm 1. Finally, we sample a batch of transitions and
perform meta-update (line 9-11).

Network Design: Until now, we have discussed the details of Fel. algorithm
and cross-data component. One remaining part is the structure of the neural
network that can approximate the Q-values of DDQN in FeL algorithm. In this
project, instead of building one approximation function with parameter 6 for
each action a [5], we use one union function that is approximated by a neural
network, for all actions. Thus, we only need to train one DRL model.

As we discussed in Sect. 4.2, the state s; at time t indicates the FTG G; and
the features {f;} it is working on at time ¢. In order to cover these two parts of
information in the representation of each state s;, we use the following features
to represent s;:

Cross-data Automatic Feature Engineering via Meta-learning and RL 825

Algorithm 2. CrossDataComponent

input: a set of tasks {T'}, an off-policy DRL agent represented by gg, number of
epochs and episodes F, M

1: Randomly initialize 6

2: while epoch = 1, F do

3: Sample batch of tasks {73} from {7T'}

4 for all {T;} do

5 Perform M episodes on task T; with e-greedy

6: Store all transitions in R;

7 Sample K transitions 7 from R;

8 Compute adapted parameters with gradient descent: 9; =0—ase Lr,(fo)
9: Sample transitions ’Ti, from R; for meta-update

10: end for

11: Update 0 =0 — 80 > r, i1y £ (feé) using each 7; and L7, in Equation 3
12: end while

1. Extended Quantile Sketch Array (ExQSA) representation of features. Quan-
tile Sketch Array (QSA) uses quantile data sketch [13] to represent feature
values associated with a class label. For each feature f and binary target y,
QSA builds equi-width bins for f with target y = 0 and y = 1 separately. For
regression problems, we extend QSA (ExQSA) by building equi-width bins
for f with numeric target y > median(y) and y < median(y) separately.
Previous N-step FE history on FTG.

The number of each transformation operators used in G;.

The number of next node visited for each action.

The number of each operator used from {f;} to its root.

Node depth of a feature in HTG.

Average performance improvement of each action.

N otk N

Totally, we use 293 features to represent each state. A neural network with
three fully connected hidden layers (128-128-64 neurons) and ReLU activation
function is used to approximate Q-values.

4 Experiments

This section describes our experimental results. First, we introduce our exper-
imental settings as well as our training procedure. Then we use Fl-score (for
classification) and 1 - Relevant Absolute Error (1-RAE) (for regression) criteria
to compare the performance of FeL. algorithm with several state-of-the-art auto-
matic FE techniques. After that, we evaluate the robustness of our algorithm
with respect to different learning algorithms (Random Forest, Logistic Regres-
sion). Finally, we show the efficiency of CAFEM on different supervised learning
tasks by comparing it with FeL.. To our surprise, CAFEM can help improving
the prediction performance. Source codes are posted on Github (https://github.
com/TjuJianyu/CAFEM.git).

https://github.com/TjuJianyu/CAFEM.git
https://github.com/TjuJianyu/CAFEM.git

826 J. Zhang et al.

4.1 Experimental Settings

We randomly collect 120 binary classification or regression datasets, which do not
contain missing values and too many features and instances, from OpenML. We
randomly split them into 100 datasets for training and the other 20 datasets for
testing. Following [5,9], we choose 13 transformation operators (set T) includ-
ing Order-1: Log, Round, Sigmoid, Tanh, Square, Square Root, ZScore, Min-
Mazx-Normalization and Order-2: Sum, Difference, Product, Division. Following
[9], we choose Random Forest and Logistic Regression (Lasso for regression)
(from Scikit-learn http://scikit-learn.org) as our learning algorithm and use F1-
score/1-RAE to measure the performance. A 5-fold cross validation (same seed
for all experiments) using random stratified sampling is used to measure the
average performance. Fel. is performed on 20 testing datasets directly, while
CAFEM is trained on the 100 training datasets by meta-learning. For Order-
2 operators, as the number of candidate features is very large, Fel. randomly
sample a small batch (100) at each step.

To showcase the ability of different FE algorithms, we compare the perfor-
mance of FelL with the following approaches:

— Baseline: applies learning algorithm on original dataset (features) directly.

— Random-FeL (RS): is an algorithm where we apply random strategy on
FTG rather than the strategy learned by RL like CAFEM to find a set of
features that can maximize P(D). This shows the effect of FTG without
RL and Meta-learning. This algorithm can be seen as random graph search
method on FTG. As some graph search algorithms, such as depth-first search
(DFS) or breadth-search algorithm (BFS), are extremely time consuming [5],
we do not compare FelL with DFS or BFS in this paper.

— Brute-force (BF): is inspired by DSM [3], OneBM [7] and [15]. It applies all
transformation operators to all original features and performs feature selec-
tion on the augmented dataset. (top-down approach).

— LFE [9]: uses QSA to generate the representation of each feature in clas-
sification problems. Following [9], a neural network with one hidden layer,
L2 regularization and dropout is used to predict whether a feature with a
transformation operator will gain 1% model performance improvement.

— FERL: organizes the FE problem into a Transformation Graph, where each
node is either the original dataset D or a dataset transformed from D. Then
it uses Q-learning with linear approximation. We use the same setting as [5].
For Order-2 transformation operators, native FERL is extremely computation
expensive since the number of new features is very large. During training
stage, we prune the branches in Transformation Graph that would generate
more than 10,000 new features next to make it trainable.

As the source codes of all these methods are not publicly available and some
experiments details are not provided (such as, the random seed of learning algo-
rithm and train-test dataset splitting), we implemented ourselves all the bench-
marks. For all the FE approaches except Baseline, we evaluate the performance
for Order-1 and (Order-1 & Order-2) transformation operators to compare the
ability of handling simple and complex transformation operators.

http://scikit-learn.org

Cross-data Automatic Feature Engineering via Meta-learning and RL 827

Table 1. Comparing Performance by Fl-score/1-RAE, Random Forest and 5-fold
Cross-validation (- indicates cannot finish within 36 h, x indicates the algorithm can
not handle corresponding dataset).

Datasets #Row |#Feature|Baseline|Order-1 Order-1 & 2
FeL BF LFE |RS FERL |FeL BF LFE |RS FERL
Balance_scale |625 5 88.2% 88.3% |86.4% |88.2%|88.2% |88.6%|95.0% |97.0%|95.1%|92.7% |-
Boston 506 21 88.2% 90.2%|86.7% |89.2%|89.5% |88.7% |89.9%|85.6% |88.2%|89.8% |-
ClimateModel|540 21 95.5% |96.0% |95.6% |95.5%|95.7%|95.9% |96.1%|95.5% (95.5%|96.1% |-
Cpu-small 8,192 |13 86.3% 87.1%|84.5% |85.8%|86.6% |86.8% |87.1%|86.2% |86.3%|87.0% |-
Credit card 14,240(31 50.5% |68.7%|64.8% |50.5% 63.8%|64.0% |71.4%|65.1% [65.1%|64.6% |-
Disclosure.x |662 4 44.8% 51.7%|46.6% |46.8%|49.7% |49.8% |51.4% |46.4% |46.4%51.4% |51.8%
Disclosure.z |662 4 53.8% 57.7%(55.6% |53.1%|55.6%|57.0% |57.0%|53.8% |55.0%56.7% |56.9%
fri_c1-1000-25|1,000 |26 84.9% |87.7% |85.8% |85.8%86.7% |88.0% |87.1%|77.9% |82.1%|87.1% -
Fri_c2.100.10 1,000 |11 86.3% 89.7%|85.8% |86.8%|88.6% (89.3% |91.0%|87.2% |86.7%|89.3% |-
Fri_c3-100-5 1,000 |6 88.2% 89.2% |88.5% |88.2%|88.4% |89.4%|90.7%|87.3% |87.1%|89.3% |-
fri_c3-1000-50 1,000 |51 79.7% |83.7% |88.5% (80.9%|80.7% |87.8% |83.1% |88.4%|78.3%|80.8% |-
Gina_agnostic |3,468 |971 92.3% 92.8% |78.9% |92.3%|92.8% (93.5%|92.8% |- 92.5%92.8% |-
Hill-valley 1,212 101 57.5% 61.7%(59.2% |57.5%|60.8%|61.1% |100% |100% |57.5%|99.9% |-
Ilpd 583 11 41.3% |45.7% |38.7% |38.9%43.6% |44.9% |45.9%|45.9% 42.4% |44.8% |-
Kcl 2,109 |22 40.4% 44.5%35.3% |38.9%|42.0%|42.7% |44.4%|39.9% |38.8%|43.4% |-
openml_589 1,000 |25 66.9% 67.7% |55.0% |X 67.2%|72.6%|75.0% |76.9% | X 68.1% |-
Pc4 1,458 |38 47.7% |57.0% |36.2% |45.3%|53.8%|58.4%|58.1%|50.1% |55.1%|56.5% |-
Pc34Cl14 1,563 |38 25.9% 38.4%|27.9% |23.0%|30.3%(32.0% |83.83%|24.6% |27.4%|31.6% |-
Spectrometer 531 103 77.3% |83.9%80.0% |75.2%80.4%|83.0% |82.7% |90.8% 73.2% |81.8% |-
Strikes 625 7 96.6% |99.5%|98.7% |97.8%99.1%|98.9% |99.5%|97.8% (93.4%|99.4% |98.9%
Disclosure_z lipd Credit Card fri_c1_1000_25

058

performance

epoch epoch epoch epoch

Fig. 2. CAFEM vs FeL over 4 different datasets

4.2 Performance Comparison of FelL

Table1 compares the model performance of our automatic FE approach FeL
to other state-of-the-art FE approaches on 20 datasets. The first four columns
in this table report the dataset, the number of instances (rows) and original
features, the baseline performance (Fl-score/1-RAE of 5-fold cross validation)
of the datasets. The number of instances ranges from 506 to 14,240 and for
features, it ranges from 4 to 971. In the middle five columns, we compare different
automatic FE approaches with Order-1 transformation operators, and in the last
five columns, the performance with Order-1 & Order-2 transformation operators.

In Order-1 transformation operators, FeL. outperforms all approaches on most
datasets. On average, FeL. improves performance by 4.2% on test datasets. In the
best two cases, Credit card and Pc4, Fel. even improves baseline performance
by 18.2% and 9.3%. One interesting phenomenon is that the Random method
(random graph search on FTG) can obtain a relevant higher performance on

828 J. Zhang et al.

some datasets. This indicates that FTG represents the FE process in an effective
way and significantly contributes further strategy learning of FE.

On Order-1 & Order-2 transformation operators, the complexity of FE
increases significantly. Thus, it is expected that an inefficient method would
easily run out of time, memory space or even would not work. Fel. improves per-
formance by 6.9% on average compared with existing approaches. In the best two
cases, Pc4 and Ilpd, it improves by 42.5% and 20.9%. As we mentioned above,
some FE approaches would be strongly limited as the complexity of transfor-
mation operators increasing. Comparing the performance of each approaches on
Order-1 & Order-2 with that on Order-1, we found that LFE and Brute-force
approaches get a worse performance (-1.54% in average) on half of the datasets,
while FeL does not get any performance decrease. FERL approach is really com-
putation expensive here: most of the datasets run out of time (36 h).

4.3 Robustness of Fel. on Different Learning Algorithms

In order to showcase the robustness of FeLi, we evaluate the performance of Fel
with two learning algorithms: Random Forest (tree-based ensemble learning algo-
rithm) and Logistic Regression (Lasso for regression) (general linear algorithm)
on 20 test datasets. FeL: gains 10.8% and 4.2% performance increase on average
with Logistic regression and Random Forest, respectively. The performance of
FeL, with Logistic regression ranges from 0.2% to 25.8%. For Random Forest,
the performance of FeL ranges from 0% to 18.2%. It shows that our algorithm
is robust with respect to different learning algorithms.

4.4 Performance of Cross-data Component

One main aim of Cross-data Component is to speed up FE learning. We evaluate
FeLL and CAFEM on the test datasets and randomly show the comparison on 4
datasets due to the space limitation. Figure 2 shows that CAFEM can increase
model performance more rapidly (gain a high score within the first epoch, out-
perform the best of Fel within around ten epochs). To our surprise, CAFEM
can gain a better final model performance than Fel. in most of the cases. We
hypothesize the reason of this phenomena as that CAFEM learnt some general
FE rules from a large set of datasets to help the agent quickly learn a new dataset
and regularize its behavior.

5 Conclusion

In this paper, we present a novel framework called CAFEM to perform automatic
feature engineering (FE) and transfer FE experiences from a set of datasets to
a particular one. It contains a feature transformation graph (FTG) that orga-
nized the process of FE, a Single-data FE learner and a Cross-data compo-
nent. In most datasets, the framework outperforms state-of-the-art automatic
FE approaches for both simple and complex transformation operators. With the

Cross-data Automatic Feature Engineering via Meta-learning and RL 829

help of cross-data component, CAFEM can speed up FE and increase FE per-
formance. Moveover, the framework is robust to the choice of different learning
algorithms.

Acknowledgments. The work is supported by the National Natural Science Foun-
dation of China (Grant Nos.: 61702362, U1836214).

References

10.

11.

12.

13.

14.
15.

Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78-87 (2012)

Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Proceedings of the 34th International Conference on Machine
Learning, vol. 70, pp. 1126-1135 (2017). JMLR.org

Kanter, J.M., Veeramachaneni, K.: Deep feature synthesis: towards automating
data science endeavors. In: IEEE International Conference on Data Science and
Advanced Analytics (DSAA), vol. 36678, pp. 1-10. IEEE (2015)

Katz, G., Shin, E.C.R., Song, D.: Explorekit: automatic feature generation and
selection. In: Proceedings of the IEEE 16th International Conference on Data Min-
ing ICDM 2016, pp. 979-984. IEEE (2016)

Khurana, U., Samulowitz, H., Turaga, D.: Feature engineering for predictive model-
ing using reinforcement learning. In: Thirty-Second AAATI Conference on Artificial
Intelligence (2018)

Khurana, U., Turaga, D., Samulowitz, H., Parthasrathy, S.: Cognito: automated
feature engineering for supervised learning. In: Proceedings of the IEEE 16th Inter-
national Conference on Data Mining Workshops ICDMW 2016, pp. 1304-1307.
IEEE (2016)

Lam, H.T., Thiebaut, J.-M., Sinn, M., Chen, B., Mai, T., Alkan, O.: One button
machine for automating feature engineering in relational databases. arXiv preprint
arXiv:1706.00327 (2017)

Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E.B., Turaga, D.: Learning
feature engineering for classification. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence, IJCAI, vol. 17, pp. 2529-2535 (2017)
Sutton, R.S., Barto, A.G., et al.: Reinforcement Learning: An Introduction. MIT
Press, Cambridge (1998)

Toscher, A., Jahrer, M., Bell, R.M.: The BigChaos solution to the Netflix grand
prize. Netflix prize documentation, pp. 1-52 (2009)

Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. In: AAAI, Phoenix, AZ, vol. 2, p. 5 (2016)

Wang, L., Luo, G., Yi, K., Cormode, G.: Quantiles over data streams: an experi-
mental study. In: Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, pp. 737-748. ACM (2013)

Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3-4), 279-292 (1992)
Zhang, J., Fogelman-Soulié, F., Largeron, C.: Towards automatic complex feature
engineering. In: Hacid, H., Cellary, W., Wang, H., Paik, H.-Y., Zhou, R. (eds.)
WISE 2018. LNCS, vol. 11234, pp. 312-322. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02925-8_22

http://www.JMLR.org
http://arxiv.org/abs/1706.00327
https://doi.org/10.1007/978-3-030-02925-8_22
https://doi.org/10.1007/978-3-030-02925-8_22

	Cross-data Automatic Feature Engineering via Meta-learning and Reinforcement Learning
	1 Introduction
	2 Background and Problem Formulation
	2.1 Reinforcement Learning
	2.2 Meta-learning
	2.3 Problem Formulation

	3 Method
	3.1 Feature Transformation Graph
	3.2 MDP Formulation
	3.3 CAFEM Framework

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison of FeL
	4.3 Robustness of FeL on Different Learning Algorithms
	4.4 Performance of Cross-data Component

	5 Conclusion
	References

