q

Check for
updates

1

In recent years, deep learning has achieved great success on a variety of machine
learning problems such as computer vision and natural language processing.
However, deep neural networks (DNNs) are with too many hyperparameters and
the learning performance depends seriously on the careful tuning of them [8].
The correct setting of hyperparameters for DNNs often needs a tedious endeavor,
and typically requires considerable expert knowledge and experience. As a result,
both researchers and practitioners desire to set hyperparameters automatically

Accelerating Hyperparameter
Optimization of Deep Neural Network
via Progressive Multi-Fidelity Evaluation

Guanghui Zhu®™) and Ruancheng Zhu

National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China
{guanghui.zhu,zrc}@smail.nju.edu.cn

Abstract. Deep neural networks usually require careful tuning of hyper-
parameters to show their best performance. However, with the size of
state-of-the-art neural networks growing larger, the evaluation cost of
the traditional Bayesian optimization has become unacceptable in most
cases. Moreover, most practical problems usually require good hyper-
parameter configurations within a limited time budget. To speed up the
hyperparameter optimization, the successive halving technique is used to
stop poorly-performed configurations as early as possible. In this paper,
we propose a novel hyperparameter optimization method FastHO, which
combines the progressive multi-fidelity technique with successive halv-
ing under a multi-armed bandit framework. Furthermore, we employ
Bayesian optimization to guide the selection of initial configurations and
an efficient data subsampling based method to warm start the surro-
gate model of Bayesian optimization. Extensive empirical evaluation on
a broad range of neural networks and datasets shows that FastHO is
not only effective to speed up hyperparameter optimization but also
can achieve better anytime performance and final performance than the
state-of-the-art hyperparameter optimization methods.

Keywords: Hyperparameter optimization + Deep neural network -
Multi-fidelity optimization

Introduction

without any human intervention.

Unlike traditional machine learning models, hyperparameter optimization
for DNNs is more challenging. Since the architecture of DNNs is getting more

© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12084, pp. 752-763, 2020.
https://doi.org/10.1007/978-3-030-47426-3_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_58&domain=pdf
https://doi.org/10.1007/978-3-030-47426-3_58

FastHO 753

and more complex, training large DNNs is more computationally expensive. For
example, state-of-the-art neural networks often require days or even weeks to
train. Thus, the well-known Bayesian optimization [1,2,10,18,20] methods that
view the performance as a black-box function suffer low computational efficiency
due to the expensive evaluation of hyperparameters. On the other hand, most
practical problems usually require a good hyperparameter configuration within
a limited time budget. Besides the strong final performance given a larger bud-
get, practical hyperparameter optimization methods should also achieve strong
anytime performance in the case of a small budget.

To speed up the hyperparameter optimization of DNNs, Hyperband [15] uses
the successive halving (SH) technique [11] to stop poorly-performed configura-
tions as early as possible and dynamically allocate more resources (i.e., the num-
ber of iterations) to well-performed configurations. Another popular method is
the multi-fidelity optimization [9,12,13,19]. Generally, the fidelity indicates the
sampling ratio of the full dataset. Multi-fidelity optimization uses many cheap
low-fidelity evaluations instead of expensive high-fidelity evaluations to extrap-
olate the performance of hyperparameter configurations on the full dataset.

In this paper, we propose a novel hyperparameter optimization method
FastHO to further accelerate the hyperparameter optimization of DNNs, while
achieving good anytime performance and final performance. FastHO combines
the progressive multi-fidelity technique with successive halving under a multi-
armed bandit framework. Each hyperparameter configuration is viewed as an
arm. At first, we aggressively evaluate each arm with fewer resources (i.e., small
iteration budget and low fidelity). The poorly-performed arms are discarded and
more resources are dynamically allocated to the promising configurations. The
process is repeated until the maximum iteration budget and the highest fidelity
are reached. Furthermore, we employ Bayesian optimization to guide the selec-
tion of initial configurations. Additionally, an efficient warmup method based
on data subsampling is proposed to initialize the surrogate model of Bayesian
optimization. Extensive empirical evaluation on different neural networks and
datasets shows that FastHO outperforms the existing hyperparameter optimiza-
tion methods. FastHO is not only effective to speed up hyperparameter opti-
mization but also can achieve robust and better final performance.

2 Related Work

Given a machine learning algorithm A having hyperparameters Ag;...; A, with
respective domains d1;...;d,, we define its hyperparameter space as § = §; X
... X 0,. For each hyperparameter setting A, we use Ay to denote the learning
algorithm A using this configuration. We further use I(A\) = L(Ax; Dirain; Dvalid)
to denote the validation loss (e.g., error rate) that Ay achieves on data Dyqaiq
when trained on Dy,.qin. The hyperparameter optimization problem is then to
find A minimizing I(\).

Bayesian optimization (BO) is the most popular hyperparameter optimiza-
tion method [2,18,20]. BO models the conditional probability p(y|A) of a configu-
ration’s performance on an evaluation metric y, given a set of hyperparameters .

754 G. Zhu and R. Zhu

The commonly-used probabilistic model in BO is Gaussian process (GP), but
GP does not typically scale well to high dimensions and exhibits cubic com-
plexity in the number of data points. Another model-based Bayesian optimiza-
tion method is SMAC [10], which uses random forest as the surrogate model.
SMAC can perform well in high-dimensional categorical spaces. TPE [1] is a
non-standard Bayesian optimization algorithm based on tree-structured Parzen
density estimators. Due to the nature of kernel density estimators, TPE easily
supports mixed continuous and discrete spaces. The above three BO methods are
well-established and successful, but they are inefficient for the hyperparameter
optimization of DNNs due to the huge evaluation cost.

Unlike the model-based Bayesian optimization, the bandit-based strategy
Hyperband [15] formulates hyperparameter optimization as a pure-exploration
problem by addressing how to allocate resources among randomly-sampled
hyperparameter configurations. Besides, it uses successive halving to early
stop the poorly-performed configurations. Compared to Bayesian optimization,
Hyperband shows strong anytime performance, but it may lead to poor final
performance because the initial hyperparameter configurations are selected ran-
domly. BOHB [4] takes advantage of both Bayesian optimization and Hyperband
and thus achieves the state-of-the-art anytime performance and final perfor-
mance.

Another efficient method for the tuning of hyperparameters is multi-fidelity
optimization, which uses cheap approximations to the function of interest to
speed up the overall optimization process. Generally, the fidelity can be repre-
sented by the sampling ratio of the full dataset. Multi-fidelity Bayesian optimiza-
tion that ranges from a finite number of approximations to continuous approx-
imations has been well studied [12,13,19]. Furthermore, a general multi-fidelity
framework based on the black-box optimization methods was proposed [9].

However, due to the huge training cost of DNNs, the existing hyperparam-
eter optimization methods are inefficient and time-consuming for DNNs. Even
for the state-of-the-art method BOHB, it still requires 33 GPU days for optimiz-
ing the hyperparameters of a medium-sized residual network [4]. In this paper,
we combine the successive halving technique with multi-fidelity optimization to
accelerate the hyperparameter optimization of DNNs.

3 Method

In this section, we propose a novel early-stopping mechanism to speed up the
hyperparameter optimization of DNNs by taking the number of iterations and
multi-fidelity into account at the same time. We first analyze the low-fidelity
evaluation bias of DNNs, which motivates to progressively increase the fidelity.
Then, we introduce the IF-SH (Iteration-and-Fidelity Based Successive Halv-
ing) method in detail. Moreover, we propose an efficient warmup technique for
Bayesian optimization to further improve the performance, especially the any-
time performance of hyperparameter optimization.

FastHO 755

3.1 Low-Fidelity Evaluation Bias

Multi-fidelity optimization uses many cheap low-fidelity approximations instead
of the expensive high-fidelity evaluations to speed up the overall optimization
process. The lower the fidelity is, the cheaper the evaluation will be. However, it
is intuitive that the evaluation on a part of the dataset is badly biased because it
provides less accurate information about the target function. The experimental
results of multi-fidelity optimization on Light GBM [14] show that the hyperpa-
rameter configurations chosen by low-fidelity evaluations usually perform poorly
on the test dataset. We have tried to apply BOHB to find the best hyperparam-
eter configuration of a convolutional neural network LeNet (with two convolu-
tional layers, a full-connection layer, and a softmax layer) on the MNIST and
CIFAR-10 datasets. We evaluated the hyperparameter configurations chosen on
the data subset (i.e., 10%) and the whole dataset, and then compared the test
error rate. The results are shown in Table 1.

It turns out as expected that the configuration chosen by high-fidelity evalu-
ations is superior to those selected by low-fidelity evaluations. Additionally, we
note that the main difference between the hyperparameter configurations chosen
by the high-fidelity and low-fidelity evaluations is the regularization hyperparam-
eters such as weight decay and dropout rate. It makes sense because the neural
networks trained on the data subset usually require more regularization to deal
with overfitting.

Table 1. Test error rate (%) of LeNet on MNIST and CIFAR-10, using hyperparameter
configurations chosen by BOHB with different fidelity evaluations. CIFAR-10+ means
CIFAR-10 with standard data augmentation. Results are the average over 5 runs.

Data MNIST CIFAR-10 | CIFAR-10+
The whole dataset | 0.6 & 0.05 | 20.68 £ 0.68 | 16.32 £ 0.54
10% data subset 0.76 £0.13|23.81 £ 1.17|17.94 +0.78

As shown in Table 1, the evaluation performance on the data subset is biased
in different cases. Therefore, it is necessary to develop a new method to balance
the low-fidelity and high-fidelity evaluations. To address this issue, we propose
a progressive multi-fidelity evaluation technique. We further combine this tech-
nique with the existing successive halving optimization. The configurations are
first evaluated with a small number of epochs and low fidelity. After filtering the
poorly-performed configurations as early as possible, we dynamically increase
the number of epochs and fidelity simultaneously for the remaining configura-
tions. The process is repeated until the maximum number of epochs and the
maximum fidelity (i.e., the full dataset) are used. We call this procedure IF-SH
(Tteration-and-Fidelity Based Successive Halving).

756 G. Zhu and R. Zhu

3.2 Progressive Multi-Fidelity Evaluation

Multi-armed bandit based methods such as Hyperband and BOHB view each
hyperparameter configuration as an arm and dynamically allocate resources to
different arms. The existing successive halving method can ensure that the
poorly-performed configurations are discarded as early as possible and those
promising hyperparameter configurations will get more resources overtime auto-
matically. For the hyperparameter optimization of DNNs, the resource means
the number of iterations (i.e., epochs). Since using evaluation on fewer iterations
as criteria in HyperBand is feasible, it is worth a try that we use evaluation on
both fewer iterations and lower fidelity to judge a hyperparameter configuration,
which will remarkably reduce the overall time cost.

Thus, we propose a progressive multi-fidelity evaluation method IF-SH and
dynamically allocate multiple resources including iteration budget and fidelity.
Specifically, IF-SH usually begins with a small iteration budget on data subsets
instead of the whole dataset. Then, IF-SH ranks the configurations by the vali-
dation performance and select the top ™! to continue running with an iteration
budget 7 times larger and a fidelity 6 times larger. This process is repeated until
it runs with the largest iteration budget on the whole dataset.

Another problem of the multi-armed bandit based hyperparameter optimiza-
tion is how to set the number of initial configurations n. Similar to Hyperband,
we consider several possible values of n to balance exploration and exploitation.
Associated with each value of n is a minimum iteration budget b,,;, that is allo-
cated to all configurations. A larger value of n corresponds to a smaller b,,;, and
hence means more aggressive early stopping.

Algorithm 1. Iteration-and-Fidelity Based Successive Halving
Input: Iteration budget bmin and bmax, 7,0

11 smax = log, —Zmax

min

2: for s in {Smax; Smax — 1;...;0} do

3 n= S“ﬁ‘fl *n°

4: T = get hyperparameter configurations(n) using Bayesian optimization
5. bmin = bmax *n~°

6: fmin=20"°

//begin the SH inner loop
7. foriin {0;...;s} do

8: n; =mnx*xn '

9: bz = bnlin * ni

10: fi = foin * 0°

11: Dgyb = sample f; data from the training dataset Dirain

12: L = { run on Dgyp then return validation loss(¢,b;): ¢t in T}
13: T = topk(T, L,n;/n)

14: end for

15: end for

16: return Configuration with the smallest intermediate loss seen so far

FastHO 757

Algorithm 1 shows the process of IF-SH, which requires the following inputs:
(1) [bmin, bmaz] that determines the iteration budget space (2) 7, an input that
controls the proportion of configurations discarded and the number of iterations
in each round of SH. Also, n determines the minimum number of iterations of
the next round (3) 6, an input that controls the size of fidelity in each round of
SH. 0 also determines the minimum fidelity of the next round.

This algorithm balances between very aggressive evaluations with many con-
figurations on the minimum resource, and very conservative runs that are directly
evaluated on the maximum resource. Table2 displays the resources allocated
within each round of SH in IF-SH. The size of data subsampling is controlled by
0. In practice, the difference caused by various 6 settings is not so notable. We
will discuss it in Sect.4.1.

Table 2. The values of n;, b; and f; in IF-SH corresponding to various values of s,
when bmin = 17 bmax = 27,77 = 3, 0=3

i|ls=3 s=2 s=1 s=0

ng | b | fi ng | b\ fi |nilbi | fi [ma b | fi
0271 [1/27/9 |3 |1/9]/6 |9 |1/3]|4 |27|1
1 3 11/9 1319 |1/3]/2 |27|1
203 9 [1/3 |1 27]1
3 2711

3.3 Surrogate Model Warmup

Hyperparameter configurations within each round of SH is selected by Bayesian
optimization (Line 4 in Algorithm 1). It is well known that all model-based opti-
mization methods including Bayesian optimization need initial observations to
build the surrogate model. The most commonly-used startup is to choose ran-
dom hyperparameter configurations, which is not efficient and robust. When the
randomly-sampled configurations perform poorly, the surrogate model will be
slow to work, causing a negative influence on anytime performance. A lot of
previous work [5,16,21] focuses on meta-learning to handle this issue, but they
require historical data or pre-trained models.

Obviously, the data subset contains part information of the whole dataset.
As discussed in Sect. 3.1, the difference between configurations chosen by the
data subset and the whole dataset is not too remarkable. Thus, using the sam-
pling data to warm start the surrogate model is a feasible way. The configurations
chosen by low-fidelity evaluations probably exceed the randomly-sampled config-
urations, although their final performance may not be so satisfying. To improve
the efficiency of the warmup phase, we just run one round of SH. We first sample
data from the training dataset with the sampling percent r. Then, we run SH
on the sampling data D, and select the top-k configurations to warm up the

758 G. Zhu and R. Zhu

surrogate model. In Sect. 4.1, we will evaluate the effect of r, subsampling per-
cent of the warmup phase. In fact, by selecting more promising hyperparameters
rather than random selection, the warmup phase is helpful for improving the
final performance of hyperparameter optimization.

4 Experiments

In this section, we evaluated the empirical performance of our proposed method
FastHO on different neural networks including CNN, Fully-Connected neural
network, ResNet18 [7], and ResNet with Shake-Shake [6] and Cutout [3] regu-
larization. The datasets include MNIST, CIFAR-10, and CIFAR-100. We com-
pared the anytime performance and final performance of FastHO with TPE [1],
Hyperband [15], and BOHB [4]. BOHB is the state-of-the-art hyperparameter
optimization method that combines TPE and Hyperband (HB). We set n = 3,
0 = 3, r = 0.1 as default and explore how to set suitable 6 and r. If not stated
otherwise, for all methods we report the average error rate on the test dataset.

4.1 Convolutional Neural Network

We first evaluated FastHO on a CNN with two convolutional layers, a full-
connection layer, and a softmax output layer. We optimized the hyperparame-
ters including learning rate, momentum, weight decay, dropout rate, batch size,
the number of full-connection units, kernel size, and weight initialization mode.
For this network, we set b,,;n = 2 and bypee = 60 for successive halving. The
budget indicates the number of epochs. The IF-SH process contains 4 rounds of
successive halving, resulting in 240 epochs in total.

CIFAR-10: The CIFAR-10 dataset contains 50000 training and 10000 test RGB
images with 32 x 32 pixels. The standard data augmentation techniques (i.e.,
random crop and horizontal flip) are used. To perform hyperparameter optimiza-
tion, we split off 10000 training images as a validation set. Figure 1 shows the
average test error of FastHO with and without the warmup phase. We also com-
pared FastHO with TPE, Hyperband, and BOHB. The total iteration budget is
16 resource units and each resource unit represents 240 epochs. As a result, the
complete FastHO process includes 16 runs of IF-SH.

From Fig. 1, we can see that the traditional Bayesian optimization method
TPE does not work well and has the worst anytime performance. HB improves
the efficiency of hyperparameter optimization with successive halving and thus
achieves better anytime performance than TPE. However, its convergence to the
global optimal value is limited by its reliance on randomly-drawn configurations.
Thus, the final performance of HB is not very strong. BOHB performs well with
limited resources and at the same time can achieve better final performance.

In contrast, FastHO outperforms BOHB on anytime performance by com-
bining the progressive multi-fidelity optimization with SH. Furthermore, the

FastHO 759

CNN on CIFAR10
19

18.5

18

S —o—TPE
@
2 175 HB
Q
3
]
w17 —@— BOHB
@
% .
16.5 FastHO without
warmup
16 FastHO

155
0 2 4 6 8 10 12 14 16 18

resource

Fig. 1. Average test error of the best-observed configuration of CNN on CIFAR-10.
One resource unit represents 240 epochs.

warmup technique can improve both anytime performance and final perfor-
mance, while its time cost is negligible compared to the following hyperparam-
eter optimization phase. More importantly, it can help FastHO to reach the
best performance with much fewer resources. For instance, FastHO gets the best
test error rate within 8 units of resources (8*240 epochs in total), about half of
the resources consumed by other methods. Additionally, for the wall clock time,
BOHB takes 31h for hyperparameter optimization within 16 resource units. In
contrast, FastHO takes only 19h which is 63% faster than BOHB.

Evaluation of the 8 and r Setting. We also evaluated two key parameters
of FastHO: the proportion of 8 that controls the size of fidelity in each round of
successive halving, and the subsampling percent r in the warmup phase.

Intuitively, setting 6 to a smaller value leads to a larger fidelity. If 0 is set to 1,
we will evaluate all configurations on the entire dataset. However, this disobeys
our purpose to accelerate the evaluation procedure. In contrast, it should not be
set to a very large value, because we aim to differentiate between configurations
even when they are evaluated on the smallest data subset. Therefore, we set 6
to be 2, 3 (default) and 4, and then compared their performance in Fig. 2(a).

As shown in Fig.2(a), the difference caused by various 6 settings is not so
notable. The reason is that the three values are all appropriate ones that guar-
antee the discrimination of configurations on the smallest data subset. Besides,
even if the evaluation bias exists on the low fidelity, the final evaluation is per-
formed on the full dataset, which weakens this bias to some extent. Thus, FastHO
is insensitive to the 6 setting.

Next, we discuss the setting of r in the warmup phase. If 7 is set to a larger
value, the data subset contains more information, leading to good hyperparam-
eter configurations to warm start the Bayesian surrogate model. Nevertheless,

760 G. Zhu and R. Zhu

setting r
setting © 185
19 without
s warmup
—o—0=2 —8—r=0.05
18.5
6=3(default)
175 —o—r=0.1(def
18 —8—06=4 e ault)
L\ r=0.2

average test error
o = b
<

average test error
&1
n

resource resource

(a) (b)

Fig. 2. Average test error of the best-observed configuration of CNN on CIFAR-10

with different 6 and r settings. One resource unit represents 240 epochs.

the time cost of the warmup procedure will become larger. We chose 0.05, 0.1,
and 0.2 for r, and then compared their performance in Fig.2(b). Note that the
warmup technique can improve the performance of FastHO no matter which
value to choose. Meanwhile, none of these values is remarkably superior to other
ones. The performance difference is acceptable due to the randomness in the
data subsampling and hyperparameter optimization phases. Thus, we can infer

that » makes little difference.

4.2 Fully-Connected Neural Network

Adult
24 Letter
235 —e—BOHB 7
23 —8—FastHO 6.5 —e—BOHB
s
2 = —e—FastHO
5225 5 6
3 T
2 7
) 255
@ v
g 215 &
© ¢ s
21 ®
205 45
20 4
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12
resource resource
(a) (b)

14

Fig. 3. Average test error of the best-observed configuration of FC network on Adult

and Letter. One resource unit represents 90 epochs.

We optimized 6 hyperparameters that control the training procedure (learn-
ing rate, batch size, dropout rate, and weight decay). We also optimized the

FastHO 761

architecture hyperparameters (number of layers, number of units per layer,
weight initialization mode, and activation function) of a full-connected neural
network. We selected two datasets: Adult and Letter, and set b,in = 3, bpaz =
30. Since BOHB outperforms TPE and HB in most cases, we compared FastHO
only with BOHB in the following experiments. In both Fig.3(a) and Fig. 3(b),
FastHO outperforms BOHB with not only the better anytime performance but
also the better final performance. Moreover, the warmup technique is helpful for
converging to optimum faster.

4.3 Large Convolutional Neural Network: ResNet

Next, we optimized the hyperparameters of large and widely-used neural net-
works including ResNet18 [7] and ResNet with Shake-Shake [6] and Cutout [3]
regularization on the CIFAR-10 and CIFAR-100 datasets. We used standard
data augmentation techniques (i.e., random crop and horizontal flip) and Nes-
terov momentum SGD optimizer with a cosine learning decay [17].

ResNet18: We tuned 4 hyperparameters including learning rate, momentum,
weight decay, and batch size on the CIFAR-10 and CIFAR-100 datasets. CIFAR-
100 shares similar input images to CIFAR-10. The only difference is that CIFAR-
100 has 100 classes. We split the training dataset into 80% training data and
20% validation data. We set byin = 7 and by,q. = 200. As shown in Fig. 4, the
performance improvement of FastHO is more significant, which indicates that
FastHO is more effective for the hyperparameter optimization of larger neural
networks. Moreover, FastHO is 67% faster than BOHB in terms of the total
evaluation time cost.

CIFAR10
CIFAR100

—8—BOHB 24.5
6.5

—e—BOHB
FastHO 24

6 FastHO

average test error
o

average test error

0 5 10 15 20 0 5 10 15 20

resource resource

(a) (b)

Fig. 4. Average test error of the best-observed configuration of ResNet18 on CIFAR-10
and CIFAR-100. One resource unit represents 800 epochs.

ResNet with Shake-Shake and Cutout Regularization: Next, we used
the ResNet with Shake-Shake and Cutout regularization. For this network, we

762 G. Zhu and R. Zhu

set byin = 22 and by, = 600 and optimized learning rate, momentum, weight
decay, and batch size. In this case, we just trained and evaluated the network
with the best configuration after the complete hyperparameter optimization pro-
cess (i.e., 16 runs of IF-SH). We ran the complete process 3 times and get a
test error of 2.81% 4 0.07%, which is slightly larger than that reported in [4]
(2.78% £ 0.09%). However, regardless of the differences in training details or the
search space setting, FastHO requires only 19 GPU days, while BOHB needs
33 GPU days. Moreover, as shown in Fig. 4, FastHO outperforms BOHB with
much better anytime performance.

5 Conclusion and Future Work

In this paper, we presented a novel method to accelerate the hyperparameter
optimization of DNNs by combining the progressive multi-fidelity technique with
successive halving under a multi-armed bandit framework. Also, we proposed
an efficient warmup method for the surrogate model of Bayesian optimization.
Extensive empirical evaluation on a broad range of neural networks and datasets
shows that FastHO is not only effective to speed up hyperparameter optimization
but also can achieve better anytime performance and final performance than
other state-of-the-art methods.

Future work includes taking feature subsampling into account to further
accelerate hyperparameter optimization.

Acknowledgments. We thank Rong Gu, Chunfeng Yuan, and Yihua Huang for
helpful advice. This work was supported by the National Natural Science Foun-
dation of China (U1811461, 61702254), National Key R&D Program of China
(2019YFC1711000), Jiangsu Province Science and Technology Program (BE2017155),
National Natural Science Foundation of Jiangsu Province (BK20170651), and Collab-
orative Innovation Center of Novel Software Technology and Industrialization.

References

1. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Proceedings of the 24th International Conference on Neural Infor-
mation Processing Systems, pp. 2546-2554 (2011)

2. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. In: Pro-
ceedings of the 30th International Conference on Machine Learning, pp. 115-123
(2013)

3. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. CoRR abs/1708.04552 (2017)

4. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter
optimization at scale. In: Proceedings of the 35th International Conference on
Machine Learning, pp. 1436-1445 (2018)

5. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing bayesian hyperparameter
optimization via meta-learning. In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence, pp. 1128-1135 (2015)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

FastHO 763

Gastaldi, X.: Shake-shake regularization. CoRR abs/1705.07485 (2017)

He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630-645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep
reinforcement learning that matters. In: Proceedings of the 32rd AAAT Conference
on Artificial Intelligence, pp. 3207-3214 (2018)

Hu, Y., Yu, Y., Tu, W., Yang, Q., Chen, Y., Dai, W.: Multi-fidelity automatic
hyper-parameter tuning via transfer series expansion. In: Proceedings of the 33rd
AAAT Conference on Artificial Intelligence, pp. 3846-3853 (2019)

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507-523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3-40

Jamieson, K.G., Talwalkar, A.: Non-stochastic best arm identification and hyper-
parameter optimization. In: Proceedings of the 19th International Conference on
Artificial Intelligence and Statistic, pp. 240-248 (2016)

Kandasamy, K., Dasarathy, G., Oliva, J.B., Schneider, J.G., Péczos, B.: Gaus-
sian process bandit optimisation with multi-fidelity evaluations. In: Proceedings of
the 30th International Conference on Neural Information Processing Systems, pp.
1000-1008 (2016)

Kandasamy, K., Dasarathy, G., Schneider, J.G., Pdoczos, B.: Multi-fidelity bayesian
optimisation with continuous approximations. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning, pp. 1799-1808 (2017)

Ke, G., et al.: Light GBM: a highly efficient gradient boosting decision tree. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 3149-3157 (2017)

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
bandit-based configuration evaluation for hyperparameter optimization. J. Mach.
Learn. Res. 18(1), 67656816 (2017)

Lindauer, M., Hutter, F.: Warmstarting of model-based algorithm configuration.
In: Proceedings of the 32rd AAAI Conference on Artificial Intelligence, pp. 1355—
1362 (2018)

Loshchilov, 1., Hutter, F.: SGDR: stochastic gradient descent with warm restarts.
In: Proceedings of the 5th International Conference on Learning Representations
(2017)

Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Hutter, F.: Towards
automatically-tuned neural networks. In: Proceedings of the Workshop on Auto-
matic Machine Learning, pp. 58-65 (2016)

Sen, R., Kandasamy, K., Shakkottai, S.: Multi-fidelity black-box optimization with
hierarchical partitions. In: Proceedings of the 35th International Conference on
Machine Learning, pp. 4545-4554 (2018)

Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Proceedings of the 25th International Conference on Neural
Information Processing Systems, vol. 2, pp. 2951-2959 (2012)

Springenberg, J.T., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization with
robust bayesian neural networks. In: Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems, pp. 4141-4149 (2016)

https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40

	Accelerating Hyperparameter Optimization of Deep Neural Network via Progressive Multi-Fidelity Evaluation
	1 Introduction
	2 Related Work
	3 Method
	3.1 Low-Fidelity Evaluation Bias
	3.2 Progressive Multi-Fidelity Evaluation
	3.3 Surrogate Model Warmup

	4 Experiments
	4.1 Convolutional Neural Network
	4.2 Fully-Connected Neural Network
	4.3 Large Convolutional Neural Network: ResNet

	5 Conclusion and Future Work
	References

