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Abstract. IPv6 scanning has always been a challenge for researchers in
the field of network measurement. Due to the considerable IPv6 address
space, while recent network speed and computational power have been
improved, using a brute-force approach to probe the entire network space
of IPv6 is almost impossible. Systems are required an algorithmic app-
roach to generate more possible active target candidate sets to probe. In
this paper, we first try to use deep learning to design such IPv6 target
generation algorithms. The model effectively learns the address struc-
ture by stacking the gated convolutional layer to construct Variational
Autoencoder (VAE). We also introduce two address classification meth-
ods to improve the model effect of the target generation. Experiments
indicate that our approach 6GCVAE outperformed the conventional VAE
models and the state of the art target generation algorithm in two active
address datasets.

Keywords: IPv6 target generation · Deep learning · Data mining ·
Network scanning · Unsupervised clustering

1 Introduction

In the network measurement task, in order to discover the active hosts in the
network and judge their active state, the researchers usually use the network
scanning method to actively detect all the hosts existing in the network space.
Systems confirm that the host is active by sending the request packets and
waiting until receiving the response packets from the host. However, IPv6 [4]
contains a considerable address space. The current scanner [5] cannot complete
the entire IPv6 network space scanning.

The state of the art approach to solving this problem is using IPv6 target
generation technology [6,10,16]. The technology requires a set of active IPv6
seed addresses as the input and learns the structure of the seed addresses to
generate possible active IPv6 target candidate sets. Due to the semantics of the
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IPv6 address is opaque, it is difficult to infer the IPv6 address structure of a real
host or perform effective analysis of the addressing schemes.

The representative algorithms of IPv6 target generation technology include
Entropy/IP [6] which trained the Bayesian network to generate active candi-
date sets. However, the approach requires assuming that address segments exist
dependency. The confirmed model determined by experience and assumption
may be influenced in various datasets, thus leading to quite different effects [6].
In addition, because of the characteristics of such algorithms, they will consume
a long time under a large dataset.

Deep neural network architectures are used for the batch processing of big
data tasks. Models are able to automatically adapt to seed datasets by training,
thus usually performing well in a variety of large datasets. Variational Autoen-
coder (VAE) [9] is a typical generative model in deep neural networks. The
model samples the latent vector and finally reconstructs the text or image that
is similar to the original. The encoding idea may contribute to deeply mine the
potential relationship between addresses and active hosts. The gated convolu-
tional network was proposed by Dauphin et al. [3] The convolution and gating
mechanism of the model effectively learn the text structure while understanding
the relevance of the text, which can help models learn the key features of IPv6
addresses.

In this paper, we use a deep neural network architecture for the first time to
accomplish the IPv6 target generation task. Our contribution can be summarized
as follows:

– We first propose using deep learning architecture to achieve IPv6 target gen-
eration. Our work achieves a new model 6GCVAE that stacks the gated con-
volutional layer to construct VAE model.

– We use two methods of seed classification, which contributes to explore the
IPv6 addressing schemes to effectively improve the effect of the model.

– Our model demonstrates better results on both two datasets than conven-
tional VAE models (FNN VAE, Convolutional VAE, RNN VAE, LSTM
VAE, and GRU VAE) and the state of the art target generation technology
Entropy/IP.

The organizational structure for the rest of the paper is as follows. Section 2
introduces the related work of IPv6 target generation. Section 3 introduces the
background and considerations of this task. 6GCVAE architecture and seed clas-
sification methods are shown in Sect. 4. Section 5 evaluates our work and Sect. 6
summarizes the paper.

2 Related Work

In previous work, researchers have found there are certain patterns in active IPv6
address sets. Planka and Berger [13] first explored the potential patterns of IPv6
active addresses in time and space. They used Multi-Resolution Aggregate plots
to quantify the correlation of each portion of an address to grouping addresses
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together into dense address space regions. Czyz et al. [2] found 80% of the routes
and 22% of the server addresses have only non-zero addresses in the lowest 16
bits of the address. Gasser et al. [7] used entropy clustering to classify the hitlist
into different addressing schemes. We adopt their methods by performing seed
classification to help neural networks improve model performance.

Fig. 1. Sample IPv6 addresses in presentation format with the low 64 bits shown bold.

Ullrich et al. [16] used a recursive algorithm for the first attempt to address
generation. They iteratively searched for the largest match between each bit
of the address and the current address range until the undetermined bits were
left, which is used to generate a range of addresses to be scanned. Murdock
et al. [10] introduced 6Gen, which generates the densest address range cluster
by combining the closest Hamming distance addresses in each iteration. Foremski
et al. [6] used Entropy/IP for efficient address generation. The algorithm models
the entropy of address bits in the seed set and divides the bits into segments
according to the entropy values. Then they used a Bayesian network to model
the statistical dependence between the values of different segments. This learned
statistical model can then generate target addresses for scanning. Different from
these work, we use the neural network to construct the generated model and
mainly compare it with Entropy/IP.

Researchers have extensively studied the VAE models in many fields, includ-
ing text generation [15] and image generation [14]. Recently, gated convolutional
networks have made outstanding progress on many Natural Language Processing
(NLP) tasks due to their parallel computing advantages. Dauphin et al. [3] first
proposed the model and called its key modules Gated Linear Units (GLU). Their
approach achieves state-of-the-art performance on the WikiText-103 benchmark.
Gehring et al. [8] simplified the gradient propagation using GLU and made a
breakthrough on the WMT’14 English-German and WMT’14 English-French
translation. To the best of our knowledge, we are using a gated convolutional
network for the first time to construct a VAE model and to overcome the chal-
lenge of the IPv6 target generation task.

3 IPv6 Target Generation

In this section, we provide a brief description of IPv6 addressing background and
our consideration of target generation tasks. We refer the reader to RFC 2460 [4]
for a detailed description of the protocol.
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3.1 IPv6 Addressing Background

An IPv6 address consists of a global network identifier (network prefix, e.g./32
prefix), subnet prefix, and an interface identifier (IID) [1]. It is composed of 128-
bit binary digits, which are usually represented in human-readable text format,
using 8 groups of 4 hexadecimal digits and separating them by colons, as shown
in Fig. 1. Each of the hexadecimal digits is called a nybble. Since IPv6 addresses
usually use “::” to replace groups of consecutive zero values and omit the first
zero value in each group, a commonly used address format representation for
IPv6 is also shown in Fig. 1.

Fig. 2. The overall architecture of 6GCVAE. The model requires seed sets removed
the colon as input and learns the address structure distribution through the encoder.
The decoder reconstructs the latent vector after sampling. After training, the generator
produces considerable candidates sets waited for probing by a scanner, which can finally
discover the active targets.

There are many IPv6 addressing schemes and network operators are reminded
to treat interface identifiers as semantically opaque [1]. Administrators have
the option to use various standards to customize the address types. In addi-
tion, some IPv6 addresses have SLAAC [12] address format that the 64-bit IID
usually embeds the MAC address according to the EUI-64 standard [12] or is
set completely pseudo-random [11]. Consider the sample addresses in Fig. 1. In
increasing order of complexity, these addresses appear to be:

– an address with fixed IID value (::321).
– an address with a structured value in the low 64 bits (perhaps a subnet

distinguished by ::20).
– a SLAAC address with EUI-64 Ethernet-MAC-based IID (ff:fe flag).
– a SLAAC privacy address with a pseudorandom IID.
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3.2 Considerations

Due to the semantic opacity of IPv6 addresses and the hybridization of multiple
addressing schemes, the deep learning model may have difficulty in effectively
training when learning the address structure. An address of the SLAAC format
also has a highly randomized address structure, which is bound to pose a chal-
lenge to the generation task. However, to ensure that each addressing scheme can
be included in the generation set, the selected seed set must contain all address
patterns. Therefore, the target generation task requires the model to be able
to effectively extract the underlying semantic information of IPv6 addresses. In
addition, since the mixture of multiple structures, certain classification work on
the seed set will alleviate the pressure on the model.

Fig. 3. Structure of the gated convolutional layer for IPv6 target generation. After
convolution, the output of the vector A is controlled by the sigmoid value of vector B,
which is used as an output gate to select the address vector.

4 Approach

In this section, we will introduce our approach and two seed classification meth-
ods for IPv6 target generation.

6GCVAE relies on stacked gated convolutional layers to form a Variational
Autoencoder. The detailed model architecture is shown in Fig. 2. We remove the
colon in each address and leave the 32-bit hexadecimal as a sample input (e.g.,
20010db8002000030000000000000301). Since each nybble may be one of 0-f char-
acters, the alphabet size is 16 and we can arrive at a final input representation
with a dimension of 32× 16 after input embedding.

Our training model expects the generated address to be constantly approach-
ing the input address to produce a new possible active target. To achieve the
goal, the model is required to learn the distribution of the input by an encoder,
sample latent vector and reconstruct the new generation by a decoder.
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4.1 Gated Convolution Layer

The gated convolutional network enables to complete sequence tasks by adding
a gating mechanism to the convolution. The structure is shown in Fig. 3.

We define the input embedding as E = [D0, ...,Di, ...,D31], where Di repre-
sents the vector representation of the i-th nybble of the address. We use 32 3×16
convolution kernels to convolve the input E to obtain a 32×32-dimensional out-
put vector which is divided equally to vector A and vector B. Finally, we take
the sigmoid function as the gate for the vector B in the second half to control
the output of the vector A. The approach to compute the hidden layers Hi can
be summarized as

Hi = A ⊗ σB (1)
where σ is the sigmoid function and ⊗ is the element-wise product between
matrices.

Why Gated Convolution Layer. Using the gating method can effectively
help us monitor the importance of each nybble of an IPv6 address. The con-
volution method also improves the sensitivity of the model to the relationship
between each nybble of the address. This allows our model to be able to focus on
address importance flags (e.g., the 23rd–26th nybbles of the EUI-64 address are
always fffe) while discovering potential relationships between address nybbles
(e.g., the fixed IID address typically has a contiguous 0).

4.2 Variational Autoencoder

In VAE models, a deterministic internal representation z (provided by the
encoder) of an input x is usually replaced with a posterior distribution q(z|x).
Inputs are then reconstructed by sampling z from this posterior and passing
them through a decoder. After training, the model will mass-produce text or
images by a generator. In this section, we will introduce the encoder, decoder,
and generator structure in our approach.

Encoder. In our model, we use two gated convolutional layers and an aver-
age pooling layer stack as the encoder for the model. In order to maintain the
memory of the original input, we used a residual connection between each gated
convolutional layer.

According to the principle of VAE, we use two fully connected layers to train
the mean μ and the log variance logσ2 to learn the distribution of the input x.

Decoder. To ensure that we can sample from any point of the latent space and
still generate valid and diverse outputs, the posterior q(z|x) is regularized with
its KL divergence from a prior distribution p(z). The prior is typically chosen to
be a Gaussian with zero mean and unit variance. Then the latent vector z can
be computed as

z = μ + ε ∗ σ (2)
where ε is sampled from the prior.
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The decoder consists of a gated convolutional layer, fully connected layers,
and a softmax activation. After sampling the latent vector z. We use the fully
connected layer and adjust it to 32 × 16 dimensions as the input to the gated
convolutional layer. Finally, the reconstructed address vector can be obtained
through the fully connected layer and softmax activation function.

Our model loss consists of two parts, including the cross-entropy loss Jxent

and the KL divergence KL(q(z|x)||p(z)). The cross-entropy loss expects the
smallest reconstruction error between the reconstructed vector y and the input
seed x. The KL divergence constraint model samples from the standard normal
distribution:

Jxent = −(x · log(y) + (1 − x) · log(1 − y)) (3)

KL(q(z|x)||p(z)) = −1
2

· (1 + log σ2 − μ2 − σ2) (4)

Jvae = Jxent + KL(q(z|x)||p(z)) (5)

Generator. After training, we use the trained decoder as a generator for batch
generation of addresses. By sampling the 16-dimensional vector as a sample
input in a standard normal distribution, the final generator outputs our ideal
scan candidate. We set the sampling time N to control the number of targets
we expect to generate.

4.3 Seed Classification

Since IPv6 addresses include multiple addressing schemes, they are often inter-
mixed in the seed set. Early classification of seeds with different structural pat-
terns can help to improve the learning effect of the model on each structure of
the address. The model then can generate addresses closer to the real structural
pattern, which has greater possible activity. In this section, we will introduce
two methods of seed classification that we used, including manual classification
and unsupervised clustering.

Manual Classification. In Sect. 3.1, we discussed the possible structural com-
position of the address. In this paper, we divide the address into four categories
in Fig. 1, including fixed IID, low 64-bit subnet, SLAAC EUI-64, and SLAAC
Privacy. We perform feature matching on the active seed set to estimate the
address category to which the seed belongs:

– Fixed IID. The last 16 nybbles have a unique consecutive 0 in the address.
It is speculated that the last 16 nybbles may consist of the fixed IID.

– Low 64-bit subnet. The last 16 nybbles of the address have two or more
consecutive 0 segments. It is speculated that it may consist of a subnet iden-
tifier and an IID.

– SLAAC EUI-64. The 23rd-26th nybbles of the address are fffe.
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– SLAAC privacy. After the statistics, the character appearance randomness
of the last 16 nybbles is calculated, it is presumed to be a pseudo-random IID
if the address has a high entropy value. We consider an address as SLAAC
privacy if it has a greater entropy value than 0.8 (the highest is 1).

Unsupervised Clustering. We perform an entropy clustering method on the
seed set, which was proposed by Gasser et al. [7]. We applied the idea to the
target generation algorithm for the first time.

In an address set S, we define the probability P (xi) for the character xi of
the i-th nybble in an address, where x ∈ Ω = {0, 1, ..., f}. Then by calculating
the entropy value H(Xi) for each nybble, we can get a fingerprint F a

b of the
address set S:

F a
b = (H(Xa), ...,H(Xi), ...,H(Xb)) (6)

H(Xi) = −1
4

∑

x∈Ω

P (xi) · log P (xi) (7)

where a and b are the first and the last considered nybble, respectively. Since
/32 prefix is a large prefix that administrators usually use, which containing
enough active addresses, we extract F 9

32 for each /32 prefix network address set
(all addresses have the same first 8 nybbles in each network address set) and use
the k-means algorithm to cluster each network fingerprint to find similar entropy
fingerprint categories.

5 Evaluation

In this section, we evaluate 6GCVAE effects. We will introduce the datasets used
in the paper, the evaluation method, and our comparative experiment results.

5.1 Dataset

Our experimental datasets are mainly from two parts, a daily updated public
dataset IPv6 Hitlist and a measurement dataset CERN IPv6 2018. Table 1 sum-
marizes the datasets used in this paper. The public dataset IPv6 Hitlist is from
the data scanning the IPv6 public list for daily active addresses, which is pro-
vided by Gasser et al. [7]. In addition, we passively collected address sets under
the China Education and Research Network from March to July 2018. We con-
tinued to scan and track the IPs that are still active until October 14, 2019 as
our measurement dataset.

Table 1. The detail of the two active address datasets we used in the paper.

Dataset Seeds Period Collection Method

IPv6 Hitlist 3,157,675 October 14, 2019 Public

CERN IPv6 2018 90,010 March 2018 - July 2018 Passive measurement
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5.2 Evaluation Method

Scanning Method. To evaluate the activity of the generated address, we use
the Zmapv6 tool [7] to perform ICMPv6, TCP/80, TCP/443, UDP/53, UDP/443
scans on the generated address. When the query sent by any scanning method
gets a response, we will determine the address as active. Due to the difference
in activity between hosts at different times, we maintain continuous scanning of
the host for 3 days to ensure the accuracy of our method.

Evaluation Metric. Since IPv6 target generation is different from text gen-
eration tasks, we need to define a new evaluation metric for the address gener-
ative model. In the case of a given seed set, Ncandidate represents the number
of the generated candidate set, Nhit represents the number of generated active
addresses, Nnew represents the generated address that is active and not in the
seed set. Then the active hit rate rhit and active generation rate rgen of the
model can be computed as

rhit =
Nhit

Ncandidate
× 100% rgen =

Nnew

Ncandidate
× 100% (8)

We consider that rhit can represent the learning ability to learn from the
seed set. rgen highlights the generation ability to generate new active addresses.

5.3 Result of Seed Classification

First, we summarize our seed classification. After manual classification, the seed
will be classified into four categories. Table 2 shows the classification details on
the IPv6 Hitlist dataset.

For the unsupervised clustering, we use the elbow method to find the number
of clusters, k, plotting the sum of squared errors (SSE) for k = {1, ..., 20}. We
selected the value k = 6 for the point where increasing k does not yield a
relatively large reduction in SSE. Figure 4 shows the results of the clustering.

Table 2. The detail of manual classification on the IPv6 Hitlist dataset.

Category Feature Seeds Percentage

Fixed IID The last 16 nybbles have a consecutive 0 1,208,117 38.26%

Low 64-bit Subnet The last 16 nybbles have more consecutive 0 1,062,093 33.64%

SLAAC EUI-64 The 23–26th nybbles is fffe 279,458 8.85%

SLAAC Privacy Entropy value of the last 16 nybbles > 0.8 608,007 19.25%

Total - 3,157,675 100%
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Fig. 4. The detail of unsupervised entropy clustering on the IPv6 Hitlist dataset. We
obtained 6 clusters of all /32 prefix networks and the nybble distribution of each cluster.

It is worth noting that there is a certain relationship between the seed clas-
sification results. We know that the closer the H(Xi) is to 0, the more likely
the nybble is to be constant. The closer the H(Xi) is to 1, the more random
the nybble is. Therefore, in Fig. 4, Cluster 1–3 may be fixed IID or a low 64-bit
subnet addresses. Cluster 5 is likely to be SLAAC EUI-64 addresses with the fffe
flag. Cluster 4 and Cluster 6 are likely to be SLAAC privacy addresses because
of the high entropy value of most of the nybbles.

After seed classification, we trained 6GCVAE with each category of seed sets.
Table 3 shows the effect of the model without seed classification, with manual
classification and with unsupervised clustering on the IPv6 Hitlist dataset.

The model is trained by using the dataset or each category of seeds as a
seed set and uses the generator to generate candidate targets after 1,000,000
samplings. We remove duplicate candidate targets and ultimately get a valid
candidate set. The results show that seed classification can actually improve

Table 3. Model effect with 3 types of seed processing, including none of the seed
classification, manual classification, and unsupervised clustering.

Seed classification Category Ncandidate Nhit Nnew rhit rgen

None IPv6 Hitlist 756,658 14,894 9,685 1.97% 1.28%

Manual classification Fixed IID 412,181 32,589 17,933 7.91% 4.35%

Low 64-bit Subnet 901,222 7,092 5,450 0.79% 0.61%

SLAAC EUI-64 981,204 1,299 1,263 0.13% 0.13%

SLAAC Privacy 999,920 13,351 13,351 1.34% 1.34%

Unsupervised clustering Cluster 1 526,542 25,235 12,364 4.79% 2.35%

Cluster 2 450,919 57,245 35,508 12.70% 7.87%

Cluster 3 759,617 5,273 2,404 0.69% 0.32%

Cluster 4 985,390 6,605 6,309 0.67% 0.64%

Cluster 5 832,917 1,748 845 0.21% 0.10%

Cluster 6 968,178 1,193 994 0.12% 0.10%
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the performance of the model. Among them, the most generated addresses are
manually classified Fixed IID and unsupervised clustered Cluster 2 respectively
in the two methods. However, Low 64-bit subnet, SLAAC EUI-64, and Cluster
3–6 show a lower rgen due to the complex address structure or lack of training
samples. In addition, the model has a characteristic on the generation of SLAAC
privacy addresses. All generated hits are new active targets. Because of the high
randomness of this kind of address, the model may learn a high random structure,
resulting in the generated addresses which are without duplicates.

Table 4. The comparative experiments result by comparing with 5 conventional VAE
models and Entropy/IP. Results show that unsupervised clustering reached the best
performance in our experiments.

Model Ncandidate Nhit Nnew rhit rgen

FNN VAE 1,000,000 68 68 0.007% 0.007%

RNN VAE 498,509 3,009 2,085 0.604% 0.418%

Convolutional VAE 595,475 4,432 2,856 0.744% 0.480%

LSTM VAE 478,660 4,464 3,203 0.933% 0.669%

GRU VAE 525,134 5,694 4,548 1.084% 0.866%

Entropy/IP 593,795 15,244 5,402 2.570% 0.910%

6GCVAE 756,658 14,894 9,685 1.970% 1.280%

6GCVAE with Manual classification 557,653 28,957 15,870 5.193% 2.846%

6GCVAE with Unsupervised clustering 571,330 54,915 31,376 9.611% 5.492%

5.4 Comparing with Conventional VAE Models

In order to verify the superiority of 6GCVAE, we built the baseline of the conven-
tional VAE models by replacing the key components gated convolutional layer
of 6GCVAE and compared them with our model. We also use the generator for
1,000,000 samples after training the model with the IPv6 Hitlist dataset. Table 4
summarizes the results of the comparative experiments. The results show that
due to the inability of feedforward neural networks to well capture semantic
information, the FNN VAE displays a difficulty to complete the IPv6 target
generation task. RNN VAE and Convolutional VAE only focus on sequence rela-
tionships or structure information, thus causing lower hits. By promoting the
simple RNN layer to LSTM or GRU, the VAE model gets better performance
than RNN VAE. Finally, 6GCVAE performs best under this task because of
learning both the key segment structure and segment relationship information
of an address.
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(a) IPv6 Hitlist (b) CERN IPv6 2018

Fig. 5. The comparative experiments result by comparing with Entropy/IP on the two
datasets. Nnew and rgen are evaluated under the different sampling times N .

5.5 Comparing with Entropy/IP

Entropy/IP [6] is the current state of the art address generation tool that can
also efficiently generate active IPv6 targets. We compare the effects of 6GCVAE
with Entropy/IP by training model and sampling 1,000,000 times for target
generation as usual. As shown in Table 4, the experimental results show that
our model outperformed Entropy/IP under the IPv6 Hitlist dataset. Although
the rhit of Entropy/IP is higher, its lower rgen indicates that it generates more
addresses that are duplicated in the dataset.

For representing the final effect of each seed classification method, we con-
trol the generation ratio of each type of address through rgen to maximum
the generation of new active target Nnew. The ratio can be represented as
(rgen1 : rgen2 : ... : rgeni

), where i represents the category id of a seed clas-
sification method. Finally, we set the total sampling number N in each round
of experiments and control the generation number of each category of seed set
through the ratio. We then reached the best experimental results in Table 4.
6GCVAE has been greatly improved with seed classification.

In addition, in Fig. 5, we evaluated Nnew and rgen by changing the sampling
times N on the two datasets, which can prove the general generation ability of
the models. Results indicate that our approach reaches a better performance
than Entropy/IP. 6GCVAE found 1.60–1.79 times more hits than Entropy/IP.
Under manual classification (MC) and unsupervised clustering (UC), the Nnew

of 6GCVAE has been improved 1.52–1.85 and 2.50–3.67 times respectively. The
seed classification methods have a higher rgen than all other approaches. Unsu-
pervised clustering reached the best performance in our experiments.
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6 Conclusion

In this paper, we explored the challenges of IPv6 target generation tasks. Our
work achieved a new model 6GCVAE by constructing a gated convolutional Vari-
ational Autoencoder. In addition, we introduce two kinds of seed classification
techniques, which effectively improve the address generation performance of the
deep learning model. The results show that 6GCVAE is superior to the previous
conventional VAE models. The address generation quality of 6GCVAE is better
than the state of the art target generation algorithm Entropy/IP.
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