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Abstract. Automatic tumor segmentation has been used as a diagnostic aid in the
identification of diseases such as tumors from liver CT scans, and their treatment.
Owing to their success in computer vision tasks, the state-of-the-art FullyConvolu-
tionalNetworks (FCNs) orU-Net basedmodels have often been employed inmany
recent studies for automatic tumor segmentation to learn numerous weight-shared
convolutional kernels and extract various semantic features. However, the corre-
lation between different tumor regions in feature maps cannot be easily captured
due to the lack of contextual dependencies, which in turn limits the representative
capability of the adopted models and thus affects the accuracy of tumor segmenta-
tion results. To resolve this issue, we propose a novel framework for segmentation
of tumors in liver CT scans, which can explicitly extract multi-scale fine-grained
contextual information by adaptively aggregating local features with their global
dependencies. The proposed multi-scale framework features a light model with a
very few additional parameters, and also its visualization capability significantly
boosts networks’ interpretability. Experimental results on a real-world liver tumor
CT dataset illustrate that the proposed framework achieves the state-of-the-art per-
formance in terms of a number of widely used evaluation criteria for the hepatic
tumor segmentation task.

Keywords: Hepatic tumor segmentation · Contextual information ·
Visualization · FCNs

1 Introduction

According to the latest liver cancer statistics from World Cancer Research Fund Inter-
national and American Institute for Cancer Research, liver cancer was the sixth most
common cancer worldwide in 2018 [1]. In particular, it is the ninth most commonly
occurring cancer in women, but the fifth most common cancer in men. Furthermore,
there were more than a total of 840,000 new cases diagnosed in 2018 which was 1.074
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times more than that in 2012 [2, 3]. Besides having a healthy diet and being physically
active, an early detection and intervention is also critical in mitigating the risk of liver
cancer. Currently, with the rapid development of medical imaging technology, CT and
MRI medical imaging examinations have been widely used in clinical applications to
monitor the liver structure and state for diagnosis and treatment of liver cancer [4].
However, manually analyzing detected imaging slices is really a time-consuming and
error-prone task to conduct for physicians and radiologists alike and there often exist
some inter-observer variations for this kind of pixel-level labelling tasks [5]. There-
fore, an accurate and automatic hepatic lesions/tumors localization and segmentation
approach is urgently required as a diagnostic aid for early liver cancer detection.

However, in medical tumor segmentation tasks from liver scans, there still exist sev-
eral hard challenges, with hepatic tumors as an example, such as low tissue contrast,
large variability in tumor shape, size and number among inter-patient CT scans and intra-
patient slices, and the vague boundary problem between diseased and healthy regions
in the whole liver. In recent years, Fully Convolutional Networks (FCNs) [6] and U-Net
[7] based deep neural networks have been widely utilized in biomedical and medical
image segmentation tasks with an outstanding success [9, 11, 12]. Both types of net-
work architectures utilize skip connections to integrate shallow feature maps and high
semantic featuremaps from different scales, which can generate more precise pixel-level
recognition by fusing detailed positional information from shallow layers. Still, it should
be noted that the range of contextual information obtained from those models is heavily
limited by the depth of networks and the size of kernels used. Several recent works [13]
modify these basic architectures by introducing multi-scale context fusion motivated by
the Inception-ResNet-V2 model, where a large reception field can extract more abstract
features for large objects, while a small reception field is better for small objects. Even
though fusing multi-scale contextual information can capture different size objects, it
cannot leverage the correlation between different objects in a global context, which is
very important for medical tumor segmentation, in particular, segmenting commonmul-
tiple tumors in a liver. To further exploit contextual dependencies, U-Net variants based
on Recurrent Neutral Networks (RNNs) have been proposed to aggregate the context
over local features from output feature maps of top layers of pre-trained CNN models
[16]. Despite the enhancement of their representative capability, the implicitly captured
global dependencies heavily rely on the learning outcome of the long-termmemorization
[17].

Different from these contextual extractionmodules, in this paper, we propose amulti-
scale contextual dependency framework inspired by attention mechanisms in machine
translation tasks [14] to capture fine-grained contexts for inter- and intra-tumor regions
and enhance the discriminability of learned features, and thus improve the performance
in the hepatic tumor segmentation task, as shown in Fig. 1. More specifically, we first
construct a newU-shapemodel motivated by CE-Net [13], where the pre-trained ResNet
model and different size context aggregationwith dilated convolutions and amulti-kernel
pyramid pooling are fused into an encoder-decoder architecture. Then, we place the
multi-scale context extraction model on all the skip connections to capture fine-grained
contextual information by adaptively aggregating local features with their global depen-
dencies from different scale feature maps, respectively. Finally, for a context extraction
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block on each skip connection, we model the semantic context interdependencies over
all the local features from both the spatial and the channel dimensions. In this way,
the spatial contextual relationship can avoid the effect of the position distance between
tumor regions in 2D feature maps and meanwhile, aggregate tumor features at each
location by summing a global dependency on all the related tumor features. Further-
more, a global interdependent channel affinity map is also computed to exploit and
emphasize the correlation among different feature categories along the channel dimen-
sionality. By adding the two-level extracted contextual information element-by-element,
the explicit fine-grained contexts can be learnt to produce more precise predictions for
hepatic tumor segmentation, especially for small tumors.Moreover, with the guidance of
the learnedmulti-scale contextual dependencies, the false-positive results are also signif-
icantly reduced, which is quite important for early cancer detection due to the existence
of small lesions or tumor regions in the early stages. Furthermore, the interpretability of
the proposed networks has also been greatly improved for hepatic tumor segmentation.

Fig. 1. A test example with our segmentation result and internal learned feature visualization
comparison before and after using our multi-scale contextual dependency framework. Several
feature map pairs corresponding to two scale contextual operations are respectively given and
each learned feature map is enlarged for clarity. Note that the width and height of input image is
set to 448 × 448 pixels in our networks.

Contributions of this study can be summarized as follows:

• We propose a novel framework to explicitly aggregate contextual relationships
between hepatic tumors in different scale featuremaps,which can successfully address
various complex and hard challenges in medical tumor segmentation. The proposed
framework is also an important improvement over the current automatic segmentation
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methods. Moreover, parts or all of the proposed framework can be integrated into any
FCNs or U-Net based architectures seamlessly.

• Our proposed global dependency extraction module operates on all skip connections
to capture multi-scale fine-grained hepatic tumor contextual information, where two
types of context aggregations are embedded into each skip connection for exploiting
long-range contextual dependencies fromboth tumor spatial and channel dimensional-
ities. In addition, the explicit context aggregation with feature visualization noticeably
boosts model’s interpretability.

• The proposed medical tumor segmentation framework has been evaluated on real-
world hepatic tumor data. The results show that multi-scale contextual dependencies
over feature spatial regions and channel maps have significantly improved tumor
segmentation performance, while reducing false positive and false negative rates of
hepatic tumors on CT slices, and they have also enhanced the discriminative ability
of learned representations in medical tumor segmentation.

Fig. 2. Ourmulti-scale fine-grained contextual dependency framework for hepatic tumor segmen-
tation, which consists of several main functional modules: (a) a ResNet-34 based feature encoding
module, (b) a multi-kernel context extraction module, (c) a multi-scale fine-grained contextual
aggregation module and (d) a contextual feature decoding module. An example with its prediction
from the proposed algorithm is illustrated end-to-end in the whole workflow.

2 The Proposed Multi-scale Framework

2.1 Overview

In this paper, we propose a multi-scale fine-grained contextual information extraction
framework to model long-range contextual dependencies over CT imaging regions for
improving hepatic tumor segmentation performance. The proposed network framework
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can perform global context aggregation over locally connected feature maps and then
embed their global dependencies into local features, which can further increase the cor-
relations between tumor regions and enhance their representative capability for medical
tumor segmentation. By explicitly passing similar local contexts regardless of posi-
tional distances like in an undirected graph operation, the correlation and interaction of
contextual dependencies from both the spatial and the channel dimensions is explicitly
propagated and encoded into subsequent feature maps. Moreover, the characteristics
of small-size tumor/lesion regions can also be inferred better after they are perfectly
contextualized by utilizing this multi-scale contextual design, which noticeably reduces
false positive cases as well as giving clear boundary predictions.

In order to take the full advantage of its effectiveness, the proposed multi-scale
context framework is fused into a new U-shape context encoder network, which gives a
significant improvement for the backbone and its variants, and really differentiates them
in the aspect of context aggregation. Moreover, our proposed multi-scale framework
requires a very few additional parameters, which only increases by 0.37%over that of the
backbone networks. Experimental results show that our proposedmulti-scale framework
performs better than the state-of-the-art methods for medical tumor segmentation. The
whole architecture of our designed networks is shown in Fig. 2, which includes four
main parts: ResNet based feature encoding, multi-kernel context extraction, multi-scale
fine-grained contextual aggregation and contextual feature decoding.

2.2 Spatial Context Extractor

There is a spatial context extractor for modeling the 2D contextual dependencies and a
channel context extractor for modeling the 3D contextual dependencies on each of the
three-dimensional feature map groups (where W × H × C refers to width, height and
channel numbers of the learned features for each input image).

Subsequently, we introduce the spatial context extractor in detail and discuss the
process of adaptively aggregating the 2D contextual dependencies. First, an input image
with 448× 448× 3 size on the left in Fig. 2 is fed into the ResNet based feature encoding
subnetwork for extracting its high-level semantic features. We assume that the learned
3D feature maps are a W × H × C tensor, where each 2D feature map is W × H pixels,
the channel number is C and the batch size is set to 1 for clarity, like the input data
X ∈ R

28×28×256 shown on the left side of Fig. 3. V = {vi }i=1:N is the vertex set for
each local contextual feature vi at all 2D positions and N = W × H (also N = 784 in
this example from Fig. 3). Then, in order to obtain the spatial contextual map among all
the global spatial positions, two new feature maps Q ∈ R

28×28×32 and K ∈ R
28×28×32

are respectively generated with two single convolutional operations by 1 × 1 kernels,
which is based on the fed feature map, as calculated by the following equations:

Q(vi ) = f
(
w1X

(vi ) + b1
)
; K (vi ) = f

(
w2X

(vi ) + b2
)
, (1)

where these two operations can further encode each local positional context feature vi
and also reduce the parameters by reducing the channel dimensionality from 256 to 32,
and f is a non-linear activation function and w1, b1, w2, b2 are network parameters.
After reshaping them into Q′ ∈ R

(28·28)×32 and K ′ ∈ R
(28·28)×32, we perform a 2D
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matrix multiplication between the K ′ and the transposed Qt , which aims to calculate
the mutual similarity of any two local contextual features vi ∈ K ′ and v j ∈ Qt . In this
way, the spatial context map M with global knowledge is generated, which represents
the interdependency of local features from any two positions in a 2D spatial context. By
applying a softmax operation to it as shown below, the updated context map Mi j can
indicate a greater correlation between the two positions if their similarity value is larger.

Mi j = evi ·v j /
∑N

j=1
evi ·v j . (2)

Later, for aggregating all positional local contextual information with global con-
text dependencies for fine-grained spatial context extraction, another new feature map
F′ ∈ R

(28·28)×256 is also produced by performing a convolutional layer on the original
fed feature map X without a channel dimensionality reduction and a reshaped operation
successively. After that, a context aggregation operation is performed to generate the
aggregated feature map X ′ ∈ R

(28·28)×256 by a matrix multiplication operation between
M and F′, where each position in X ′ represents its corresponding weighted summariza-
tion of features across all the positions. The aggregated feature map X ′ is then reshaped
into a new X ′ ∈ R

28×28×256. Finally, local contextual features at each position from the
original input feature map X are fused with their global contextual dependencies X ′ by
an addition operation as in the following equation.

Xs = αX ′ + X (3)

where Xs is the selectively aggregated contextual features by fusing local contexts
and global contexts and α is a learnable scale parameter. Overall, the spatial context
extraction as shown in Fig. 3(1) is completed in the whole 2D spatial positions, where
the fine-grained context features can further improve intra-class compact and semantic
consistency and contribute to enhancing hepatic tumor segmentation performance.

Fig. 3. Afine-grained contextual information aggregationblock, takingC3 inFig. 2 as an example.
The details of the spatial context extractor and those of the channel context extractor for capturing
rich contextual dependencies are illustrated in (1) and (2), respectively. Note that the operation ⊗
indicates matrix multiplication.
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2.3 Channel Context Extractor

We observe that above context process just considers the 2D spatial positions by lever-
aging each local context vi where vi is a C dimensionality vector, which means that the
interdependency and the correlation between different channels is not fully exploited.
However, the 3D channel context information is essential to extract robust hepatic tumor
knowledge. Therefore, this subsection discusses the extraction of channel contextual
information. Different channel feature maps usually represent different image feature
types and semantic information. Furthermore, semantic information from different chan-
nels are usually associated with each other, which can improve the representative capa-
bility of feature maps if we exploit them in global knowledge. So, in order to explicitly
model the interdependencies between the channel maps, we respectively build a channel
context extractor for each contextual information aggregation block from our proposed
multi-scale fine-grained context extraction framework.

As illustrated in Fig. 3(2), a light channel context model is utilized to achieve fewer
parameters in the process. When the input original feature maps X ∈ R

28×28×256 are
fed into the spatial context extractor, we also deliver them into the channel context
extractor in the meantime. Different from the former step, X is directly reshaped into
Q, K , F ∈ R

(28·28)×256 without any convolutional operation. Besides, V = {vi }i=1:C
is the channel set for each channel contextual feature vi ∈ R

28·28 at the third dimension.
Then, we perform a matrix multiplication between the transposed Qt and K to calculate
the channel similarity of any two channel maps over all the spatial positions. Later, the
generated channel context map M is applied by a softmax layer to normalize them for
satisfying the properties of probability. In addition, the global contextual dependency
extraction X ′ for each channel map is obtained by a matrix multiplication along the
channel dimension. To this end, the following equations are used.

M = Qt K ; Mi j = evi ·v j /
∑C

j=1
evi ·v j , vi ∈ Qt , v j ∈ K . (4)

X ′ = FM. (5)

Finally, the obtained global contextual aggregation result X ′ with a parameter β is
added into each original channel feature map from X along the channel dimension.

Xc = βX ′ + X . (6)

Overall, the final feature of each channel Xc is constructed by fusing a weighted
sum of all the channel feature maps and the original single feature map in each channel
space, which successfully models the long-range context semantic dependencies among
the channel maps to boost their representative ability for medical tumor segmentation.
Based on an addition operation from both of these context extraction steps, each context
aggregation block can fully exploit contextual information in a global view from the
spatial and the channel perspectives, as shown in Fig. 3.

X∧ = Xs + Xc. (7)
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3 Experiments and Analysis

3.1 Data and Implementation Details

Evaluation Dataset and Metrics. Tumor segmentation is a more difficult task than
general body organ segmentation tasks due to vague boundaries between diseased and
healthy tissues. For this task, a new and challenging hepatic tumor dataset [5] is used
to show hepatic tumor segmentation performance for all the methods considered. This
dataset consists of 131 abdominal 3D CT scans acquired from 131 subjects with dif-
ferent types of liver tumor diseases, e.g., primary tumor diseases and secondary liver
tumors. These medical data were collected from clinical sites in the world with different
CT scanners and acquisition protocols. Here, we can extract 7190 CT slices with tumor
annotations. For comprehensive comparisons between different segmentation methods,
a number of widely used evaluation metrics are utilized in our study, including Dice
similarity coefficient, Hausdorff distance, Jaccard index, precision (also called positive
predictive value), recall (also called sensitivity coefficient or true positive rate), speci-
ficity coefficient (also called true negative rate) and F1 score. Except Hausdorff distance,
the others indicate that the larger results are better.

Parameter Setting. 2 NVIDIA CUDA cores with 4 logical GPUs, and 1 Intel Haswell
E5-2670v3 CPU are used to train our proposed multi-scale segmentation framework.
The batch size for each forward pass is 8 CT slices and the initial learning rate is set
to 0.0002, which could be dynamically changed during the training process under the
guidance of the variations of errors. If there is no reduction of errors in the next 10
epochs, then the learning rate would be cut in half. Meanwhile, we set the maximum
training epoch to 400 with an early stopping strategy. When the generated error is no
longer reduced in the next 20 epochs or the learning rate drops below 5e-7, the training
process is finished. And the training data and test data are randomly split into 4:1 from
all raw data with tumor annotations. In addition, some widely used data augmentation
techniques are also used dynamically during our training process [13]. Only the basic
and plain cross entropy loss is employed for better demonstrating the robustness of
our model. The Adam optimizer is employed to optimize and update all the network
parameters in our segmentation network. The compared state-of-the-art methods are
also trained on our dataset according to their original papers.

Compared Methods. The nine state-of-the-art segmentationmethods are chosen in our
experiments based on several representative models, as baseline methods for compari-
son: (1) U-Net Based Model: U-Net [7] is a highly cited architecture; Attention UNet
[9] adds a spatial attention scheme; Nested UNet [12] employs hot dense skip path-
ways. (2) Context Based Model: R2U-Net [11] utilizes recurrent and residual networks;
CE-Net [13] embeds amulti-kernel context encodingmechanism like Inception architec-
ture; Self-attention [8, 10] exploits spatial context information. And (3) Attention Based
Model: SENet [15] uses channel attention mechanism; both DANet [17] and CS-Net
[18] place self-attention schemes on the top of encoder stage, but with different network
architectures. (4) Fused Model: Attention UNet [9] and Self-attention [8, 10].
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3.2 Quantitative Analysis

For quantitative analysis, all the ten representative segmentation methods are evaluated
on the test dataset, as shown in Table 1. The pioneering U-shape network, U-Net [7]
can be used to predict hepatic tumor regions on CT slices but with an unsatisfactory
performance (e.g., 73.62% in Dice) as well as its variant Nested UNet [12] (e.g., 73.58%
inDice), while the attention based variant AttentionUNet [9] is better by around 5% than
the original U-Net under different segmentation criteria. This is because Attention UNet
can give a further refinement for learned features from the spatial dimension to highlight
the salient features and suppress useless ones. Similarly, SENet [15] also improves
the segmentation performance by embedding squeeze-and-excitation blocks after skip
connections as a channel attention mechanism, in spite of a slight decline compared to
Attention UNet. Then, we compare popular context based models for medical tumor
segmentation. R2U-Net [11] only outperforms its backbone model (U-Net) by about
1% in segmentation accuracies by employing RNNs and residual connections to extract
feature context features. By contrast, multi-kernel context encoder networks CE-Net
[13] can achieve relatively better performance (such as 78.41% in Dice, 33.78 pixels in
HD, 72.92% in Precision and 89.33% in Recall) with different evaluation measures like
Attention UNet [9], where pretrained network parameters can also provide some help in
improving segmentation performance together with multiple kernel contextual feature
extraction.

Table 1. Comparison results of the state-of-the-art segmentation methods with widely used
evaluation metrics for hepatic tumor segmentation. The numbers in bold represent the best results.
Note that Hausdorff distance uses pixel units and others %.

Methods/Metrics Dice Hausdorff
distance

Jaccard Precision Recall Specificity F1

U-Net [7] 73.62 52.65 63.67 67.46 86.70 99.76 75.88

Attention UNet [9] 78.70 37.13 69.32 72.93 89.65 99.83 80.43

R2U-Net [11] 74.55 46.04 64.46 68.38 87.27 99.77 76.68

Nested UNet [12] 73.58 46.89 63.55 67.39 86.95 99.76 75.93

CE-Net [13] 78.41 33.78 69.09 72.92 89.33 99.82 80.30

SENet [15] 77.88 39.09 68.55 72.39 89.16 99.82 79.90

Self-attention [8, 10] 76.49 38.78 66.80 70.82 88.72 99.79 78.76

DANet [17] 79.97 30.94 71.00 74.50 90.38 99.84 81.67

CS-Net [18] 78.90 32.90 69.45 73.03 90.03 99.83 80.64

Ours 82.16 30.01 73.46 76.96 91.18 99.86 83.37

Average Gain (↗) 5.26 9.79 6.14 5.87 2.49 0.058 4.46

For comparison with recent self-attention and non-local models [8, 10], we have
integrated their original spatial context extraction module into our backbone networks
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in lieu of ours. As we can see from Table 1, the Self-attention model [8, 10] drops two
percentage points over multi-kernel context encoder networks [13]. Very recently, both
DANet [17] and CS-Net [18] have exploited two types of self-attention models acting
on the top of a feature encoder path from different pretrained network architectures with
better performance than Attention UNet [9] and CE-Net [13], for example, 79.97% vs
78.90% in Dice, 30.94 pixels vs 32.90 pixels in HD, 74.50% vs 73.03% in Precision and
90.38% vs 90.03% in Recall. Moreover, these good segmentation results also illustrate
that diverse self-attention strategies can further boost the feature representative capability
of a model for accurate tumor localization and segmentation.

More importantly, our proposed multi-scale framework performs the best under all
the evaluation metrics while outperforming nine compared state-of-the-art methods by
an average of 5.26% in Dice coefficient, ranging from 2.19% to 8.58%. In terms of
Jaccard index and Precision coefficient, our model also shows an average gain of 6.14%
ranging from 2.46% to 9.91%, and 5.87% ranging from 2.46% to 9.57%, repectively.
In addition, the true positive rate (TPR, also Recall coefficient) from our method is also
significantly better with an average 2.49%. While Specificity coefficient with 0.058%
increase, also called true negative rate (TNR), is also slightly better than all the other
methods due to a small percentage of tumor regions in CT slices; F1 score of our model
noticeably outperforms all the baseline methods by an average of 4.46% by leveraging
Precision and Recall results. Last but not the least, our multi-scale context aggregation
method exhibits an average reduction in Hausdorff distance of 9.79 pixels, which means
that the boundaries from our segmentation results can better coincide with their corre-
sponding ground truths from radiologists than those of the nine state-of-the-art methods.
Overall, our proposed segmentation method can outperform those nine state-of-the-art
segmentation methods because our multi-scale context guided information aggregation
process can better encode global knowledge into local features with fine-grained rep-
resentations from spatial and channel dimensions and other important modules in our
networks also boost segmentation performance of our framework.

3.3 Qualitative Analysis

As shown inFig. 4, several segmentation results from randomly chosenCT imaging slices
are visualized to provide a qualitative comparison of differentmodels. Both our proposed
method and DANet [17] perform well on the first sample, but others falsely consider
healthy regions as hepatic tumors. This is similar in the second sample, except that
Attention UNet [9] also works well. However, from the third sample, we see that DANet
[17] has difficulty to differentiate hepatic tumors from surrounding tissues. As a whole,
in cases Fig. 4(3–5), the false positive rates of the state-of-the-art methods are really
high, resulting in manymis-segmented regions. This would negatively affect an accurate
diagnosis for patients with hepatopathy, especially for early stage patients. On the other
hand, in the sixth sample, the compared models just give partial predictions for tumor
regions with some undiagnosed cases, which means a high false negative rate from their
models. More importantly, in some challenging cases (e.g., Fig. 4(7)), all the baseline
methods completely fail. Overall, all these misdiagnoses generated from the state-of-
the-art automatic segmentation methods could be due to a lack of effective context
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extraction for accurate hepatic tumor segmentation. By contrast, our proposed multi-
scale segmentation framework can extract fine-grained global context dependencies from
spatial and channel dimensions and then aggregate them together with local features to
generate more precise segmentation results, as depicted in Fig. 4.

Fig. 4. Seven randomly selected samples with their segmentation results from the state-of-the-art
methods. For clarity, we only report the regions of interest (ROI) of some of the comparedmethods
due to space limitations.

4 Conclusions

In this paper, we have proposed a multi-scale contextual dependency framework to
explicitly capture fine-grained context correlations between tumor regions and enhance
the discriminability of the learned features and hence to improve segmentation perfor-
mance for hepatic tumors. In particular, we have modeled the semantic context depen-
dencies over all the local features from both the spatial and channel dimensions. To be
specific, the spatial contextual relationship can aggregate tumor features at each spatial
location by summing a global dependency on all related tumor features, which can lessen
the effect of the position distance of local features in feature maps. On the other hand, a
global interdependent channel affinitymap is also computed to emphasize the correlation
among different feature categories along the channel dimensionality. In addition, fea-
ture visualization analysis and comparison significantly improves the interpretability of
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our proposed automatic segmentation networks. Extensive experiments conducted on a
real-life liver tumor dataset also demonstrate that our model outperforms nine compared
state-of-the-art segmentation methods. In the future, we plan to extend this framework
into further clinical applications.
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