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Abstract. Static network embedding has been widely studied to con-
vert sparse structure information into a dense latent space. However,
the majority of real networks are continuously evolving, and deriving
the whole embedding for every snapshot is computationally intensive.
To avoid recomputing the embedding over time, we explore streaming
network embedding for two reasons: 1) to efficiently identify the nodes
required to update the embeddings under multi-type network changes,
and 2) to carefully revise the embeddings to maintain transduction over
different parts of the network. Specifically, we propose a new representa-
tion learning framework, named Graph Memory Refreshing (GMR), to
preserve both global types of structural information efficiently. We prove
that GMR maintains the consistency of embeddings (crucial for net-
work analysis) for isomorphic structures better than existing approaches.
Experimental results demonstrate that GMR outperforms the baselines
with much smaller time.

Keywords: Network embedding · Streaming data mining

1 Introduction

Low-dimensional vector representation of nodes in large-scale networks has been
widely applied to a variety of domains, such as social media [13], molecular
structure [7], and transportation [9]. Previous approaches, e.g., DeepWalk [13],
LINE [16], and SDNE [20], are designed to reduce the sparse structure infor-
mation to a dense latent space for node classification [13], link prediction [16],
and network visualization [21]. However, the above embedding schemes were not
designed for evolutionary networks. Current popular networks tend to evolve
with time, e.g., the average number of friends increases from 155 in 2016 and to
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338 in 2018 [8]. Ephemeral social networks, like Snapchat for short-term conver-
sations, may disappear within weeks. However, retraining the whole embedding
for each snapshot is computationally intensive for a massive network. There-
fore, streaming network embedding is a desirable option to quickly update and
generate new embeddings in a minimum amount of time.

Different from dynamic network embeddings [12,21] that analyze a sequence
of networks to capture the temporal patterns, streaming network embedding1

aims to update the network embedding from the changed part of the network
to find the new embedding. Efficient streaming network embedding has the fol-
lowing four main challenges. 1) Multi-type change. Dynamic changes of networks
with insertions and deletions of nodes and edges are usually frequent and com-
plex. It is thus important to derive the new embedding in minimum time to
timely reflect the new network status. 2) Evaluation of affected nodes. Updating
the embeddings of only the nodes neighboring to the changed part ignores the
ripple effect on the remaining nodes. It is crucial to identify the nodes required to
update the embeddings and ensure that the nodes with similar structures share
similar embeddings. 3) Transduction. When a network significantly changes, it
is difficult to keep the local proximity between the changed part and the remain-
ing part of the network. It is also important to reflect the change in the global
structure. 4) Quality guarantee. For streaming embeddings based on neural net-
works (usually regarded as a black box), it is challenging to provide theoretical
guarantees about the embedding quality.

To effectively address the above challenges, this paper proposes a new rep-
resentation learning approach, named Graph Memory Refreshing (GMR). GMR
first derives the new embedding of the changed part by decomposing the loss
function of Skip-Gram to support multi-type changes. It carefully evaluates the
ripple-effect area and ensures the correctness by proposing a globally structure-
aware selecting strategy, named hierarchical addressing, to efficiently identify
and update those affected nodes with beam search to avoid the overfitting prob-
lem. To effectively support streaming data, our idea is to interpret the update
of embeddings as the memory networks with two controllers, a refreshing gate
and percolation gate, to tailor the embeddings from the structural aspect and
maintain the transduction. GMR then updates the embeddings according to the
streaming information of the new network and the stored features (i.e., memory)
of the current network to avoid recomputing the embedding of the whole net-
work. Moreover, GMR aims to both preserve the global structural information
and maintain the embeddings of isomorphic structures, i.e., ensuring that the
nodes with similar local structures share similar embeddings. This property is
essential to ensure the correctness of network analysis based on network embed-
dings [18]. We theoretically prove that GMR preserves the consistency of embed-
dings for isomorphic structures better than that of the existing approaches. The
contributions of this paper are summarized as follows.

1 In streaming data mining [10], the incoming data stream, instead of the whole
dataset, is employed to update the previous mining results efficiently.
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– GMR explores streaming network embedding with quality guarantees. The
hierarchical addressing, refreshing gate, and percolation gate efficiently find
and update the affected nodes under multi-type changes.

– We prove that GMR embedding preserves isomorphic structures better than
the existing approaches. According to our literature review, this is the first
theoretical analysis for streaming network embedding.

– Experimental results show that GMR outperforms the baselines by at least
10.5% for link prediction and node classification with a much shorter time.

2 Related Work

Static network embedding has attracted a wide range of attention. Laplacian
Eigenmaps [1] and IsoMaps [17] first constructed the adjacency matrix and then
solved the matrix factorization, but the adjacency matrix was not scalable for
massive networks. After Skip-Gram [11] was demonstrated to be powerful for rep-
resentation learning, DeepWalk [13] and node2vec [5] employed random walks to
learn network embedding, while LINE [16] and SDNE [20] were able to preserve
the first-order and second-order proximity. GraphSAGE [6] and GAT [19] gener-
ated node representations in an inductive manner, by mapping and aggregating
node features from the neighborhood.

In addition, a recent line of research proposed to learn the embeddings from a
sequence of networks over time for finding temporal behaviors [12,21]. However,
these approaches focused on capturing the temporal changes rather than the
efficiency since they recomputed the embeddings of the whole network, instead
of updating only the changed part. Another line of recent research studied the
dynamic embedding without retraining. However, the SVD-based approach [22]
was more difficult to support large-scale networks according to [5]. Besides, [10]
only supported the edge insertion and ignored edge deletion, whereas the con-
sistency of the embeddings for globally isomorphic structures was not ensured.
Compared with the above research and [3], the proposed GMR is the only one
that provides a theoretical guarantee on the embedding quality (detailed later).
It also more accurately preserves both the global structural information and the
consistency of the embeddings.

3 Problem Formulation

In this section, we present the definitions for streaming network embeddings.

Definition 1 (Streaming Networks). A dynamic network G is a sequence
of networks G = {G1, · · · , GT } over time, where Gt = (Vt, Et) is the network
snapshot at timestamp t. ΔGt = (ΔVt,ΔEt) represents the streaming network
with the changed part ΔVt and ΔEt as the sets of vertices and edges inserted
or deleted between t and t + 1.
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Definition 2 (Streaming Network Embeddings). Let zi,t denote the
streaming network embedding that preserves the structural property of vi ∈ Gt

at timestamp t. The streaming network embeddings are derived by Φs =
(φs

1, · · · , φs
t+1, · · · , φs

T ), where φs
t+1 updates the node embedding zi,t+1 at times-

tamp t + 1 according to zt and ΔGt, i.e., zi,t+1 = φs
t+1(zt,ΔGt), where

zt = {zi,t|∀vi ∈ Vt}.
In other words, the inputs of the streaming network function are the embed-

ding in the current time and the changed part of the network. In contrast, for
[12,21], given a dynamic network G, the embedding is derived by a sequence
of functions Φ = (φ1, · · · , φt+1, · · · , φT ), where φt+1 maps the node vi to the
d-dimensional embedding zi,t+1 at timestamp t + 1, i.e., zi,t+1 = φt+1(vi, Gt+1).
Therefore, the inputs are the whole networks in the current and next time. In
the following, we present the problem studied in this paper.

Definition 3 (Quality-aware Multi-type Streaming Network Embed-
dings). Given a streaming network with ΔVt and ΔEt as the sets of the vertices
and edges inserted or deleted between t and t+1, the goal is to find the streaming
network embedding and derive the corresponding embedding quality to ensure
that the nodes with similar structures share similar embeddings.

Later in Sect. 5, we formally present and theoretically analyze the quality of
the embedding with a new metric, named isomorphic retaining score. Moreover,
we prove that the proposed GMR better preserves the structures than other
state-of-the-art methods in Theorems 1.

4 Graph Memory Refreshing

In this section, we propose Graph Memory Refreshing (GMR) to support multi-
type embedding updates, to identify the affected nodes required to update the
embeddings by hierarchical addressing, and to ensure that the nodes with similar
structures share similar embeddings. To effectively support streaming data, we
leverage the controllers (refreshing and percolation gates) of memory networks
[4] to refresh the memory (update the embedding) according to the current state
(the current embedding) and new input (streaming network).

4.1 Multi-type Embedding Updating

For each node vi, the Skip-Gram model predicts the context nodes vj ∈ N(vi)
and maximizes the log probability,

∑

vi∈V

∑

vj∈N(vi)

log p(vj |vi). (4.1)

However, it is computationally intensive to derive the above probabilities for all
nodes. Therefore, the probabilities are approximated by negative sampling [11],

∑

(vi,vj)∈E

σ(zT
i zj) +

∑

vi∈V

Evj∼PN (vi)[σ(−zT
i zj)], (4.2)
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where σ(x) = 1/(1 + e−x) is the sigmoid function, zi and zj are respectively the
embedding vectors of vi and vj , and PN (vi) is the noise distribution for negative
sampling. The two terms respectively model the observed neighborhoods and
the negative samples (i.e., node pairs without an edge) drawn from distribution
PN (vi). However, Eq. (4.2) focuses on only the edge insertion. To support the
edge deletion, the second part in Eq. (4.2) is revised to consider unpaired negative
samples and the deletion as follows,

∑

(vi,vj)∈E

σ(zT
i zj) +

∑

vi∈V

Evj∼PN (vi)[σ(−zT
i zj)] + α

∑

(vi,vj)∈D

σ(−zT
i zj), (4.3)

where D is the set of deleted edges, and α is required to be set greater than 1
because the samples from D usually provide more information than the unpaired
negative samples P (vi).2 Note that node deletion is handled by removing all
incident edges of a node, while adding a node with new edges is regarded as the
edge insertion.3

(a) Construction of the addressing tree, t = 1. (b) Searching of the most affected nodes
for v4 on the addressing tree, t = 2.

Fig. 1. Example of hierarchical addressing.

4.2 Hierarchical Addressing

For streaming network embedding, previous computationally intensive
approaches [4] find the embeddings of all nodes by global addressing. A more effi-
cient way is updating only the neighboring nodes of the changed part with local
addressing [10]. However, the ripple-effect area usually has an arbitrary shape
(i.e., including not only the neighboring nodes). Therefore, instead of extract-
ing the neighboring nodes with heuristics, hierarchical addressing systematically
transforms the original network into a search tree that is aware of the global
2 Equation (4.3) is introduced as the general form for the Skip-Gram model under the

multi-type change, and GMR only samples the insertions/deletions from streaming
network ΔGt at time stamp t for updating the embeddings.

3 The new node embedding is initialized by the average of its neighborhood [10] and
then updated by maximizing Eq.(4.3).
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structure for the efficient identification of the affected nodes to update their
embeddings.

Hierarchical addressing has the following advantages: 1) Efficient. It can be
regarded as a series of binary classifications (on a tree), whereas global addressing
and local addressing belong to multi-class classification (on the candidate list).
Therefore, the time complexity to consider each node in ΔVt is reduced from
O(|Vt|) (i.e., pairwise comparison) to O(k log(|Vt|)), where k is the number of
search beams (explained later). 2) Topology-aware. It carefully examines the
graph structure to evaluate the proximity and maintain the isomorphic structure,
i.e., ensuring that the nodes with similar structures share similar embeddings.
This property is essential for the correctness of network analysis with network
embeddings [18].

Specifically, hierarchical addressing first exploits graph coarsening to build
an addressing tree for the efficient search of the affected nodes. Graph coars-
ening includes both first-hop and second-hop collapsing: first-hop collapsing
preserves the first-order proximity by merging two adjacent nodes into a supern-
ode; second-hop collapsing aggregates the nodes with a common neighbor into
a supernode, where the embedding of the supernode is averaged from its child
nodes [2]. Second-hop collapsing is prioritized because it can effectively compress
the network into a smaller tree.

The network is accordingly transformed into an addressing tree with each
node v ∈ Vt as a leaf node. Afterward, for each node vi ∈ ΔVt, we search for
the node vj ∈ Vt sharing the highest similarity with vi as the first affected node
for vi by comparing their cosine similarity [4] along the addressing tree. For
each node in the tree, if the left child node shares a greater similarity to vi, the
search continues on the left subtree; otherwise, it searches the right subtree. The
similarity search ends when it reaches the leaf node with the highest similarity
to vi, and any node in Vt (not only the neighbors of vi) is thereby allowed to be
extracted. In other words, hierarchical addressing enables GMR to extract the
affected nodes located in different locations of the network (not necessary to be
close to vi), whereas previous approaches [3,10,21] update only the neighboring
nodes of vi. Afterward, hierarchical addressing extracts the top-1 result for all
nodes in ΔVt as the initially affected nodes (more will be included later), where
the nodes with the similarity smaller than a threshold h are filtered. To prevent
over-fitting in a local minimum, hierarchical addressing can also extract the top-k
results at each iteration with the beam search.4

Figure 1 presents an example of hierarchical addressing with the dimension
of embeddings as 2. At timestamp t = 1 (Fig. 1(a)), we construct the addressing
tree by first merging nodes v1 and v2 into supernode u12 through second-hop
collapsing. The embedding of u12 is 0.5 · (0.4, 0.4) + 0.5 · (0.2, 0.8) = (0.3, 0.6).
Afterward, v3 merges u12 into u123 through first-hop collapsing, and u123 is the
root of the tree. At t = 2 (Fig. 1(b)), if a new node v4 is linked to v1 with the

4 For each node, the k search beams iteratively examine their child nodes (e.g., total
2k nodes) and maintain only the top-k child nodes with the highest similarity in a
queue. Any leaf node reached by a beam will be included in the top-k results.
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embedding as (0.3, 0.2), we identify the affected nodes with bream search (k = 2)
and start from the root u123. First, we insert v3 and u12 into the search queue
with the size as 2 since k = 2, to compare the similarity of v4 with that of v3
and u12. Both u12 and v3 are then popped out from the queue because v1 and
v2 have higher similarity i.e., the top-2 results (0.78 and 0.98), compared with
0.73 for v3.

4.3 Refresh and Percolate

After identifying the nodes required to update the embeddings by hierarchical
addressing, a simple approach is to update the embeddings of those affected
nodes with a constant shift [6,20]. However, a streaming network with a topology
change on only a subset of nodes usually leads to different shifts for the nodes in
distinct locations. Moreover, updating only the nodes extracted from hierarchical
addressing is insufficient to ensure consistency of embeddings for the nodes with
similar structures when the embeddings are tailored independently.

To effectively support streaming data, inspired by the gating mechanism in
GRU [4], we parameterize the update of the embedding according to the cur-
rent embedding and incoming streaming network. Specifically, GMR decomposes
the update procedure into two controller gates: a refreshing gate gr and perco-
lation gate gp. For each node vj selected in hierarchical addressing for each
vi ∈ ΔVt, the refreshing gate first updates the embedding of vj according the
new embedding of vi, and the percolation gate then updates the embedding
for every neighbor vk of vj from the new embedding of vj . The refreshing gate
quantifies the embedding update for vj from an incoming stream (i.e., one-to-
one update), while the percolation gate transduces the embedding of vj to its
neighborhoods (i.e., one-to-many update) to preserve better local structure. The
two gates are the cornerstones to maintain isomorphic structure, as proved later
in the Theorem 1.

To update the embeddings of vj , i.e., updating zj,t+1 from zj,t, we first define
a shared function ar to find the refreshing coefficient ρr, which represents the
correlation between the embedding of vj and the new embedding of vi, i.e.,
ρr = ar(zi,t+1, zj,t). The refreshing gate selects the correlation function [19]
as the shared function ar to extract the residual relation [19] between the two
embeddings, instead of directly adopting a constant shift as was done in previous
work. Here ar ∈ R2d is a shift projection, and ρr is derived by ar

T [zi,t+1||zj,t],
where || is the vector concatenation operation. After this, we regulate refreshing
coefficient ρr into [0, 1] by a sigmoid function gr = σ(ρr) to provide a non-linear
transformation. Therefore, gr quantifies the extent that zi,t+1 affects zj,t,

zj,t+1 ← grzi,t+1 + (1 − gr)zj,t. (4.4)

Thereafter, the percolation gate revises the embedding of the neighbor nodes
of vj to ensure the consistency of the embeddings for the nodes with similar
structures. The percolation gate learns another sharable vector ap ∈ R2d and
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Fig. 2. Example of percolation gate.

finds the percolation coefficient ρp = ap
T [zj,t+1||zk,t], to quantify the extent that

vj affects vk. Similarly, we regulate ρp by gp = σ(ρp) to update zk,t as follows,

zk,t+1 ← gpzj,t+1 + (1 − gp)zk,t. (4.5)

Therefore, when the refreshing and percolation gates are 0, the streaming net-
work is ignored. In contrast, when both gates become 1, the previous snapshot
embedding is dropped accordingly. In summary, the refreshing and percolation
gates act as decision makers to learn the impact of the streaming network on dif-
ferent nodes. For the percolation gate, when node vj is updated, the percolation
gate tailors the embedding of each vk ∈ N1(vj),5 by evaluating the similarity
of vj and vk according to the embeddings zk and zj . If vj and vk share many
common neighbors, the percolation value of (vj , vk) will increase to draw zk and
zj closer to each other. The idea is similar for the refreshing gate. Note that ar

and ap are both differentiable and can be trained in an unsupervised setting by
maximize the objective Eq. (4.3). The unsupervised loss can also be replaced or
augmented by a task-oriented objective (e.g., cross-entropy loss) when labels are
provided. We alternatively update the embeddings (i.e., zi,t and zj,t) and the
correlation parameters (i.e., ar and ap) to achieve better convergence.

Figure 2 illustrates an example of updating the node v3. After the embedding
of v3 updated from (0.8, 0.1) to (0.9, 0.1), GMR uses the percolation gate to
transduce the embedding to the neighborhood nodes (i.e., v1, v2, and v4) to
preserve the local structure. Since v1 shares more common neighbors (v4) with
v3 than v2 (none), the values of percolation gate for v1 and v2 are 0.8 and
0.5, respectively. The embeddings of node v1 and v2 become (0.76, 0.16) = 0.2 ·
(0.4, 0.4)+0.8 · (0.9, 0.1) and (0.55, 0.45) = 0.5 · (0.2, 0.8)+0.5 · (0.9, 0.1) through
the percolation gate from v3, respectively. Therefore, relative distance between
‖z3 − z2‖ and ‖z3 − z1‖ can be maintained.

5 Theoretical Analysis

The quality of network embedding can be empirically evaluated from the exper-
iment of network analysis, e.g., link prediction [16] and node classification [13],
since the network embedding algorithm is unsupervised learning without know-
ing the ground truth. In contrast, when the network analysis task is unknown
5 N1(.) represents the set of first-hop neighborhoods.
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a priori, it is important to theoretically analyze the quality of network embed-
ding. To achieve this goal, we first define the isomorphic pairs and prove that
the embeddings of isomorphic pairs are the same in GMR. This property has
been regarded as a very important criterion to evaluate the quality of network
embedding [18], because the nodes with similar structures are necessary to share
similar embeddings. Moreover, the experimental results in Sect. 6 manifest that
a higher quality leads to better performance on task-oriented metrics.

Definition 4 (Isomorphic Pair). Any two different nodes vi and vj form an
isomorphic pair if the sets of their first-hop neighbors N1(.) are the same.

Lemma 1 If (vi, vj) and (vj , vk) are both isomorphic pairs, (vi, vk) is also an
isomorphic pair.

Proof: According to Definition 4, (vi, vj) and (vj , vk) are both isomorphic pairs,
indicating that N1(vi) = N1(vj) and N1(vj) = N1(vk). Therefore, N1(vi) is equal
to N1(vj), and thus (vi, vk) is also an isomorphic pair. ��
Lemma 2. The embeddings zi and zj are the same after GMR converges if and
only if (vi, vj) is an isomorphic pair.

Proof: We first prove the sufficient condition. If (vi, vj) is an isomorphic pair
with zi �= zj , the probability of vi to predict the context nodes is not to equal to
that of vj (Eq. (4.1)). Therefore, there exists a better solution that makes zi and
zj be equal, contradicting the condition that the algorithm has converged. For
the necessary condition, if zi = zj but (vi, vj) is not an isomorphic pair, since
the probabilities are equal and the algorithm has converged, N(vi) should be
identical to N(vj) for Eq. (4.1), contradicting that (vi, vj) is not an isomorphic
pair. The lemma follows. ��

As proved in [14], the network embedding algorithms can be unified into
the factorization of the affinity matrix. Therefore, nodes with the same first-hop
neighborhood have the same embedding when the decomposition ends.

Based on Lemma 2, we define the isomorphic retaining score as follows.

Definition 5 (Isomorphic Retaining Score). The isomorphic retaining
score, denoted as St, is the summation of the cosine similarity over every iso-
morphic pair in Gt, St ∈ [−1, 1]. Specifically,

St =
1

|ξt|
∑

(vi,vj)∈ξt

sij,t, (5.1)

where sij,t is the cosine similarity between zi,t and zj,t, and ξt is the set of
isomorphic pairs in Gt. In other words, the embeddings of any two nodes vi and
vj with the same structure are more consistent to each other if sij,t is close to 1
[18]. Experiment results in the next section show that higher isomorphic retaining
scores lead to better performance of 1) the AUC score for link prediction and 2)
the Macro-F1 score for node classification.
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The following theorem proves that GMR retains the isomorphic structure bet-
ter than other Skip-Gram-based approaches, e.g., [5,13,16], under edge insertion.
Afterward, the time complexity analysis is presented.

Theorem 1. GMR outperforms other Skip-Gram-based models regarding the
isomorphic retaining score under edge insertion after each update by gradient
descent.

Proof: Due to the space constraint, Theorem 1 is proved in the online version.6

��

Time Complexity. In GMR, the initialization of the addressing tree
involves O(|V1|) time. For each t, GMR first updates the embeddings of
ΔVt in O(|ΔVt| log(|ΔVt|)) time. After this, hierarchical addressing takes
O(k|ΔVt| log(|Vt|)) time to identify the affected nodes. Notice that it requires
O(|ΔVt| log(|Vt|) time to update the addressing tree. To update the affected
nodes, the refreshing and percolation respectively involve O(1) and O(dmax) time
for one affected node, where dmax is the maximum node degree of the network.
Therefore, updating all the affected nodes requires O(kdmax|ΔVt|). Therefore,
the overall time complexity of GMR is O(kdmax|ΔVt| + k|ΔVt| log(|Vt|)), while
retraining the whole network requires O(|Vt| log(|Vt|)) time at each timestamp.
Since k is a small constant, dmax 	 |Vt|, and |ΔVt| 	 |Vt|, GMR is faster than
retraining.

6 Experiments

To evaluate the effectiveness and efficiency of GMR, we compare GMR with
the state-of-the-art methods on two tasks, i.e., link prediction and node clas-
sification. For the baselines, we compare GMR with 1) Full, which updates
the whole network with DeepWalk [13]; 2) change [3], which only takes the
changed part as the samples with DeepWalk;7 3) GraphSAGE [6], which derives
the embeddings from graph inductive learning; 4) SDNE [20], which extends the
auto-encoder model to generate the embeddings of new nodes from the embed-
dings of neighbors; 5) CTDNE [12], which performs the biased random walk on
the dynamic network;8 and 6) DNE [3], which updates only one affected node;
7) SLA [10], which handles only node/edge insertion; 8) DHPE [22], which is an
SVD method based on matrix perturbation theory. The default α, h, k, d, batch
size, and learning rate are 1, 0.8, 3, 64, 16, and 0.001, respectively. Stochastic
gradient descent (SGD) with Adagrad is adopted to optimize the loss function.

6 The online version is presented in https://bit.ly/2UUeO7B.
7 The setting follows OpenNE: https://github.com/thunlp/OpenNE.
8 For fair comparison, SDNE only takes the adjacency matrix of current stream as the

input feature. CTDNE only samples from the latest 50 streams instead of the whole
network.

https://bit.ly/2UUeO7B
https://github.com/thunlp/OpenNE
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6.1 Link Prediction

For link prediction, three real datasets [15] for streaming networks are evalu-
ated: Facebook (63,731 nodes, 1,269,502 edges, and 736,675 timestamps), Yahoo
(100,001 nodes, 3,179,718 edges, and 1,498,868 timestamps), and Epinions
(131,828 nodes, 841,372 edges, and 939 timestamps).9 The concatenated embed-
ding [zi||zj ] of pair (vi, vj) is employed as the feature to predict the link by
logistic regression.10

Table 1. Experiment results of link prediction.

Facebook Yahoo Epinions

AUC S sec AUC S sec AUC S sec

GMR 0.7943 0.94 3325 0.7674 0.93 3456 0.9294 0.92 3507

Full 0.8004 0 95 66412 0.7641 0.95 72197 0.9512 0.96 61133

Change 0.6926 0.79 2488 0.6326 0.82 2721 0.8233 0.84 2429

GraphSAGE 0.6569 0.77 4094 0.6441 0.79 5117 0.8158 0.85 4588

SDNE 0.6712 0.81 7078 0.6585 0.83 7622 0.8456 0.88 6799

CTDNE 0.7091 0.85 4322 0.6799 0.84 5136 0.8398 0.90 5097

DNE 0.7294 0.87 2699 0.6892 0.86 2843 0.8648 0.92 2613

SLA 0.7148 0.86 2398 0.6910 0.86 2438 0.8598 0.91 2569

DHPE 0.7350 0.88 3571 0.7102 0.88 3543 0.8458 0.90 3913

Table 1 reports the AUC [5], isomorphic retaining score S in Eq. (5.1), and
running time of different methods.11 The results show that the proposed GMR
achieves the best AUC among all streaming network embedding algorithms.
Compared with other state-of-the-art baselines, GMR outperforms other three
baselines in terms of AUC by at least 17.1%, 15.7% and 11.3% on Facebook, Yahoo
and Epinions, respectively. Besides, GMR is close to that of Full(1.7% less on
Facebook, 0.6% more on Yahoo and 2.2% less on Epinions), but the running time
is only 4.7%. Moreover, GraphSAGE has relatively weak performance since it
cannot preserve the structural information without node features. The running
time of SDNE is 2.1× greater than that of GMR due to the processing of the
deep structure, while the AUC of SDNE is at least 12.5% less than that of GMR
on all datasets.
9 Facebook and Epinions contain both the edge insertion and deletion, represented by

“i j -1 t” for removing edge (i, j) at timestamp t. Yahoo lacks deletion since it is a
message network.

10 For link prediction, at time t, we predict the new edges for time t+1 (excluding the
edges incident to the nodes arriving at time t + 1).

11 For Full, due to high computational complexity in retraining the networks for all
timestamps, we partition all timestamps into 50 parts [23] with the network changes
aggregated in each part.
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Compared to other streaming network embedding methods (e.g., DNE, SLA,
and DHPE), GMR achieves at least 10.8% of improvement because the embed-
dings of other methods are updated without considering the global topology. In
contrast, GMR selects the affected nodes by globally structure-aware hierarchi-
cal addressing, and the selected nodes are not restricted to the nearby nodes.
Furthermore, GMR outperforms baselines regarding the isomorphic retraining
score since it percolates the embeddings to preserve the structural information.
Note that the isomorphic retaining score S is highly related to the AUC with a
correlation coefficient of 0.92, demonstrating that it is indeed crucial to ensure
the embedding consistency for the nodes with similar structures.

6.2 Node Classification

For node classification, we compare different approaches on BlogCatalog [16]
(10,132 nodes, 333,983 edges, and 39 classes), Wiki [5] (2,405 nodes, 17,981
edges, and 19 classes), and DBLP [22] (101,253 nodes, 223,810 edges, 48 times-
tamps, and 4 classes). DBLP is a real streaming network by extracting the
paper citation network of four research areas from 1970 to 2017. BlogCatalog
and Wiki are adopted in previous research [3] to generate the streaming net-
works.12 The learned embeddings are employed to classify the nodes according
to the labels. Cross-entropy is adopted in the loss function for classification with
logistic regression. We randomly sample 20% of labels for training and 80% of

Table 2. Experiment results of node classification.

BlogCatalog Wiki DBLP

F1 S sec F1 S sec F1 S sec

GMR 0.2059 0.90 1998 0.4945 0.92 199 0.7619 0.93 7638

Full 0.2214 0.91 37214 0.5288 0.93 3811 0.7727 0.94 149451

Change 0.1651 0.71 1237 0.3597 0.79 122 0.6841 0.86 5976

GraphSAGE 0.1558 0.81 2494 0.3419 0.82 173 0.6766 0.86 11410

SDNE 0.1723 0.83 2795 0.3438 0.84 266 0.6914 0.87 16847

CTDNE 0.1808 0.84 2923 0.4013 0.85 301 0.7171 0.88 9115

DNE 0.1848 0.86 1547 0.4187 0.86 141 0.7302 0.90 6521

SLA 0.1899 0.87 1399 0.3998 0.85 149 0.7110 0.88 6193

DHPE 0.1877 0.87 2047 0.4204 0.86 215 0.7311 0.90 8159

12 The streaming network G = {G1, ..., GT } is generated from the original network
by first sampling half of the original network as G1. For each timestamp t, ΔGt

is constructed by sampling 200 edges (not in Gt−1) from the original network and
adding them (and the corresponding terminal nodes) to Gt−1, whereas 100 edges of
Gt−1 are deleted.
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labels for testing, and the average results from 50 runs are reported.13 Table 2
demonstrates that GMR outperforms Change by 27.1% regarding Macro-F1
[13], and it is close to Full but with 20.7× speed-up. The Macro-F1 scores of
GraphSAGE and SDNE are at least 40% worse than that of GMR, indicating
that GraphSAGE and SDNE cannot adequately handle multi-type changes in
dynamic networks. Moreover, GMR achieves better improvement on BlogCata-
log than on DBLP, because the density (i.e., the average degree) of BlogCatalog
is larger, enabling hierarchical addressing of GMR to exploit more structural
information for updating multiple nodes. For DBLP, GMR also achieves the
performance close to Full.

It is worth noting that the isomorphic retaining score S is also positively
related to Macro-F1. We further investigate the percentages of isomorphic pairs
with the same label on different datasets. The results manifest that 88%, 92%
and 97% of isomorphic pairs share the same labels on BlogCatalog, Wiki, and
DBLP, respectively. Therefore, it is crucial to maintain the consistency between
isomorphic pairs since similar embeddings of isomorphic pairs are inclined to be
classified with the same labels.

7 Conclusion

In this paper, we propose GMR for streaming network embeddings featuring
the hierarchical addressing, refreshing gate, and percolation gate to preserve
the structural information and consistency. We also prove that the embeddings
generated by GMR are more consistent than the current network embedding
schemes under insertion. The experiment results demonstrate that GMR out-
performs the state-of-the-art methods in link prediction and node classification.
Moreover, multi-type updates with the beam search improve GMR in both task-
oriented scores and the isomorphic retaining score. Our future work will extend
GMR to support multi-relations in knowledge graphs.
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19. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

20. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of the 22nd ACM SIGKDD, pp. 1225–1234 (2016)

21. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by
modeling triadic closure process. In: Thirty-Second AAAI (2018)

22. Zhu, D., Cui, P., Zhang, Z., Pei, J., Zhu, W.: High-order proximity preserved
embedding for dynamic networks. Trans. Knowl. Data Eng. 30, 2134–2144 (2018)

23. Zoghi, M., Tunys, T., Ghavamzadeh, M., Kveton, B., Szepesvari, C., Wen, Z.:
Online learning to rank in stochastic click models. In: Proceedings of the ICML,
pp. 4199–4208 (2017)

http://arxiv.org/abs/1710.10903

	Quality-Aware Streaming Network Embedding with Memory Refreshing
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Graph Memory Refreshing
	4.1 Multi-type Embedding Updating
	4.2 Hierarchical Addressing
	4.3 Refresh and Percolate

	5 Theoretical Analysis
	6 Experiments
	6.1 Link Prediction
	6.2 Node Classification

	7 Conclusion
	References




