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Abstract. Fairness in recommendation has attracted increasing atten-
tion due to bias and discrimination possibly caused by traditional rec-
ommenders. In Interactive Recommender Systems (IRS), user prefer-
ences and the system’s fairness status are constantly changing over time.
Existing fairness-aware recommenders mainly consider fairness in static
settings. Directly applying existing methods to IRS will result in poor
recommendation. To resolve this problem, we propose a reinforcement
learning based framework, FairRec, to dynamically maintain a long-
term balance between accuracy and fairness in IRS. User preferences
and the system’s fairness status are jointly compressed into the state
representation to generate recommendations. FairRec aims at maximiz-
ing our designed cumulative reward that combines accuracy and fairness.
Extensive experiments validate that FairRec can improve fairness, while
preserving good recommendation quality.

1 Introduction

Interactive Recommender Systems (IRS) have been widely implemented in var-
ious fields, e.g., news, movies, and finance [20]. Different from the conventional
recommendation settings [11], IRS consecutively recommend items to individual
users and receive their feedback in interactive processes. IRS gradually refine
the recommendation policy according to the obtained user feedback in an online
manner. The goal of such a system is to maximize the total utility over the whole
interaction period. A typical utility of IRS is user acceptance of recommenda-
tions. Conversion Rate (CVR) is one of the most commonly used measures of
recommendation acceptance, computing the ratio of users performing a system’s
desired activity to users having viewed recommended items. A desired activity
could be downloading from App stores, or making loans for microlending.
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However, optimizing CVR solely may result in fairness issues, one of which
is the unfair allocation of desired activities, like clicks or downloads, over dif-
ferent demographic groups. Under such unfair circumstances, majority (over-
representing) groups may dominate recommendations, thereby holding a higher
proportion of opportunities and resources, while minority groups are largely
under-represented or even totally ignored. A fair allocation is a critical objective
in recommendation due to the following benefits:

Legal. Recommendation in particular settings are explicitly mandated to guar-
antee fairness. In the setting of employment, education, housing, or public accom-
modation, a fair treatment with respect to race, color, religion, etc., is required
by the anti-discrimination laws [8]. For job recommendation, it is expected that
jobs at minority-owned businesses are being recommended and applied at the
same rate as jobs at white-owned businesses. In microlending, loan recommender
systems must ensure borrowers of different races or regions have an equal chance
of being recommended and funded.

Financial. Under-representing for some groups leads to the abandonment of
the system. For instance, video sharing platforms like YouTube involve viewers
and creators. It is desirable to ensure each creator has a fair chance of being
recommended and promoted. Otherwise, if the new creators do not get adequate
exposure and appreciation, they tend to leave the platform, resulting in less
user-generated content. Consequently, users’ satisfaction from both viewers and
creators, as well as the platform’s total income are affected in the long run.

The fairness concern in recommender systems is quite challenging, as accu-
racy and fairness are usually conflicting goals to be achieved to some extent. On
the one hand, to obtain the ideal fairness, one could simply divide the recom-
mendation opportunities equally to each item group, but users’ satisfaction will
be affected by being persistently presented with unattractive items. On the other
hand, existing recommender systems have been demonstrated to favor popular
items [5], resulting in extremely unbalanced recommendation results. Thus, our
work aims to answer this question: Can we achieve a fairer recommendation
while preserving or just sacrificing a little recommendation accuracy?

Most prior works consider fairness for the conventional recommender systems
[1,2], where the recommendation is regarded as a static process at a certain time
instant. A general framework that formulates fairness constraints on rankings in
terms of exposure allocation is proposed in [19]. Individual attention fairness is
discussed in [3]. [21] models re-ranking with fairness constraints in Multi-sided
Recommender Systems (MRS) as an integer linear programming. The balanced
neighborhoods method [4] balances protected and unprotected groups by refor-
mulating the Sparse LInear Method (SLIM) with a new regularizer.

However, it is hard to directly apply those methods to IRS due to:

(i) It is infeasible to impose fairness constraints at every time instant. Forcing
the system to be fair at any time and increasing fairness uniformly for all
users will result in poor recommendations. In fact, IRS focus on the long-
term cumulative utility over the whole interaction session, where the system
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could focus on improving accuracy for users with particular favor, and the
lack of fairness at the time can later be compensated when recommending
items to users with diversified interests. As such, we can achieve long-term
system’s fairness while preserving satisfying recommendation quality.

(ii) Existing work only considers the distribution of the number of recommen-
dations (exposure) an item group received. Actually, the distribution of the
desired activities that take place after an exposure like clicks or downloads
has much larger commercial value and can be directly converted to revenue.

To resolve the problem, we design a Fairness-aware Recommendation frame-
work with reinforcement learning (FairRec) for IRS. FairRec jointly compresses
the user preferences and the system’s fairness status into the current state rep-
resentation. A two-fold reward is designed to measure the system gain regarding
accuracy and fairness. FairRec is trained to maximize the long-term cumulative
reward to maintain an accuracy-fairness balance. The major contributions of
this paper are as follows:

– We formulate a fairness objective for IRS. To the best of our knowledge, this
is the first work that balances between accuracy and fairness in IRS.

– We propose a reinforcement learning based framework, FairRec, to dynami-
cally maintain a balance between accuracy and fairness in IRS. In FairRec,
user preferences and the system’s fairness status are jointly compressed into
the state representation to generate recommendations. We also design a two-
fold reward to combine accuracy and fairness.

– We evaluate our proposed FairRec algorithm on both synthetic and real-world
data. We show that FairRec can achieve a better balance between accuracy
and fairness, compared to the state-of-the-art methods.

2 Problem Formulation

2.1 Markov Decision Process for IRS

In this paper, we model the fairness-aware recommendation for IRS as a finite
time Markov Decision Process (MDP), with an action space A, a state space
S, and a reward function r : S × A → R. When a user u arrives at time step
t = 1, . . . , T , the system observes the current state st ∈ S of the user u and takes
an action at ∈ A (e.g., recommending an item to the user).

The user views the item and provides feedback yat
, e.g., clicking or down-

loading on the recommended item, if she feels interested. Let yat
∈ {0, 1} denote

the user’s feedback, with yat
= 1 meaning the user performs desired activities,

and 0 otherwise. The system then receives a reward rt (a function of yat
), and

updates the model. The problem formulation is formally presented as follows:

States S: The state st is described by user preferences and the system’s fairness
status. We jointly embed them into the current state representation. The detailed
design of the state representation is given in Sect. 3.2.
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Transitions P: The transition of states models the dynamic change of user
preferences and the system’s fairness. The successor state st+1 is obtained once
the user’s feedback at time t is collected.

Action A: An action at is recommending an item chosen from the available
candidate item set A. Our framework can be easily extended to the case of
recommending a list of items. To simplify our presentations, we focus on recom-
mending an item at a time in this paper.

Reward R: The reward rt is a scalar measuring the system’s gain regarding
accuracy and fairness after taking action at, elaborated in Sect. 3.3.

We aim to learn a policy π, mapping from states to actions at = π(st),
to generate recommendations that are both accurate and fair. The goal is to
maximize the sum of discounted rewards (return) from time t onward, which is
defined by Rγ

t =
∑T

k=t γk−trk, and γ is the discount factor.

2.2 Weighted Proportional Fairness for IRS

Each item is associated with a categorical protected attribute C ∈ {c1, . . . , cl}.
Let Ac = {a|C = c, a ∈ A} denote the group of items with an attribute value
c. Take loan recommendation for instance, if the protected attribute is the geo-
graphical region, then Ac with c = “Oceania” contains all the loans applied
from Oceania. Denote by xt ∈ R

l
+ the allocation vector, where xi

t represents the
allocation proportion of group i up to time t,

xi
t =

∑t
k=1 yak

1Aci
(ak)

∑l
i′=1

∑t
k=1 yak

1Ac
i
′ (ak)

. (1)

where 1A(x) equals to 1 if x ∈ A, and 0 otherwise. Recall that yak
is the user’s

feedback on recommended item ak. In loan recommendation, xi
t denotes the rate

of funded loans from the region i over all funded ones up to time t.
In this work, we focus on a well-accepted and axiomatically justified metric

of fairness, the weighted proportional fairness [9]. Weighted proportional fairness
is a generalized Nash solution for multiple groups.

Definition 1 (Weighted Proportional Fairness). An allocation of desired
activities xt is weighted proportionally fair if it is the solution of the following
optimization problem,

max
xt

l∑

i=1

wi log(xi
t), s.t.

l∑

i=1

xi
t = 1, xi

t ≥ 0, i = 1, . . . , l. (2)

The coefficient wi ∈ R+ is a pre-defined parameter weighing the importance of
each group. The optimal solution can be easily solved by standard Lagrangian
multiplier methods, namely

xi
∗ =

wi
∑l

i′=1 wi′
. (3)
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We aim to improve the weighted proportional fairness
∑l

i=1 wi log(xi
T ) while

preserving high conversions
∑T

t=1 yat
up to time T .

3 Proposed Model

This section begins with a brief overview of our proposed FairRec. After that,
we introduce the components of FairRec and the learning algorithm in detail.

Fig. 1. The architecture of FairRec.

3.1 Overview

To balance between accuracy and fairness in the long run, we formulate IRS
recommendation as an MDP, which is then solved by reinforcement learning.

The previously studied reinforcement learning models can be categorized as
follows: Value-based methods approximate the value function, then the action
with the largest value is selected [26,27]. Value-based methods are more sample-
efficient and steady, but the computational cost is high when the action space
is large. Policy-based methods directly learn a policy that takes as input of
the current user state and outputs an action [6,24], which generally have a
faster convergence. Actor-critic architectures take advantage of both value-based
and policy-based methods [15,25]. Therefore, we design our model following the
actor-critic framework.

The overall architecture of FairRec is illustrated in Fig. 1, which consists of an
actor network and a critic network. The actor network performs time-varying
recommendations according to the dynamic user preferences and the fairness
status. The critic network estimates the value of the outputs associated with the
actor network to encourage or discourage the recommended items.

3.2 Personalized Fairness-Aware State Representation

We propose a personalized fairness-aware state representation to jointly consider
accuracy and fairness, which is composed of the the User Preference State (UPS)
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and the Fairness State (FS). State representation learns a non-linear transfor-
mation ht = fs(st) that maps the current state st to a continuous vector ht.

User Preference State (UPS). UPS represents personalized user preferences.
We propose a two-level granularity representation: the item-level and the group-
level. The item-level representation indicates the user’s fine-grained preferences
to each item, while the group-level representation shows the user’s coarse-grained
interests in each item group. Such two-level granularity representation provides
more information on the propensity of different users towards diverse recommen-
dation. Therefore, the agent could focus on accuracy for the users with particular
favor, and the lack of fairness at a point in time can later be compensated when
recommending items to users with diverse interests.

The input of UPS is the sequence of the user u’s N most recent positively
interacted items, as well as the corresponding group IDs that the items belong
to at t. Items belonging to the same group share the same protected attribute
value c. Each item a is mapped to a continuous embedding vector ea ∈ R

d. The
embedding vector of each group ID eg is the average of the embedding vectors
of all items belonging to the group g. Then each item is represented by

εa = ea + eg, (4)

where εa ∈ R
d, and item a belongs to group g. The group embedding eg is added

to serve as a global bias (or a regularizer), allowing items belonging to the same
group to share the same group information.

As for a specific user u, the affects of different historical interactions on her
future interest may vary significantly. To capture this sequential dependencies
among the historical interacted items, we apply an attention mechanism [23]
to weigh each item in the interacted item sequence. The attention net learns
a weight vector β of size N , β = Softmax(ω1σ(ω2[εa1 , . . . , εaN

] + b2) + b1),
where ω1, b1, ω2, b2 are the network parameters and σ(·) is the ReLU activa-
tion function. The user preference state representation mt is obtained by mul-
tiplying the attention weights with the corresponding item representations as
mt = [β1εa1 , . . . , βN εaN

], where mt is of dimension N × d and βi denotes the
i-th entry in the weight vector β. Therefore, the items currently contributing
more to the outcome are assigned with higher weights.

Fairness State (FS). The input of FS is the current allocation distribution of
the desired activities at time t. As a complementary for UPS, FS provides evi-
dence of the current fairness status and helps the agent to promote items belong-
ing to under-represented groups. In particular, we deploy a Multi-Layer Percep-
tron (MLP) to map the allocation vector xt to a latent space, nt = MLP(xt).
Then we concatenate mt and nt to obtain the final state representation,

ht = [mt||nt], (5)

with || denotes concatenation operation.
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3.3 Reward Function Design

The reward is designed to measure the system’s gain regarding accuracy and
fairness. Existing reinforcement learning frameworks for recommendation only
consider the recommendation accuracy, and one commonly used definition of
reward is r = 1 if the user performs desired activities and −1 otherwise [15,25].
To incorporate the fairness measure into IRS, we propose a two-fold reward by
first examining whether the user performs the desired activities on the recom-
mended item, and then evaluating the fairness gain of performing such a desired
activity.

As discussed in Sect. 2, to achieve the weighted proportional fairness, the
optimal allocation vector is xi

∗ = wi∑l

i
′=1

w
i
′
, with wi the pre-defined target allo-

cation proportion of group i. Therefore, we incorporate the deviation from the
optimal solution xi

∗ − xi
t into the reward as the fairness indicator:

rt =

{∑l
i=1 1Aci

(at)
(
xi

∗ − xi
t + 1

)
, if yat

= 1
−λ, if yat

= 0
, (6)

where 1A(x) is the indicator function and is 1 when x ∈ A, 0 otherwise, xi
t is the

allocation proportion of group i at time t. The constant λ > 1 is the penalty value
for inaccurate recommendations and manages the accuracy-fairness tradeoff. A
larger λ means that the agent focuses more on accuracy.

Since the fairness metric (Eq. (1) and Eq. (2)) is computed according to the
number of the desired activities, only positive yat

influences fairness. Therefore,
we simply give a negative reward −λ for yat

= 0 to punish the undesired activi-
ties. When yat

= 1, we compute the fairness score xi
∗ −xi

t, which is the difference
between the optimal distribution and current allocation. Suppose the user per-
forms a desired activity on the item at ∈ Aci

. Then the fairness score xi
∗ − xi

t is
negative if the i-th group is over-representing (xi

t > xi
∗), and is more negative if

Aci
already has a higher rate of the desired activity, indicating that the system

should focus more on other groups. Similarly, the fairness score xi
∗−xi

t is positive
if the i-th group is currently under-representing (xi

t < xi
∗), and is more positive

if Aci
is more lacking in the desired activity. We add 1 to the fairness score to

ensure the reward is positive if yat
= 1.

To sum up, the agent receives a large positive reward if the user performs a
desired activity on the item and the item belongs to an under-representing group.
Whereas the reward is a smaller positive number if the activity is desired, but
the item belongs to an over-representing (majority) group. We punish the most
severely with yat

= 0, as it neither contributes to accuracy nor fairness.

3.4 Model Update

Actor Network. The actor network extracts latent features from st and outputs
a ranking strategy vector zt. The recommendation is performed according to the
ranking vector by at = arg maxa∈A e�

a zt. In particular, we first embed st to ht

following the architecture described in Sect. 3.2, then we stack fully-connected
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layers on top of ht to learn the nonlinear transformation and generate zt, as
presented in Fig. 1.

Suppose the policy πθ(s) learned by the actor is parameterized by θ. The
actor is trained according to Qη(st, zt) from the critic, and updated by the
sampled policy gradient [18] with αθ as the learning rate, B as the batch size,

θ ← θ + αθ
1
B

∑

t

∇zQη(s, z)|s=st,z=πθ(st)∇θπθ(s)|s=st
, (7)

Critic Network. The critic adopts a deep neural network Qη(st, zt), parameter-
ized by η, to estimate the expected total discounted reward E[Rγ

t |st, zt;π], given
the state st and the ranking strategy vector zt under the policy π. Specifically
for this problem, the network structure is designed as follows

Qη(st, zt) = MLP([σ(Whht + bh)||zt]), (8)

by first mapping ht to the same space as zt with a fully-connected layer and
then concatenating it with zt, while MLP(·) denotes a mutli-layer perceptron,
and ht = fs(st) is the state representation as presented in Sect. 3.2.

We use the temporal-difference (TD) learning [22] to update the critic. The
loss function is the mean square error L =

∑
t(νt − Qη(st, zt))2, where νt =

rt+γQη′(st+1, πθ′(st+1)). The term νt−Qη(st, zt) is called time difference (TD),
η′ and θ′ are the parameters of the target critic and actor network that are
periodically copied from η, θ and kept constant for a number of iterations to
ensure the stability of the training [14]. The parameter θ is updated by gradient
descent, with αη the learning rate and B the batch size:

η ← η + αη
1
B

∑

t

(νt − Qη(st, zt))∇ηQη(st, zt). (9)

4 Experiments

4.1 Experimental Settings

We evaluate the proposed FairRec algorithm on both synthetic and real-world
data, comparing with the state-of-the-art recommendation methods in terms of
fairness and accuracy.

Datasets. We use MovieLens1 and Kiva.org datasets for evaluation. Movie-
Lens is a public benchmark dataset for recommender systems, with 943 users,
1,602 items and 100,000 user-item interactions. Since the MovieLens data do not
have protected attributes, we created 10 groups to represent differences among
group inventories, and randomly assigned movies to each of such groups follow-
ing a geometric distribution. An interaction with the rating (ranging from 1 to
1 https://grouplens.org/datasets/movielens.

https://grouplens.org/datasets/movielens
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5) larger than 3 is defined as a desired activity in calculating CVR. Kiva.org is
a proprietary dataset obtained from Kiva.org, consisting of lending transactions
over a 6-month period. We followed the pre-processing technique used in [16] to
densify the dataset. The retained dataset has 1,589 loans, 589 lenders and 43,976
ratings. The geographical region of loans is selected as the protected attribute,
as Kiva.org has a stated mission of equalizing access to capital across different
regions so that loans from each region have a fair chance to be funded. We define
a transaction amount greater than USD25 as the desired activity for Kiva.

Evaluation Metrics. We evaluate the recommendation accuracy by the Con-
version Rate (CVR):

CVR =
∑T

k=1 yak

T
, (10)

and measure the fairness by Weighted Proportional Fairness (PropFair)2:

PropFair =
l∑

i=1

wi log(1 + xi
T ). (11)

Table 1. Experimental results on MovieLens and Kiva.

MovieLens Kiva

CVR PropFair UFG CVR PropFair UFG

NMF 0.7972 0.8592 4.2362 0.4211 0.8473 1.4635

SVD 0.8478 0.8337 5.4795 0.4870 0.8686 1.6931

DeepFM 0.8612 0.8098 5.8323 0.6349 0.8671 2.3752

LinUCB 0.8577 0.8464 5.9476 0.6517 0.8697 2.4970

DRR 0.8592 0.8470 6.0177 0.6567 0.8645 2.5183

MRPC 0.8361 0.8608 5.2508 0.4286 0.8761 1.5332

FairRec 0.8702* 0.8666* 6.6776* 0.6905* 0.8838* 2.8555*

We conduct a two-sided significant test [17] between FairRec and the
strongest baseline DRR, where * means the p-value is smaller than 0.05.

Moreover, we propose a Unit Fairness Gain (UFG) to jointly consider accu-
racy and fairness,

UFG =
PropFair

CVRmax − CVR
=

PropFair
1 − CVR

. (12)

UFG indicates the fairness of the system under unit accuracy budget. For any
recommendation system, the ideal maximum CVR, namely CVRmax, equals to
1. Thus UFG can be interpreted as the slope of fairness versus accuracy—the
fairness gain if we decrease a unit accuracy from CVRmax. A larger UFG means
a higher value of PropFair can be achieved with unit deviation from CVRmax,
namely, the larger, the better.
2 The input of PropFair is shifted by one to avoid infinity results.
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Reproducibility. We randomly sample 80% of the user with associated rat-
ing sequences for training, and 10% for validation, 10% for testing, so that the
item dependencies within each session can be learned. We use grid search to
select the hyper-parameters for all the methods to maximize the hybrid met-
ric UFG: the embedding dimension in {10, 30, 50, 100}, the learning rate in
{0.0001, 0.001, 0.01}. Embedding vectors are pre-trained using standard matrix
factorization [11] following the traditional processing as in [15,25]. For the pro-
posed FairRec, we set the number of recent interacted items N = 5, discount
factor γ = 0.9, the width of each hidden layer of the actor-critic network is 1000.
The batch size is set to 1024, and the optimization method is Adam. With-
out loss of generality, we set wi = 1, i = 1, . . . , l. All results are averaged from
multiple independent runs.

4.2 Results and Analysis

Comparison with Existing Methods. We compare our proposed FairRec
with six representative recommendation algorithms: (i) NMF. Non-negative
Matrix Factorization (NMF) [12] estimates the rating matrix with positive user
and item factors; (ii) SVD. Singular Value Decomposition (SVD) [10] is the
classic matrix factorization based method that decomposes the rating matrix
via a singular value decomposition; (iii) DeepFM. DeepFM [7] is the state-of-
the-art deep learning model in recommendation that combines the factorization
machines and deep neural networks; (iv) LinUCB. LinUCB [13] is the state-of-
the-art contextual bandits algorithm that sequentially selects items and balances
between exploitation and exploration in IRS; (v) DRR. DRR [15] is a deep
reinforcement learning framework designed for IRS to maximize the long-term
reward; (vi) MRPC. Multi-sided Recommendation with Provider Constraints
(MRPC) [21] is the state-of-the-art fairness-aware method by formulating the
fairness problem as an integer programming.

Table 1 shows the results. Bold numbers are the best results and underlined
numbers are the strongest baselines. We have the following observations:

First, the deep learning based method (DeepFM) outperforms matrix factor-
ization based methods (NMF and SVD) in CVR, while PropFair of DeepFM is
lower. This is consistent with our expectation that DeepFM combines low-order
and high-order feature interactions and has great fitting capability, yet it solely
maximizes the accuracy, with fairness issues overlooked.

Second, LinUCB and DRR generally achieve better CVR than matrix fac-
torization and deep learning methods. It is because LinUCB and DRR consider
the IRS setting, and aims to maximize the long-term reward. Compared Lin-
UCB to DRR, LinUCB underperforms DRR since LinUCB assumes states of
the system remain unchanged and fails to tailor the recommendation to match
the dynamic user preferences. DRR is the strongest baseline as it achieves the
best tradeoff between accuracy and fairness, with UFG = 6.0177 on MovieLens
and UFG = 2.5183 on Kiva, respectively.

Third, MRPC considers fairness by adding fairness constraints for static rec-
ommendation. Therefore, MRPC generates the fairest recommendation on both



FairRec 165

datasets, but the CVR significantly decreases as MRPC ignores the dynamic
change of user preferences and the fairness status.

Fourth, FairRec consistently yields the best performance in terms of CVR,
PropFair, and UFG on both datasets, demonstrating FairRec is effective in
maintaining the accuracy-fairness tradeoff over time. FairRec outperforms the
strongest baselines, DRR, by 1.3%, 2.3%, and 11% in CVR, PropFair, and UFG
on MovieLens, and 5.1%, 2.2%, and 13.4% on Kiva. Considering UFG, with
unit accuracy loss, FairRec achieves the most fairness gain. FairRec observes the
current user preferences and the fairness status, and estimates the long-term dis-
counted cumulative reward. Therefore, FairRec is capable of long-term planning
to manage the balance between accuracy and fairness.

Influence of Embedding Dimension. Embedding dimension d is an impor-
tant factor for FairRec. We study how the embedding dimension d influences the
performance of FairRec. We vary d in {10, 30, 50}, and run 2500 epochs. The
cumulative reward and the test performance are plotted in Fig. 2.

We observe that when d is large (d = 30 and d = 50), the algorithm benefits
from sufficient expressive power and the reward converges at a high level. As for
d = 10, the cumulative reward converges fast at a relatively low value, indicating
that the model suffers from the limited fitting capability. In terms of UFG value,
UFG = 6.68 when d = 50, which is slightly better than 6.6 as d = 30. Similar
results can be found on Kiva, which is omitted for limited space. Therefore, we
select d = 50 in FairRec for all the experiments.

Fig. 2. Experimental results with embedding dimension d on MovieLens: cumulative
reward (left) and CVR, PropFair, and UFG (right).

Table 2. Ablation study on MovieLens and Kiva.

MovieLens Kiva

CVR PropFair UFG CVR PropFair UFG

FairRec(reward-) 0.8561 0.8053 5.5957 0.6935 0.8670 2.8290

FairRec(state-) 0.8194 0.8758 4.8494 0.6723 0.8746 2.6688

FairRec 0.8702 0.8666 6.6776 0.6905 0.8838 2.8555
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Ablation Study. To evaluate the effectiveness of different components (i.e., the
state representation and the reward function) in FairRec, we replace a compo-
nent of FairRec with the standard setting in RL at each time, and compare the
performance with the full-fledged FairRec. Experimental results are presented
in Table 2. We design two variants: FairRec(reward-) with standard reward as
in [15,25]; and FairRec(state-) with simple concatenation of item embeddings
as the state representation as in [15].

Results show that FairRec(reward-) generally has high CVR, as no punish-
ment on unfair recommendation. Moreover, the model simply optimizes accu-
racy, failing to balance between accuracy and fairness. As for FairRec(state-),
CVR is downgraded significantly, validating the importance of our designed state
representation. Overall, UFG of FairRec is the largest, confirming that all the
components of FairRec work together yield the best results.

5 Conclusion

In this work, we propose a fairness-aware recommendation framework in IRS
to dynamically balance between accuracy and fairness in the long run with
reinforcement learning. In the proposed state representation component, UPS
models both personalized preference and propensity to diversity; FS is utilized
to describe the current fairness status of IRS. A two-fold reward is designed to
combine accuracy and fairness. Experimental results demonstrate the effective-
ness in the balance of accuracy and fairness of our proposed framework over the
state-of-the-art models.
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