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Preface

Reversible Computation (RC) is a new paradigm that extends the traditional
forwards-only mode of computation with the ability to execute in reverse, so that
computation can run backwards as easily as forwards. It aims to deliver novel com-
puting devices and software, and to enhance existing systems by equipping them with
reversibility. There are many potential applications of RC, including languages and
software tools for reliable and recovery-oriented distributed systems and revolutionary
reversible logic gates and circuits, but they can only be realised and have lasting effect
if conceptual and firm theoretical foundations are established first. This state-of-the-art
survey presents the main recent scientific outcomes in the area of RC, focusing on those
that have emerged during COST Action IC1405 Reversible Computation - Extending
Horizons of Computing, a European research network that operated from May 2015 to
April 2019.

Action IC1405 was organised into four Working Groups. The members of Working
Group 1 concentrated their efforts on establishing Foundations of RC. Working Groups
2 and 3 focused on specific technical challenges and potential application areas of
reversibility in Software and Systems and in Reversible Circuit Design respectively.
The purpose of Working Group 4 was to validate and explore application of Action’s
research results via practical case studies.

Working Groups 1–3 produced yearly scientific reports during the life of the Action,
and these reports have been developed further into four comprehensive chapters sur-
veying the main conceptual, theoretical, and technical achievements of the RC Action.
Seven of the case studies from Working Group 4 were selected for presentation in this
book. They show that RC techniques can form essential parts of solutions to many
difficult practical problems as can be seen, for example, in the success of reversible
debugging software tools. Overall, there are 40 co-authors of the book, which repre-
sents a substantial proportion of around 110 active members of the RC Action. This
survey is a result of collaborative work that was carried out in part during regular
Action meetings and Short-Term Scientific Missions (STSMs) supported by COST.

The content of the survey is structured as follows:

– Chapter 1 presents many new theoretical developments in the foundations of RC. It
is worth noting the work on reversing Petri nets and on categorical characterisation
of reversibility which was carried out as a direct result of the members of the
respective communities participation in IC1405. Results obtained by Working
Group 1 on reversibility in programming languages, term rewriting, membrane
systems, process calculi, automata, and quantum formal verification are also given
here.

– The main results obtained in the area of reversible software and systems are
described in Chapter 2. They span from the definition of imperative and reversible
object-oriented languages to the impact of reversibility on analysis techniques based
on behavioural types, and to the application of reversibility for recovery, efficient



simulation, and wireless communications. The outcomes of Working Group 2 have
been mostly of practical nature, hence some of the topics above are further dis-
cussed in the chapters of the book devoted to case studies.

– Chapter 3 covers simulation and design techniques for quantum circuits. Quantum
circuits are inherently reversible and have received significant attention in the recent
years. Simulating and designing them in a proper fashion is however a non-trivial
task. The chapter provides an overview of solutions for these tasks which utilise
expertise on efficient data structures and algorithms gained in the design of con-
ventional circuits and systems.

– An overview of recent results towards a new classification of reversible functions,
which would be useful in the synthesis of reversible circuits, is presented in Chapter
4. Firstly, theoretical results on properties of component functions of reversible
functions are given. Then, the results of recent research on the existence of Boolean
reversible functions of any number of variables (with all component functions
belonging to different equivalence classes) are described. Finally, results on the
existence of Boolean reversible functions with specified properties of all component
functions are reported.

– Chapter 5 focuses on the application of reversibility to debugging. This is a quite
natural application, since debugging aims at finding bugs (that is, wrong lines of
code) causing visible misbehaviours, and to do that it is quite natural to execute
backward from the misbehaviour. The chapter focuses on debugging of concurrent
systems, where the use of reversibility is more recent, and considers both a standard
imperative language and a subset of the functional language Erlang. Notably, the
results described in this section are practical, but obtained as a direct application
of theoretical investigations in the area of process calculi and semantics.

– The combination of reversibility and run-time monitoring of distributed systems is
advocated in Chapter 6. It considers Erlang programs as an instance of the
implementation of a model-driven methodology which can also be applied to other
message-passing frameworks. Reversible choreographies are introduced to
abstractly represent message-passing software and are used to specify adaptation
and recovery strategies. These specifications are then used to generate monitors that
govern the recovery and run-time adaptation of the execution according to the
specified recovery policies.

– Chapter 7 give an overview of process calculi and Petri nets techniques for the
modeling and reasoning about reversibility of systems, including out-of-causal-order
reversibility as in chemical reactions. As an example, the autoprotolysis of water
reaction is modeled in the Calculus of Covalent Bonding, the Bonding Calculus, and
in Reversing Petri Nets.

– A robotic assembly case study is presented in Chapter 8. It investigates to what
extent program inversion of a robotic assembly sequence can be considered to
derive a reverse behaviour, and to what extent changing the execution direction at
runtime (namely backtracking and retrying) using program inversion can be used as
an automatic error handling procedure. The programming model is used to rever-
sibly control industrial robots and demonstrates reversible control of industrial
robots in real-world scenarios.

viii Preface



– Chapter 9 presents practical results in the field of optimistic parallel discrete event
simulation (PDES). Optimistic PDES requires reversibility to perform a distributed
roll-back in case conflicts are detected due to the optimistic execution approach.
Two approaches to reversibility are compared: one based on the reversible pro-
gramming language Janus, the other based on a variant of checkpointing, also called
incremental state saving. For the purpose of comparing the performance of the two
approaches, a benchmark simulation model is presented which is specifically
designed for evaluating the performance of approaches to reversibility in PDES.

– A case study on applications of RC in wireless communications is given in Chapter
10. A communication system has an inherent link with RC. It is demonstrated that
the communication channel can be modeled using reversible paradigms such as
reversible cellular automata, that the hardware conducting communications based
on wave time reversal has a natural, simple implementation in terms of reversible
gates, and, lastly, that optimisation for large antenna arrays can be efficiently done
in real time using reversible computational models such as Reversing Petri Nets.

– Finally, Chapter 11 provides an overview of key reconciliation techniques in
quantum key distribution protocols with a focus on communication and computing
performance. Different ways to identify errors in establishing symmetric crypto-
graphic keys are investigated, with a focus on recursivity and reversibility. This is
particularly noticeable with the Cascade Protocol, while other protocols focus on
achieving one-sided processing which is of great importance for satellite quantum
communications. Also, a new approach to key reconciliation techniques based on
artificial neural networks is introduced.

We are grateful to all the contributors of this book, who worked tirelessly preparing
the chapters and improving them greatly following a review process. Our thanks are
due to many reviewers who helped to improve the scientific quality of the book. We
would like to thank Veroniva Gaspes, the STSM Coordinator of Action IC1405, for
dealing efficiently with over 80 STSM visits. We also thank Jovanka Pantović for
taking care of ICT conference grants.

We would like to express our appreciation to Ralph Stübner, the Scientific Officer
of the Action, for the support and advice received over the four years of the Action. Our
administrative and financial affairs were looked after very effectively by Olga Gorczyca
from COST. Our special thanks also go to Alfred Hofmann, Anna Kramer and Elke
Werner, and other members of the editorial team at Springer, for their efficient and
patient editorial assistance.

March 2020 Irek Ulidowski
Ivan Lanese

Ulrik Pagh Schultz
Carla Ferreira
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Abstract. Reversible computation allows computation to proceed not
only in the standard, forward direction, but also backward, recovering
past states. While reversible computation has attracted interest for its
multiple applications, covering areas as different as low-power comput-
ing, simulation, robotics and debugging, such applications need to be
supported by a clear understanding of the foundations of reversible com-
putation. We report below on many threads of research in the area of
foundations of reversible computing, giving particular emphasis to the
results obtained in the framework of the European COST Action IC1405,
entitled “Reversible Computation - Extending Horizons of Computing”,
which took place in the years 2015–2019.
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2 B. Aman et al.

1 Introduction

Reversible computation allows computation to proceed not only in the standard,
forward direction, but also backward, recovering past states, and computing
inputs from outputs. Reversible computation has attracted interest for multiple
applications, covering areas as different as low-power computing [113], simula-
tion [37], robotics [122] and debugging [129]. However, such applications need to
be supported by a clear understanding of the foundations of reversible compu-
tation. Over the years, a number of theoretical aspects of reversible computing
have been studied, dealing with categorical foundations of reversibility, founda-
tions of programming languages and term rewriting, considering various models
of sequential (automata, Turing machines) and concurrent (cellular automata,
process calculi, Petri nets and membrane computing) computations, and tack-
ling also the challenges posed by quantum computation, which is in a large part
naturally reversible. We report below on those threads of research, giving partic-
ular emphasis to the results obtained in the framework of the European COST
Action IC1405 [78], titled “Reversible Computation - Extending Horizons of
Computing”, which took place in the years 2015–2019 and involved researchers
from 34 different countries.

The contents of this chapter are as follows. Section 2 covers category theory,
Sect. 3 reversible programming languages, Sect. 4 term rewriting, and Sect. 5
membrane computing. We then discuss process calculi (Sect. 6), Petri nets
(Sect. 7), automata (Sect. 8), and quantum verification and machine learning
(Sect. 9). The chapter ends with a brief conclusion (Sect. 10).

2 Category Theory

Category theory is a framework for the description and development of mathe-
matical structures. In category theory mathematical objects and their relation-
ships within mathematical theories are abstracted into primal notions of object
and morphism. Despite being a staple of the related field of quantum computer
science for years (see, e.g., [3,79,174]), category theory has seen comparatively
little use in modelling reversible computation, where operational methods remain
the standard. While the present section aims to give an overview of the use of
categorical models in providing categorical semantics for reversible program-
ming languages, categorical models have also been studied for other reversible
computing phenomena, notably reversible event structures [65].

2.1 Dagger Categories

One approach to categorical models of reversible computation is given by dagger
categories, i.e., categories with an abstract notion of inverse given by assigning to

each morphism X
f−→ Y an adjoint morphism Y

f†
−→ X, such that (g◦f)† = f†◦g†

and id†
X = idX (that is, composition is respected) and f†† = f for all compatible

morphisms f and g. Note that this definition says nothing about how f and f†
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ought to interact. As such, f† is not required to “undo” the behaviour of f in
any way, but can be any morphism with the appropriate signature, so long as
the above constraints are met.

A useful specialisation of dagger categories, in connection with reversible
computation, is dagger traced symmetric bimonoidal (or rig) categories, i.e.,
dagger categories equipped with two symmetric monoidal tensors (usually
denoted − ⊕ − and − ⊗ −), interacting through a distributor and an anni-
hilator, yielding the structure of a rig (i.e., a ring without additive inverses).
Iteration is modelled by means of a trace operator Tr (see [1,85,175]) such that
(Trf)† = Tr(f†). These categories are strongly related to the dagger compact
closed categories [3,174] that serve as the model of choice for the Oxford school
of quantum computing.

The use of dagger traced symmetric bimonoidal categories to model reversible
computations goes back at least as far as to the works by Abramsky, Haghverdi
and Scott (see, e.g., [2,4]) on (reversible) combinatory algebras, though its appli-
cations in reversible programming were perhaps best highlighted by the devel-
opment of the Π and Π0 calculi [34,83]. In addition, the reversible functional
programming language Theseus [82] exhibits a correspondence with the Π0 cal-
culus. However, dagger traced symmetric bimonoidal categories are not strictly
enough to model Π0, as such categories fail to account for the recursive data
types formed using − ⊕ −, − ⊗ −, and their units. In his recent thesis, Karvo-
nen [94] describes precisely the categorical features necessary for such a corre-
spondence, which he calls traced ω-continuous dagger rig categories.

Another notable application of this line of research is found in [167], where
a reversible Π0-like language is extended to describe quantum computations
without measurement, but with support for (necessarily terminating) primitively
recursive functions.

2.2 Inverse Categories

Another approach to model reversible computation is inverse categories [95]
(see [40] for a more modern presentation), a specialisation of dagger categories
in which morphisms are required to be partial isomorphisms. More precisely,

each morphism X
f−→ Y may be uniquely assigned a partial inverse Y

f†
−→ X

satisfying f ◦ f† ◦ f = f .
The development of inverse categories as models of reversible computation

was pioneered in the thesis of B.G. Giles [58], though a concrete correspondence
was never provided. This work, combined with the comprehensive account of
inverse categories with joins given in the thesis of Guo [67], was exploited in [86]
to give an account of reversible recursion in inverse categories with joins.

Much of this theory was then put to use in [87], where the authors managed
to show soundness, adequacy, and (under certain conditions) full abstraction for
reversible flowchart languages [185] in a class of inverse categories with joins.
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2.3 Monads and Arrows for Reversible Effects

The first account of monads pertaining to reversible computing was given in [71]
as dagger Frobenius monads. Though these arise naturally in quantum compu-
tation in the context of measurement, it turns out that they are exceedingly
rare in the case of classical reversible computing. A better concept for modelling
and programming with reversible effects turns out to be that of dagger and
inverse arrows [70], with examples such as reversible computation with mutable
memory, errors and error handling, and more.

3 Foundations of Reversible Programming Languages

Reversible programming languages bridge the gap between the hardware and
the specific application, and therefore play a central role in the development
of reversible computing. Reversible languages must be expressive and usable
in a variety of application domains. Their semantics must be precise and their
programs accessible to program inversion, analysis and verification. Additionally,
they must have efficient realisations on reversible devices and on standard ones.
Recent programming language studies have advanced the foundations and theory
of reversible languages in several interrelated directions.

3.1 Language Cores

Reversible languages have been reduced to their computational cores:
R-Core [63] is a structured reversible language consisting of a single command

for reversible store updates, a single control-flow operator for reversible iteration,
and data structures built from a single binary constructor and a single symbol.
Despite its extreme simplicity, the language is reversibly universal, which means
it is as computationally powerful as any reversible language can be. Its four-
line program inverter is as concise as the one for Bennett’s reversible Turing
machines. The core language and a recent extension with reversible recursion
were equipped with a denotational semantics [61,63,64].

R-While [62] adds reversible rewrite rules and pattern matching as syntactic
sugar to R-Core, which makes the family of structured reversible languages more
accessible to foundational studies and educational purposes than do reversible
Turing machines and other reversible devices. The procedural extension [64]
draws a distinction between tail-recursion by iteration and general recursion
by reversible procedures, a notoriously difficult transformation problem in pro-
gram inversion [96,151]. The linear-time self-interpretability makes the language
also suitable for foundational studies of computability and complexity from a
programming language perspective [84].

CoreFun [80] is a typed reversible functional language that seeks to reduce
reversible functional programming [184] to its essentials so that it can serve as a
foundation for modern functional language concepts. The language has a formal
semantics and a type system to statically check for reversibility of programs.
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3.2 Formal Semantics

Precise semantics is the foundation of every programming language, and formal-
ity is from where programming languages derive their usefulness and power.

A program is regarded as reversible if each of its meaningful subprograms is
partially invertible. Thus, reversible programs have reversible semantics [61]. A
foundation of the semantics has been established for structured reversible lan-
guages built on inverse categories [59,60]. This class of languages includes Janus,
a reversible language that was originally formalised by conventional (irreversible)
operational semantics, and the R-Core and R-While languages. For example,
predicates and assertions occurring in reversible alternatives and reversible iter-
ations are modelled by decision maps, in contrast to conventional semantics. A
benefit of the reversible semantic approach is that program inverters and equiv-
alences of reversible programs can be derived directly from the semantics.

The assumption of countable joins in inverse categories is suitable in a cat-
egorical account of reversible recursion [86], which enables modelling of proce-
dures in reversible structured and functional languages. Reversibility of Janus
was proved with a proof assistant [153].

3.3 Compilation Principles

High-level languages are more productive in most application domains, but high
levels of computational abstractions do not come for free. A clean and effective
translation to lower abstraction levels is required and sophisticated optimisations
may be necessary to generate high quality implementations.

Dynamic memory management is a central runtime mechanism to sup-
port dynamic data structures in reversible machines. Its purpose is to sup-
port reversible object-oriented languages as well as the core languages described
above. Garbage collectors that use multiple references [142] to overcome linearity
requirements and heap manager algorithms have been developed and experimen-
tally evaluated. To ease the analysis and optimisation when translating from a
high-level reversible language to the underlying reversible machine, the reversible
single static assignment (RSSA) form can be a suitable intermediate representa-
tion in optimising compilers [141]. Its aim is to allow for advanced optimisations
such as register allocation on reversible Von Neumann machines.

The recent languages Joule [173] and ROOPL [68] demonstrated that well-
known object-oriented concepts can be captured reversibly by extending a Janus-
like imperative language. Reversible data types [43], that is data structures with
all of its associated operations implemented reversibly, are enabled by dynamic
allocation of constructor terms on the heap [11]. A reversible dynamic mem-
ory management based on the Buddy Memory system [99] has been developed
and tested in a compiler targeting the assembly language of a reversible com-
puter [43].
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3.4 Reversibilisation Techniques

A separate approach to reversibility is reversibilisation, which turns irreversible
computations into reversible computations. This can be achieved by extending
the semantics of an irreversible language or by instrumenting an irreversible
program to continually produce information that ensures reversibility.

Some reversibilisation techniques work without user interaction, while oth-
ers require annotation of programs. Techniques have been developed in recent
years that add tracing to term rewriting systems [150] and instrument C++ pro-
grams with incremental state saving [171]. Other investigations have focused on
techniques for debugging concurrent programs [121,149] and on extending the
operational semantics of an irreversible language with tracing [72], thereby defin-
ing the inverse semantics of the language. Hybrid approaches aim to combine
reversibilisation and reversible sublanguages [172]. In general, the minimisation
of the additional computational resources required for sealing information leaks
by reversibilisation remains a central challenge.

4 Term Rewriting

Term rewriting [17,98,178] is a foundational theory of computing that under-
lies most rule-based programming languages. A term rewriting system (TRS) is
specified as a set of rewrite rules of the form l → r such that l is a nonvariable
term and r is a term whose variables appear in l. Positions are used to address
the nodes of a term viewed as a tree. A position p in a term t is represented by
a finite sequence of natural numbers, where t|p denotes the subterm of t at posi-
tion p and t[s]p the result of replacing the subterm t|p by the term s. Substitutions
are mappings from variables to terms.

Given a TRS R, we define the associated rewrite relation →R as the smallest
binary relation satisfying the following: given terms s, t, we have s →R t iff there
exist a position p in s, a rewrite rule l → r ∈ R, and a substitution σ such that
s|p = lσ and t = s[rσ]p. Given a binary relation →, we denote by →∗ its reflexive
and transitive closure, i.e., s →∗

R t means that s can be reduced to t in R in zero
or more steps. The goal of term rewriting is reducing terms to so-called normal
forms, where a term t is called irreducible or in normal form w.r.t. a TRS R if
there is no term s with t →R s. Computing normal forms can be seen as the
counterpart of computing values in functional programming.

We also consider Conditional TRSs (CTRSs) of the form l → r ⇐ s1 �
t1, . . . , sn � tn, with � interpreted as reachability (→∗

R). Roughly speaking,
s →R t iff there exist a position p in s, a rewrite rule l → r ⇐ s1 � t1, . . . , sn �
tn ∈ R, and a substitution σ such that s|p = lσ, siσ →∗

R tiσ for all i = 1, . . . , n,
and t = s[rσ]p. Consider, e.g., the following CTRS Rfn:

β1 : fn([ ]) → [ ]
β2 : fn(person(n, l) :xs) → n :ys ⇐ fn(xs) � ys
β3 : fn(city(c) :xs) → ys ⇐ fn(xs) � ys
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where we use “ : ” and [ ] as list constructors. Here, β1, β2 and β3 denote labels
that uniquely identify each rewrite rule. Function fn takes a list of persons of the
form person(first name, last name) and cities of the form city(city name) and
returns a list of first names. Note that it could be specified in a typical functional
language (say, Haskell) as follows:

fn [ ] = [ ]
fn ((Person n l) :xs) = n :ys where ys = fn xs
fn ((City c) :xs) = ys where ys = fn xs

4.1 Reversible Term Rewriting

In general, term rewriting is not reversible, even for injective functions; namely,
given a rewrite step t1 → t2, we do not always have a decidable method to get
t1 from t2. One of the first approaches to reversibility in term rewriting is due
to Abramsky [2], who considered reversibility in the context of pattern match-
ing automata.1 Abramsky’s approach requires a condition called biorthogonal-
ity (which, in particular, implies injectivity), so that the considered automata
are reversible. This work can be seen as a rather fundamental delineation of
the boundary between reversible and irreversible computation in logical terms.
However, biorthogonality is overly restrictive in the context of term rewriting,
since almost no term rewrite system is biorthogonal. Another example of a term
rewrite system with both forward and reverse rewrite relations is the reaction sys-
tems for bonding in [159]. It has been used to model a simple catalytic reaction,
polymer construction, by a scaffolding protein and a long-running transaction
with a compensation.

In the context of the COST action IC1405, Nishida et al. [148,150] introduced
the first generic notion of reversible rewriting, a conservative extension of term
rewriting based on a so-called Landauer embedding. In this approach, for every
rewrite step s →R t, one should store the applied rule β, the selected position p,
and a substitution σ with the values of some variables (e.g., the variables that
occur in the left-hand side of a rule but not in its right-hand side). Therefore,
reversible rewrite steps have now the form 〈s, π〉 ⇀ 〈t, β(p, σ) : π〉, where ⇀ is
a reversible (forward) rewrite relation and π is a trace that stores the sequence
of terms of the form β(p, σ). The dual, inverse relation ↽ is also introduced, so
that its union � can be used to perform both forward and backward reductions.

Moreover, [148] also introduces a scheme to compile the reversible extension
of rewriting into the system rules. Essentially, given a system R, new systems
Rf and Rb are produced, so that standard rewriting in Rf , i.e., →Rf

, coincides
with the forward reversible extension ⇀R in the original system, and analogously
→Rb

is equivalent to ↽R. Therefore, Rf can be seen as an injectivisation of R,
and Rb can be seen as the inversion of Rf .

1 Although he did not consider rewriting explicitly, pattern matching automata can
also be represented in terms of standard notions of term rewriting.



8 B. Aman et al.

For instance, the injectivisation Rfn
f of the previous CTRS Rfn is as follows:

fni([ ]) → 〈[ ], β1〉
fni(person(n, l) :xs) → 〈n :ys, β2(l, ws)〉 ⇐ fni(xs) � 〈ys, ws〉
fni(city(c) :xs) → 〈ys, β3(c, ws)〉 ⇐ fni(xs) � 〈ys, ws〉

together with the corresponding inversion Rfn
b :

fn−1([ ], β1) → [ ]
fn−1(n :ys, β2(l, ws)) → person(n, l) :xs ⇐ fn−1(ys, ws) � xs
fn−1(ys, β3(c, ws)) → city(c) :xs ⇐ fn−1(ys, ws) � xs

For example, the following rewrite derivation in Rfn:

fn([person(john, smith), city(london), person(ada, lovelace)]) →∗ [john, ada]

is now as follows in Rfn
f :

fni([person(john, smith), city(london), person(ada, lovelace)])
→∗ 〈[john, ada], β2(smith, β3(london, β2(lovelace, β1)))〉

where β2(smith, β3(london, β2(lovelace, β1))) is the trace of the computation.
Besides proving some fundamental properties of reversible rewriting, Nishida
et al. [150] have developed a prototype implementation of the reversibilisa-
tion transformations (injectivisation and inversion), which is publicly available
through a web interface from http://kaz.dsic.upv.es/rev-rewriting.html.

4.2 Application to Bidirectional Transformations

The framework of bidirectional transformations considers two representations
of some data and the functions that convert one representation into the other
and vice versa (see, e.g., [75] for an overview). Typically, we have a function
called “get” that takes a source and returns a view. In turn, the function “put”
takes a possibly updated view (together with the original source) and returns the
corresponding, updated source. In this context, bidirectionalisation [128] aims at
automatically producing one of the functions, typically producing a function put
from the corresponding function get. For this purpose, a so-called complement
function is often introduced so that get becomes injective (see, e.g., [55]).

In [152], Nishida and Vidal present a bidirectionalisation technique based
on the injectivisation and inversion transformations of CTRSs from [150]. They
also prove a number of relevant properties which ensure that changes in both the
source and the view are correctly propagated and that no undesirable side-effects
are introduced.

To be precise, given a get function f , the corresponding put can be automat-
ically defined as follows:

putf(v, s) → s′ ⇐ f i(s) � 〈v′, π〉, f−1(v, π) � s′

http://kaz.dsic.upv.es/rev-rewriting.html
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Note that the trace of a computation, π, plays the role of a complement (following
the terminology in the literature of bidirectional transformations).

For instance, given the previous function fn, the corresponding put function
is defined as follows:

putfn(v, s) → s′ ⇐ fni(s) � 〈v′, π〉, fn−1(v, π) � s′

so that, e.g., putfn([peter, ada], β2(smith, β3(london, β2(lovelace, β1)))) reduces to
[person(peter, smith), city(london), person(ada, lovelace)]. Note that the first ele-
ment has been updated from person(john, smith) to person(peter, smith).

However, putf is only defined for “compatible” view updates. E.g., the func-
tion putfn([ada], β2(smith, β3(london, β2(lovelace, β1)))) cannot be reduced to a
value. In [152], the use of narrowing [76,176]—an extension of rewriting that
replaces matching with unification—is introduced to precisely characterise com-
patible (also called in-place) view updates.

For example, given the trace β2(smith, β3(london, β2(lovelace, β1))), narrowing
allows us to compute the view skeleton [x1, x2]. This means that any view update
that can be obtained as an instance of [x1, x2] is compatible with the trace (and,
thus, the put function is well defined).

Finally, [152] also discusses some directions for dealing with view updates
that are not compatible.

5 Membrane Computing

Natural computing is a complex field of research dealing with models and com-
putational techniques inspired by nature that helps us in understanding the bio-
chemical world in terms of information processing. Membrane computing [154]
and reaction systems [53] are two important theories of natural computing
inspired by the functioning of living cells.

Membrane computing deals with multisets of symbols processed in the com-
partments of a membrane structure according to some multiset rewriting rules;
some of the symbols (presented with their multiplicity within the regions delim-
ited by membranes) evolve in parallel according to the rules associated with their
membranes, while the others remain unchanged and can be used in the subse-
quent steps. It is also possible to send multisets of symbols in the neighbouring
membranes, the systems being organised in a tree-like fashion. The evolution
takes place in a maximal parallel manner: all the instances of the applicable
rules have to be applied in order to reach the next state.

The situation is different in reaction systems. These systems represent a
qualitative model: they deal with sets rather than multisets. Two major assump-
tions distinguish the reaction systems from the membrane systems: (i) thresh-
old assumption: reaction systems have actually an infinite multiplicity for their
resources; (ii) no permanency assumption: only entities produced at one step
will be present in the system at the next step.

The issue of reversibility in various computational paradigms has gained
interest in recent years. In one of the earliest papers on reversibility in mem-
brane systems [5], the authors (under the influence of category theory) presented



10 B. Aman et al.

reversibility as a form of duality. A full description of this kind of reversibility
in membrane systems is given by Agrigoroaiei and Ciobanu in [6].

In [7], Aman and Ciobanu investigated the reversibility of biochemical reac-
tions in parallel rewriting systems; these systems can easily represent some
classes of membrane systems and Petri nets. Formally, a parallel rewriting sys-
tem is a tuple (O,R, w0), where O is a finite alphabet of objects, R is a set of
rewriting rules and w0 is a multiset of objects over O. For each rule r ∈ R there
exist the non-empty multisets lhs(r), rhs(r) ∈ O+ standing for the left-hand
side and right-hand side of the rule, respectively, such that r : lhs(r) → rhs(r).
Given a multiset of rules F , then the left-hand side and right-hand side of it can
be defined as: lhs(F ) =

∑
r∈R F (r) · lhs(r) and rhs(F ) =

∑
r∈R F (r) · rhs(r).

A parallel rewriting system (O,R, w0) evolves in a maximal parallel manner.
This means that a non-empty multiset R of rules is applicable to a multiset w
of objects if lhs(R) ≤ w and there does not exist r ∈ R such that lhs(r) ≤ w −
lhs(R). By applying a multiset R of rules, a multiset w of objects is transformed
into another multiset w′ = w− lhs(R)+rhs(R) of objects. If no multiset of rules
is applicable, then the computation stops.

The new features of this approach are given by adding an external control
specified by using a special symbol ρ /∈ O that informs the system that a rollback
will be executed, and by constructing two new sets of rules

−→R = {u → v|¬ρ

∣
∣

u → v ∈ R} and
←−Rρ = {v → u|ρ

∣
∣ u → v ∈ R} ∪ ρ → λ to mark the rules that

will be applied in forward and backward steps, respectively.
Several theoretical results are obtained, including the so-called loop results

and the connections between the evolutions of these systems and their reversible
extensions. If there exist multisets of rules not competing for the same resources,
then the following results hold.

A first result presents the forward diamond property:

If w
−→R−→ w′ and w

−→R′
−−→ w′′, where

−→R and
−→R′ are two valid multisets of rules such

that lhs(
−→R) ∩ lhs(

−→R′) = ∅, then there exists a multiset w1 such that w′
−→R′
−−→ w1

and w′′
−→R−→ w1.

The second result presents the reverse diamond property:

If w
←−Rρ−−→ w′ and w

←−R′
ρ−−→ w′′, where

←−Rρ and
←−R′

ρ are two valid multisets of rules such

that lhs(
←−Rρ) ∩ lhs(

←−R′
ρ) = ∅, then there exists a multiset w1 such that w′

←−R′
ρ−−→ w1

and w′′
←−Rρ−−→ w1.

A forward step performed using the multiset
−→R of rules can be matched by a

backward step performed using the multiset
←−Rρ of rules, and vice-versa (loop):

w
−→R−→ w′ if and only if ρw′

←−Rρ−−→ w.
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In [8], Aman and Ciobanu investigated reversibility in reaction systems.
Reaction systems [53] deal with sets rather than multisets, assuming that each
resource is present in the system in a sufficient amount to ensure that several
reactions needing such a resource are not in conflict. Formally, a reaction sys-
tem A is a tuple (S,A), where S is a finite alphabet and A ⊆ rac(S). The set
rac(S) = {(R, I, P ) | R, I, P ⊆ S,R ∩ I = ∅} is the set of all reactions over S.
Given a reaction a = (Ra, Ia, Pa), the sets Ra, Ia and Pa contain the reactants,
inhibitors and products of a, respectively. For a set C ⊆ S and a set of reactions
A ⊆ rac(S), the result of applying A on C is defined by res(A,C) =

⋃
a∈A Pa,

and the evolution can be written as C
A−→ res(A,C). The set of all reactions

from A that are enabled by C is en(A,C) = {a ∈ A | Ra ⊆ C, Ia ∩ C = ∅}.
An interactive process is a pair π = (γ, δ) such that γ = C0, . . . , Cn−1,

δ = D1, . . . , Dn with n ≥ 1, where Cj−1, Dj ⊆ S for 1 ≤ j ≤ n are the context
and result sets, respectively. The sets Dj are computed using the equalities D1 =
res(A,W0) and Di = res(A,Wi−1), where the sets W0 = C0 and Wi = Di ∪ Ci

for each 2 ≤ i ≤ n represent the states.
In order to have backward computations, we add to each state Wi a register Ti

to remember objects no longer available after step i. The reverse of a set A of
reactions is the set Ã = {(Pa, Ia, Ra) | (Ra, Ia, Pa) ∈ A}. If ρ �∈ Wi and Ei �= ∅,
then a forward computation (Wi, Ti)

Ei−→ (Wi+1, Ti+1) takes place, where Ti+1 =
inc(Ti)∪

⋃
t∈Wi\lhs(Ei)

(t, 0), inc(T ) =
⋃

(t,i)∈T (t, i+1) and Wi+1 = res(Ei,Wi).

However, if ρ ∈ Wi and Ẽi �= ∅, then a backward computation (Wi+1, Ti+1)
Ẽi�

(Wi, Ti) takes place, where Ti = dec(Ti+1), dec(Td) =
⋃

(t,i)∈Td;i>0(t, i − 1)
and Wi = res(Ẽi,Wi+1) ∪ zero(Ti+1) with zero(T ) =

⋃
(t,0)∈T t.

If the states satisfy some preconditions, then backward reductions are the
inverse of the forward ones, and vice-versa:

• If W = res(Ẽ,W ′) ∪ zero(T ′) and ρ ∈ W ′, then

(W,T ) E−→ (W ′, T ′) implies (W ′, T ′) Ẽ� (W,T ).

• If W ′ = res(E,W ) and ρ �∈ W , then

(W ′, T ′) Ẽ� (W,T ) implies (W,T ) E−→ (W ′, T ′).

An operational correspondence between reaction systems and rewriting the-
ory is also proved. It allows a translation of the reversible reaction systems into
some rewriting systems executable in the rewriting engine Maude [39].

In [163] Pinna pursues reversibility in membrane systems from a different
perspective. The paper focuses on how to reverse steps in computations of mem-
brane systems, without adding rules to represent the reverse application of the
original rules. Just one assumption on rules is made, namely that rules are not
allowed to rewrite a multiset of objects into an empty multiset: the application
of a rule must have an effect, though this could be not observable. This require-
ment is driven by the necessity that, in order to reversely apply a rule, this one
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must produce something. Furthermore, as in most rewriting systems, also in the
considered membrane systems a computation step does not register the (multiset
of) rules applied. Since this information may be crucial to reversely apply the
same (multiset of) rules, one needs some strategies to solve the issue and obtain
reversibility.

A solution can be to enrich each object with the information on how the
particular object has been produced, namely each object now may carry the
name of the rule r used to produce it. Objects are then O × R ∪ {⊥} where R is
the set of rules

⋃
i Ri, with i ranging over the membranes, and ⊥ denotes that

the object is present in the initial configuration. The unique assumption is that
rule names are unique. The drawback of this solution is that once an object is
used the information on how it has been produced is lost.

To overcome this problem, the proposed solution is to add to the notion of
configuration, previously a vector of multiset of objects, with one element for
each membrane, a memory organised as a labelled partial order. Each element
of the partial order corresponds to an object and carries also the information
on which rule produced it. According to this a memory m is a triple (X,�, l)
where � is a partial order and l : X → O × R ∪ {⊥} × {1, . . . , n} is the labelling
associating the object, the name of rule that produced it and the membrane
where the object is allocated. A configuration of a membrane system with n
membranes is then the pair C = (C,m), where C = (w1, . . . , wn) is the tuple
of multisets over objects O and m = (X,�, l) is a memory such that for each
i ∈ {1, . . . , n} it holds that wi = obji(max (m)), where max gives the multiset
of maximal elements of the memory and obji forgets the information about the
rule.

The effect of applying a vector of multisets of rules R does not consist only in
updating suitably the multisets of objects forming a configuration in the classical
sense, but also in adding the information on which rule produced a specific object
in the memory. This will be denoted with (C,m){[R> (C ′,m′) where C R =⇒C ′

is the usual step in membrane systems computation and the new memory m′ is
obtained adding to m the objects produced by the rules in R and by updating the
partial order so that the produced elements are greater than the ones consumed
by these rules.

Then the reverse application of a vector of multisets of rules can be obtained
by looking in this memory for the maximal elements, which correspond to the
right-hand sides of the rules to be reversely applied. The proper configuration
is then computed from the new memory obtained by removing the maximal
elements. The reverse application of a vector of multisets of rules R is denoted
with (C,m) < R]}(C ′,m′), where the maximal elements of m′ corresponding to
the right-hand sides of rules in R are removed obtaining a memory m and a
configuration C where each element wi = obji(max (m)).

The following result has been proved:
Let Πm be a membrane system with memory, (C,m) a configuration, and R
be a vector of multisets of rules such that (C,m){[R > (C ′,m′). Then, for all
multi-rule vectors R′ such that (C ′,m′) <R]}(C,m), it holds that R′ = R.
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This simple implementation has the advantage of properly realising the causal
reversibility. Furthermore the memory allows also to capture the dependencies
among objects in a membrane system computation.

6 Process Calculi

Process calculi are a class of algebraic models for concurrent and distributed sys-
tems. Process calculi allow one to express the behaviour of a concurrent system
in a concise way, abstracting away from implementation details, and focusing
on the interaction patterns among the components of the system. Thus, it is
possible to express the behaviour of a system in a mathematically precise way
and verification techniques can be easily developed on top of it.

Research on reversing process calculi can be perhaps tracked back to the
Chemical Abstract Machine [30], a calculus inspired by chemical reactions whose
operational semantics defines both forward and reverse reduction relations. The
first attempts to reverse existing process calculi can be found in [44,46], where
a reversible extension of CCS [140] was presented. A main contribution of [44]
was the definition of the notion of causal-consistent reversibility: any action
can be undone, provided that its consequences, if any, are undone first. This
definition is tailored to concurrent systems, where actions may overlap in time,
hence saying “undo the last action” is not meaningful. Notably, this definition
relates reversibility to causality instead of time, thus it can be applied even in
those settings, such as some distributed systems, where no unique notion of time
exists. A survey on causal-consistent reversibility can be found in [120].

6.1 Reversing Process Calculi

Following [44], causal-consistent extensions of other and more expressive process
calculi have been defined. They can be divided into two families, one dealing with
calculi equipped with labelled transition system semantics (describing interac-
tions between the process and the outside world), and one dealing with reduction
semantics (describing the evolution of processes in isolation). The former is more
general, while the latter is normally simpler and hence more easily applicable
to expressive calculi. The first approach extended causal-consistent reversibility
from CCS to any calculus defined using a specific SOS format (a subset of the
path format [146]) [160,161], and to π-calculus [42]. In the second line of research
we find extensions of a fragment of CCS with biological relevance [35,36], of the
higher-order π-calculus [117,119], of the coordination language Klaim [56], of
a π-calculus with sessions [179], and of a CCS with broadcast communications
[133]. The instance of the framework in [160] on CCS is called CCSK. CCSK
differs from the reversible CCS in [44] in the way history is kept. Indeed, the
approach of [160] can be considered static, since the structure of processes does
not change during computation, and the minimal history information needed to
enable reversibility is kept in the processes themselves, while in [44] the pro-
cess is consumed during execution (as standard in process calculi) and larger
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memories are added to store history information. Nonetheless the two methods
are equivalent as hinted at by [130] and fully proved by [115], where a mapping
from an instance on CCS of [160] to the reversible CCS of [44] and vice versa is
presented.

As discussed above, causally-consistent reversibility relates reversibility with
causality. In CCS just one main notion of causality exists, and both the reversible
variants of CCS above are based on it. In the π-calculus, many relevant notions
of causality exist, which differ in the treatment of parallel extrusions of the same
name. In [131] a uniform framework to define reversible π-calculi is presented.
The framework is parametric w.r.t. a data structure that stores information
about extrusions of a name. Different data structures yield different approaches
to the parallel extrusion problem, leading to different ways of reversing a name
extrusion, thus giving rise to different reversible variants of the π-calculus.

Fig. 1. Example of causal-consistent (left) and out-of-causal order reversibility (right)

6.2 Controlled Reversibility

The line of research described above focused on uncontrolled reversibility, defin-
ing how to reverse a process execution (in particular, which history and causal
information is needed, and how to manage it), but not specifying when and
whether to prefer backward execution over forward execution or vice versa.
Uncontrolled reversibility allows one to understand how reversibility works, but
not to exploit it into applications. Indeed, different application areas need differ-
ent mechanisms to control reversibility. For instance, in biological systems the
direction of the computation depends on physical conditions such as temperature
and pressure, while in reliable systems reversibility is used to recover a consistent
state when a bad event occurs. Triggered by these needs different mechanisms for
controlling reversibility have been proposed (see the categorisation in [118]). For
instance, [45,179] introduced irreversible actions to avoid going backward after
a relevant result has been computed. Instead, [56,57,114,116,118,126] proposed
an explicit rollback operator undoing a past action inside calculi where normal
computation is forward, and a mechanism of alternatives allowing one to avoid
trying the same path again and again. As shown in [57], the rollback operator
satisfies a simple intuitive specification, namely that it is the smallest causal-
consistent sequence of backward moves undoing the target action. Also, [18] let
an energy potential drive the direction of computation while [158] introduced a
forward monitor controlling the direction of execution of a reversible monitored
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process. A process calculus with a prefixing operator to model locally-controlled
reversibility is introduced in [102,103]. Actions can be undone spontaneously,
as in other reversible process calculi, or as pairs of concerted actions, where
performing a weak action forces the undoing of a past action. Concerted actions
allow one to model out-of-causal order computation, where effects can be undone
before their causes, which is forbidden in most other reversible calculi. This
form of reversibility is common in biochemical reactions, e.g., in the hydration
of formaldehyde in water into methanediol. Such a feature can be disabled by
considering a reduced form of concerted actions.

Reversibility, both in causal order and out-of-causal order, can be modelled
in reversible event structures [157].

Figure 1 shows the difference between causal-consistent (left) and out-of-
causal order reversibility. In both cases, the system performs actions a, b and c
to reach state D. On the left, in order to get back to the original state, one has
to first undo (in Fig. 1 undoing is represented with squiggly arrows) c then b and
finally a. On the right, since causes do not need to be respected, the system can
undo b before c, reaching in this way a new state E which may not have been
reachable from the initial configuration by just using forward steps. From there,
a and c may or may not be undoable. In the example, only c can be undone,
leading to B′. If undoing b and undoing c do commute, then B = B′.

6.3 Analysis Techniques

Despite the proliferation of calculi for reversibility, when the COST Action
IC1405 started, analysis techniques for reversible calculi were very limited, con-
sisting essentially in some limited analysis about behavioural equivalences (in
particular, forward-reverse bisimilarity [161]) and a technique for causal com-
pression in CCS with irreversible actions [101]. Thus, the work in the COST
Action tackled analysis techniques in depth, considering behavioural equiva-
lences, contracts [77] and session types [77].

Behavioural Equivalences. Understanding which notions of behavioural
equivalences are suitable for reversible process calculi is a non-trivial, and still
open, problem.

As shown in [119], notions of weak bisimilarity that do not distinguish for-
ward actions from backward actions are very coarse, while notions of strong
bisimilarity distinguishing them, such as forward-reverse bisimilarity [161], are
very fine-grained, hence other notions are worth exploring.

In [135] Mezzina and Koutavas studied testing preorders, and in particu-
lar a safety one and a liveness one, in a reversible CCS where reductions are
totally ordered and rollbacks lead systems to past states. Liveness and safety
in this setting correspond to the should-testing [166] and inverse may-testing
preorders [50] for the underlying forward calculus, respectively. In general, one
would expect the models of these preorders to be based on both forward and
backward transitions, thus offering complex proof techniques for verification.
Instead, in [135] full abstraction of liveness and safety is based only on forward



16 B. Aman et al.

transitions and limited rollback points, giving rise to considerably simpler proof
techniques. Moreover, total reversibility allows one to make finer observations
w.r.t. liveness, but not w.r.t. safety.

Contracts. (Binary) contracts are a behavioural model [77] to study the inter-
actions between a client and a server. The first investigation of contracts in
a reversible setting appeared in [21,22]. There, both the client and the server
could rollback to a previous checkpoint at any moment. The main result was that
the compliance relation, ensuring that the client and the server can successfully
interact, and the sub-behaviour relation, are both decidable, and they remain so
also when the possibility of skipping some messages is added.

In retractable contracts [23,24] the client and the server can both get back
to previous decision points and take alternative paths only when the interaction
is stuck. The main results in [23,24] are that retractable contracts are a con-
servative extension of contracts, both compliance and the subcontract relation
are decidable in polynomial time, and the dual of a contract always exists and
has a simple syntactic characterisation. Furthermore, retractable contracts are
equivalent to a novel model of contracts featuring a speculative choice: all the
options of the choice are explored concurrently, and the computation succeeds
if at least one of the options is successful. In [20], a three-party game-theoretic
interpretation of retractable session contracts [23] has been proposed. In such an
interpretation a client is compliant with a server if and only if there exists a win-
ning strategy for a particular player in a game-theoretic model of contracts. Such
a player can be looked at as a mediator, driving the choices in the retractable
points.

Session Types. Session types [77] are one of the formalisms that have been
proposed to structure interaction and reason over communicating processes and
their behaviour. In a series of works [136–138] reversible monitored semantics for
binary [136,138] and multiparty [137] session types is investigated. The novelty
of the approach is that monitors are derived by types, and they store all the
needed information to bring the system back to previous states. This implies
that processes of the system are oblivious to reversibility, as they do not store
any information about past computations. A deeper discussion on session types
and reversibility can be found in [134].

7 Petri Nets

Petri nets [165] are a mathematical formalism for modelling and reasoning on
concurrent systems. In most of the cases, Petri nets are four-tuples containing
two finite sets, of active (actions/transitions) and static (places) elements, which
are connected by a flow function (or relation) with initial state given by tokens
scattered on places. In what follows, by Petri net we mean its most common
variant, called place-transition net.

Petri nets support both action-based and state-based approaches (via reach-
ability graphs which are equivalent to transition systems). Reversibility in Petri
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nets was always an important notion, however its meaning changed in time. At
first, in the seventies, the notion of reversibility referred to nets where each tran-
sition has its inverse [54]. Such a notion of local reversibility is very close to the
one currently used in other fields, like programming languages or process calculi.
This notion of reversible nets (also called symmetric nets [54]) is still occasion-
ally used to define the inverse net [33]. The time complexity of some decision
problems in bounded symmetric Petri nets is lower than in the general case of
bounded nets. The other meaning of reversibility in Petri nets, also called cyclic-
ity [33], takes a global approach and requires the initial state of the net to be
reachable from any other reachable state [147]. Petri nets are called symmetric
also in other situations than the described local notion of reversibility [41].

During the four years of the COST Action IC1045, “Reversible Computation
- Extending Horizons of Computing”, the notion of local reversibility was inves-
tigated. One can divide the proposed contributions into three main threads: two
of them consider how to reverse a single transition in a Petri net, allowing one to
use, respectively, a single reverse transition or a set of reverses. The last thread
focuses on modelling reversible semantics in specific models based on Petri nets.

An approach to invert a single transition using a single (strict) reverse was
investigated under both the sequential semantics and the true concurrent seman-
tics. The case of sequential semantics was considered in [28]. The strict reverse
is added to the net as a fresh transition with arcs copied from the original one,
but with the opposite direction. The problem of checking whether the set of
reachable markings in a net changes, when a strict reverse for a single transition
is added, was proven to be undecidable. The opposite result was shown for the
set of all coverable markings. Another important fact shown in [28] is related
to cyclicity: introducing a strict reverse in a cyclic net may change the set of
reachable markings.

The above problem of checking whether the set of reachable markings in a
net changes by adding a strict reverse for a single transition becomes decidable
for the bounded nets. Therefore, one can ask a more general question - is it
possible to reverse the specified transition while only requiring the resulting net
and the given one to have isomorphic behaviour (i.e., isomorphic reachability
graph), but allowing one to change the structure of the net? The question has
been answered by using well-known techniques from region theory [19]. There are
transition systems which are reachability graphs of a bounded Petri net where
transitions cannot be inverted by strict reverses, but one can easily combine
separate solutions for different transitions to solve the problem [26]. Even in the
special case of linear transition systems over binary sets of actions the transitions
cannot be always inverted by strict reverses. In such systems, the time complexity
of the problem of checking whether the set of reachable markings changes by
adding a strict reverse for a single transition is linear [48]. Another special case
of bounded nets are occurrence nets, that is 1-safe and acyclic nets without
backward conflicts, where one can always use strict reverses. This property of
occurrence nets and their infinite extensions was used as an intermediate step
in [132], described later on.
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Another line of research on strict reverses considers systems under concurrent
semantics of action execution. In such systems one can execute more than one
action at the same time, including the situation when a single action is executed
multiple times (auto-concurrence). Reversing atomic transitions in such systems
is discussed in [49]. In simple cases, where auto-concurrence is excluded, one can
reduce reversing under the concurrent semantics to the sequential case. However,
in the case of true multisets of actions executed simultaneously, one needs to
allow mixed reverses (i.e., steps where both forward and backward actions are
present) and true concurrent reversing can be reduced to coping with all spikes
(i.e., multisets of actions with singleton support).

In a more general setting, in order to invert a single transition, one can allow
to define a set of reverses with the opposite effect, called effect reverses [26]. In
such a case, the problem of finding a bounded Petri net where each transition can
be reversed and with isomorphic behaviour becomes always solvable [26]. Hence,
some systems where inverting transitions using strict reverses was impossible
become reversible in this setting. Moreover, the price to make any bounded
net ready for inverting by the sets of effect reverses is not high - one needs to
transform the original net into its complementary version, which doubles the size
of the set of places [26].

A similar attempt for unbounded nets is presented in [139]. There are
unbounded nets which cannot be inverted even using infinite sets of effect
reverses for their transitions. However, if it is possible, then finite sets are enough.
The problem of finding a possibly totally different net with isomorphic behaviour
that can be reversed was reduced to extending the existing one by new places
which do not disable any transitions in any reachable state and checking whether
there exists a pair of problematic states. Those pairs of problematic states are
strongly structured, with a natural partial order. The set of all minimal pairs of
problematic states for a given system is finite, however, the problem of check-
ing whether two given states form a problematic pair is not elementary, while
the problem of checking whether there exists at least one such pair is undecid-
able [139].

A different line of research considers extensions of Petri nets with causal-
consistent local reversibility [132]. Such an extension can be obtained for any
place transition net by unfolding it into occurrence nets and folding them back
to a coloured Petri net with an infinite number of colours. Those colours are
used to encode the content of a stack used to reverse the computation. The price
to be paid is that coloured Petri nets with infinitely many colours are in general
Turing complete.

Another approach to investigate causal-consistent local reversibility, but also
out-of-order local reversibility, is the biologically inspired model of reversing
Petri nets [155]. There tokens are persistent bases connected by bonds which
are relocated by transitions of the net. The greatest limitation of the approach
is the requirement of finiteness and acyclicity of the net modelled in this way.
On the other hand, one can encode reversing Petri nets into coloured Petri
nets with a finite number of colours [27], hence also into classical bounded
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place-transition systems. Moreover, reversing Petri nets were successfully applied
to the distributed antenna selection problem [156].

Petri net theory has been deeply studied. Cyclic and symmetric systems play
quite an important role, however the issue of equipping concurrent systems with
reversing mechanisms was not explored. The research conducted as a part of
the COST Action IC1405 “Reversible Computation - Extending Horizons of
Computing” enriched the theory of Petri nets by exploring some approaches to
reverse transitions in existing systems. Although the effect of adding reverses of
the actions to the existing system is in general difficult to evaluate (the problem
of behaviour preservation is undecidable for place-transition nets), the problem
can be solved if one allows unbounded stacks (coloured Petri nets approach) or
restricts oneself to bounded models.

8 Automata

Automata theory studies abstract machines, or automata, as mathematical mod-
els of computation. They help in understanding limits of computation and the
role of various resources – such as time and space – on the computational power.
Examples of widely studied classes of automata include finite automata (bounded
memory), pushdown automata (infinite memory organised as a stack), counter
machine (infinite memory organised as counters), Turing machines (infinite mem-
ory tape) and cellular automata (massively parallel regular network of finite
automata). These come in several flavours and variations, e.g., with respect to
determinism. An automaton is reversible if it preserves information so that its
computation can be retraced back in time. All the automata classes above can
support reversibility. See [105,143] for details on computation by various models
of reversible automata.

8.1 Finite Automata

Reversibility in finite automata has been widely investigated, e.g., [9,162]. The
class of languages having a reversible one-way automaton is a proper subclass
of the regular one. However, different models have been considered, depending
on whether automata are required to have only one initial state and/or only one
final state. Languages not having any reversible classical automaton have been
characterised in terms of a forbidden pattern in the minimum automaton [73]. In
the same paper, an NL-complete method to decide whether the language accepted
by a given deterministic finite automaton can also be accepted by some reversible
deterministic finite automaton has been derived.

In case the language accepted by a deterministic finite automaton is
reversible, the size of the smallest reversible automaton may be exponential with
respect to the size of the minimal irreversible one [73]. Recently analyses about
the descriptional complexity of reversible deterministic finite automata provided
some techniques to simulate these devices in an efficient way [123,125]. Indeed,
though converting a deterministic automaton into a reversible one may require



20 B. Aman et al.

an exponential increase in size, the proposed representation allows to limit this
cost by concisely representing the reversible automaton rather than explicitly
writing down its description.

Based on the forbidden pattern approach, the degree of irreversibility for a
regular language has been studied [13]. The degree is defined to be the minimal
number of such forbidden patterns necessary in any deterministic finite automa-
ton accepting the language. It is shown that the degree induces a strict infi-
nite hierarchy of language families. The behaviour of the degree of irreversibility
under the usual language operations union, intersection, complement, concatena-
tion, and Kleene star, has been studied, showing tight bounds (some asymptotic)
on the degree.

Because of the narrowness of the power of reversible finite automata with
respect to the irreversible ones, the definition of reversibility has been relaxed,
by considering finite automata whose computations can be reversed, at any point,
by accessing the last k symbols read from the input, for a fixed k. These devices
are said to be “weakly irreversible”. Characterisations of languages accepted by
weakly irreversible automata and languages not having any weakly irreversible
automaton (“strongly irreversible” languages) have been given [124].

Another treatment of a relaxed definition of reversibility concerns nondeter-
minism. It turned out that reversible nondeterministic finite automata are more
powerful compared to their reversible deterministic counterparts, but still can-
not accept all regular languages [74]. The two notions of relaxed reversibility
have been compared and closure properties of the language family induced by
these devices have been derived.

8.2 Pushdown Automata

Reversible classical pushdown automata have been introduced in [107]. Their
computational capacity turned out to lie properly in between the regular and
deterministic context-free languages. In the same paper, it is shown that a deter-
ministic context-free language cannot be accepted reversibly if more than real-
time is necessary for acceptance. Closure properties as well as decidability ques-
tions for reversible pushdown automata are studied and it is shown that the
problem to decide whether a given nondeterministic or deterministic pushdown
automaton is reversible is P-complete, whereas it is undecidable whether the lan-
guage accepted by a given nondeterministic pushdown automaton is reversible.

One extension of finite automata in order to enlarge the underlying language
class as well as to preserve many positive closure properties and decidable ques-
tions is represented by input-driven pushdown automata. Such automata share
many desirable properties with finite automata, but still are powerful enough to
describe important non-regular behaviour. Basically, for such devices the opera-
tions on the pushdown store are determined by the input symbols. With respect
to reversibility they have been studied in [110]. So, the sub-family of the context-
free languages that share the two important properties of being accepted by an
input-driven pushdown automaton as well as of being accepted by a reversible
pushdown automaton are considered. This intersection can be defined on the
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underlying language families or on the underlying machine classes. It turned
out that the latter class is properly included in the former. The relationships
between the language families obtained in this way and to reversible context-
free languages as well as to input-driven languages are studied. In general, a
hierarchical inclusion structure within the real-time deterministic context-free
languages is obtained. Finally, the closure properties of these families under the
standard operations are investigated and it turned out that all language fam-
ilies introduced are anti-AFLs (that is, they are not closed under any of the
operations required to be an Abstract Family of Languages).

Since reversible finite automata do not accept all regular languages and
reversible pushdown automata do not accept all deterministic context-free lan-
guages, it is of significant interest both from a practical and theoretical point of
view to close these gaps. Therefore these reversible models have been extended
by a preprocessing unit which is basically a reversible injective and length-
preserving sequential transducer [16]. It turned out that preprocessing the input
using such weak devices increases the computational power of reversible deter-
ministic finite automata to the acceptance of all regular languages. On the other
hand, for reversible pushdown automata the accepted family of languages lies
strictly in between the reversible deterministic context-free languages and the
real-time deterministic context-free languages. Moreover, it has been derived that
the computational power of both types of machines is not changed by allowing
the preprocessing sequential transducer to work irreversibly.

Two-pushdown automata where the input is placed in one pushdown and
that perform computations by inspecting and rewriting words at the top of the
pushdowns are of particular interest as the deterministic variant is known to
characterise the class of Church-Rosser languages when the rewriting is length-
reducing. Such reversible two-pushdown automata are studied in [14]. A sepa-
ration of the deterministic and reversible variants are obtained as well as the
incomparability with the (deterministic) context-free languages. However, their
properties of emptiness, (in)finiteness, universality, inclusion, equivalence, regu-
larity, and context-freeness are not even semi-decidable.

8.3 Finite State and Pushdown Transducers

Computational models are not only interesting from the viewpoint of accepting
some input, but also from the more applied perspective of transforming some
input into some output. Transductions that are computed by different variants
of transducers are studied in detail in the book of Berstel [31].

Reversibility in transducing devices has been investigated recently in [47,111]
for deterministic finite state transducers. In [111], the families of transductions
computed are classified with regard to three types of length-preserving trans-
ductions as well as to the property of working reversibly. It is possible to settle
all inclusion relations between these families of transductions even with injec-
tive witness transductions. Furthermore, the standard closure properties and
decidability questions have been investigated. It turned out that the non-closure
under almost all operations can be shown, whereas all decidability questions
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can be answered in polynomial time. Finally, the strict concept of reversibil-
ity is relaxed and an infinite and dense hierarchy with respect to the grade of
reversibility is obtained.

Deterministic pushdown transducers have also been introduced, and analysed
with respect to their ability to compute reversible transductions [66]. Now, the
families of transductions computed are classified with regard to four types of
length-preserving transductions as well as to the property of working reversibly.
It turns out that accurate to one case separating witness transductions can
be provided. For the remaining case it is possible to establish the equivalence
of both families by proving that stationary moves can always be removed in
length-preserving reversible pushdown transductions.

8.4 Queue Automata and Limited Automata

A further natural and well-studied extension of finite automata are queue
automata, where the extension is by a storage media of type queue. Their
reversible variant has been studied in [109]. In contrast to, for example, finite
or pushdown automata, it has been shown that any queue automaton can be
simulated by a reversible one. So, reversible queue automata are as powerful as
Turing machines. Therefore it is of interest to impose time restrictions on queue
automata. Quasi real-time and real-time computations have been considered. It
has been shown that every reversible quasi real-time queue automaton can be
sped up to real-time. On the other hand, under real-time conditions reversible
queue automata are less powerful than general queue automata. Furthermore, a
lower bound of Ω

(
n2

log(n)

)
time steps for real-time queue automata witness lan-

guages to be accepted by any equivalent reversible queue automaton has been
exhibited. The closure properties of reversible real-time queue automata are sim-
ilar as for reversible deterministic pushdown automata. Moreover, all commonly
studied decidability questions such as emptiness, finiteness, or equivalence are
not semi-decidable for reversible real-time queue automata. Furthermore, it is
not semi-decidable whether an arbitrary given real-time queue automaton is
reversible.

A k-limited automaton is a linear bounded automaton that may rewrite each
tape square only in the first k visits, where k ≥ 0 is a fixed constant. It is
known that these automata accept context-free languages only. The determinis-
tic k-limited automata have been investigated towards their ability to perform
reversible computations [112]. It turned out that, for all k ≥ 0, sweeping k-
limited automata accept regular languages only. In contrast to reversible finite
automata, all regular languages are accepted by sweeping 0-limited automata.
Then the computational power gained in the number k of possible rewrite opera-
tions has been studied. It has been shown that the reversible 2-limited automata
accept regular languages only and, thus, are strictly weaker than general 2-
limited automata. Furthermore, a proper inclusion between reversible 3-limited
and 4-limited automata languages has been obtained. The next levels of the
hierarchy are separated between every k and k + 3 rewrite operations. Finally,
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it turned out that all k-limited automata accept Church-Rosser languages only,
that is, the intersection between context-free and Church-Rosser languages con-
tains an infinite hierarchy of language families beyond the deterministic context-
free languages.

8.5 Cellular Automata

A cellular automaton (CA) is a dynamical system on an infinite grid of cells
defined by a local update rule that is applied simultaneously at all cells. More
precisely, in the usual rectilinear d-dimensional setting the cells are the elements
of Z

d and each cell stores an element of a finite state set A. The dynamics is
specified by a finite neighbourhood D ⊆ Z

d that gives the relative offsets to
neighbours of cells, and a local rule f : AD −→ A that gives the new state
of a cell based on the previous states in its neighbourhood. A configuration
c : Zd −→ A, specifying the global state of the system, changes in a single time
unit to become the new configuration c′ with c′(�n) = f(σ�n(c)|D) for every cell
�n ∈ Z

d, where σ�n denotes the shift map that translates the configurations so
that cell �n moves to the origin.

By carefully choosing the update rule f , the global dynamics c �→ c′ can be
made information preserving. In this case, an inverse cellular automaton retraces
the computation back in time, and the cellular automaton is called reversible
(RCA). See [90] for a recent survey on reversible cellular automata. Cellular
automata have an important role as providing simple models in microscopic
physics, and because of time-reversibility of microscopic dynamics the cellular
automata models are also typically reversible [181]. Reversible cellular automata
are able to carry out universal computation [180], even in the one-dimensional
setting [144].

In the symbolic dynamics nomenclature reversible cellular automata are
called automorphisms of the (full) shift. By Hedlund’s theorem [69] cellular
automata are precisely the transformations AZ

d −→ AZ
d

of the configuration
space that commute with shifts σ�n and that are continuous under the compact
prodiscrete topology on AZ

d

. Reversibility then just means that the transforma-
tion is a bijection, i.e., a homeomorphism. Automorphisms form a group under
composition, and the structure of the automorphism group of the full shift (as
well as of its subshifts) is a topic of active research [168]. For example, it is
not known if the groups of one-dimensional RCA over two states and over three
states are isomorphic with each other.

Decision Problems. Decision problems concerning reversibility and related
properties have been extensively studied. There are efficient algorithms to test
one-dimensional cellular automata for reversibility [177] while in higher dimen-
sional cases reversibility is undecidable [88]. It is also undecidable, even in the
one-dimensional case, whether a given RCA is periodic [92], that is, whether
some iteration of the CA amounts to the identity function. Periodicity among
one-sided RCA is not known to be decidable or undecidable at this time, where
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one-sidedness refers to the property that the neighbours to the left of a cell have
no influence on its next state, nor on the previous state given by the inverse
automaton. Periodicity in the one-sided case remains an active research topic due
to its link to the finiteness problem of groups generated by Mealy automata [51].

Two dynamical systems are called conjugate if there is a homeomorphism
between them that maps orbits to orbits. Conjugate systems are essentially iden-
tical. It is undecidable if two given cellular automata are conjugate [81]. This is
true even for one-dimensional cellular automata, but if the considered CA are
reversible then the undecidability is known in the two- and higher dimensional
cases only.

Physical Universality and Glider Automorphisms. A cellular automaton
is called physically universal if it can implement any transformation of pat-
terns on any finite domain of cells by suitably choosing the initial states outside
the domain. There are reversible cellular automata that are physically univer-
sal [170], even in the one-dimensional setting [169]. These automata (reversibly)
break the input pattern into fleets of gliders that scatter out of the finite domain.
Symmetrically, the inverse automaton breaks the desired output pattern into
fleets of inverse gliders. The task of the surrounding gadget is to change the first
fleet into the second fleet to implement the desired transformation.

Glider automorphisms that decompose finite configurations into fleets of glid-
ers have been studied in more general subshifts, and they have found applications
in understanding the structure of the automorphism groups [100].

Reversible Cellular Automata and Mahler’s Problem in Number The-
ory. If real numbers are written in base pq for some co-primes p and q then there
is no carry propagation when numbers are multiplied by constant p. This means
that multiplying by p is a local operation, that is, a reversible cellular automa-
ton. Composing such reversible cellular automata yields, for example, an RCA
for multiplying numbers in base 6 by constant 3/2.

Mahler’s problem asks whether there exists some positive real number ξ such
that the fractional part of ξ

(
3
2

)n is less than 0.5 for all positive integers n [127].
So the fractional part of the number should remain below one half no matter how
many times the number is multiplied by 3/2. The problem is still unsolved. The
problem has a very simple interpretation in terms of the RCA that multiplies by
3/2 in base six [89], and using this link it has been proved that for arbitrarily
small ε > 0 there is a number ξ > 0 and a finite union U ⊆ [0, 1) of intervals
of total length ε such that the fractional parts of all ξ

(
3
2

)n are in U [91]. The
dynamical property of expansivity of the associated reversible cellular automaton
plays a central role in the proof. Conversely, there is also a finite union V ⊆ [0, 1)
of intervals of total length 1 − ε that does not contain the fractional parts of all
ξ
(
3
2

)n for any ξ > 0.
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Asynchronous Updating. In an asynchronous cellular automaton (ACA) only
some cells are updated simultaneously. In the one-dimensional setting, one pos-
sibility is that states are updated sequentially during a left-to-right (or right-to-
left) sweep across the entire infinite line of cells. Such a setup is studied in [93]
where the update performed once in each position is given by a reversible block
rule An −→ An on n consecutive cells. The authors give a precise characteri-
sation of the one-dimensional cellular automata that can be realised by such a
sweep. It turns out that not all reversible CA can be realised, while also some
non-reversible ones can be obtained. It is decidable whether a CA can be realised
that way or not.

Self-Timed Cellular Automata. Self-Timed Cellular Automata (STCA) are
a form of Asynchronous Cellular Automata where transitions of cells can take
place if they are triggered by transitions of the neighbouring cells. Delay-
Insensitive (DI) circuits are asynchronous circuits which make no assumption
about delays within modules or wires of circuits, and where there is no global
clock [97]. As a result, logical gates such as NAND and XOR are not Turing-
complete when operated in a DI environment. A lot of research went into finding
universal sets of DI modules and [145] contributes a solution for reversible DI
circuits in terms of STCAs. Serial and parallel DI circuits are simulated with
new STCAs that contain rules for signal movement, right and left turn, memory
toggle, merge, fork and join, and parallel crossing of signals. In addition to a
number of reversibility and determinism properties, including local determinism
and local reversibility, the STCAs exhibit direction-reversibility, where reversing
the direction of a signal and running a circuit forwards is equivalent to running
the circuit in reverse. Benefits of direction-reversibility are discussed, including
garbage-less implementation of reversible functions.

Cellular Automata as Language Acceptors. From the perspective of lan-
guage recognition, real-time bounded cellular automata which are reversible on
the core of computation, that is, from initial configuration to the configura-
tion given by the time complexity, have been studied in [106]. The question
whether for a given real-time CA working on finite configurations with fixed
boundary conditions there exists a reverse real-time CA with the same neigh-
bourhood has been addressed. It has been shown that real-time reversibility is
undecidable, which contrasts the general case, where reversibility is decidable
for one-dimensional devices. Moreover, the undecidability of emptiness, finite-
ness, infiniteness, inclusion, equivalence, regularity, and context-freedom has
been proved. First steps towards the exploration of the computational capac-
ity have been done and closure under Boolean operations have been shown.

Similar investigations for real-time one-way cellular automata have been done
in [108]. In this case, it turned out that the standard model with fixed boundary
conditions is quite weak in terms of reversible information processing, since it
accepts exactly the regular languages reversibly. The extension that allows the
information to flow circularly from the leftmost cell into the rightmost cell does
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not increase the computational power in the general case, but does increase it
for reversible computations. On the other hand, the model is less powerful than
real-time reversible two-way cellular automata. Additionally, it has been derived
that the corresponding language class is closed under Boolean operations, and
the undecidability of several decidability questions has been proved. Finally,
it turned out that the reversibility of an arbitrary real-time circular one-way
cellular automaton is undecidable as well.

8.6 Turing Machines

Turing machines (TM) are a classical model of computation where a finite state
control unit, the head, moves along a bi-infinite tape of cells, each containing a
tape symbol. The head reads and writes symbols on the tape, changes its internal
state, and moves to neighbouring cells at discrete time steps as instructed by a
fixed transition rule, the program of the TM. A suitable choice of the program
makes the machine reversible (RTM). Turing machines are traditionally viewed
as language acceptors, but one can also incorporate outputs in the model so that
the machine becomes a transducer that computes a (partial) function. In [12] the
authors investigate RTM under the strict function semantics that requires that
at the end of the computation only the output remains on the tape, and they
develop a rigorous foundational theory of reversible computation of functions in
this semantics, including the appropriate concept of universality and a design of
a universal machine.

Turing machines with bi-infinite tape contents are also discrete dynamical
systems (on a compact space) under two possible viewpoints [104]: in the mov-
ing tape view (TMT) the position of the head is fixed but the entire tape shifts
left or right depending on the current instruction, while in the usual moving
head view (TMH) one needs to allow configurations without a head to make the
configuration space compact. In [38] the authors present a reversible TMT with
the rather surprising property that it has no halting or temporally periodic con-
figurations, thus answering positively a conjecture made in [92]. The machine,
dubbed “SMART”, is small (4 internal states, 3 tape symbols) and nicely sym-
metric in both time and space. It possesses the good dynamical properties of
transitivity and minimality. The machine is further applied to settle another
conjecture made in [92]: it is undecidable whether a given complete reversible
Turing machine has a periodic orbit.

The class of RTM dynamical systems becomes more robust if the head is
allowed to view and modify locally blocks of several tape symbols at once. In
particular, compositions of machines and inverse machines are now in the same
class so that reversible Turing machines with any fixed states and tape symbols
form a group under composition. The structure of this group and algorithmic
questions concerning the group are studied in [25]. The paper also introduces
a number of natural subgroups. The model includes multidimensional Turing
machines where the tape cells are indexed by Z

d for dimension d, and both the
moving head and the moving tape viewpoints can be taken.
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Finally, reversible Turing machines with a working tape and a one-way or
two-way read-only input tape are considered as language recognisers [15]. In
particular, the classes of languages acceptable by such devices with small time
bounds in the range between real time and linear time, that is, with time bounds
of the form n+r(n) where r ∈ o(n) is a sublinear function, have been considered.
It has been shown that there exist infinite time hierarchies of separated com-
plexity classes in that range. The question of whether reversible Turing machines
in the range of interest are weaker than general ones or not is answered posi-
tively by proving that there are languages accepted by irreversible one-way Tur-
ing machines in real time that cannot be accepted by any reversible one-way
machine in less than linear time.

9 Quantum Formal Verification and Quantum Machine
Learning

Large-scale, fault-tolerant quantum computers are still under development and,
despite a recent major push for “quantum supremacy” by companies like IBM,
Google and Intel, it is not clear when they will become a reality. On the other
hand there is much recent interest in using Noisy Intermediate Scale Quantum
(NISQ) computers to provide a “quantum advantage”. This involves the use
of existing or near-term quantum computers to solve valuable problems, faster,
cheaper, or more efficiently than any available classical solution. Potential appli-
cation areas include simulation of many-body physics, quantum chemistry, opti-
misation and quantum machine learning. Airbus has issued its Quantum Com-
puting Challenge to tackle aerospace flight physics problems using quantum com-
puters. Many companies such as IBM, Microsoft, D-Wave, Rigetti and Xanadu
are developing full-stack solutions for implementing quantum algorithms. This
typically starts from a high-level programming language and a compiler, down to
an assembly language and quantum hardware. These resources are usually acces-
sible via the cloud. Much of these developments will need guarantees regarding
security and correctness. Formal verification, which has been used successfully
in classical computing for a number of years, could be extremely valuable in
increasing confidence in quantum systems.

Quantum cryptography aims to overcome the limitations of classical cryp-
tography by providing unconditional security, which is not dependent on the
difficulty of inverting a particular computation. Quantum Key Distribution pro-
tocols have been implemented in commercial products by Id Quantique, MagiQ,
NEC and Toshiba, amongst others, and have been used in practical applica-
tions, e.g. the Geneva election ballot count. Various QKD networks have been
built, including the DARPA Quantum Network in Boston, the SeCoQC net-
work around Vienna and the Tokyo QKD Network. China has launched a ded-
icated satellite “Micius” for quantum communication. On the theoretical side,
quantum key distribution protocols such as BB84 [29] have been proved to be
unconditionally secure. It is important to understand, however, that this is an
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information-theoretic proof, which does not necessarily guarantee that imple-
mented systems are unconditionally secure. This area is also where approaches
such as those based on formal methods could be useful in analysing behaviour
of implemented systems.

The paper [32] presents a novel framework for modelling and verifying quan-
tum protocols and their implementations using the proof assistant Coq. It pro-
vides a Coq library for quantum bits (qubits), quantum gates, and quantum
measurement. As a step towards verifying practical quantum communication
and security protocols such as Quantum Key Distribution, it supports multi-
ple qubits, communication and entanglement. These concepts are illustrated by
modelling the Quantum Teleportation Protocol, which communicates the state
of an unknown quantum bit using only a classical channel. In more recent work,
a Quantum IO monad has been implemented in Coq for the specification of the
protocols. In addition to quantum operations and measurement, the monad gives
us a lightweight process calculus which supports sequencing of operations and
keeping of state. This monad has the necessary properties. The process simu-
lation function that gives the QIO monad its semantics has also been written.
Current work concerns proving properties of simple quantum protocols.

In [10], the authors present CCSq, a concurrent language for describing
quantum systems, and develop verification techniques for checking equivalence
between CCSq processes. CCSq has well-defined operational and superoperator
semantics for protocols that are functional, in the sense of computing a determin-
istic input-output relation for all interleavings arising from concurrency in the
system. They have implemented QEC (Quantum Equivalence Checker), a tool
that takes the specification and implementation of quantum protocols, described
in CCSq, and automatically checks their equivalence. QEC is the first fully auto-
matic equivalence checking tool for concurrent quantum systems. For efficiency
purposes, the approach is restricted to Clifford operators in the stabiliser for-
malism, but it is able to verify protocols over all input states. A collection of
interesting and practical quantum protocols, ranging from quantum communica-
tion and quantum cryptography to quantum error correction, have been specified
and verified.

In other recent work, a version of the quantum process calculus CQP has been
implemented. The implementation, which has the working title qtpi and is avail-
able from github.com/mdxtoc/qtpi, uses symbolic rather than numeric prob-
ability calculation. Programs are checked statically, before they run, to ensure
that they obey real-world restrictions on the use of qbits (e.g. no cloning, no
sharing). Qtpi has been used to simulate some simple protocols such as tele-
portation, and some more involved ones including QKD. It is early days in the
development of the tool, but it can already simulate well over 1M qbit transfers
per minute.

Quantum machine learning is the aspect of quantum computing concerned
with the design of algorithms capable of generalised learning from labelled train-
ing data by effectively exploiting quantum effects. The undertaken work makes
various contributions to this emerging area; in particular it has pursued the
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issue of classification error within a standard quantum computational setting,
and explored the congruence of Kernel Methods with the topological quantum
computational setting (a congruence that will be developed further in future
work).

Specifically, the following have been achieved:
In [52] the authors present a novel approach to computing Hamming distance

and its kernelisation within Topological Quantum Computation. This approach
is based on an encoding of two binary strings into a topological Hilbert space,
whose inner product yields a natural Hamming distance kernel on the two strings.
Kernelisation forges a link with the field of Machine Learning, particularly in
relation to binary classifiers such as the Support Vector Machine (SVM). This
makes our approach of potentially wide interest to the quantum machine learning
community.

In [183], the authors set out a strategy for quantising attribute bootstrap
aggregation to enable variance-resilient quantum machine learning. To do so,
they utilise the linear decomposability of decision boundary parameters in the
Rebentrost et al. Support Vector Machine [164] to guarantee that stochastic
measurement of the output quantum state will give rise to an ensemble decision
without destroying the superposition over projective feature subsets induced
within the chosen SVM implementation. It achieves a linear performance advan-
tage, O(d), in addition to the existing O(log(n)) advantages of quantisation as
applied to Support Vector Machines. The approach extends to any form of quan-
tum learning giving rise to linear decision boundaries.

Error-correcting output codes (ECOC) are a standard setting in machine
learning for efficiently rendering the collective outputs of a binary classifier, such
as the support vector machine, as a multi-class decision procedure. Appropriate
choice of error-correcting codes further enables incorrect individual classification
decisions to be effectively corrected in the composite output. In [182], the authors
propose an appropriate quantisation of the ECOC process, based on the quantum
support vector machine. They show that, in addition to the usual benefits of
quantising machine learning, this technique leads to an exponential reduction in
the number of logic gates required for effective correction of classification error.

10 Conclusion

We gave in the previous sections an overview of the status and recent develop-
ments of different research threads on the foundations of reversible computation.
While many interesting results have been found, we notice that the field is still
very heterogeneous. For instance, while process calculi, Petri nets and cellular
automata are all models of concurrent systems, they come equipped with dif-
ferent notions of reversibility. Cellular automata are considered reversible if the
global dynamics is bijective (similarly to what is done in sequential reversible
models), Petri nets if reverse transitions can be added without changing the
behaviour of the net, while process calculi are mainly based on the notion of
causal-consistent reversibility. Some initial cross-fertilisation results came thanks
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to the COST Action, e.g. there have been works applying causal-consistent
reversibility to Petri nets [132] and related models [27,155]. We also remark
that some of the developments described in this chapter have been instrumental
to better understand reversibility in programming languages and to advance on
a number of application areas, as discussed in the rest of the book.
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Abstract. Software plays a central role in all aspects of reversible com-
puting. We survey the breadth of topics and recent activities on reversible
software and systems including behavioural types, recovery, debugging,
concurrency, and object-oriented programming. These have the poten-
tial to provide linguistic abstractions and tools that will lead to safer
and more reliable reversible computing applications.

1 Introduction

The notion of reversible computation has a long history [37] which started by
studies on the thermodynamic cost of irreversible actions. It was noted that
since computation is usually irreversible, information loss causes dissipation of
heat. Therefore it could be possible to execute reversible computations in a heat
dissipation free way. This was the motivation that gave rise to several reversible
computation models such as reversible Turing machines [6] and conservative
logic [22]. Since then there has been a huge effort to introduce reversibility
at the level of programming languages and software systems [7,44], where it
can bring additional benefits towards reliability, robustness and scalability of
conventional software systems. Part of this effort has been carried out by the
Working Group (WG) 2: Software and Systems of the COST Action IC1405
Reversible Computation – Extending Horizons of Computing.
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Software plays a central role in all aspects of reversible computing. We sur-
vey the breadth of topics and recent activities on reversible software and sys-
tems including behavioural types, recovery, debugging, concurrency, and object-
oriented programming. These have the potential to provide linguistic abstrac-
tions and tools that will lead to safer and more reliable reversible computing
applications.

The rest of the chapter is structured as follows: Sect. 2 reports on reversibility
and behavioural types; Sect. 3 reports on the interplay between reversibility and
recovery for distributed systems; Sect. 4 reports on reversibility and object ori-
entation; Sect. 5 reports on reversing imperative programs with shared memory
concurrency and its possible application on reversible debugging; Sect. 6 reports
on reversibility and message passing systems, with a special focus on reversible
(core) Erlang and its reversible debugger. Section 7 reports on reversibility and
control theory. Section 8 concludes the chapter.

2 Behavioural Types

The interest in behavioural types [35] stems from the fact that it is easier to work
with a system whose behaviour (in terms of communications) is strongly disci-
plined by a type theory. Among behavioural types we distinguish: binary session
types and contracts, multiparty session types and choreographies. Choreographies
will be discussed in Sect. 3.

Reversibility and monitored semantics for binary session types have been
recently studied by Mezzina and Pérez [46,47,49]. In their work, they propose
a monitor as memory mechanism in which information about the monitor of a
process can be used to enable its reversibility. Moreover, by adding modalities
information at the level of session types, reversibility can be controlled.

In the context of multiparty session types, global types describe the message-
passing behaviour of a set of participants in a system from a global point of view.
A global type can be projected onto each participant so as to obtain local types,
which describe individual contributions to the global protocol. The work [48]
extends global and local types to keep track of the stage of the protocol that
has been already executed; this enables reversible steps in an elegant way. The
authors develop a rigorous process framework for multiparty communication,
which improves over prior works by featuring asynchrony, decoupled rollbacks
and process passing. In this framework, concurrent processes are untyped but
their forward and backward steps are governed by monitors. The main technical
result is that the developed multiparty reversible semantics is causally-consistent.
Finally, [15] proposes a Haskell implementation of the asynchronous reversible
operational semantics for multiparty session types proposed in [48]. The imple-
mentation exploits algebraic data types to faithfully represent three core ingre-
dients: a process calculus, multiparty session types, and forward and backward
reduction semantics. This implementation bears witness to the convenience of
pure functional programming for implementing reversible languages.
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In a series of works [11,16] multiparty session types (aka global types) have
been enriched with checkpoint labels on choices that mark points of the proto-
col where the computations may roll back. In [16], a simple model is developed
in which rollback could be done any time after a participant has crossed the
checkpointed choice. In [11] a more refined model is presented, in which the pro-
grammer can define points where the computation may revert to a checkpointed
label, and rollback has to be triggered by the participant that made the decision.

Behavioural contracts are abstract descriptions of expected communication
patterns followed by either clients or servers during their interaction. Behavioural
contracts come naturally equipped with a notion of compliance: when a client and
a server follow compliant contracts, their interaction is guaranteed to progress or
successfully complete. In [5] two extensions of behavioural contracts are studied:
retractable contracts dealing with backtracking and speculative contracts dealing
with speculative execution. These two extensions give rise to the same notion of
compliance. As a consequence, they also give rise to the same subcontract rela-
tion, which determines when one server can be replaced by another while preserv-
ing compliance. Moreover, compliance and subcontract relation are both decid-
able in quadratic time. The above paper also studies the relationship between
retractable contracts and calculi for reversible computing.

3 Recovery

Distributed programs are hard to get right because they are required to be open,
scalable, long-running, and tolerant to faults. This problem is exacerbated by the
recent approaches to distributed software based on (micro-)services where dif-
ferent services are developed independently by disparate teams. In fact, services
are meant to be composed together and run in open context where unpredictable
behaviours can emerge. This makes it necessary to adopt suitable strategies for
monitoring the execution and incorporate recovery and adaptation mechanisms
to make distributed programs more flexible and robust. The typical approach
that is currently adopted is to embed such mechanisms in the program logic,
which makes it hard to extract, compare and debug.

An approach that employs formal abstractions for specifying failure recovery
and adaptation strategies has been proposed in [10]. Although implementation-
agnostic, these abstractions would be amenable to algorithmic synthesis of code,
monitoring and tests. Message-passing programs (à la Erlang, Go, or MPI) are
considered, since they are gaining momentum both in academia and industry.
In [20] an instance of the framework proposed in [10] is given. More precisely,
this approach imbues the communication behaviour of multi-party protocols with
minimal decorations specifying the conditions triggering monitor adaptations. It
is then shown that, from these extended global descriptions, one can (i) synthe-
sise actors implementing the normal local behaviour of the system prescribed by
the global graph, but also (ii) synthesise monitors that are able to coordinate a
distributed rollback when certain conditions (denoting abnormal behaviour) are
met. The synthesis algorithm produces Erlang code. For each role in the global
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description, two Erlang actors are generated: one actor implements the normal
(forward) behaviour of the system and a second one (the monitor) is in charge
of implementing the reversible behaviour of the role. When certain conditions
are detected at runtime, the monitors will coordinate with each other in order
to bring back the system if possible. One interesting property of this approach is
that the two semantics are highly decoupled, meaning that the system is always
able to normally execute (i.e., going forward) even in case of a monitor crash.

A static analysis, based on multiparty session types, to efficiently compute a
safe global state from which to recover a system of interacting processes has been
integrated with the Erlang recovery mechanism in [50]. From a global description
of the program communication flow, given in multiparty protocol specification,
causal dependencies between processes are extracted. This information is then
used at runtime by a recovery mechanism, integrated in Erlang, to determine
which process has to be terminated and which one has to be restarted upon a
node failure. Experimental results indicate that the proposed framework outper-
forms a built-in static recovery strategy in Erlang when a part of the protocol
can be safely recovered.

In [26] a rollback operator, based on the notion of causal-consistent reversibil-
ity, is defined for a language with shared memory. A rollback is defined as
the minimal causal-consistent sequence of backward steps able to undo a given
action. The paper [69] explores the relationship between the Manetho [17] dis-
tributed checkpoint/rollback scheme (based on causal logging) and a reversible
concurrent model of computation based on the π-calculus with imperative roll-
back called roll-π [38]. A rather tight relationship between rollback based on
causal logging as performed in Manetho and the rollback algorithm underlying
roll-π is shown. The main result is that roll-π can faithfully simulate Manetho
under weak barbed simulation, but that the converse only holds if possible roll-
backs are restricted.

4 Reversibility and Object-Oriented Languages

Object-oriented (OO) programming uses classes as a means to encapsulate
behaviour and state. Classes permit programmers to define new abstractions,
such as abstract data types. The key elements of reversible OO languages were
initially introduced with a prototype of the Joule language [60] and subsequently
formally described for the ROOPL language [29]. Joule and ROOPL demonstrate
that well-known object-oriented concepts such as encapsulation, inheritance, and
virtual methods can be captured reversibly by extending a base Janus-like imper-
ative language [71] with support for such features.

This approach allows standard OO programming patterns, such as the fac-
tory and iterator design patterns [23], to be used reversibly [59], and well-known
structures such as an OO-style collection hierarchy (i.e., OO abstract data types
but with reversible operations) can similarly be implemented in such languages.
Reversible data types [13], that is data structures with all of its associated oper-
ations implemented reversibly, are enabled by dynamic allocation of constructor
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terms in the heap of a reversible machine [1]. Data structures are safe in OO
languages because they require no explicit pointer arithmetic in user programs,
which is notoriously error prone.

Memory handling is a key concern for reversible object-oriented languages.
The original Joule prototype relied on static stack allocation of objects, which
does not permit full OO programming: common patterns such as factories are for
example not possible [60]. Joule was subsequently extended into JouleR which
uses region-based [24,66] memory management [59]. Regions are sufficient to sup-
port the implementation of standard OO programming patterns and a collection
hierarchy. The initial presentation of the ROOPL language relied exclusively on
stack allocation [29], and was subsequently extended with a reversible heap-based
memory manager [13] based on Knuth’s Buddy Memory algorithm [36]. With this
extension, data structures such as min-heaps and circular buffers can be imple-
mented [13]. The language is reversibly universal (r-Turing complete), which
means it has the computational power of reversible Turing machines (cf. [71]).
See Figs. 1, 2, and 3 for example programs in Joule and ROOPL, which will be
described in the next section.

4.1 Object Orientation and Data Structures

As exemplified by the representation of abstract-syntax trees in the reversible
Janus self-interpreter [73], even complex data structures can be expressed in
reversible languages with simple type systems including only integers and arrays.
However, more effort is required to represent and manipulate the data structures
and as the resulting code base grows, the problem exacerbates.

Reversible object-oriented languages allow for easier code reuse and exten-
sibility by encapsulating data and methods in classes, thereby also abstracting
from the underlying memory model of the reversible machine. See Figs. 1 and 2
for two classic object-oriented examples in Joule and ROOPL, respectively.

The example in Joule in Fig. 1 models a single point in a two-dimensional
space by a class Point with two integer coordinates (x, y) and two methods that
translate a point by adding an integer displacement to the respective coordinate
(add to x, add to y). Here, this.x refers to the x-coordinate of the point to
which the displacement parameter x is added when add to x is applied to a
point object.

The example in ROOPL in Fig. 2 illustrates a simple class hierarchy of
geometric shapes in a two-dimensional space. The two shapes Rectangle and
Circle inherit the reference point (x, y) from their superclass Shape and extend
it with the length and width (l, w) in the case of Rectangle and with the
radius r in the case of Circle. The two subclasses add a class-specific method
getArea that defines how to calculate the area of the respective shape. All meth-
ods defined in these three classes are implemented by reversible statements that
are similar to those in Janus and reversible flowcharts [71,73]. Methods can also
be implemented using reversible control-flow operators (conditionals, iteration)
and recursive method calls and uncalls, as illustrated in the next example. It is
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Fig. 1. Example Joule class modelling a single point in two-dimensional space, origi-
nally from [60]

Fig. 2. Example ROOPL class hierarchy modeling basic geometric shapes in two-
dimensional space, originally from [13]

important to note that a reversible method cannot overwrite any of the encap-
sulated data, only perform a reversible update [2]. This makes reversible OO
languages different from their mainstream counterparts, such as Java or C++,
which can perform destructive updates.

The reversible min-heap in Fig. 3 serves as an example of the expressiveness
afforded by the richer type systems and memory models of these languages. The
insert method reversibly inserts a node in the heap, where the only output
is the depth of the inserted node, maintaining the min-heap property in the
process. This procedure can be used to reversibly extract the minimal value of a
data set. The class Node recursively defines a binary tree structure by including
two nodes, left and right. The integer v is the value of a node.

The insert method makes use of a reversible conditional if...fi (lines 5 to
16), which means it contains not only an entry predicate (v < w) but also an exit
predicate (counter > 0). As usual in reversible languages, both predicates are
checked at runtime: both must be true when control passes along the then-branch
and both must be false when control passes along the else-branch; otherwise, the
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Fig. 3. Recursive min-heap value insertion implemented in ROOPL using reversible
updates and reversible conditionals, originally from [13]

program is undefined (cf. [71,73]). Method calls and uncalls refer to an object.
For example, call left::insert(w, counter) recursively applies the insert
method to the left node left with the integer parameters w and counter. This
allows to work with recursively-defined data structures, which in our case are
binary trees.

Objects, which are instances of the classes defined in a program, can be
allocated and deallocated at runtime in any order using explicit statements. For
example, a new object of class node is created by statement new Node left
where the object’s reference is assigned to left (line 7). When a new object is
created all its fields are initialised with default values, here integer v is initialised
with zero and references left and right with the null pointer nil.

Reversible programming demands certain sacrifices compared to mainstream
programming because data cannot be overwritten and join points in the control
flow require explicit tests (e.g., the exit predicate in if...fi), which can also be
seen in the case of the insert method. As a consequence, conventional algorithms
and data structures need to be rethought in a reversible context regardless of
the data structures offered by a reversible language [13,27,28,72]. However, the
abstraction and expressiveness of OO reversible data structures ease the task.

With the addition of Joule and ROOPL, reversible programs can now be
expressed in a modern programming paradigm like OO programming, with
dynamic memory management of variably sized records and programmer-defined
recursive data structures that can grow to an arbitrary size at runtime. These
new features significantly broaden the applicability of reversible languages and
support increased complexity in reversible programs.

5 Reversing Imperative Concurrent Programs

Adding reversibility to irreversible imperative languages has been studied for
many years, for example in [9,52,57,58,70]. A proof of correctness is often
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missing from work in this area. Hoey and Ulidowski introduce a small impera-
tive while language and describe a state-saving approach to reversing executions
[33]. This was then extended to support an imperative concurrent language,
using identifiers to capture the specific interleaving order and to ensure state-
ments are reversed in the correct order [34]. The proof of correctness provided
shows that the reversal is both correct and garbage free. A simulation tool imple-
menting this approach is mentioned in [32] and described in more detail in [30].
Performance evaluation carried out using this simulator indicates that overheads
associated with saving and using of reversal information is reasonable. Finally,
a link between this simulator and debugging is explored in [32].

5.1 Language and Program State

The imperative language used in this approach contains assignments, condi-
tional statements (branching) and loops (iteration), much like a while language.
Details on reversing this imperative while language are available in [33]. This
is later extended with block statements containing local variable or procedure
declarations, as well as (potentially recursive) procedure calls. With the ability
for multiple variables to share a name as a result of local variables, the syntax
of this language contains construct identifiers (unique names given to complex
constructs including block statements) and paths (sequence of block names in
which a statement resides capturing the position needed for evaluation). Block
statements allow the declaration of local variables or procedures, and as such are
extended to “clean” up at the end of its execution by “un-declaring” these via
removal statements. The final addition is that of interleaving parallel composi-
tion, where the execution of two (or more if nested) programs can be interleaved.
The syntax of this language follows.

P ::= ε | S | P; P | P par P

S ::= skip I | X = E (pa,A) | if In B then P else Q end (pa,A) |
while Wn B do P end (pa,A) | begin Bn BB end |
call Cn n (pa,A) | runc Cn P end

BB ::= DV; DP; P; RP; RV

DV ::= ε | var X = v (pa,A); DV DP ::= ε | proc Pn n is P end (pa,A); DP

RV ::= ε | remove X = v (pa,A); RV RP ::= ε | remove Pn n is P end (pa,A); RP

The program state is represented as a series of environments, including the
variable environment γ (linking variables to memory locations), the data store
σ (linking memory locations to values), the procedure environment μ (storing
multiple copies of procedure bodies being executed in parallel) and the while
environment β (storing multiple copies of loops being executed in parallel) [34].
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5.2 Annotation, Inversion and Operational Semantics

The considered approach is state-saving, where any information required for
inversion that is lost during traditional execution is saved [52]. Two versions of
an original program are produced. The first, named the annotated version and
generated via annotation, performs the expected forwards execution and saves
any required information, named reversal information. A design choice made
to aid the correctness proof is to store all reversal information in an auxiliary
store δ separate to the program state. This store is a collection of stacks (ideal for
reversal due to their FIFO nature), one for each variable name (all versions share
a stack to handle races), two stacks for loops (one for capturing the loop count
and one for identifiers), one for conditional statements and one for procedure
calls.

The information required depends on the type of statement. Each assignment
is destructive as the old value of the variable is lost. This old value is crucial
for reversal, thus it is saved into the stack for that variable name on δ prior to
each assignment. Conditions are not guaranteed to be invariant, meaning this
approach cannot rely on re-evaluation during inversion to behave correctly. For
each conditional statement, the result of evaluation is saved onto the stack for
conditionals on δ. Loops are handled similarly, with a sequence of booleans saved
to capture the number of iterations (onto the first stack for loops). A second
design choice made is to save a sequence over implementing a loop counter in
order to aid the correctness proof, avoiding modifying the loop code and therefore
the behaviour with respect to the program state. Lastly, the final value of a local
variable is saved prior to its removal, into the stack for that variable name.

Supporting interleaving parallel composition also requires further informa-
tion to be saved. Interleaving allows different execution orders to be followed,
which must then be correctly inverted. The specific execution order is captured
using identifiers similarly to Phillips and Ulidowski [55,56]. The next identifier is
assigned to a statement as it executes, stored into a stack of integers associated
with each required statement during annotation. Consider the small example
shown in Fig. 4 and the executed forwards version shown in Fig. 4a. This is a
simple interleaving of three statements, captured via the identifiers 1–3, where
the first statement of the right hand side is executed first, before interleaving
to the left and finally completing the right. Assuming X and Y are initially 1,
this interleaving produces the final state X= 4 and Y= 3. These identifiers also
create a link between a statement and its reversal information, as all entries on
δ contain the corresponding identifier. For example, the stack X on δ will contain
the pair (2,1) (statement with identifier 2 overwrote the value 1). For loops or
procedure calls (potentially multiple copies of the same code in execution across
a parallel), identifiers are assigned to the specific copy within μ or β. Since local
copies are removed at the end of their execution, the final example of reversal
information is the identifiers assigned to such a copy (saved onto the second
stack for loops or the stack for calls).
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Fig. 4. Identifier use example

The execution of an annotated program is defined in terms of small step
operational semantics, where each rule performs the expected forwards execution
alongside the saving of reversal information and assigning of an identifier [34].

The second version of an original program produced, called the inverted ver-
sion, is generated via inversion and has an inverted statement order with all dec-
laration statements changed to removals and vice versa. This forwards-executing
program simulates reversal using the saved information and identifiers.

Throughout the inverse execution, the decision of which statement to execute
next (that is, invert) is made using the identifiers in descending order to force
backtracking order. Returning to the example in Fig. 4, the identifiers are used in
the order 3–1, meaning any incorrect inverse execution path cannot be followed.
Each statement also uses the identifiers to access the correct reversal information.
Assignments will no longer evaluate the expression and instead retrieve the old
value from δ. From the example in Fig. 4b, execution of the statement with
identifier 2 uses the pair (2,1) to restore the variable to 1. Similarly conditionals
and loops retrieve the result of condition evaluation from δ. Declaring a local
variable during an inverse execution initialises it to the final value it held during
forward execution (retrieved from the stack). Lastly, whenever a copy of a loop
or procedure body is made during the inverse execution, it is populated with the
required identifiers from δ.

As before, inverse execution is defined by small step semantics, with each rule
using identifiers and reversal information to undo the effects of a statement (or
step). Complete inverse execution undoes the effects of all statements, producing
a state equivalent to that of prior to the forward execution. We refer to the
previous property, coupled with the property that all reversal information is
consumed (the approach is garbage free), as correct inversion.

5.3 Correctness of Annotation and Inversion

This approach is proved to perform correct reversal information saving as well
as correct and garbage-free inversion. The two results are described in [34] and
extended to hold for all programs including parallel composition in [30]. The
first, named the annotation result, states that an original program and its anno-
tated version executed on the same initial program state will produce equivalent
final program states, with the obvious exception of the annotated execution
populating the auxiliary store with the required reversal information.

The second result, named the inversion result, states that provided an anno-
tated execution has been performed producing the final program state and auxil-
iary store, then the corresponding inverse execution ran on these final stores will
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produce a program state and auxiliary store equivalent to that of prior to the
forwards execution. This means the inverse execution reverses all effects of the
original program, as well as using all of the reversal information saved (the app-
roach is garbage free). These two results together show that no state is reached
that was not originally reached in either the forward or reverse execution.

5.4 Simulator and Performance Evaluation

A simulator implementing this approach has been developed, originally for the
purposes of testing [30]. The simulator reads a program written in a simplified
language (omitting paths, construct identifiers and removal statements as these
can be automatically inserted), parses it and sets up the initial program state.
Key features include complete or step-by-step execution, viewable program state
and reversal information at any point, random or manual interleaving and record
mode (storing further details including interleaving decisions/rule applications).

This simulator has been used for performance evaluation. Design choices
(mentioned above) have been made to aid the proof and may not be the most
efficient solution, and no optimisation techniques have yet been applied. This
analysis concerns the overhead associated with annotation (time required to
save reversal information), and the overhead associated with inversion (inverse
execution time compared to annotated forward execution time). From figures
in [32], the annotated execution experiences a reasonable overhead of between
4.2%–13.4%, while the inverted execution experiences an again reasonable over-
head of between −14.7%–1.9%. As expected, the inverse execution is sometimes
faster as there is no evaluation (values retrieved from δ).

5.5 Application to Debugging

Many works including [12,18,25,40,41,68] have described how reversibility can
be beneficial for debugging. The link between this approach to reversibility and
debugging is explored in [32], showing that this simulator (not originally devel-
oped as a debugger) helps with finding errors. Benefits include bugs being repro-
ducible should a user wish to re-execute a program forwards (for example, a
randomly interleaved program experiences a bug that can only be reproduced
by luck, with inversion obviously still possible), the ability to pause executions
and to view program state at any point. In [32] and [31], this simulator is used
to debug an example atomicity violation.

6 Reversible Debugger for Message Passing Systems

A relevant research thread in WG2 has tackled the problem of debugging concur-
rent message-passing applications using the so called causal-consistent approach.
Causal-consistent reversibility [14] stems from the observation that in concur-
rent systems, events (e.g., sending and receive of messages) are not always totally
ordered since there may be no unique notion of time. Even if events are totally
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ordered in principle, such an order is not relevant since it depends on the speed
of execution of the various processes, and it is difficult to observe and even more
to control. Instead, events naturally form a partial order dictated by causality:
causes precede their consequences, while there is no order between concurrent
events. The corresponding notion of reversibility, causal-consistent reversibility,
allows one to undo any event, provided that its consequences, if any, are undone
beforehand. A main property of this notion of reversibility is that states reachable
via backward computation are also reachable via forward computation from the
initial state, hence reversibility does not introduce new states but only provides
different ways of exploring states of forward computations.

This observation led to the development of causal-consistent reversible debug-
ging [25], which allows one to explore a concurrent computation backward and
forward, looking for the causes of a given misbehaviour, e.g., a wrong value
printed on the screen. Indeed, a misbehaviour is due to a bug, that is a wrong
line of code, and the execution of the wrong line of code is a cause of the misbe-
haviour. More precisely, causal-consistent reversible debugging provides primi-
tives to undo past events, including all and only their consequences. For instance,
if variable x has a wrong value, one can go back to where variable x has been
assigned. If the wrong value is in a message payload, one can go back where the
message has been sent. By iterating this technique, one can look for causes of
the misbehaviour until the bug is found.

Inside WG2 the research focused on how to apply this approach to a real
programming language, and Erlang was the language of choice. Erlang features
native primitives for message-passing concurrency, and has been used in relevant
applications such as some versions of Facebook chat [45]. For simplicity, the
research thread does not deal directly with Erlang, but with Core Erlang [8],
which is an intermediate step in Erlang compilation, essentially removing some
syntactic sugar from Erlang.

The research thread started with an investigation on the reversible semantics
of Core Erlang, aiming at defining a rollback operator to undo a past action in
a causal-consistent way [51]. The study was further developed in [42], where
relevant properties of the approach were proved, e.g., that the rollback operator
indeed satisfies the constraints of causal-consistent reversibility. The focus on
debugging started in [41], where CauDEr [40], a Causal-consistent Debugger for
(core) Erlang, was described. CauDEr provided the primitives above for causal-
consistent reversible debugging, paired with primitives for forward execution and
with a graphical interface to show the runtime structure of the program under
analysis and the relevant concurrent events in the computation.

A main limitation of CauDEr was that if the user went too far back, there
was no automatic way to go forward again with the guarantee to replay the
misbehaviour under analysis. This is a relevant problem, since in concurrent
systems misbehaviours depend on the scheduling, and of course it is not possible
to debug a misbehaviour that does not appear when executing the wrong applica-
tion inside the debugger. To solve this problem, the research studied techniques
for tracing a computation and replay it inside the debugger. This lead to the
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definition of a new form of replay, called causal-consistent replay [43], which
allows one to redo a future event of a traced computation, including all and
only its causes. One can notice that causal-consistent reversibility and causal-
consistent replay are dual, and together they allow one to explore a wrong com-
putation back and forward, always concentrating on events of interest. Also, this
approach ensures that if a misbehaviour occurred in the traced computation then
the same misbehaviour occurs also in each possible replay (provided that exe-
cution goes forward enough). A tracer for Erlang compatible with CauDEr was
produced and is available at [39]. An example of application of this framework
to a simple Erlang program can be found in [21].

7 Control Theory

The challenge of reversible control is its interaction with the irreversible object
of control. Even when the object is reversible, (e.g. motion of a fluid) often the
ability to reverse it is not controllable [61]. Disturbance in the system can be fully
reversible, but inacessible to the control mechanism. We explored the elements of
reversible control in an applied setting of wireless communications, through two
different realistic examples, one of resource management in large antenna arrays,
and one of wave time reversal in underwater acoustic communications [62].

In the first example [64], we perform antenna selection in a large distributed
antenna array which serves as a distributed base station in a next generation
cellular network: at any point in time, we want to use n out of m available anten-
nas to serve k < n users in the cell. The subset of antennas to be used is selected
so to maximise the Shannon capacity of the communication channel between
the base station and the users, which is a non-trivial optimisation task: select-
ing simply the antennas with the strongest signal does not help as they tend
to be correlated and not contributing to the diversity in the channel. We pro-
pose a solution using reversing Petri nets [53] with controlled transitions: tokens
(indicating antennas that are “on”) move between places (antennas) based on
simple calculations at the transitions (do the channel sum rates increase with the
change of token position, i.e. reconfiguration of the array?) [54]. The results of
experiments with varying number of users show that this distributed approach
delivers results on par with computationally demanding centralised approaches,
and tend to outperform the competition as the number of users increases. The
approach we proposed here is not limited to the problem of antenna selection:
in the ongoing work, we extend it to general resource management in wireless
setting, using the advantages offered by having a reversible control algorithm,
namely fault recovery, partial reversal of the system and repetitive motion han-
dling [65].

In the second example, we focus on wave time reversal, the idea of recon-
structing a wave (e.g. an acoustic pulse) by measuring the incoming wave at the
boundary of a cavity and then re-transmitting the collected samples in reverse,
producing a wave that reconverges at the original source [19]. It is straightforward
to see how this scheme can be used to establish a communication channel, and
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hence be used in a communication scheme in e.g. underwater acoustic commu-
nications. We selected sound propagation in water as an example of a reversible
(but rarely reversed) medium under control, and proposed a reversible hardware
architecture for this task [63]. Here we recognised another control challenge: dis-
turbance compensation. If there is a source of disturbance in the medium (e.g.
strong stream in the water) the reconstructed pulse will be distorted and hence
the quality of communication will degrade. If we cannot remove the source of
disturbance, but are in position to control a different part of the environment
based on measurements from sensors in the medium, how can we improve the
quality of wave time reversal? The more general question we pose here is whether
control of a reversible medium is simpler than control of an irreversible one, and
the model we chose to work on is one provided by reversible cellular automata.
These automata, in the form of lattice gases, have been extensively used for
fluid modelling. In cellular automata, the control problem revolves around the
question of reaching a certain configuration from an arbitrary initial configura-
tion [3]. In our consideration of reversible cellular automata, instead of observing
the question of reaching a microstate, we investigate the problem of reaching a
statistical macrostate in a region of the automaton [4]. The idea of reversible
automata control being easier than the general automata control stems from the
fact that states in reversible automata have unique predecessors, hence minimis-
ing the combinatorics of the arc of transition between an initial and a final state,
which is an important element of cellular automata control.

8 Conclusions

We have summarised the main results obtained by the Working Group 2 on Soft-
ware and System of the COST Action IC1405. In these four years the WG was
active and produced important results, as witnessed by this document. Research
in applying reversibility to software and systems is ongoing, and some of the
guidelines and topics indicated in the MOU [67] were not exhaustively investi-
gated during the lifetime of WG2. The interplay between reversibility and the so
called recovery patterns deserves to be further investigated. Also, the integration
of reversibility in software development is still at an early stage.
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Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 258–270. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 22

72. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1 2

73. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Partial Evaluation and Program Manipulation, Proceedings,
pp. 144–153. ACM (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1007/978-3-642-29517-1_2
http://creativecommons.org/licenses/by/4.0/


Simulation and Design of Quantum
Circuits

Alwin Zulehner and Robert Wille(B)

Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria
{alwin.zulehner,robert.wille}@jku.at

Abstract. Currently, there is an ongoing “race” to build the first prac-
tically useful quantum computer that provides substantial speed-ups for
certain problems compared to conventional computers. In addition to
the development of such devices, this also requires the development of
automated tools and methods that provide assistance in the simulation
and design of corresponding applications. Otherwise, a situation might
be reached where we have powerful quantum computers but hardly any
proper means to actually use them. This work provides an overview of
corresponding solutions for the task of quantum circuit simulation, the
task of quantum circuit design, as well as corresponding mapping tasks.
The covered solutions utilise expertise on efficient data structures and
algorithms gained in the design of conventional circuits and systems over
the last decades. While the respective descriptions are kept brief and
mainly convey the general ideas, references to further readings are pro-
vided for a more detailed treatment.

1 Introduction

In quantum computing, so-called quantum bits (i.e., qubits) serve as elementary
information unit, which—in contrast to conventional bits—can not only be in
one of its two orthogonal basis states (denoted |0〉 and |1〉 using Dirac notation),
but also in superposition (i.e., a linear combination) of both [1]. Together with
further quantum-physical phenomena such as entanglement (the state of a qubit
might be influenced by the state of other qubits), this allows that the pure
state of a quantum system composed of n qubits may represent a superposition
of 2n basis states and corresponding complex amplitudes—resulting in higher
information density and computational power.

Well-known initial representatives of quantum algorithms following this pow-
erful computation paradigm are Grover’s search algorithm [2] and Shor’s algo-
rithm for integer factorisation in polynomial time [3]—both allowing to sig-
nificantly outperform conventional machines. Recently, the application area of
quantum algorithms has significantly broadened and provides efficient methods
in areas like chemistry, solving systems of linear equations, physics simulations,
machine learning, and many more [4–6].

These developments are also triggered by the fact that quantum computers
are reaching feasibility since “big players” such as IBM, Google, Microsoft, and
c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 60–82, 2020.
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Intel as well as specialised startups such as Rigetti and IonQ have entered this
research field and are heavily investing in it [7–11]. In 2017, this led to the first
quantum computers that are publicly available through cloud access by IBM.
Since then, their machines have been used by more than 100,000 users, who have
run more than 6.5 million experiments thus far. Recently, IBM followed with the
presentation of their prototype towards a quantum computer for commercial use
(a stand-alone quantum computer to be operated outside of their labs)—the
IBM Q System One presented in January 2019 at CES [12].

Since currently available quantum computers are still limited in the number of
qubits, gate fidelity, as well as coherence time, they are classified as Noisy Inter-
mediate Scale Quantum (NISQ [5]) devices that will only be able to successfully
run some of the quantum algorithms outlined above (due to their limitations). In
fact, unveiling the full potential of quantum computing requires—besides further
reduction of error rates and improvement of coherence time—error-correcting
codes where each logical qubit in a computation is realised by several (up to sev-
eral hundreds) of physical qubits—eventually resulting in fault-tolerant devices
that are capable of conducting very deep computations on a large number of
qubits and with perfect accuracy [13,14].

In addition to these accomplishments and prospects, also the development
of automated tools and methods that provide assistance in the simulation and
design of corresponding applications is required. In this regard, the task of quan-
tum circuit simulation, the task of quantum circuit design, as well as correspond-
ing mapping tasks are important. Since modelling (arbitrary) quantum states
on conventional machines requires exponential overhead and many design prob-
lems are of exponential nature, straightforward solutions for these tasks will not
scale to relevant problem sizes. Hence, clever data-structures and algorithms are
required that allow for efficient solutions (at least) in certain cases. Otherwise, we
are approaching a situation where we might have powerful quantum computers
but hardly any proper means to actually use them.

This work provides an overview on solutions which have been developed
for these tasks and utilise expertise on efficient data structures and algorithms
gained in the design automation community over the last decades for conven-
tional circuits and systems. To this end, the simulation of quantum circuits,
their design, as well as technology mapping (compiling) are covered and dis-
cussed from a design automation perspective. The reviewed solutions often yield
improvements of several orders of magnitude compared to the current state of
the art (regarding runtime and corresponding design objectives)—showing the
tremendous available potential.

The overview is thereby structured as follows: First, Sect. 2 provides a back-
ground on quantum computing. Afterwards, Sect. 3, Sect. 4, and Sect. 5 sketch
the developed methods for the considered design tasks, i.e., quantum-circuit
simulation, the design of Boolean components occurring in quantum algorithms,
as well as mapping quantum circuits to real hardware (including references to
further reading for a more detailed treatment). Finally, Sect. 6 concludes the
paper.
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2 Background on Quantum Computing

Quantum computations operate on qubits—two-level quantum systems that can
be combined into n-qubit systems. The state of a qubit is given by a linear
combination (i.e., a superposition) of these basis states |ϕ〉 = α0 · |0〉 + α1 · |1〉,
where the complex amplitudes α0 and α1 satisfy α0α

∗
0 + α1α

∗
1 = 1.

The joint state of n qubits (also denoted as the system’s wave function)
is contained in the tensor product of n two-dimensional Hilbert spaces—the 2n-
dimensional Hilbert space spanned by the basis |0〉 , . . . , |2n − 1〉. Hence, a super-
position of all computational basis states may need up to 2n complex-valued
parameters—appearing as the amplitudes of the unit-norm state vector.

Definition 1. Consider a quantum system composed of n qubits. Then, all pos-
sible states of the system are of the form

|ϕ〉 =
∑

x∈{0,1}n

αx · |x〉 , where
∑

x∈{0,1}n

αxα∗
x = 1 and αx ∈ C.

The state |ϕ〉 can be also represented by a column vector ϕ = [ϕi] with 0 ≤ i < 2n

and ϕi = αx, where nat(x) = i.

Quantum states cannot be directly observed. To extract (partial) informa-
tion from quantum states in the form of conventional bits, one performs a mea-
surement operation. In contrast to conventional computers, this measurement
modifies the quantum state. In the process of measurement, the quantum state
non-deterministically collapses to one of these basis states where the probability
of each outcome reflects the proximity to the respective basis state. More pre-
cisely, measuring a one-qubit state α0 · |0〉 + α1 · |1〉 (with α0α

∗
0 + α1α

∗
1 = 1)

changes the state to |0〉 or |1〉 with probabilities α0α
∗
0 and α1α

∗
1, respectively.

Example 1. Consider a quantum system composed of n = 3 qubits q0, q1, and
q2 that assumes the state |ϕ〉 = |q0q1q2〉 = 1

2 · |010〉+ 1
2 · |100〉− 1√

2
· |110〉. Then,

the state vector of the system is given by

ϕ =
[
0, 0,

1
2
, 0,

1
2
, 0,− 1√

2
, 0

]T

.

Measuring the system yields basis states |010〉, |100〉, and |110〉 with probabilities
1
4 ,

1
4 , and 1

2 , respectively. Measuring only qubit q0 collapses q0 into basis state
|0〉 and |1〉 with probabilities 1

4 and 1
4 + 1

2 = 3
4 , respectively—changing the state

of the system either to |ϕ′〉 = |010〉 or to |ϕ′′〉 = 1√
3

· |100〉 −
√

2
3 · |110〉.

Aside from measurements, quantum computers apply quantum operations
to a fixed set of qubits, altering the joint state of the qubits in a reversible
fashion. These operations are described by unitary matrices of size 2n × 2n.
Simple quantum operations (also denoted gates) are defined over one or two
qubits only. Mathematically speaking, the resulting 2n × 2n matrix can then
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be computed as the Kronecker product of the matrix representing the gate’s
operation and a large identity matrix.

Commonly used quantum gates for generating a superposition (the
Hadamard operation H), inverting a quantum state (X), and applying phase
shifts by −1 (Z), are respectively defined as

H = 1√
2

[
1 1
1 −1

]
, NOT = X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
.

Two-qubit gates can couple pairs of qubits and are represented by 4 × 4
unitary matrices. By applying arbitrary two-qubit gates to different pairs of
qubits, it is possible to effect any 2n-dimensional unitary, i.e., attain universal
quantum computation (each quantum functionality can be realised with those
gates). It is common to allow a variety of one-qubit gates but limit two-qubit
gates, e.g., to CNOT gates:

CNOT =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥⎦ .

The two-qubit CNOT gate can also be defined by its action |x y〉 �→ |x x ⊕ y〉,
where ⊕ represents the exclusive-or (XOR) operation, the unmodified qubit x is
called control, and the other bit is called target.

Quantum circuits [1] are used as proper description means for a finite
sequence of “small” gates that cumulatively enact some unitary operator U and,
given an initial state |ϕ〉 (which is usually the basis state |0 . . . 0〉), produce a
final state vector |ϕ′〉 = |Uϕ〉. Hence, a quantum gate does not represent a phys-
ical entity (like in the conventional realm), rather an operation that is applied
to a set of qubits.

Definition 2. In quantum circuits, the qubits are vertically aligned in a circuit
diagram, and the time axis (read from left to right) is represented by a horizontal
line for each qubit. Boxes on the time axis of a qubit (or enclosing several qubits)
indicate gates to be applied.1 Note that measurement also counts as quantum
operation in this context. Control qubits are indicated by • and are connected to
the controlled operations by a single line.

Example 2. Figure 1 shows a quantum circuit. The circuit contains two qubits,
q0 and q1, which are both initialised with basis state |0〉. First, a Hadamard
operation is applied to qubit q0, which is represented by a box labelled H. Then,
a CNOT operation is conducted, where q0 is the control qubit (denoted by •)
and q1 is the target qubit (denoted by ⊕). Eventually, qubit q0 is measured as
indicated by the meter symbol.

When two gates are applied on the same qubits in sequence, the result-
ing operation is represented by the matrix product of gate matrices. When an

1 Note that an X gate may also be denoted by ⊕.
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Fig. 1. Quantum circuit.

m-qubit gate A and an n-qubit gate B are applied in parallel (on different
qubits), the resulting operation is represented by the Kronecker product A ⊗ B
of two matrices.

Example 3. Consider again the quantum circuit shown in Fig. 1. The resulting
state |ϕ′〉 (before measurement) is determined by multiplying the respective uni-
tary matrices to the state vector. Since the Hadamard gate shall only affect q0,
the Kronecker product of H and the identity matrix I2 is formed, i.e.,

H ⊗ I2 =
1√
2

[
1 1
1 −1

]
⊗

[
1 0
0 1

]
=

1√
2

⎡

⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤

⎥⎥⎦ .

Then, |ϕ′〉 is determined by

|ϕ′〉 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥⎦ · 1√
2

⎡

⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤

⎥⎥⎦ ·

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦ =
1√
2

⎡

⎢⎢⎣

1
0
0
1

⎤

⎥⎥⎦ .

As can be seen, the two gates entangle the qubits q0 and q1—generating a so-called
Bell state |ϕ′〉 = 1√

2
(|00〉 + |11〉). Measuring qubit q0 collapses its superposition

into one of the two basis states. Since q0 and q1 are entangled, q1 collapses to
the same basis state.

3 Quantum-Circuit Simulation

Since physical realisations of quantum computers are limited in their availability,
their number of qubits, their gate fidelity, and coherence time, quantum-circuit
simulators running on conventional machines are required for many tasks. From
a user’s perspective, possible applications (or at least their prototypes) for quan-
tum computers are usually first evaluated through simulators that serve as tem-
porary substitute. Moreover, simulation can be adapted to circuit equivalence-
checking and other functional verification tasks useful for circuit designers [15–
17]. Simulation also plays an important role for designers of quantum systems,
e.g., to foster the development of error-correcting codes. Besides that, the urgent
need of verifying quantum hardware might be conducted (at least some of the
required verification tasks) by comparing runs on these machines to simulation
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outcome [18,19]. Ultimately, quantum-circuit simulation capabilities provide an
estimate on quantum supremacy [18] as well as to identify classes of circuits
where no quantum speed-up is reachable (i.e., in case these circuits can be sim-
ulated efficiently on a conventional machine). In all these scenarios, simulators
may give additional insights since, e.g., the precise amplitudes of a quantum
state are explicitly determined (while they are not observable in a real quantum
computer).

However, quantum-circuit simulation in general constitutes a computation-
ally very complex task since each quantum gate and each quantum state is
eventually represented by a unitary matrix or state vector that grows exponen-
tially with the number of qubits. In fact, each quantum operation applied to a
quantum state composed of n qubits requires multiplying a 2n × 2n-dimensional
matrix with a 2n-dimensional vector.2 This constitutes a serious bottleneck,
which prevents the simulation of many quantum applications and, by this, the
evaluation of their potential. In fact, the array-like representation of the state
vector in current state-of-the-art simulators limits the number of qubits to be
simulated to approximately 30 on a modern computer (and to 50 when consid-
ering supercomputers with petabytes of distributed memory) [20].

This section presents a complementary simulation approach that aims for
overcoming this memory bottleneck (based on [21]). To this end, dedicated Deci-
sion Diagrams (DDs) are developed, which reduce the memory requirements by
representing redundancies in the occurring vectors and matrices by means of
shared nodes. This allows gaining significant improvements compared to straight-
forward realisations (relying on array-like representations) in many cases—often
reducing the simulation time from several hours or days to seconds or minutes.3

3.1 General Idea

The general idea of the presented complementary approach is to exploit redun-
dancies in the 2n-dimensional vectors representing quantum states. To this end,
decision diagram techniques (similar to those from the conventional realm) are
employed. More precisely, a given state vector with entries being complex num-
bers is decomposed into sub-vectors. To this end, consider a quantum system
with qubits q0, q1, . . . qn−1, whereby without loss of generality q0 represents the
most significant qubit. Then, the first 2n−1 entries of the corresponding state
vector represent the amplitudes for the basis states with q0 set to |0〉; the other
entries represent the amplitudes for states with q0 set to |1〉. This decomposition
is represented in a decision diagram structure by a node labelled q0 and two
successors leading to nodes representing the sub-vectors. The sub-vectors are

2 Note that different simulation approaches exist that do not compute the complete
final state vector, and that it is usually not necessary to represent the exponentially
large matrix explicitly. However, this does not decrease the exponential complexity.

3 Note that previous DD-based simulators (e.g., QuIDDPro [22]) did not get estab-
lished due to their limited applicability (i.e., they provide improvements in rather
few cases).
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recursively decomposed further until vectors of size 1 (i.e., a complex number)
result. This eventually represents the amplitude αi for the basis state and is
given by a terminal node. During these decompositions, equivalent sub-vectors
are represented by the same node—allowing for sharing and, hence, a reduction
of the memory complexity. An example illustrates the idea.

Example 4. Consider a quantum system with n = 3 qubits situated in a state
given by the following vector:

ϕ =
[
0, 0,

1
2
, 0,

1
2
, 0,− 1√

2
, 0

]T

.

Applying the decompositions described above yields a decision diagram as shown
in Fig. 2a. The left (right) outgoing edge of each node labelled qi points to a node
representing the sub-vector with all amplitudes for the basis states with qi set to
|0〉 (|1〉). Following a path from the root to the terminal node yields the respective
entry. For example, following the path highlighted bold in Fig. 2a provides the
amplitude for the basis state with q0 = |1〉 (right edge), q1 = |1〉 (right edge),
and q2 = |0〉 (left edge), i.e., − 1√

2
which is exactly the amplitude for basis state

|110〉 (seventh entry in the vector). Since some sub-vectors are equal (e.g.,
[
1
2 , 0

]T

represented by the left node labelled q2), sharing is possible.

However, even more sharing is possible since sub-vectors often differ in a
common factor only. This is additionally exploited in the proposed representation
by denoting common factors of amplitudes as weights attached to the edges of the
decision diagram. Then, the value of an amplitude for a basis state is determined
by following the path from the root to the terminal, and additionally multiplying
the weights of the edges along this path. Again, an example illustrates the idea.

Example 4 (continued). As can be seen, the sub-vectors represented by the

nodes labelled q2 (i.e.,
[
1
2 , 0

]T and
[
− 1√

2
, 0

]T
) differ in a common factor only.

In the decision diagram shown in Fig. 2b, both sub-trees are merged. This
is possible since the corresponding value of the amplitudes is now determined
not by the terminals, but the weights on the respective paths. As an example,
consider again the path highlighted bold representing the amplitude for the basis
state |110〉. Since this path includes the weights 1

2 , 1, −√
2, and 1, an amplitude

of 1
2 · 1 · (−√

2) · 1 = − 1√
2

results.

Note that, of course, various possibilities exist to factorise an amplitude.
Hence, a normalisation is applied which assumes the left edge to inherit a weight
of 1. More precisely, the weights wl and wr of the left and right edge are both
divided by wl and this common factor is propagated upwards to the parents of
the node. If wl = 0, the node is normalised by propagating wr upwards to the
parents of the node.

The idea used for representing state vectors by means of DDs can be extended
to also represent unitary matrices. Here, each DD-node has four successors that
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Fig. 2. DD-based representation of state vectors.

represent the four quadrants of the sub-matrix. Having description means for
state vectors and unitary matrices (describing the functionality of gates) it is
left to provide algorithms for matrix-vector multiplication as well as for mea-
surement. Fortunately, all these operations can be directly employed on the DDs
and without the need of explicitly representing the underlying exponentially
large entities. For further details we refer to [21].

3.2 Resulting Approaches

Following the general idea outlined above leads to a simulation approach that
scales polynomially with the size of the DD representing the state vector. Since
the DD often remains rather compact, significant improvements can be observed
compared to straightforward Schrödinger-style simulators as well as to previous
DD-based simulators in many cases—even though these techniques have been
heavily optimised over the last decade and utilise multiple CPU-cores to reduce
simulation time (while the proposed approach utilises a single core only). More
precisely, the approach proposed in [21] is capable of (1) simulating quantum
computations for more qubits than before, (2) in significantly less run-time, and
(3) on a regular Desktop machine.

For further details on the basic ideas and required algorithms of the DD-
based simulator we refer to [21,23]. Moreover, [21] shows that for many cases,
the simulation time can be reduced from several days to just a few seconds
or minutes. This initial version of a DD-based simulator did not only lead to
a significant improvement compared to the current state of the art, but has
also received significant acknowledgement by the community—triggering further
optimisations as done for array-based Schrödinger-style simulators for more than
a decade.

Using DDs for representing occurring vectors and matrices, the complexity of
multiplications depends on the size (i.e, the number of nodes) of the respective
operands in DD-based simulation. Together with the fact that the DDs for the
usually considered gate matrices are linear in size (with respect to the number
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of qubits), this implies that it might be beneficial to combine gate operations
before applying them to the state vector. In [24], strategies are described for com-
bining operations that allow improving the initial version of the proposed DD-
based simulator significantly—up to several orders of magnitude when exploiting
application-specific knowledge.

Enormous improvements compared to the state of the art as described above
obviously require an efficient implementation of the underlying DD-package—
especially for handling the occurring complex numbers. By providing such
techniques—in joint consideration of implementation techniques for decision dia-
grams in the conventional domain developed decades ago—the development of a
powerful DD-package for the quantum domain was leveraged in [25]. The eval-
uation conducted in [25] showed that complex numbers can be handled much
more efficiently than in previous implementations and that decision diagrams
for established quantum functionality is constructed in significantly less run-
time (up to several orders of magnitude). Presumably, this performance boost
can be easily passed to DD-based methods for other design automation tasks like
synthesis [26,27] or verification [15–17], just by incorporating this new package.

Since handling complex numbers is crucial in DDs for quantum computa-
tion (especially when occurring as edge weights), the resulting trade-off between
accuracy and compactness has been thoroughly discussed and evaluated in [28].
Since this trade-off requires fine-tuning of parameters on a case-by-case basis
and might still yield useless results, an algebraic decision diagram is proposed
in [28] to overcome this issue. The proposed algebraic representation guarantees
perfect accuracy while remaining compact (all redundancies that are actually
present are detected)—with moderate overhead in many cases.

All the endeavours listed above have been implemented in C/C++ and
made publicly available at http://iic.jku.at/eda/research/quantum simulation.
Besides that, a stand-alone version of the developed DD-package is available
at http://iic.jku.at/eda/research/quantum dd. Together with the significant
improvements gained compared to the state of the art, this did not only result
in acknowledgement inside the academic community, but also received interest
from big players in the field. More precisely, the developed simulation approach
has been acknowledged with a Google Research Faculty Award and has recently
been officially integrated into IBM’s SDK Qiskit. This further emphasises the
potential of DD-based design methods in the quantum domain—hopefully lead-
ing to as powerful DD-based methods as taken for granted in the conventional
domain today. Questions on whether hybrid approaches are possible or whether
concurrent approaches as well as approximation schemes can be exploited remain
open issues for future work. First results towards these questions are provided
in [29,30].

4 Design of Boolean Components for Quantum Circuits

Estimating resource requirements of quantum algorithms (i.e., the number of
required qubits and run-time on quantum computers), their simulation, or their

http://iic.jku.at/eda/research/quantum_simulation
http://iic.jku.at/eda/research/quantum_dd
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execution on real hardware requires compiling quantum algorithms containing
high-level operations (e.g., modular exponentiation in Shor’s algorithm) into
quantum circuits composed of elementary gates available on the considered tar-
get architecture. Thereby, quantum circuits composed of gates with multiple
control qubits (multiple-controlled qubit gates) are usually considered since they
(1) describe a rather low-level but still technology independent description of the
algorithm, (2) can be directly handled by most simulators, and (3) are usually
utilised as input for technology mapping algorithms (which will be covered in
the next section).

For the “quantum part” of an algorithm, a decomposition into multiple-
controlled qubit gates is usually inherently given by the algorithm, by using
common building blocks like a Quantum Fourier Transform (QFT [31]), or
determined by hand. However, this is different for large Boolean components
that are contained in many quantum algorithms, e.g., the modular exponentia-
tion in Shor’s algorithm for integer factorisation [3] or a Boolean description of
the database that is queried in Grover’s algorithm [2].

Even though the functionality of the Boolean components can be described
in the conventional domain, corresponding design methods cannot be utilised
since the inherent reversibility of quantum computations has to be considered.
In fact, determining circuits composed of reversible gates only, requires dedi-
cated reversible-circuit synthesis approaches. To manage the complex function-
ality of Boolean components, they are usually split into several (non-)reversible
parts [32]. However, these resulting non-reversible sub-functions have to be
embedded into reversible ones to ensure the desired unique mapping from inputs
to outputs—a task that can either be conducted explicitly or implicitly. This
embedding process requires adding several so-called ancillary qubits, which shall
be kept as small as possible since qubits are a highly limited resource. Besides
that, T-count and T-depth of the synthesised reversible circuits serve as cost
metric to compare different approaches that yield circuits with an equal (or at
least a close-to equal) number of qubits.

This section focuses on the functional design flow for synthesising Boolean
components (where the reversible function resulting from an explicit embed-
ding step is passed to synthesis algorithm) since it yields circuits with a mod-
erate number of qubits (often the minimum). Investigating this problem from
a design automation perspective allows developing efficient methods utilising
the decision diagrams introduced in the context of simulation (cf. Sect. 3) [33–
35]. However, there is even more (yet) unused potential that allows synthesis-
ing cheaper circuits, yields better scalability, and even reduces the number of
required qubits below what is currently considered as the minimum (for certain
cases)—significantly improving the current state of the art.

4.1 One-Pass Design of Reversible Circuits

Despite using efficient description means like DDs for functional synthesis, the
currently established design flow still suffers from the need to conduct embedding
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and actual synthesis separately—a major drawback that prohibits the exploita-
tion of a huge degree of freedom since embedding is not necessarily conducted
in a fashion, which suits the following synthesis step. To overcome this draw-
back, the work [36,37] introduced a completely new design flow that combines
functional synthesis and the embedding to a one-pass design flow. This generic
flow is not bound to a certain functional synthesis approach and—for the first
time—exploits the available degree of freedom to significantly increase scalabil-
ity and to reduce the costs of the synthesised circuit while keeping the number
of required qubits at the minimum.

In the established flow, an individual step is required that embeds the
non-reversible function to be synthesised into a reversible one. Thereby, k =

log2 μ(p1)� further so-called garbage outputs are added (assuming that the
most frequent output pattern p1 occurs μ(p1) times) and the additional rows
and columns of the truth table are assigned such that a unique mapping from
inputs and outputs results [33]. Passing a non-reversible function directly to a
functional reversible-circuit synthesis approach will fail, since several input com-
binations shall be mapped to the same output combination. This can be avoided
in two ways:

– Following the exact solution guarantees to result in a circuit requiring the
minimum number of qubits. The general idea is to add k further variables
to the function description (e.g., a DD), but keep all additional entries in
the function don’t care—allowing to exploit the available degree of freedom
of their assignment (which does not matter as long as a reversible func-
tion results). Having these additional variables allows conducting synthesis
(almost) as usual. During synthesis, the don’t cares are inherently assigned
(1) in a way that suits best to the synthesis algorithm, and (2) such that a
reversible function results (since only reversible gates are added to the cir-
cuit).

– Following the heuristic solution does not necessarily result in a circuit requir-
ing the minimum number of qubits, but still bounded. The general idea is
to conduct synthesis without embedding. Whenever an error is encountered
during synthesis (i.e., synthesis cannot proceed due to the missing embedding
step), the function to be synthesised is modified such that the algorithms can
continue. Since this obviously results in a circuit different to the intended
one, the modifications of the function are stored on so-called buffer-lines (at
most one buffer line is required for each variable of the function). After syn-
thesis finishes, these modifications are reverted by a single CNOT gate for
each buffer line.
The advantage of the heuristic approach is that no additional variables are
added to the function description (as done in the usual functional design
flow and the exact one-pass design). Hence, this heuristic approach is even
more scalable that the exact solution since the function description remains
smaller.

Example 5. Consider a function f : IBn → IBm with n inputs and m outputs
and assume that the most frequent output pattern occurs μ(p1) times. Then,
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following the exact solution, the f is enriched by k = 
log2 μ(p1)� further outputs
to make all output patterns distinguishable. Hence, the synthesis is conducted on
a function with max(n,m + k) variables—like in the established design flow.
However, the additional entries in the truth table remain don’t care initially and
are assigned 0 or 1 during synthesis as suitable.

Instead, the heuristic solution conducts synthesis directly on f and, hence
max(n,m) variables. The modifications made to f during synthesis require at
most min(n,m) buffer lines—resulting in a quantum circuit with at most n + m
qubits.

The evaluations provided in [36] show the advantages of the one-pass design
flow (which can be also applied to other functional synthesis approaches) com-
pared to the conventional two-stage design flow. Besides substantial speedups
compared to the state-of-the-art design flow, the T-count is reduced by sev-
eral orders of magnitude in most cases—clearly outperforming the currently
established functional design flow for reversible circuits where embedding and
synthesis are conducted separately. For further details, we refer to [36].

4.2 Exploiting Coding Techniques

The proposed one-pass design flow can be enriched with the idea of exploiting
coding techniques in order to reduce the number of variables that have to be
considered during synthesis [38].4 This idea is based on the fact, that the output
patterns in non-reversible functions are not uniformly distributed—leading to
a situation where some patterns require many additional outputs while others
require only a few. Hence, several garbage outputs are required only for cer-
tain output patters. Avoiding this overhead provides significant potential for
improving synthesis. In fact, employing a variable-length code allows realising
any non-reversible function with a single ancillary qubit only—allowing conduct-
ing synthesis on significantly fewer variables than before [39]. The key idea is
to represent frequently occurring output patterns (which require more garbage
outputs) with a smaller number of variables. Vice versa, less frequently occur-
ring patterns (which require less garbage outputs) are represented with a larger
number of variables. In other words, coding techniques are utilised in order to
encode the desired function with a variable-length code in which the length of
the code word for an output pattern pi is indirectly proportional to the number
μ(pi) of times the pattern occurs. An example illustrates that.

Example 6. Consider the Boolean function shown in Table 1a and its distri-
bution of the output patterns as shown in Table 1b. Following, e.g., the exact
one-pass design flow outlined above results in a function with 5 inputs/outputs
since the most frequent output pattern p1 = 010 occurs four times and, thus,
requires two garbage outputs. However, using a variable-length code as shown in

4 Note that exploiting coding techniques is also possible in the original design flow
composed of an embedding and a synthesis step.
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Table 1. Variable-length encoding for one-pass design.

(a) Orig. function

x0 x1 x2 y0 y1 y2
0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 0 1 0
1 1 0 0 1 0
1 1 1 0 0 1

(b) Output patterns

i pi µ(pi)
1 010 4
2 100 2
3 001 1
4 011 1
5 000 0
6 101 0
7 110 0
8 111 0

(c) Encoding

i pi c(pi)
1 010 0 - -
2 100 1 0 -
3 001 1 1 0
4 011 1 1 1

(d) Encoded function

x0 x1 x2 y0 y1 y2
0 0 0 0 - -
0 0 1 0 - -
0 1 0 1 0 -
0 1 1 1 0 -
1 0 0 1 1 1
1 0 1 0 - -
1 1 0 0 - -
1 1 1 1 1 0

Table 1c allows reducing the number of required qubits. There, the most frequent
output pattern is encoded by c(p1) = 0. Since this pattern requires two garbage
outputs, in total 1+2 = 3 outputs are required.5 The second most frequent output
pattern p2 = 100 is encoded by c(p2) = 10. Since this pattern occurs only twice,
one garbage output is required—again resulting in 2 + 1 = 3 outputs. The pat-
terns p3 and p4 are encoded by c(p3) = 110 and c(p4) = 111, respectively. Here,
no garbage outputs are required. The remaining patterns (p5 to p8) do not have
to be encoded, since they never occur. Overall, this yields an (encoded) reversible
function which embeds f as shown in Table 1d and is composed of a total of 3
inputs/outputs only—two qubits fewer than without using coding.

The code is computed by generating a Pseudo-Huffman tree: Starting with
terminal nodes—one for each output pattern with μ(pi) > 0 (no code has to be
assigned to output patterns that do not occur)—with attached weights repre-
senting the number of respectively required garbage outputs (i.e., 
log2 μ(pi)�),
the Pseudo-Huffman tree is then generated by repeatedly combining the two
nodes a and b with the smallest attached weights w(a) and w(b) to a new node c
with weight w(c) = max(w(a), w(b)) + 1 until a single node results. The weight
of such a node w(c) then gives the number of outputs required to represent
all combined output patterns uniquely, i.e., one additional variable is required
(aside from max(w(a), w(b))) to distinguish between a and b.

Example 7. Consider the distribution of the output patterns as shown in
Table 1b. Determining the Pseudo-Huffman code starts with the nodes v1, v2, v3,
and v4—one for each output pattern pi with μ(pi) > 0. These nodes are shown
at the bottom of Fig. 3. The weights are drawn inside the respective nodes. The
weight of node v1 is w1 = k1 = 2, because output pattern p1 = 010 requires two
garbage outputs. The weights of the nodes representing p2, p3, and p4 are 1, 0,
and 0, respectively. In a first step, the nodes v3 and v4 (both have weight 0) are
combined. The resulting node v5 has a weight of w5 = max(0, 0) + 1 = 1. Next,
the two nodes with weight 1 (i.e., v2 and v5) are combined. The resulting node

5 The garbage outputs are represented by a dash, since they represent don’t care values
(as long as it is ensured that the resulting function is reversible).
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Fig. 3. Huffman tree for the function from Table 1a.

v6 has a weight of w6 = max(1, 1) + 1 = 2. Finally, the two remaining nodes
are combined to a new node v7 with weight w7 = max(2, 2) + 1 = 3—eventually
resulting in the tree shown in Fig. 3.

After generating the Pseudo-Huffman tree, the overall number of variables
that are required to realise the encoded function is given by the weight of the
root node of the tree. The resulting code is inherently given by the structure of
the Pseudo-Huffman tree. In fact, each path from the root node to a leaf node
represents a code word, where taking the left (right) edge implies a 0 (1).

Example 7 (continued). Since the root node has a weight of 3, three variables
are required to realise the encoded function (without encoding, max(3, 3 + 2) = 5
variables would be required). The path from the root node to the leaf node v2
(which represents output pattern p2) traverses the right edge of the root node v7
as well as the left edge of v6. Consequently, c(p2) = 10 encodes p2 = 100. Since v2
has weight w2 = 1, one output is used as garbage output in this case. Accordingly,
code words for all other output patterns are determined—eventually resulting in
the code shown in Table 1c. Dashes again represent don’t cares.

Following this idea, at most n + 1 qubits—instead of max(n,m +

log2 μ(p1)�)—are required to embed any non-reversible function with n inputs.
Concerning the design of Boolean components contained in quantum algo-
rithms, the encoded outputs can be handled (1) locally where decoders are
required for each sub-component that again increase the number of qubits to
max(n,m + 
log2 μ(p1)�), or (2) globally where subsequent components that are
capable of handling encoded inputs allow remaining at n + 1 qubits.

Incorporating the idea of utilising coding techniques into the one-pass design
flow introduced above unveils even more potential. In fact, it allows exploiting an
even larger degree of freedom since the values of the garbage outputs are basically
don’t care (except the restriction that a reversible function has to be realised)—
while still guaranteeing to synthesise a circuit that uses the minimum number
of qubits (or even below that minimum if no decoding is required afterwards).
This degree of freedom allows for synthesising circuits with significantly smaller
T-count [38].
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5 Mapping Quantum Circuits to NISQ Devices

In order to use currently developed Noisy Intermediate-Scale Quantum (NISQ)
devices, the quantum algorithm to be executed has to be properly mapped to
these devices such that their underlying physical constraints are satisfied (this
is one part of the overall compilation task). To this end, it is assumed that
the considered quantum algorithm has already been translated into a quantum
circuit composed of multiple-controlled one-qubit gates. For the “quantum part”
of the algorithm, this is often inherently given (e.g., by using components for
which such translations are known) or done by hand. For the “Boolean part”
of the algorithm, a gate-level description is often gained by reversible circuit
synthesis, as discussed in the previous section.

Then, mapping quantum circuits to NISQ devices requires the consideration
of two aspects. First, the occurring gates have to be decomposed into elementary
operations provided by the target device—usually a single two-qubit gate as well
as a broader variety of one-qubit gates to gain a universal gate set. Second, the
logical qubits of the quantum circuit have to be mapped to the physical qubits
of the target device while satisfying the so-called coupling-constraints given by
the respective device. Since not all physical qubits are coupled directly with each
other (due to missing physical connections), two-qubit gates can only be applied
to selected pairs of physical qubits. Since it is usually not possible to determine
a mapping such that all coupling-constraints are satisfied throughout the whole
circuit, the mapping has to change dynamically. This is achieved by inserting
additional gates, e.g., realising SWAP operations, in order to “move” the logical
qubits to other physical ones.

While there exist several methods to address the first issue, i.e., how to
efficiently decompose multiple-controlled one-qubit gates into elementary oper-
ations (see [40,41]), there is only few work on how to efficiently satisfy the
coupling-constraints of real devices. Although there are similarities with recent
work on nearest-neighbour optimisation of quantum circuits as proposed in [42–
45], they are not applicable since simplistic architectures with 1-dimensional or
2-dimensional layouts are assumed which have a fixed coupling (all adjacent
qubits are coupled) that does not allow modelling all current NISQ devices.

This section covers the mapping of the logical qubit of a quantum circuit
to the physical ones of a NISQ device from a design automation perspective.
Thereby, IBM Q devices are considered as representatives for NISQ devices to
discuss the occurring challenges in detail, as well as to describe the proposed
solutions. IBM’s approach has been chosen, since it provides the first publicly
available quantum devices (available since 2017) that can be accessed by everyone
(not only academics) through cloud access. Moreover, their coupling-constraints
are described more flexibly than those of other companies—allowing to map
their coupling-constraints to IBM’s model as well.
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Fig. 4. IBM Q 16 Rueschlikon V1.0.0 (IBM QX3) [46].

5.1 Considered Problem

While one-qubit gates can be applied without limitations in IBM’s devices, the
physical architecture of the respectively developed quantum computers—usually
a linear or rectangular arrays of qubits—limits two-qubit gates to neighbouring
qubits that are connected by a superconducting bus resonator. In IBM’s devices
that use cross-resonance interaction as the basis for CNOT gates, the frequencies
of the qubits also determine the direction of the gate (i.e., determining which
qubit is the control and which is the target). The possible CNOT gates are
captured by so-called coupling maps [46], giving a very flexible description means
to specify the coupling-constraints of a certain quantum device. Figure 4 shows
the coupling map of the IBM QX3 device. Physical qubits are visualised with
nodes and a directed edge from physical qubit Qi to physical qubit Qj indicates
that a CNOT with control qubit Qi and target qubit Qj can be applied.

To satisfy the coupling-constraints, one has to map the n logical qubits
q0, q1, . . . , qn−1 of the decomposed circuit to the m ≥ n physical qubits
Q0, Q1, . . . , Qm−1 of the considered quantum device such that all coupling-
constraints given by the corresponding coupling map are satisfied. Unfortunately,
it is usually not possible to find a mapping such that the coupling-constraints are
satisfied throughout the whole circuit (this is already impossible if the number of
other qubits, a logical qubit interacts with, is larger than the maximal degree of
the coupling map). More precisely, the following problems—using CNOT (qc, qt)
to describe a CNOT gate with control qubit qc and target qubit qt, and CM to
describe the edges of the device’s coupling map—may occur:

– A CNOT gate CNOT (qc, qt) shall be applied while qc and qt are mapped
to physical qubits Qi and Qj , respectively, and (Qi, Qj) /∈ CM as well as
(Qj , Qi) /∈ CM .

– A CNOT gate CNOT (qc, qt) shall be applied while qc and qt are mapped to
physical qubits Qi and Qj , respectively, and (Qi, Qj) /∈ CM while (Qj , Qi) ∈
CM .

To overcome these problems, one strategy is to insert additional gates into
the circuit to be mapped. More precisely, to overcome the first issue, one can
insert so-called SWAP operations into the circuit that exchange of the states of
two physical qubits and, by this, “move” around the logical ones—changing the
mapping dynamically.
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Example 8. Figure 5 shows the effect of a SWAP gate as well as its decom-
position into elementary gates supported by the IBM Q devices. Assume that
the logical qubits q0 and q1 are initially mapped to the physical ones Q0 and
Q1, respectively (indicated by �). Then, by applying a SWAP gate, the states of
Q0 and Q1 are exchanged—eventually yielding a mapping where q0 and q1 are
mapped to Q1 and Q0, respectively.

Fig. 5. Decomposition of a SWAP operation.

The second issue may also be solved by inserting SWAP operations. However,
it is cheaper (fewer overhead is generated) to insert four Hadamard operations
(labelled by H) as they switch the direction of the CNOT gate (i.e., they change
the target and the control qubit). This can also be observed in Fig. 5, where H
gates switch the direction of the middle CNOT in order to satisfy all coupling-
constraints given by the coupling map (assuming that only CNOTs with control
qubit Q1 and target qubit Q0 are possible).

However, inserting additional gates in order to satisfy the coupling-
constraints drastically increases the number of operations—a significant draw-
back, which affects the fidelity of the quantum circuit since each gate has a
certain error rate. Since each SWAP operation is composed of 7 elementary
gates (cf. Fig. 5), particularly their number shall be kept as small as possible.
Accordingly, this raises the question of how to derive a proper mapping of logi-
cal qubits to physical qubits while, at the same time, minimising the number of
added SWAP and H operations—an NP-complete problem as recently proven
in [47,48].

Example 9. Consider the quantum circuit composed of 5 CNOT gates shown in
Fig. 6a and assume that the logical qubits q0, q1, q2, q3, q4, and q5 are respectively
mapped to the physical qubits Q0, Q1, Q2, Q3, Q14, and Q15 of IBM QX3
shown in Fig. 4 on Page 16. The first gate can be directly applied, because the
coupling-constraints are satisfied. For the second gate, the direction has to be
changed because a CNOT with control qubit Q0 and target Q1 is valid, but not vice
versa. This can be accomplished by inserting Hadamard gates as shown in Fig. 6b.
For the third gate, the mapping has to change. To this end, SWAP operations
SWAP (Q1, Q2) and SWAP (Q2, Q3) are inserted to move logical qubit q1 to
become a neighbour of logical qubit q4 (see Fig. 6b). Afterwards, q1 and q4 are
mapped to the physical qubits Q3 and Q14, respectively, which allows applying the
desired CNOT gate. Following this procedure for the remaining qubits eventually
results in the circuit shown in Fig. 6b. The mapped circuit is composed of 51
elementary operations and has a depth of 36 when using a naive algorithm—a
significant overhead that motivates research on improved approaches.
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Fig. 6. Mapping of a quantum circuit to IBM QX3.

5.2 Existing Approaches and Results

There exist only very few algorithms that explicitly tackle the mapping problem
for IBM Q devices, and, thus, serve as alternative to IBM’s own solution provided
within its SDK Qiskit [49].6 To encourage further development in this area, IBM
even launched the IBM Qiskit Developer Challenge seeking for the best possible
solution [50]. This led to the development of several approaches that explicitly
consider design automation techniques to tackle the mapping problem.

The work [51] provides—for the first time—an exact approach (using a for-
mal description of the mapping problem that is passed to a powerful reasoning
engine) to solve the mapping problem by inserting the minimum number of
additional H and SWAP operations. By this, a lower bound on the overhead
is provided (when neglecting pre- and post-mapping optimisations), which is
required to satisfy the coupling-constraints given by the quantum hardware—
allowing to show that IBM’s own solution often exceeds the minimal overhead
by more than 100 % (even for small instances). However, the exponential nature
of the mapping problem (it has been proven to be NP-complete [47]) makes the
exact approach applicable for small instances only.

This limitation—together with the fact that IBM’s approach generates map-
ping that are far above the minimum—motivates the development of heuristic
approaches. The heuristic methods presented in [52] are heuristic solution that
utilises the A∗ search method to determine proper mappings. This allows reduc-
ing the overhead compared to Qiskit by approximately one fourth on average.7

This difference in quality is mainly because IBM’s solution randomly searches
for a mapping that satisfies the coupling-constraints—leading to a rather small
exploration of the search space so that only rather poor solutions are usually
found. In contrast, the proposed approach aims for an optimised solution by
exploring more suitable parts of the search space and additionally exploiting

6 Note that IBM’s solution randomly searches (guided by heuristics) for mappings of
the qubits at a certain point of time.

7 Note that the proposed approach has additionally been integrated into Qiskit to
allow a fair comparison by utilising the same post-mapping optimisations.
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information of the circuit. More precisely, a look-ahead scheme is employed that
considers gates that are applied in the near future and, thus, allows determining
mappings which aim for a global optimum (instead of local optima) with respect
to the number of SWAP operations.

Even though this heuristic approach allows outperforming Qiskit’s mapping
algorithm, it has some scalability issues when used for mapping certain random
circuits for validating quantum computers [19], which also served as benchmarks
in the IBM Qiskit Developer Challenge (a challenge for writing the best quantum-
circuit compiler to encourage development). These circuits provide a worst-case
scenario that heavily affects the efficiency of the proposed heuristic approach.
Therefore, a dedicated approach is proposed in [53], which explicitly considers
their structure by using dedicated pre- and post-mapping optimisations. The
resulting methodology has been declared as winner of the IBM Qiskit Developer
Challenge, since it generated mapped/compiled circuits with at least 10 % lower
costs than the other submissions while generating them at least 6 times faster,
and is currently being integrated into Qiskit by researchers from IBM. Besides
that, all mapping approaches developed in context of this thesis are publicly
available at http://iic.jku.at/eda/research/ibm qx mapping.

6 Conclusion

This chapter has shown the great potential of bringing knowledge gained from
the design automation of conventional circuits and systems into the quantum
realm. More precisely, quantum-circuit simulation, the design of Boolean com-
ponents for quantum algorithms, as well as technology mapping have been con-
sidered from a design automation perspective—leading to improvements of sev-
eral orders of magnitude (with respect to runtime or other design objectives) in
many cases. For further information on the developed algorithms we refer to the
cited papers. In the future, this development shall continue on a larger scale—
eventually providing the foundation for design automation methods that accom-
plish for quantum computing what the design automation community realised
for conventional (electronic) circuits.
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Abstract. In the traditional logic synthesis, different classifications
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Recently, some attempts to deal with classifications of reversible func-
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1 Introduction

Recent advances in nanotechnology, low-power design, and quantum computing
have renewed interest in reversible logic synthesis since they allow for reducing
the power dissipation in related circuits and the potential speed-up in quantum
computations. More details can be found in [4,25] and references therein.

A reversible function is defined as a bijective mapping f : An → An, where
A is any finite set of elements which can be conveniently identified with non-
negative integers {0, 1, . . . , p − 1}. In particular, for p = 2 and p = 3, we speak
about binary or Boolean and ternary reversible functions, respectively. There-
fore, an n-variable reversible function is actually a permutation on An, and can
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be viewed as a vector of n functions called the component functions (CFs), i.e.,
F = (f1, f2, . . . , fn). In [27], the term components is applied in the similar mean-
ing, meanwhile in the literature on cryptography the term coordinate functions
is used, see e.g., [3,30]. However, in [30] the term component function means
a linear combination of coordinate functions.

Correspondingly, a reversible circuit is a circuit that realises a reversible
function, i.e., performs a bijective mapping of n input signals onto n output
signals in a manner specified by the function to be realised.

Recently in [13,14], we discussed the question if it is possible to extend
a Boolean function f : {0, 1}n → {0, 1} into a reversible function F : {0, 1}n →
{0, 1}n, under the condition that all its component functions have a homogeneous
property. The term homogeneous property means that all component functions
express the same particular property Boolean functions might have, e.g. all the
component functions belong to the same equivalence class in a particular clas-
sification of Boolean functions. The motivation was that if such an embedding
of a Boolean function into a reversible function is possible, then new classes of
reversible functions can be defined. In [15,17] the same question is explored for
ternary functions F : {0, 1, 2}n → {0, 1, 2}n and we have shown that there are
significant differences in the theory of binary and ternary reversible functions in
the case of linear component functions.

As homogeneous properties, we have chosen typical ones considered in clas-
sical logic synthesis: symmetry, affinity, linearity, nonlinearity, self-duality, self-
complementarity, monotonicity, unateness (see, e.g. [31]). In papers [13–15,17]
the exemplary functions used in proofs of the results were obtained in a construc-
tive manner. In [16] the results on properties of component functions of Boolean
reversible functions obtained by the extrapolation approach were demonstrated.
An overview of the most relevant of these results in the binary case is presented
here. Because of lack of space we have omitted our results on reversible multiple-
valued functions. The reader can find them in [15,17].

The presentation is organised in the following way. For the sake of com-
pleteness, necessary definitions and basic results from the theory of standard
Boolean as well as from reversible Boolean functions are provided in Sect. 2. In
Sect. 3, a brief overview of related and background work is presented. Section 4
demonstrates our theoretical results on properties of component functions of
reversible functions. Section 5 describes the results of our research on the exis-
tence of Boolean reversible functions with all component functions belonging to
different equivalence classes while considering well-known and newly constructed
reversible functions defined for any number of variables. Section 6 presents our
numerical calculations of all equivalence classes of balanced Boolean functions
up to n = 4 and all reversible functions up to n = 3. Finally, Sect. 7 describes
our results on the existence of Boolean reversible functions with specified prop-
erties of all component functions obtained by extrapolating some properties of
reversible functions. The presented research is summarised in Sect. 8.
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2 Preliminaries

In this section, the basic definitions and known results are provided for the
convenience of the reader. Let us first briefly survey fundamental notions related
to standard Boolean functions and reversible Boolean functions.

First we present notation and terminology for fundamental notions. The sym-
bols +,−, · denote ordinary addition, subtraction, and multiplication, respec-
tively. For arbitrary elements x and y in the set {0, 1} basic operations in this
set (one unary and three binary operations) are defined in the usual way:

Negation x′ = 1 − x, i.e. if the argument x is 0, then the result is 1, otherwise
it is 0;

Product xy = x · y, i.e. its value is 1 if and only if both arguments are 1;
Sum x ∨ y = x + y − x · y, i.e. its value is 0 if and only if both arguments are 0;
EXOR x ⊕ y = x + y(mod2) = x + y − 2 · x · y, i.e. its value is 1 if and only if

exactly one argument is 1.

In classical logic synthesis, the basic representation of a Boolean function is
the Sum-of-Products expression (SOP). In the field of reversible circuit syn-
thesis two other representations are commonly used. Any Boolean function
f : {0, 1}n → {0, 1} can be described using an EXOR-sum of products (ESOP)
expression. In ESOPs each variable may appear in both uncomplemented and
complemented forms. The Positive Polarity Reed-Muller (PPRM) expression is
an ESOP expression which uses only uncomplemented variables. It is a canonical
expression and for small functions can be easily generated from a truth table or
other representations of the Boolean function.

A Boolean function f(x1, x2, . . . , xn) depends essentially on its variable xi if
and only if f(x1, . . . , xi−1, 0, xi+1, . . . , xn) �= f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

Definition 1. A Boolean function depending essentially on all its variables is
called non-degenerate, otherwise it is called degenerate.

Example 1. There are 16 functions of two variables x and y: 0, 1, x, x′, y, y′,
xy, x′y, xy′, x′y′, x ∨ y, x′ ∨ y, x ∨ y′, x′ ∨ y′, x ⊕ y = x′ ⊕ y′, x′ ⊕ y = x ⊕ y′.
The first six of them are degenerate: the first two depend essentially on none of
the variables, the next four depend essentially on only one of the variables. ❙

Let us define an order relation in the set {0, 1} in the usual way: 0 < 1 and
a partial order relation in the set {0, 1}n: for any two vectors a = (a1, a2, . . . , an),
b = (b1, b2, . . . , bn) in {0, 1}n a ≤ b if and only if ai ≤ bi for 1 ≤ i ≤ n.

Definition 2. A Boolean function f is monotone increasing if and only if a ≤ b
implies f(a) ≤ f(b) which will simply be called a monotone function. By changing
the inequalities into inverse ones we obtain a definition of monotone decreasing
function.

Example 2. Both the constant functions 0 and 1 are monotone increasing and
monotone decreasing. There are six monotone increasing functions of two vari-
ables x and y: 0, 1, x, y, xy, x∨ y. Similarly, there are six monotone decreasing
functions of two variables x and y: 0, 1, x′, y′, x′y′, x′ ∨ y′. ❙
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Definition 3. A Boolean function f(x1, x2, . . . , xn) is called unate (or mixed
monotone) if and only if it is a constant or there exists its SOP representation
using either uncomplemented or complemented literals for each variable.

Example 3. There are 14 unate functions of two variables x and y: only func-
tions x ⊕ y and x′ ⊕ y are not unate. ❙

Definition 4. A Boolean function f(x1, x2, . . . , xn) is called threshold (or lin-
early separable) if and only if there exist real numbers a1, a2, . . . , an, and b such
that f = 1 if the sum of all aixi, 1 ≤ i ≤ n, is greater than or equal to b, and
f = 0 otherwise.

Example 4. All unate functions of up to three variables are threshold functions.
Thus, for two variables there are 14 threshold functions (i.e., all except x ⊕ y
and x′ ⊕ y), in particular,

when a1 = a2 = 1 and b = 1.5 then f = xy,

when a1 = a2 = 1 and b = 0.5 then f = x ∨ y,

when a1 = a2 = −1 and b = −0.5 then f = x′y′,
when a1 = a2 = −1 and b = −1.5 then f = x′ ∨ y′.

The 4-variable function f(x1, x2, x3, x4) = x1x2 ∨ x3x4 is an example of a
monotone increasing function which is not a threshold function. ❙

Definition 5. A Boolean function f on an odd number of arguments is called
majority function if and only if f = 1 when more than half of the arguments
are 1.

Example 5. The 3-variable majority function f(x, y, z) = xy ⊕ xz ⊕ yz is a
threshold function, where a1 = a2 = a3 = 1 and b = 2. ❙

It is well known that the following result holds.

Lemma 1.

(1) Every threshold function is a unate function.
(2) Every majority function is a threshold function.

Definition 6. A Boolean function f is linear with respect to a variable xi if it
can be expressed in the form f = xi ⊕ g, where ⊕ denotes XOR operation and
g is a function independent of xi (then the variable xi is called linear in f). A
function has property LV if it contains at least one linear variable. A function f
is called affine if and only if each of variable xi is either linear in f , or f does
not depend on xi, i.e. f(x1, x2, . . . , xn) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn, where
a0, a1, a2, . . . , an ∈ {0, 1}. If a0 = 0 then it is called linear. Any affine function
which is not linear can be obtained by negating an appropriate linear function.
A Boolean function which is not affine is called nonlinear.

Example 6. f1(x, y, z) = x⊕y⊕yz is linear with respect to x as then g = y⊕yz
is independent of x, but f1 is not linear with respect to y as then g = x ⊕ yz is
dependent of y. Similarly, f2(x, y) = x ⊕ y ⊕ xy is neither linear with respect to
x, nor to y. ❙
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Definition 7. A Boolean function is ( totally) symmetric if any permutation of
all its variables does not change the function.

There are 2n+1 symmetric Boolean functions.

Definition 8. If any permutation of a proper subset S of the variables of cardi-
nality at least 2 does not change the Boolean function f , then f is called a par-
tially symmetric function with respect to S and S is called a partial symmetry
of variables of f . The collection of maximal partial symmetry subsets of vari-
ables of f is called a partial symmetry profile and is denoted by Sf . The partial
symmetry profile of a totally symmetric Boolean function f(x1, x2, . . . , x3) is
equal to {{x1, x2, . . . , xn}}. Let partial symmetry profiles of Boolean functions
f1, f2, . . . , fn be denoted by S1, S2, . . . , Sn, respectively. The intersection of such
profiles is the collection of subsets of variables obtained by taking all possibilities
of performing intersection operation on an element in S1, an element in S2, . . . ,
and an element in Sn. If the intersection operation on S1, S2, . . . , Sn does not
contain an element with at least two variables, then there does not exist a partial
symmetry subset of all functions f1, f2, . . . , fn.

Example 7. Let f(u, v, w, x, y, z) = u ⊕ vw ⊕ xyz and g(u, v, w, x, y, z) = uv ⊕
w ⊕ xyz. Then the partial symmetry profile of f is Sf{{v, w}, {x, y, z}}, the
partial symmetry profile of g is Sg = {{u, v}, {x, y, z}} and the intersection of
Sf and Sg is equal to {{v}, φ, {x, y, z}}, i.e. both functions f and g are partially
symmetric with respect to {{x, y, z}} as well as this subset is the only one partial
symmetry subset of both functions f and g. ❙

Definition 9. A Boolean function f : {0, 1}n → {0, 1} is called balanced if it
takes value 1 the same number of times as value 0.

Example 8. There are 70 balanced Boolean functions on 3 arguments, includ-
ing degenerate ones. Only four of them are totally symmetric, namely parity and
majority functions and their negations:

parity x ⊕ y ⊕ z 1 ⊕ x ⊕ y ⊕ z,
majority xy ⊕ xz ⊕ yz 1 ⊕ xy ⊕ xz ⊕ yz.

Eight of the balanced functions, including degenerate ones, are partially symmet-
ric with respect to each 2-element subset of variables, for instance, functions

x ⊕ y, 1 ⊕ x ⊕ y,
xy ⊕ z, 1 ⊕ xy ⊕ z,

x ⊕ y ⊕ xy ⊕ z, 1 ⊕ x ⊕ y ⊕ xy ⊕ z,
x ⊕ y ⊕ xy ⊕ xz ⊕ yz, 1 ⊕ x ⊕ y ⊕ xy ⊕ xz ⊕ yz.

are partially symmetric with respect to {x, y}. ❙

Definition 10. Two Boolean functions are:

(1) P-equivalent if they can be converted to each other by the permutation of
variables,
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(2) NP-equivalent if they can be converted to each other by the negation and/or
permutation of variables,

(3) NPN-equivalent if they can be converted to each other by negation of vari-
ables, permutation of variables and negation of the function.

Definition 11. A Boolean function f is self-complementary (SC) if f and f ′

are NP-equivalent.

Definition 12. A Boolean function f is self-dual (SD) if

f(x1, x2, . . . , xn) = f ′(x′
1, x

′
2, . . . , x

′
n).

The following results are well-known:

Lemma 2. (1) All self-complementary functions are balanced,
(2) All self-dual functions are self-complementary,
(3) All functions having property LV are self-complementary,
(4) If a Boolean function f is linear with respect to a variable xi then

f(xi = 1) = f ′(xi = 0).

In the case of Boolean functions, depending on the operations allowed in
a particular classification, the P-equivalent, NP-equivalent, and NPN-equivalent
functions are distinguished. In some applications, equivalence classes defined
with respect to a restricted set of operations are of a particular interest, as for
example, in [5,6]. Here, we are particularly interested in P-equivalent functions
when studying the properties of component functions.

Definition 13. A mapping F : {0, 1}n → {0, 1}n is called an n∗n reversible
function if it is bijective. Functions which are not reversible are called irre-
versible. An n∗n reversible function F can be considered as a vector of standard
Boolean functions called component functions fi : {0, 1}n → {0, 1}, 1 ≤ i ≤ n,
which are defined at every x ∈ {0, 1}n by F (x) = (f1(x), . . . , fn(x)).

In the truth table of a reversible n∗n Boolean function there are n input columns
and n output columns. The output rows of such a truth table form a permutation
of the input rows. From the bijectivity of reversible functions it follows that all
component functions have to be balanced Boolean functions.

By an analogy with the definition of NPN-equivalence classes for standard
Boolean functions, the following definition of equivalence classes for Boolean
reversible functions can be given.

Definition 14. Two reversible Boolean functions are NPNP-equivalent if they
can be transformed to each other by the following operations (including the com-
binations that do not use all of these operations):

(1) Negation of variables,
(2) Permutation of variables,
(3) Negation of component functions, and
(4) Permutation of component functions.
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Each reversible function can be treated as a permutation. This is why we
also recall basic notions connected with permutations. Let A be any finite set. A
permutation on a set A is a bijective mapping from A to itself. Every permutation
can be considered as a collection of disjoint cycles. Here such a collection will
be called a cycle structure. We will write a cycle in the form < a1, a2, . . . , ak >,
meaning that a1 is mapped onto a2, . . . , ak is mapped onto a1. It could be written
in different ways, e.g. < a2, a3, . . . , ak, a1 >. The number of elements in a cycle
is called the length of the cycle. A cycle with the length k is called a k-cycle.
A 2-cycle is also called a transposition.

3 Previous Work

The motivation for our studies of reversible functions toward constructing their
classifications is borrowed from the classical logic synthesis by referring to an
analogy with related problems. For example, in classical logic synthesis, the
equivalence of two functions under permutation of the variables is an impor-
tant problem due to applications in the synthesis of multiplexer-based field-
programmable gate arrays [5,6]. The problem is called Boolean matching, and
two functions match if they have the same P-representative. The extension to
NP-representatives is done in [7,8] in solving the Boolean matching problem in
cell-library binding.

Classification of Boolean functions is a classical problem in logic synthesis
due to its various applications, with fast prototyping and unification of testing
procedures being just two of them [28]. However, a considerably smaller amount
of work has been done in the classification of reversible functions. In [18,19] it is
presented an approach to enumerate equivalence classes of reversible functions
with the equivalence classes defined as follows. Denote by G and H the groups of
permutations acting on the inputs and outputs of Boolean reversible functions,
respectively. Two functions f1(x) and f2(x) are equivalent if for each n-tuple
x, there is a g ∈ G and an h ∈ H such that f1(x) = h(f2(g(x))). It is also
provided a list of all NPNP-equivalence classes of 3-variable reversible functions
as well as a classification based on properties of the inverses of the representative
functions for the equivalence classes considered. The lists consist of triples of
balanced Boolean functions specified by ESOPs. Unfortunately, using “prime”
for negation led to a number of typographical errors which has been discovered
by us recently [13] (see Sect. 6).

A technical report from 1962 by C. S. Lorens [18] and an article by the same
author [19] can be viewed as a starting point of subsequent work on an enu-
meration of equivalence classes of reversible functions by several authors [10,20–
23,29]. With the exception of [22], these publications consider the classifica-
tion of binary reversible functions. These publications were discussed mainly by
researchers in combinatorial mathematics and cryptography but hardly used and
correspondingly rarely if at all referred within the reversible functions commu-
nity, the main reason probably being that the term invertible instead of reversible
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functions has been used. A classification scheme for reversible functions was the
subject of a profound study in [24], however, without a concrete solution pro-
posed.

Recently, certain aspects of the classification problem have been addressed.
In [26], the list of all NPNP-equivalence classes for three variable reversible
functions from [19] is presented in the context of a study of the complexity of
reversible circuits with the representative functions for equivalence classes given
in the form of permutations (i.e. without considering individual component func-
tions). The minimal number of nonlinear gates needed in the implementation of
reversible functions is used as a classification criterion in [9]. The structure of
closed classes of reversible functions is described in [1]. Enumeration of equiva-
lence classes under the action of permutation of the inputs and outputs on the
domain and the range is presented in [2].

For the first time in the literature, we solved in [13,14] several problems of
the existence of binary reversible functions with all component functions hav-
ing the same known property (e.g., symmetry, affinity, linearity, nonlinearity,
self-duality, self-complementarity, monotonicity, unateness). Solutions of such
problems for ternary reversible functions are presented by us in [15]. In [17]
we presented results on the existence of ternary/multiple-valued reversible func-
tions with all component functions belonging to different P-equivalence classes.
In [16] it is shown how we discovered solutions of some problems by extrapolating
properties of previously found reversible functions of 3 and 4 variables.

4 Theoretical Results

This section presents basic theoretical results on properties of component func-
tions of reversible functions. We begin with the following general result:

Theorem 1. If f(x1, x2, . . . , xn) = (f1, f2, . . . , fn) is an n∗n reversible (irre-
versible) Boolean function, then the function obtained from f by any of the fol-
lowing transformations

– negation of variables,
– permutation of variables,
– negation of a component function,
– permutation of component functions,

is also reversible (irreversible).

Proof. It is sufficient to notice that any of the above transformations corre-
sponds to a permutation of rows in the truth table, i.e. preserves the property
of bijectivity. 	

The following result follows directly from Theorem 1.

Corollary 1. n∗n functions belonging to an NPNP-equivalence class either are
all reversible or none of them is reversible.
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There are constraints on using totally and partially symmetric functions
as component functions of an n∗n reversible function f(x1, x2, . . . , xn) =
(f1, f2, . . . , fn). Let partial symmetry profiles of the component functions
f1, f2, . . . , fn be denoted by S1, S2, . . . , Sn, respectively (see Definition 8).

Theorem 2. A necessary condition for an n∗n function f(x1, x2, . . . , xn) =
(f1, f2, . . . , fn) to be reversible is as follows: intersection of all profiles
S1, S2, . . . , Sn, has to be equal to the collection of results each of which has no
more than one element.

Proof. Let us assume that two variables xi and xj belong to one subset being
an element of the intersection of the profiles S1, S2, . . . , Sn, i.e. appear in one
subset in all these profiles. It is equivalent to the equation:

f(x1, . . . , xi−1, 0, xi+1, . . . , xj−1, 1, xj+1, . . . , xn) = f(x1, . . . , xi−1, 1, xi+1, . . . , xj−1, 0,

xj+1, . . . , xn).

However, because any reversible function f is a bijective mapping then
f(x1, . . . , xi−1, 0, xi+1, . . . , xj−1, 1, xj+1, . . . , xn) differs from f(x1, . . . , xi−1,
1, xi+1, . . . , xj−1, 0, xj+1, . . . , xn). 	

Thus, the following theorem holds.

Theorem 3. n∗n reversible Boolean functions, n > 1, with all totally symmetric
CFs being non-degenerate do not exist.

On the other hand, component functions of a reversible function can be totally
or partially symmetric if at least two of them are partially symmetric.

Example 9. It is easy to show that the following function is reversible

f1 = x1 ⊕ x2 ⊕ x3, f2 = x1 ⊕ x2, f3 = x1 ⊕ x3,

where f1 is a totally symmetric function and both f2 and f3 are partially sym-
metric functions The simple generalization of the above reversible function to
the case of any n can be defined as follows:

f1 =
n⊕

i=1

xi, fk =
⊕

i�=k

xi, k ∈ {2, . . . , n},

where the symbol
⊕

denotes summing modulo 2. ❙

In some papers, algorithms for synthesis of reversible circuits for (totally)
symmetric functions are considered. However, symmetric functions in these
papers are first embedded in reversible specifications with additional inputs
and/or outputs.

Now let us consider linear and affine CFs. For any n there is only one non-
degenerate linear Boolean function:

x1 ⊕ x2 ⊕ · · · ⊕ xn.

Hence, by Theorem 1 the following result is true:
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Theorem 4. For n > 1 n∗n reversible Boolean functions with all linear or affine
CFs being non-degenerate do not exist.

However, reversible Boolean functions having as CFs one of non-degenerate
linear (affine) functions and the other functions depending essentially on k < n
variables do exist as is shown in Example 9.

Let us consider the following property of monotone Boolean functions.

Lemma 3. Every monotone Boolean function which is balanced, except projec-
tion functions P-equivalent to the identity, cannot be equal to 1 for an assignment
with weight 1 (i.e. with only one non-zero entry).

Proof. Assume that the lemma is not true. Then there exists a balanced mono-
tone Boolean function f , not being a projection function, and an assignment
a = (a1, a2, . . . , an) with weight 1 for which f(a) is not equal to zero. Without
loss of generality let a = (1, 0, . . . , 0, 0), i.e. x1 = 1, xi = 0 for 2 ≤ i ≤ n.
Because f is monotone so f(b) = 1 for all assignments b = (b1, b2, . . . , bn) with
b1 = 1. The number of such assignments is equal to 2n−1. As the number of
all binary assignments is 2n hence the number of assignments c not compatible
with assignments b, i.e. having c1 = 0, is equal to 2n −2n−1 = 2n−1. A balanced
Boolean function takes values 0 and 1 the same number of times so f = 0 for all
those assignments with c1 = 0. Thus,

f(a) = 0 for all binary assignments a = (0, a2, . . . , an−1, an),
f(a) = 1 for all binary assignments a = (1, a2, . . . , an−1, an),

i.e., f is a projection function what is in contradiction with the initial assump-
tion. 	

Theorem 5. An n∗n reversible Boolean function, n ≥ 3, with all component
functions being non-degenerate monotone does not exist.

Proof. Lemma 3 states that for any monotone balanced Boolean function F and
any input assignment a with weight 1

F (a) = 0.

Thus, for any n∗n reversible Boolean function G, n ≥ 3, with all CFs being
monotone and any input assignment a with weight 1

G(0, 0, . . . , 0, 0, 1) = G(0, 0, . . . , 0, 1, 0) = (0, 0, . . . , 0, 0, 0),

what contradicts the reversibility constraint as G takes value (0, 0, . . . , 0, 0, 0)
more than once. Thus, any n∗n Boolean function, n ≥ 3, with all component
functions being monotone, is not reversible.

By Definition 3, Definition 4, Lemma 1, Theorem 1 and Theorem 5 the
following result holds. 	
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Corollary 2. An n∗n reversible Boolean function, n ≥ 3, with all component
functions being non-degenerate and threshold, does not exist.

5 Results Based on Newly Constructed Functions

Let us first introduce simple notions related to Positive Polarity Reed-Muller
expressions for Boolean functions. The number of literals in a term will be called
its rank. Denote by Ti,j the exclusive-or sum of all terms having a rank not
smaller than i and not greater than j (Ti,i will denote all terms with rank i).

In [13] we introduced the following n∗n reversible function, for arbitrary n,
which will be called Negation with Preservation of Constants (in short NPCn∗n):

Definition 15. The reversible function NPCn∗n(x1, x2, . . . , xn), n ≥ 3, is
defined in such a manner that its component functions NPCn are defined as
follows:

f1 = x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xn−2 ⊕ xn−1 ⊕T2,n−1,
f2 = x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xn−2 ⊕ xn ⊕T2,n−1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fn−1 = x1 ⊕ x3 ⊕ · · · ⊕ xn−2 ⊕ xn−1 ⊕ xn ⊕T2,n−1,
fn = x2 ⊕ x3 ⊕ · · · ⊕ xn−2 ⊕ xn−1 ⊕ xn ⊕T2,n−1,

i.e., in each of the above equations exactly one variable is missing, namely in
the ith equation variable xn−i+1 is missing.

The formulas in Definition 15 can be transformed taking into account that

1. x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xn−2 ⊕ xn−1 ⊕ xn ⊕ T2,n = T1,n =

= x1 ∨ x2 ∨ x3 ∨ · · · ∨ xn−1 ∨ xn,

(this transformation can be easily proved by induction starting from the well-
known formula for n = 2 : x1 ∨ x2 = x1 ⊕ x2 ⊕ x1x2),

2. fi = fi ⊕ xn−i+1 ⊕ xn−i+1 ⊕ x1x2 . . . xn ⊕ x1x2 . . . xn = T1,n ⊕ xn−i+1 ⊕ x1x2 . . . xn

= (x1 ∨ x2 ∨ x3 ∨ · · · ∨ xn−1 ∨ xn) ⊕ xn−i+1 ⊕ x1x2 . . . xn,

where we applied the following three obvious formulas:

fi = fi⊕0, xn−i+1⊕xn−i+1 = 0, x1x2 . . . xn⊕x1x2 . . . xn = 0,

and the transformation used in case 1:

fi ⊕ xn−i+1 ⊕ x1x2 . . . xn = x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xn−2 ⊕ xn−1 ⊕ xn ⊕ T2,n−1 ⊕ x1, x2 . . . xn

= x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xn−2 ⊕ xx−1 ⊕ xn ⊕ T2,n = T1,n.
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Using the above formulas we will show by example how the values of the function
fi can be calculated. Without loss of generality we will show this for f1:
Step 1. Calculate f

(1)
1 = x1 ∨ x2 ∨ x3 ∨ · · · ∨ xn−1 ∨ xn (see Table 1).

Step 2. Calculate f
(2)
1 = (x1 ∨ x2 ∨ x3 ∨ · · · ∨ xn−1 ∨ xn) ⊕ x1 (by negating the

lower half of the truth table obtained in Step 1).
Step 3. Calculate f1 = (x1 ∨ x2 ∨ x3 ∨ · · · ∨ xn−1 ∨ xn) ⊕ x1 ⊕ x1x2 . . . xn (by
negating the output value in the last row of the truth table obtained in Step 2).
These steps are performed for n = 3 in Table 1.

Thus, f1 has the well-known property of preserving constants:

f1(0, 0, 0) = 0 and f1(1, 1, 1) = 1,

as well as is negating the input x1 for all other vectors of input values. Similarly
(see Table 2), the reversible function NPC3∗3 is preserving constants:

NPC3∗3(0, 0, 0) = (0, 0, 0) and NPC3∗3(1, 1, 1) = (1, 1, 1),

as well as negating all the other input vectors. This is why we gave this reversible
function the name Negation with Preservation of Constants.

Table 1. Establishing values of the 3-variable function f1 in three steps

x1x2x3 f
(1)
1 f

(2)
1 f1

0 0 0 0 0 0

0 0 1 1 1 1

0 1 0 1 1 1

0 1 1 1 1 1

1 0 0 1 0 0

1 0 1 1 0 0

1 1 0 1 0 0

1 1 1 1 0 1

By analogy with the above example it is easy to show that the following two
results hold for any n:

Lemma 4. Each function NPCn∗n is reversible.

Lemma 5. Each component function of NPCn∗n can be obtained from the
Boolean function NPCn as a result of a permutation of its variables.
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Table 2. Truth table for the function NPC3∗3

x1x2x3 f1f2f3

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 1 0 1

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 0 1 0

1 1 0 0 0 1

1 1 1 1 1 1

Theorem 6. All component functions of NPCn∗n, n ≥ 3, are (1) nonlinear,
(2) self-dual, (3) self-complementary, (4) P-equivalent, and (5) unate.

Proof. (1) The function NPCn is nonlinear because its PPRM contains terms of
rank 2 for any n > 2.

(2) Without loss of generality we write NPCn(x1, x2, . . . , xn) = (x1 ∨ x2 ∨ · · · ∨
xn)⊕x1⊕x1x2 . . . xn On the other hand, by De Morgan’s laws the following
two formulas hold:

(x′
1 ∨ x′

2 ∨ · · · ∨ x′
n) = (x1x2 . . . xn)′ = 1 ⊕ x1x2 . . . xn,

x′
1x

′
2 . . . x′

n = (x1 ∨ x2 ∨ · · · ∨ xn)′ = 1 ⊕ (x1 ∨ x2 ∨ · · · ∨ xn).

Thus,

(NPCn)′(x′
1, x

′
2, . . . , x

′
n) = 1 ⊕ [(x′

1 ∨ x′
2 ∨ · · · ∨ x′

n) ⊕ x′
1 ⊕ x′

1x
′
2 . . . x′

n]
= 1 ⊕ [(x1x2 . . . xn)′ ⊕ x′

1 ⊕ (x1 ∨ x2 ∨ · · · ∨ xn)′]
= 1 ⊕ [1 ⊕ x1x2 . . . xn ⊕ 1 ⊕ x1 ⊕ 1 ⊕ (x1 ∨ x2 ∨ · · · ∨ xn)]
= (x1 ∨ x2 ∨ · · · ∨ xn) ⊕ x1 ⊕ x1x2 . . . xn

= NPCn(x1, x2, . . . , xn).

and by Definition 12 any NPCn is self-dual.
(3) From Lemma 2 it follows that it is self-complementary.
(4) P-equivalence follows from Lemma 5.
(5) Once again, without loss of generality we can write

NPCn(x1, x2, . . . , xn) = [(x1 ∨ x2 ∨ · · · ∨ xn) ⊕ x1] ⊕ x1x2 . . . xn,

and transform it using well-known formulas a ⊕ b = ab′ + a′b, aa′ = 0,
a = a ∨ ab, and De Morgan’s laws:

NPCn(x1, x2, . . . , xn) = [(x1 ∨ x2 ∨ · · · ∨ xn)x
′
1 ∨ (x1 ∨ x2 ∨ · · · ∨ xn)

′x1] ⊕ x1x2 . . . xn

= [x′
1x2 ∨ x′

1x3 ∨ · · · ∨ x′
1xn ∨ (x′

1x
′
2 . . . x

′
n)x1] ⊕ x1x2 . . . xn

= (x′
1x2 ∨ x′

1x3 ∨ · · · ∨ x′
1xn)(x1x2 . . . xn)

′ ∨ (x′
1x2 ∨ x′

1x3 ∨ · · · ∨ x′
1xn)

′(x1x2 . . . xn)

= x′
1x2 ∨ x′

1x3 ∨ · · · ∨ x′
1xn ∨ x2 . . . xn.
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Thus, in the reduced SOP for NPCn the variable x1 appears only as comple-
mented and all the other variables are uncomplemented, i.e. NPCn is unate. 	

Corollary 3. For any n ≥ 3 there exist reversible functions having all compo-
nent functions being:

(1) nonlinear,
(2) self-dual,
(3) self-complementary,
(4) P-equivalent,
(5) unate.

6 Computational Results

By running simple programs on a laptop we have obtained the computational
results described in this section. The configuration of the laptop we used was
standard: i7 processor and 4 GB of RAM. Each of the computational tasks
took less than one hour. First we calculated in an exhaustive manner all NPN-
equivalence classes of balanced Boolean functions of 1, 2, 3 and 4 variables. The
results for n = 1, 2, 3 are shown in Table 3 and for n = 4 in Table 4 together with
sizes and functional properties of all these classes. These results were published
for the first time in [13]. Each row gives one equivalence class identified by its
representative expressed in the form of PPRM expressions. For our purpose
considering each component function separately is a more convenient form than
permutation which is shorter but in which component functions are not shown
explicitly. For each class, the table shows the number of variables (n), the name
of the class (Class), the size of the equivalence class (Size), a Representative
of the class, and the classical Properties the class possesses (the meanings of
abbreviations L, LV, NL, SC and SD were introduced in Sect. 2). Equivalence
classes are sorted first by the size of the number of terms in PPRM expression
and in case of a tie by the sizes of the consecutive terms in the expression (the
terms of the same size are given in the lexicographic order). To decrease the
width of Tables 4 and 5 we used names a, b, c and d to denote variables (instead
of x1, x2, x3, x4 which we use in the rest of the paper).

We have checked that only for the following 18 out of 58 classes of bal-
anced Boolean functions up to 4 variables (B1.1-B4.52) it is impossible to find
four functions belonging to the same class which would constitute a 4-variable
reversible function: B2.1, B3.2, B4.2, B4.3, B4.4, B4.7 (this class includes only
2 functions), B4.13, B4.15, B4.27, B4.28, B.4.31, B4.33, B4.34, B4.35, B4.38,
B4.42, B4.48, B4.51.

We used this result for extrapolation of some properties for a larger number of
variables. We also expect that several interesting conjectures can be formulated
on the basis of the above results.

We have also calculated all NPNP-equivalence classes of 3-variable reversible
functions (see Table 5 organised under the same assumptions as Tables 3 and 4).
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Table 3. NPN-equivalence classes of n-variable balanced Boolean functions for n ≤ 3

Class Size Representative Properties

L LV NL SC SD

B1.1 8 a + + + +

B2.1 12 a ⊕ b + + +

B3.1 96 a ⊕ bc + + +

B3.2 8 a ⊕ b ⊕ c + + + +

B3.3 96 a ⊕ ab ⊕ bc + +

B3.4 32 ab ⊕ ac ⊕ bc + + +

For the synthesis of reversible functions, NPNP-equivalence classes are interest-
ing because permutations of component functions do not change values of cost
functions of optimal reversible circuits implementing them. It is because a per-
mutation of component functions leads to permutation of lines in the circuit
which does not change the cost of the circuit.

As mentioned in Sect. 3 such a table was published in [19] but we were able
to find (probably typographic) errors in it. One type of these errors consists
in non-reversibility of two classes’ representatives. To show precisely where the
errors are located let us point that Lorens’ Table VI is split into three parts
based on properties of the inverses of the classes’ representatives:

(A) 21 functions having their inverses identical to the function (called self-inverse
functions),

(B) 3 classes of functions having their inverses in the same NPNP-equivalence
class,

(C) 28 classes of functions having their inverses in a different NPNP-equivalence
class.

It is easy to check that the following two classes’ representatives from the
Lorens’ table are not reversible:

f1 = x′
1 ⊕ x2x3, f2 = x2 ⊕ x1x

′
3, f3 = x3 ⊕ x′

1x2(Part A, row 16),

f1 = x1x2 ⊕ x2x3 ⊕ x3x1, f2 = x1 ⊕ x2x
′
3, f3 = x3 ⊕ x2x

′
1(Part C, column 1, row 13).

It seems that the correct expressions were supposed to be as follows:

f1 = x′
1 ⊕ x2x3, f2 = x2 ⊕ x1x

′
3, f3 = x3 ⊕ x′

1x
′
2(adding a “prime” to the last literal),

f1 = x1x2 ⊕ x2x3 ⊕ x3x1, f2 = x1 ⊕ x′
2x3, f3 = x3 ⊕ x2x

′
1(swapping the “prime”

in the 2nd term in f2).

The last two functions are reversible and belong to our classes R28 and R31,
respectively, which are not covered by the other representatives in Table VI in
[19].

In Lorens’ Table VI we have also found two pairs of representatives that
belong to the same class:
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Table 4. NPN-equivalence classes of n-variable balanced Boolean functions for n = 4

Class Size Representative Properties

L LV NL SC SD

B4.1 64 a ⊕ bcd + + +

B4.2 48 a ⊕ b ⊕ cd + + +

B4.3 192 a ⊕ b ⊕ acd + + +

B4.4 96 a ⊕ bc ⊕ bd + + +

B4.5 768 a ⊕ bc ⊕ abd +

B4.6 192 a ⊕ abc ⊕ bcd + +

B4.7 2 a ⊕ b ⊕ c ⊕ d + + +

B4.8 192 a ⊕ b ⊕ c ⊕ abd + + +

B4.9 96 a ⊕ b ⊕ ac ⊕ cd + + +

B4.10 384 a ⊕ b ⊕ cd ⊕ abc +

B4.11 384 a ⊕ b ⊕ abc ⊕ acd + +

B4.12 96 a ⊕ ab ⊕ bc ⊕ bd + +

B4.13 32 a ⊕ bc ⊕ bd ⊕ cd + + +

B4.14 384 a ⊕ bc ⊕ abc ⊕ abd + +

B1.15 64 a ⊕ b ⊕ c ⊕ d ⊕ abc + + +

B4.16 192 a ⊕ b ⊕ c ⊕ abc ⊕ abd + +

B4.17 32 a ⊕ b ⊕ ac ⊕ ad ⊕ cd + + + +

B4.18 384 a ⊕ b ⊕ ab ⊕ ac ⊕ bcd + +

B4.19 384 a ⊕ b ⊕ ac ⊕ ad ⊕ bcd +

B4.20 384 a ⊕ b ⊕ ac ⊕ acd ⊕ bcd +

B4.21 384 a ⊕ b ⊕ ac ⊕ abd ⊕ bcd +

B4.22 384 a ⊕ b ⊕ abc ⊕ acd ⊕ bcd +

B4.23 48 a ⊕ ab ⊕ ac ⊕ bd ⊕ cd + + +

B4.24 384 a ⊕ ab ⊕ bc ⊕ bd ⊕ acd +

B4.25 384 a ⊕ ab ⊕ bc ⊕ abd ⊕ acd +

B4.26 192 a ⊕ ab ⊕ cd ⊕ abc ⊕ acd + +

B4.27 384 a ⊕ bc ⊕ bd ⊕ abd ⊕ acd + +

B4.28 192 a ⊕ bc ⊕ bd ⊕ acd ⊕ bcd +

B4.29 192 a ⊕ ab ⊕ abc ⊕ abd ⊕ bcd + +

B4.30 384 a ⊕ bc ⊕ abc ⊕ abd ⊕ acd +

B4.31 48 ab ⊕ ac ⊕ ad ⊕ bc ⊕ bd + +

B4.32 384 a ⊕ b ⊕ c ⊕ ab ⊕ ad ⊕ bcd + +

B4.33 192 a ⊕ b ⊕ c ⊕ ad ⊕ abc ⊕ bcd +

B4.34 384 a ⊕ b ⊕ c ⊕ ad ⊕ abd ⊕ bcd + +

B4.35 24 a ⊕ b ⊕ ab ⊕ ac ⊕ bd ⊕ cd + +

B4.36 384 a ⊕ b ⊕ ac ⊕ cd ⊕ abc ⊕ abd + +

B4.37 192 a ⊕ b ⊕ ac ⊕ cd ⊕ abd ⊕ acd + +

B4.38 192 a ⊕ b ⊕ ab ⊕ abc ⊕ abd ⊕ acd + +

B4.39 768 a ⊕ b ⊕ ac ⊕ abd ⊕ acd ⊕ bcd +

B4.40 96 a ⊕ b ⊕ abc ⊕ abd ⊕ acd ⊕ bcd +

B4.41 96 a ⊕ ab ⊕ ac ⊕ bc ⊕ bd ⊕ cd + +

B4.42 192 a ⊕ ab ⊕ bc ⊕ bd ⊕ acd ⊕ bcd +

B4.43 384 a ⊕ ab ⊕ bc ⊕ cd ⊕ abd ⊕ acd + +

B4.44 384 a ⊕ ab ⊕ cd ⊕ abc ⊕ abd ⊕ acd +

B4.45 384 a ⊕ bc ⊕ bd ⊕ abc ⊕ acd ⊕ bcd + +

B4.46 64 a ⊕ b ⊕ c ⊕ ad ⊕ abd ⊕ acd ⊕ bcd + +

B4.47 384 a ⊕ b ⊕ ac ⊕ cd ⊕ abc ⊕ abd ⊕ acd + +

B4.48 192 a ⊕ b ⊕ ab ⊕ abc ⊕ abd ⊕ acd ⊕ bcd +

B4.49 384 a ⊕ b ⊕ ac ⊕ abc ⊕ abd ⊕ acd ⊕ bcd + +

B4.50 64 a ⊕ ab ⊕ cd ⊕ abc ⊕ abd ⊕ acd ⊕ bcd + + +

B4.51 64 a ⊕ b ⊕ c ⊕ d ⊕ ab ⊕ abc ⊕ abd ⊕ acd + +

B4.52 64 a ⊕ b ⊕ c ⊕ ab ⊕ cd ⊕ abc ⊕ abd ⊕ acd ⊕ bcd + + +
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Table 5. Representatives of NPNP-equivalence classes of reversible Boolean functions
for n = 3

Class Size f1(a, b, c) f2(a, b, c) f3(a, b, c) BF classes

R1 48 a b c 1.1 1.1 1.1

R2 288 a b a ⊕ c 1.1 1.1 2.1

R3 576 a b c ⊕ ab 1.1 1.1 3.1

R4 144 a b a ⊕ b ⊕ c 1.1 1.1 3.2

R5 144 a a ⊕ b a ⊕ c 1.1 2.1 2.1

R6 288 a a ⊕ b b ⊕ c 1.1 2.1 2.1

R7 1152 a a ⊕ b c ⊕ ab 1.1 2.1 3.1

R8 288 a a ⊕ b a ⊕ b ⊕ c 1.1 2.1 3.2

R9 576 a b ⊕ c b ⊕ ab ⊕ ac 1.1 2.1 3.3

R10 1152 a b ⊕ ac b ⊕ c ⊕ ab 1.1 3.1 3.1

R11 576 a b ⊕ ac b ⊕ c ⊕ ac 1.1 3.1 3.1

R12 2304 a b ⊕ ac c ⊕ ab ⊕ ac 1.1 3.1 3.3

R13 576 a b ⊕ ac a ⊕ b ⊕ c ⊕ ac 1.1 3.2 3.1

R14 576 a a ⊕ b ⊕ c b ⊕ ab ⊕ ac 1.1 3.2 3.3

R15 288 a b ⊕ ab ⊕ ac c ⊕ ab ⊕ ac 1.1 3.3 3.3

R16 288 a b ⊕ ab ⊕ ac a ⊕ c ⊕ ab ⊕ ac 1.1 3.3 3.3

R17 144 a ⊕ b a ⊕ c a ⊕ b ⊕ c 2.1 2.1 3.2

R18 576 a ⊕ b a ⊕ c ab ⊕ ac ⊕ bc 2.1 2.1 3.4

R19 576 a ⊕ b c ⊕ ab a ⊕ c ⊕ ab 2.1 3.1 3.1

R20 1152 a ⊕ b c ⊕ ab a ⊕ ac ⊕ bc 2.1 3.1 3.3

R21 1152 a ⊕ b c ⊕ ab a ⊕ c ⊕ ab ⊕ ac ⊕ bc 2.1 3.1 3.4

R22 576 a ⊕ b a ⊕ b ⊕ c a ⊕ ac ⊕ bc 2.1 3.2 3.3

R23 288 a ⊕ b a ⊕ ac ⊕ bc a ⊕ c ⊕ ac ⊕ bc 2.1 3.3 3.3

R24 288 a ⊕ b a ⊕ ac ⊕ bc b ⊕ c ⊕ ac ⊕ bc 2.1 3.3 3.3

R25 1152 a ⊕ b a ⊕ ac ⊕ bc a ⊕ c ⊕ ab ⊕ ac ⊕ bc 2.1 3.3 3.4

R26 576 a ⊕ b ab ⊕ ac ⊕ bc a ⊕ c ⊕ ab ⊕ ac ⊕ bc 2.1 3.4 3.4

R27 2304 a ⊕ bc a ⊕ b ⊕ ac c ⊕ ab ⊕ ac 3.1 3.1 3.3

R28 384 a ⊕ bc a ⊕ b ⊕ ac a ⊕ b ⊕ c ⊕ ab 3.1 3.1 3.1

R29 1152 a ⊕ bc a ⊕ b ⊕ ac a ⊕ b ⊕ c ⊕ ac 3.1 3.1 3.1

R30 1152 a ⊕ bc a ⊕ b ⊕ ac b ⊕ c ⊕ ac ⊕ bc 3.1 3.1 3.3

R31 1152 a ⊕ bc a ⊕ b ⊕ ac a ⊕ c ⊕ ab ⊕ ac ⊕ bc 3.1 3.1 3.4

R32 576 a ⊕ bc a ⊕ b ⊕ bc a ⊕ c ⊕ bc 3.1 3.1 3.1

R33 1152 a ⊕ bc a ⊕ b ⊕ bc c ⊕ ab ⊕ bc 3.1 3.1 3.3

R34 576 a ⊕ bc b ⊕ ab ⊕ ac c ⊕ ab ⊕ ac 3.1 3.3 3.3

R35 2304 a ⊕ bc b ⊕ ab ⊕ ac c ⊕ ab ⊕ bc 3.1 3.3 3.3

R36 576 a ⊕ bc b ⊕ ab ⊕ ac a ⊕ b ⊕ c ⊕ bc 3.1 3.3 3.1

R37 1152 a ⊕ bc b ⊕ ab ⊕ ac a ⊕ c ⊕ ab ⊕ ac 3.1 3.3 3.3

R38 1152 a ⊕ bc b ⊕ ac ⊕ bc b ⊕ c ⊕ ab ⊕ bc 3.1 3.3 3.3

R39 1152 a ⊕ bc b ⊕ ac ⊕ bc b ⊕ c ⊕ ac ⊕ bc 3.1 3.3 3.3

R40 2304 a ⊕ bc b ⊕ ac ⊕ bc a ⊕ c ⊕ ab ⊕ ac ⊕ bc 3.1 3.3 3.4

R41 576 a ⊕ bc a ⊕ b ⊕ c ⊕ bc a ⊕ b ⊕ ab ⊕ ac ⊕ bc 3.1 3.1 3.4

R42 576 a ⊕ bc a ⊕ b ⊕ ab ⊕ ac ⊕ bc a ⊕ c ⊕ ab ⊕ ac ⊕ bc 3.1 3.4 3.4

R43 1152 a ⊕ b ⊕ c a ⊕ ab ⊕ bc b ⊕ ac ⊕ bc 3.2 3.3 3.3

R44 288 a ⊕ b ⊕ c a ⊕ ab ⊕ bc c ⊕ ab ⊕ bc 3.2 3.3 3.3

R45 288 a ⊕ b ⊕ c a ⊕ ab ⊕ bc a ⊕ b ⊕ ab ⊕ bc 3.2 3.3 3.3

R46 384 a ⊕ ab ⊕ bc b ⊕ ac ⊕ bc c ⊕ ab ⊕ ac 3.3 3.3 3.3

R47 1152 a ⊕ ab ⊕ bc b ⊕ ac ⊕ bc a ⊕ c ⊕ ac ⊕ bc 3.3 3.3 3.3

R48 1152 a ⊕ ab ⊕ bc b ⊕ ac ⊕ bc b ⊕ c ⊕ ab ⊕ ac ⊕ bc 3.3 3.3 3.4

R49 576 a ⊕ ab ⊕ bc c ⊕ ab ⊕ bc a ⊕ b ⊕ ab ⊕ bc 3.3 3.3 3.3

R50 576 a ⊕ ab ⊕ bc c ⊕ ab ⊕ bc a ⊕ b ⊕ ab ⊕ ac ⊕ bc 3.3 3.3 3.4

R51 576 a ⊕ ab ⊕ bc a ⊕ b ⊕ ab ⊕ ac ⊕ bc b ⊕ c ⊕ ab ⊕ ac ⊕ bc 3.3 3.4 3.4

R52 192 ab ⊕ ac ⊕ bc a ⊕ b ⊕ ab ⊕ ac ⊕ bc a ⊕ c ⊕ ab ⊕ ac ⊕ bc 3.4 3.4 3.4
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– one pair is in Part A, rows 13 and 14 (both representatives belong to our class
R40),

– the other pair: Part C, column 1, row 10, and Part C, column 2, row 11 (both
representatives belong to our class R45).

Thus, 4 out of 52 NPNP-equivalence classes of 3∗3 reversible functions are not
represented in Lorens’ Table VI.

In Table 4, in comparison with [19], we added sizes of the classes and informa-
tion showing to which NPN-equivalence class of balanced functions each of the
component functions belongs. The latter information was useful in our extrapo-
lation of some properties of reversible functions [16] (for an example see Sect. 7).

7 Extrapolation Based on Cycle Structures

In [11,12] it has been demonstrated that it is possible to extrapolate some prop-
erties of reversible functions by considering their cycle structures. This is why
we tried to exploit the same approach to discover infinite sequences of reversible
functions with all their component functions being non-degenerate and belong-
ing to different P-classes. We established that there are 26 NPNP-classes of
3-variable functions (R27-R52) that possess all component functions depending
essentially on all three variables. Among them, there is only one class that con-
sists of reversible functions all whose component functions belong to different
NPN-classes. Below the PPRM expressions for a member of this class are shown:

NPNP-class R40

A = a ⊕ c ⊕ ab ⊕ ac ⊕ bc,

B = b ⊕ ab ⊕ ac,

C = c ⊕ ab.

The above PPRM expressions show some regular features. However, our
experience is so that extrapolation of such features of PPRMs is very difficult
because: (1) usually a component function is obtained which is not balanced,
(2) even if all PPRMs correspond to balanced functions then their collection
does not constitute a reversible function. Therefore we have decided to apply
extrapolation based on cycle structures. By considering the appropriate map-
pings {0, 1}3 → {0, 1}3 it is easy to establish that the earlier defined member of
the NPNP-class R40 has the following cycle structure:

< 000 > < 010 > < 011 > < 100 > < 001, 101, 111, 110 > .
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Let us note that binary n-tuples in the unique cycle having more than one
element form a regular pattern:

001,

101,

111,

110.

Namely, it is easy to note that

– the first and the second n-tuples differ only in the 1st bit position,
– the second and the third n-tuples differ only in the 2nd bit position,
– the third and the fourth n-tuples differ only in the 3rd bit position.

Thus, we observe here a certain periodicity which can be easily extrapolated
leading to the desired infinite sequence of reversible functions as will be seen
later. In this case, extrapolating was quite simple. Let us introduce additional
notions.

Definition 16. A set of variable assignments over {0, 1} with specified numbers
of p 0s and r 1s is called a block and denoted by bp,r.

Example 10. The set of all eight variable assignments for 3-variable Boolean
functions can be partitioned into the following four blocks:

b3,0 = {000}, b2,1 = {001, 010, 100}, b1,2 = {011, 101, 110}, b0,3 = {111}.
❙

Definition 17. For any Boolean function f let B0(f) and B1(f) denote the
sets of blocks including all variable assignments for which f is equal 0 and 1,
respectively.

Example 11. Let us consider the following Boolean projection functions:

f(x1, x2, x3) = x1, g(x1, x2, x3) = x2, h(x1, x2, x3) = x3.

Then,

B0(f) = {{000}, {001, 010}, {011}}, B1(f) = {{100}, {101, 110}, {111}},

B0(g) = {{000}, {001, 100}, {101}}, B1(g) = {{010}, {011, 110}, {111}},

B0(h) = {{000}, {010, 100}, {110}}, B1(h) = {{001}, {011, 101}, {111}}.

Notice that for each 3-variable Boolean reversible function k the union of
B0(k) and B1(k) is equal to the set of all 8 Boolean variable assignments. For
each of the component functions of an arbitrary reversible function cardinalities
of unions of their Bi sets are the same. ❙
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Example 12. Let us consider a 3-variable Boolean reversible function
F (x1, x2, x3) = (f1, f2, f3) defined in such a manner that the only non-identical
mappings of variable assignments in F are as follows

001 → 101,

101 → 111,

111 → 110,

110 → 001.

When we consider the reversible function F as a permutation of output
assignments it is a single cycle of four elements:

< 001, 101, 111, 110 > .

Notice that in the above mappings

– in the 1st row the leftmost bit is being negated,
– in the 2nd row the second bit is being negated
– in the 3rd row the third bit is being negated
– in the 4th row all bits are being negated.

This observation will be generalised later to functions of any number of vari-
ables.

Now let us note what changes have been done in the sets Bi, 0 ≤ i ≤ 1, for
functions f1, f2, and f3, in comparison with the sets for the function in Exam-
ple 11 (the assignments moved to another block are shown bolded and underlined):

B0(f1) = {{000}, {010}, {011,110}}, B1(f1) = {{001, 100}, {101}, {111}},

B0(f2) = {{000}, {001, 100}, {110}}, B1(f2) = {{010}, {011,101}, {111}},

B0(f3) = {{000}, {010, 100}, {111}}, B1(f3) = {{001}, {011, 101}, {110}}.

Let us summarise the above observations.
The values of the function f1 differ from the values of the projection function

x1 only for the assignments 001 and 110. Namely, we can notice that

f(0, 0, 1) = 0 f1(0, 0, 1) = 1,
f(1, 1, 0) = 1 f1(1, 1, 0) = 0.

As a result, the function f1 can be obtained from the projection function x1

by swapping its values for variable assignments 001 and 110.
Values of each of the other two component functions, f2 and f3, also differ

from the values of the corresponding projection functions only for two assign-
ments.
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Swaps for f2 in comparison with the projection function x2 are as follows:

g(1, 0, 1) = 0 f2(1, 0, 1) = 1,
g(1, 1, 0) = 1 f2(1, 1, 0) = 0.

Swaps for f3 in comparison with the projection function x3 are as follows:

h(1, 1, 1) = 1 f3(1, 1, 1) = 0,
h(1, 1, 0) = 0 f3(1, 1, 0) = 1.

Let us show that component functions f1 and f2 belong to different P-equiv-
alence classes. Assume that f1 and f2 belong to the same P-equivalence class.
Then, since any permutation over the variable set {x1, x2, x3} does not change
the assignment 111 there should be f1(1, 1, 1) = f2(1, 1, 1), however, f1(1, 1, 1) =
0 and f2(1, 1, 1) = 1. It is in contradiction with our assumption that f1 and
f2 belong to the same P-equivalence class. Thus, f1 and f2 belong to different
P-equivalence classes.

In a similar manner it can be shown that the other two pairs of component
functions of F , (f1, f3) and (f2, f3), belong to different P-equivalence classes.

Let us show that component functions f1 and f3 belong to different P-equi-
valence classes. Assume that f1 and f3 belong to the same P-equivalence class.
Then, since any permutation over variable set {x1, x2, x3} does not change the
assignment 111 there should be f1(1, 1, 1) = f3(1, 1, 1), however f1(1, 1, 1) = 0
and f3(1, 1, 1) = 1. It is in contradiction with our assumption that f1 and f3
belong to the same P-equivalence class. Thus, f1 and f3 belong to different P-
equivalence classes.

Let us show that component functions f2 and f3 belong to different P-equivale-
nce classes. Assume that f2 and f3 belong to the same P-equivalence class. Then,
let us consider the permutation of variables consisting in swapping variables x2

and x3. Then there should be f2(1, 0, 0) = f3(1, 0, 0), however f2(1, 0, 0) = 0 and
f3(1, 0, 0) = 1. It is in contradiction with our assumption that f2 and f3 belong to
the same P-equivalence class. Thus, f2 and f3 belong to different P-equivalence
classes. ❙

Now the presented above methodology of proving that two component func-
tions of F belong to different P-equivalence classes will be extended to Boolean
reversible functions of any number of variables. To prove that Boolean reversible
functions with all component functions belonging to different P-equivalence
classes exist for any number of variables n ≥ 3, we will define the following
infinite sequence of reversible functions:

Definition 18. The reversible Boolean function Hn(x1, x2, . . . , xn) = (f1,
f2, . . . , fn), n ≥ 3, is defined in such a manner that the only non-identical map-
pings of variable assignments in Hn are as follows:
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a1 a2 . . . an−1 an → a′
1 a2 . . . an−1 an,

a′
1 a2 . . . an−1 an → a′

1 a′
2 . . . an−1 an,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a′
1 a′

2 . . . a′
n−1 an → a′

1 a′
2 . . . a′

n−1 a′
n,

a′
1 a′

2 . . . a′
n−1 a′

n → a1 a2 . . . an−1 an,

where the starting variable assignment is as follows:

a1a2a3 . . . an−1an = 000 . . . 01.

Notice that in the ith row of the mappings in Definition 18, 1 ≤ i ≤ n, the
ith bit is being negated, and in the last mapping, all bits are being negated.

When we consider the function Hn as a permutation of variable assignments
it is a cycle of n + 1 elements:

< a1, a2, . . . , an−1, an,
a′
1, a2, . . . , an−1, an,

a′
1, a′

2, . . . , an−1, an,
. . . . . . . . . . . . . . . . . . . .
a′
1, a′

2, . . . , a′
n−1, an,

a′
1, a′

2, . . . , a′
n−1, a′

n > .

Theorem 7. Each n∗n function Hn is reversible for any n ≥ 3, where Hn is
formulated in Definition 18.

Proof. Because non-identical mappings of variable assignments in Hn form
a cycle, this function is bijective for any n ≥ 3. Hence, it is reversible. 	


In a manner similar to Example 12 we proved in [16] that the following result
holds.

Theorem 8. Any two component functions of the Boolean reversible function
Hn belong to different P-equivalence classes for n ≥ 3.

It is obvious that by Theorem 8 the following result holds:

Corollary 4. For any n ≥ 3 there exist binary reversible functions having all
component functions that belong to different P-equivalence classes.

8 Conclusions and Future Work

The chapter presents our results on properties of component functions of Boole-
an reversible functions. The solved problems were described briefly in Sects. 4,
5, 6 and 7. They can be summarised as follows:

(A) For any n ≥ 3 there does not exist a Boolean reversible function with all
component functions being non-degenerate and
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– totally symmetric,
– linear/affine,
– monotone,
– majority,
– threshold.

(B) For any n ≥ 3 there exists a Boolean reversible function with all component
functions being nondegenerate and
– nonlinear,
– self-complementary,
– self-dual,
– unate.
– P-equivalent.

(C) For any n ≥ 3 there exists a Boolean reversible function with all component
functions being non-degenerate and belonging to different P-equivalence
classes.

Our work has not been finished. We plan to continue efforts for constructing
a classification of reversible Boolean functions which would be useful in the
synthesis of reversible circuits.
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Abstract. Reversible computing allows one to run programs not only in
the usual forward direction, but also backward. A main application area
for reversible computing is debugging, where one can use reversibility
to go backward from a visible misbehaviour towards the bug causing
it. While reversible debugging of sequential systems is well understood,
reversible debugging of concurrent and distributed systems is less settled.
We present here two approaches for debugging concurrent programs, one
based on backtracking, which undoes actions in reverse order of execution,
and one based on causal consistency, which allows one to undo any action
provided that its consequences, if any, are undone beforehand. The first
approach tackles an imperative language with shared memory, while the
second one considers a core of the functional message-passing language
Erlang. Both the approaches are based on solid formal foundations.

1 Introduction

Reversible computing has been attracting interest due to its applications in fields
as different as, e.g., hardware design [12], computational biology [4], quantum
computing [2], discrete simulation [6] and robotics [31].

One of the oldest and more explored application areas for reversible comput-
ing is program debugging. This can be explained by looking, on the one hand, to
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the relevance of the problem, and, on the other hand, to how naturally reversible
computing fits in the picture. Concerning the former, finding and fixing bugs
inside software has always been a main activity in the software development life
cycle. Indeed, according to a 2014 study [47], the cost of debugging amounts to
$312 billions annually. Another recent study [3] estimates that the time spent in
debugging is 49.9% of the total programming time. Concerning how naturally
reversible computing fits in this context, consider that debugging means finding
a bug, i.e., some wrong line of code, causing some visible misbehaviour, i.e., a
wrong effect of a program, such as a wrong message printed on the screen. In
general, the execution of the wrong line precedes the wrong visible effect. For
instance, a wrong assignment to a variable may imply a misbehaviour later on,
when the value of the variable is printed on the screen. Usually, the programmer
has a very precise idea about which line of code makes the misbehaviour visible,
but a non trivial debugging activity may be needed to find the bug. Indeed,
debugging practice requires to put a breakpoint before the line of code where
the programmer thinks the bug is, and use step-by-step execution from there
to find the wrong line of code. However, the guess of the location of the bug is
frequently wrong, causing the breakpoint to occur too late (after the bug) and
a new execution with an updated guess is often needed. Reversible debugging
practice is more direct: first, run the program and stop when the visible misbe-
haviour is reached; then, execute backwards (possibly step-by-step) looking for
the causes of the misbehaviour until the bug is found.

With these premises, it is no surprise that reversible debugging has been
deeply explored, as shown for instance by the survey in [11]. Indeed, many debug-
gers provide features for reversible execution, including popular open source
debuggers such as GDB [8] as well as tools from big corporations such as
Microsoft, the case of WinDbg [34].

However, the problem is far less settled for concurrent and distributed pro-
grams. We remark that nowadays most of the software is concurrent, either since
the platform is distributed, the case of Internet or the Cloud, or to overcome the
advent of the power wall [46]. Finding bugs in concurrent and distributed soft-
ware is more difficult than in sequential software [33], since faults may appear
or disappear according to the speed of the different processes and of the net-
work communications. The bugs generating these faults, called Heisenbugs, are
thus particularly challenging because they are rather difficult to reproduce. Two
approaches to reversible debugging of concurrent systems have been proposed.
Using backtracking,1 actions are undone in reverse order of execution, while using
causal-consistent reversibility [25] actions can be undone in any order, provided
that the consequences of a given action, if any, are undone beforehand. Note
that, by exploring a computation back and forth using either backtracking or
causal-consistent reversibility one is guaranteed that Heisenbugs that occurred
in the computation will not disappear.

1 Backtracking sometimes refer to the exploration of a set of possibilities: this is not
the case here, since backward execution is (almost) deterministic.
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This paper will present two lines of research on debugging for concurrent
systems developed within the European COST Action IC1405 on “Reversible
Computation - Extending Horizons of Computing” [23]. They share the use of
state saving to enable backward computation (this is called a Landauer embed-
ding [24], and it is needed to tackle languages which are irreversible) and a formal
approach aiming at supporting debugging tools with a theory guaranteeing the
desired properties. The first line of research [20–22] (Sect. 3) supports backtrack-
ing (apart from some non relevant actions) for a concurrent imperative language
with shared memory, while the second line of research [28–30,36] (Sect. 4) sup-
ports causal-consistent reversibility for a core subset of the functional message-
passing language Erlang. We will showcase both the approaches on the same
airline booking example (Sect. 2), coded in the two languages. Related work is
discussed in Sect. 5 and final remarks are presented in Sect. 6.

2 Airline Booking Example

In this section we will introduce an example program that contains a bug, and
discuss a specific execution leading to a corresponding misbehaviour. This exam-
ple will be used as running example throughout the paper. We will show this
example in the two programming languages needed for the two approaches men-
tioned above. We begin by introducing each of these languages.

2.1 Imperative Concurrent Language

Our first language is much like any while language, consisting of assignments,
conditional statements and while loops. Support has also been added for block
statements containing the declaration of local variables and/or procedures, as
well as procedure call statements. Further to this, removal statements are intro-
duced to “clean up” at the end of a block, where any variables or procedures
declared within the block are removed. Our language also contains unique names
given to each conditional, loop, block, procedure declaration and call state-
ment, named construct identifiers (represented as i1.0, w1.0, b1.0, etc.), and
sequences of block names in which a given statement resides named paths (rep-
resented as pa). Both of these are used to handle variable scope, allowing one to
distinguish different variables with the same name. The final addition to our lan-
guage is interleaving parallel composition. A parallel statement, written P par Q
allows the execution of the programs P and Q to interleave. All statements except
blocks contain a stack A that is used to store identifiers (see below). The syntax
of our language follows, where ε represents an empty program. Note that ε is
the neutral element of sequential and parallel composition. We write (pa,A)?
to denote the fact that (pa,A) is optional. We also write In, Wn, Bn, Cn to
range, respectively, over identifiers for conditionals, while loops, blocks and call
statements. Also, n refers to the name of a procedure.
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P ::= ε | S | P; P | P par P

S ::= skip (pa,A)? | X = E (pa,A) | if In B then P else Q end (pa,A)

| while Wn B do P end (pa,A) | begin Bn BB end | call Cn n (pa,A)

BB ::= DV; DP; P; RP; RV

DV ::= ε | var X = v (pa,A); DV DP ::= ε | proc Pn n is P end (pa,A); DP

RV ::= ε | remove X = v (pa,A); RV RP ::= ε | remove Pn n is P end (pa,A); RP

Operational Semantics. Our approach (see [20] for a detailed explanation)
to reversing programs starts by producing two versions of the original program.
The first one, named the annotated version, performs forward execution and
saves any information that would be lost in a normal computation but is needed
for inversion (named reversal information and saved into our auxiliary store δ).
Identifiers are assigned to statements as we execute them, capturing the inter-
leaving order needed for correct inversion. The second one, named the inverted
version, executes forwards but simulates reversal using the reversal information
as well as the identifiers to follow backtracking order. We comment here that
we use ‘inversion’ to refer to both the process of producing the program code
of the inverted version (program inverter [1]), and to the process of executing
the inverted version of a program. A reverse execution computes all parallel
statements as in a forward execution, but it uses identifiers to determine which
statement to invert next (instead of nondeterministically deciding). For pro-
grams containing many nested parallel statements, the overhead of determining
the correct interleaving order increases, though we still deem this as reasonable
[19]. Note that using a nondeterministic interleaving for the reverse execution
is not possible, since it is not guaranteed to behave correctly (e.g., requiring
information from the auxiliary store that is not there may cause an execution to
be stuck). However, a small number of execution steps, including closing a block
and removing a skip, do not use an identifier and can therefore be interleaved
nondeterministically during an inverse execution. Forward and reverse execution
are each defined in terms of a non-standard, small step operational semantics.
Our semantics perform both the expected execution (forward and reverse respec-
tively) and all necessary saving/using of the reversal information. Consider the
example rule [D1a] for assignments, which is a reversibilisation of the traditional
irreversible semantics of an assignment statement [51].

[D1a]
m = next() (e pa | δ, σ, γ, �) ↪→∗

a (v | δ, σ, γ, �) evalV (γ,pa,X) = l

(X = e (pa,A) | δ, σ, γ, �)
m−→ (skip m:A | δ[(m,σ(l)) ⇀ X], σ[l �→ v], γ, �)

As shown here, this rule consists of the evaluation of the expression e to the
value v, evaluation of the variable X to a memory location l and finally the
assigning of the value v to the memory location l as expected. Alongside this,
the rule also pushes the old value of the variable (the current value held at the
memory location, namely σ(l)) onto the stack for this variable name within δ
(δ[(m,σ(l)) ⇀ X], where ⇀ denotes a push operation). This old value is saved
alongside the next available identifier m, returned via the function next() and
used within the rule to record interleaving order (represented using the labelled
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Fig. 1. Language syntax rules

arrow m−→). This identifier m is also inserted into the stack A corresponding to
this specific assignment statement, represented as m:A.

Now consider the rule [D1r] from our inverse semantics for reversing assign-
ments (that executed forwards via [D1a]).

[D1r]
A = m:A′ m = previous() δ(X) = (m,v):X′ evalV (γ,pa,X) = l

(X = e (pa,A) | δ, σ, �)
m� (skip A′ | δ[X/X′], σ[l �→ v], �)

This rule first ensures this is the next statement to invert using the identifier
m, which must match the last used identifier (previous()) and be present in
both the statements stack (A = m:A′) and the auxiliary store alongside the old
value (δ(X) = (m,v):X′). Provided this is satisfied, this rule then removes all
occurrences of m, and assigns the old value v retrieved from δ to the corresponding
memory location. Note that e appears exactly as in the original version but it is
not evaluated, and that the functions next() and previous() both update the
next and previous identifiers respectively as a side effect.

2.2 Erlang

Our second approach deals with a relevant fragment of the functional and con-
current language Erlang. We show in Fig. 1 the syntax of its main constructs,
focusing on the ones needed in our running example. We drop from the syntax
some declarations related to module management, which are orthogonal to our
purpose in this paper.

A program is a sequence of function definitions, where each function has a
name (an atom, denoted by a) and is defined by a number of equations of the
form ai(pi1, . . . , pini

) when gi → ei, where pi1, . . . , pini
are patterns (i.e.,

terms built from variables and data constructors), gi is a guard (typically an
arithmetic or relational expression only involving built-in functions), and ei is
an arbitrary expression. As is common, the variables in pi1, . . . , pini

are the
only variables that may occur free in gi and ei. The body of a function is an
expression, which can include variables, literals (i.e., atoms, integers, floating
point numbers, the empty list [ ], etc.), lists (using Prolog-like notation, i.e.,
[e1|e2] is a list with head e1 and tail e2), tuples (denoted by {e1, . . . , en}),2

2 The only data constructors in Erlang (besides literals) are the predefined functions
for lists and tuples.



Reversible Debugging of Concurrent Programs 113

function applications (we do not consider higher order functions in this paper
for simplicity), pattern matching, sequences (denoted by comma), receive expres-
sions, spawn (for creating new processes), “!” (for sending a message), and self.
Note that some of these functions are actually built-ins in Erlang.

In contrast to expressions, patterns are built from variables, literals, lists, and
tuples. Patterns can only contain fresh variables. In turn, values are built from
literals, lists, and tuples (i.e., values are ground patterns). In Erlang, variables
start with an uppercase letter.

Let us now informally introduce the semantics of Erlang constructions. In the
following, substitutions are denoted by Greek letters σ, θ, etc. A substitution σ
denotes a mapping from variables to expressions, where Dom(σ) is its domain.
Substitution application σ(e) is also denoted by eσ.

Given the pattern matching p = e, we first evaluate e to a value, say v; then,
we check whether v matches p, i.e., there exists a substitution σ for the variables
of p with v = pσ (otherwise, an exception is raised). Then, the expression reduces
to v, and variables are bound according to σ. Roughly speaking, a sequence
(p = e1, e2) is equivalent to the expression let p = e1 in e2 in most functional
programming languages.

A similar pattern matching operation is performed during a function applica-
tion a(e1, . . . , en). First, one evaluates e1, . . . , en to values, say v1, . . . , vn. Then,
we scan the left-hand sides of the equations defining the function a until we find
one that matches a(v1, . . . , vn). Let a(p1, . . . , pn) when g → e be such equation,
with a(v1, . . . , vn) = a(p1, . . . , pn)σ. Here, we should also check that the guard,
gσ, reduces to true. In this case, execution proceeds with the evaluation of the
function’s body, eσ.

Let us now consider the concurrent features of our language. In Erlang, a run-
ning system can be seen as a pool of processes that can only interact through
message sending and receiving (i.e., there is no shared memory). Received mes-
sages are stored in the queues of processes until they are consumed; namely,
each process has one associated local (FIFO) queue. A process is uniquely iden-
tified by its pid (process identifier). Message sending is asynchronous, while
receive instructions block the execution of a process until an appropriate mes-
sage reaches its local queue (see below).

We consider the following functions with side-effects: self, “!”, spawn, and
receive. The expression self() returns the pid of a process, while p ! v evaluates
to v and, as a side-effect, sends message v to the process with pid p, which
will be eventually stored in p’s local queue. New processes are spawned with
a call of the form spawn(mod, a, [v1, . . . , vn]), where mod is the name of the
module declaring function a, and the new process begins with the evaluation of
the function application a(v1, . . . , vn). The expression spawn(mod, a, [v1, . . . , vn])
returns the (fresh) pid assigned to the new process.

Finally, an expression “receive p1 when g1 → e1; . . . ; pn when gn → en end”
should find the first message v in the process’ queue (if any) such that v matches
some pattern pi (with substitution σ) and the instantiation of the corresponding
guard giσ reduces to true. Then, the receive expression evaluates to eiσ, with
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the side effect of deleting the message v from the process’ queue. If there is no
matching message in the current queue, the process suspends until a matching
message arrives.

2.3 Airline Code

We are now ready to describe the example. Consider a model of an airline book-
ing system, where multiple agents sell tickets for the same flight. In order to
keep the example concise, we consider only two agents selling tickets in parallel,
with three seats initially available. The code of the example is shown in List-
ing 1.1, written in the concurrent imperative programming language described
in Sect. 2.1.

The code contains two while loops operating in parallel (lines 10–16 and 18–
24), where each loop models the operation of a single agent. Let us consider the
first loop. For each iteration, the agent checks whether any seat remains (line
11). As long as the number of currently available seats is greater than zero, the
agent is free to sell a ticket via the procedure named sell (called at line 12).
Once the number of available tickets has reached zero, each agent will then close,
terminating its loop.

As previously mentioned, this program can show a misbehaviour under cer-
tain execution paths. Recall the simplified setting of three initially available
seats. Consider an execution that begins with each agent selling a single ticket
(allocating one seat) via one full iteration of each while loop (the interleaving
among the two iterations is not relevant). At this point, both agents remain open
(since agent1 = 1 and agent2 = 1), and the current number of seats is 1. Now
assume that the execution continues with the following interleaving. The condi-
tion of each while loop is checked, both of which will evaluate to true as each
agent is open. Next, the execution of each loop body begins with the evaluation
of the guard of each conditional statement. They will both evaluate to true, as
there is at least one seat available. At this point, each agent is committed to
selling one more ticket, even if only one seat is available. The rest of the execu-
tion can then be finished under any interleaving. The important thing to note
here is that the final number of free seats is -1. This is an obvious misbehaviour,
as the two agents allocated four tickets when only three seats were available.
This misbehaviour occurs since the programmer assumed that the checking for
an available seat and its allocation were atomic, but there is no mechanism
enforcing this.

Listing 1.2 shows the same example coded in Erlang. A call to the initial
function, main, spawns two processes (the agents) that start with the execution
of function calls agent(1,Main) and agent(2,Main), respectively. Here, Main
is a variable with the pid of the main process, which is obtained via a call to the
predefined function self.

Then, at line 8, the main process calls to function seats with argument 3 (the
initial number of available seats). From this point on, the main process behaves
as a server that executes a potentially infinite loop that waits for requests and
replies to them. Here, the state of the process is given by the argument Num which
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1 seats = 3;
2 begin b0.0
3 var agent1 = 1;
4 var agent2 = 1;
5 proc p0.0 sell is
6 seats = seats - 1;
7 end;
8
9 par {

10 while w0.0 (agent1 == 1) do
11 if i0.0 (seats > 0) then
12 call c0.0 sell;
13 else
14 agent1 = 0;
15 end;
16 end;
17 } {
18 while w1.0 (agent2 == 1) do
19 if i1.0 (seats > 0) then
20 call c1.0 sell;
21 else
22 agent2 = 0;
23 end;
24 end;
25 }
26 remove proc p0.0 sell end;
27 remove var agent2 = 1;
28 remove var agent1 = 1;
29 end

Listing 1.1. Airline booking example in a concurrent imperative language. All paths
and identifier stacks are omitted as these are inserted automatically.

represents the current number of available seats. The server accepts two kinds of
messages: {numOfSeats,Pid}, a request to know the current number of available
seats, and {sell,Pid}, to decrease the number of available seats (analogously
to the procedure sell in Listing 1.1). In the first case, the number of available
seats is sent back to the agent that performed the request (Pid ! Num); in the
second case, the number of the booked seat is sent.3 The behaviour of the agents
(lines 17–23) is simple. An agent first sends a request to know the number of
available seats, Pid ! {numOfSeats,self()}, where self() is required for the
main process to be able to send a reply back to the sender. Then, the agent
suspends its execution waiting for an answer {seats,Num}: if Num is greater than
zero, the agent sends a new message to sell a seat (Pid ! {sell,self()}) and

3 We note that the number of the booked seat, Num, is not used by function agent

in our example, but might be used in a more realistic program. We keep this value
anyway since it will ease the understanding of the trace in Sect. 4.



116 J. Hoey et al.

1 -module(airline ).

2 -export([main/0,agent /2]).

3 8

4 main() ->

5 Main = self(),

6 spawn (?MODULE , agent , [1,Main]),

7 spawn (?MODULE , agent , [2,Main]),

8 seats (3).

9

10 seats(Num) ->

11 receive

12 {numOfSeats ,Pid} -> Pid ! {seats ,Num}, seats(Num);

13 {sell ,Pid} -> io:format("Seat sold!~n"),

14 Pid ! {booked ,Num},seats(Num -1)

15 end.

16

17 agent(NAg ,Pid) ->

18 Pid ! {numOfSeats ,self ()},

19 receive

20 {seats ,Num} when Num > 0 -> Pid ! {sell ,self ()},

21 receive {booked ,_} -> agent(NAg ,Pid) end;

22 _ -> io:format("Agent~p done!~n",[NAg])

23 end.

Listing 1.2. Airline booking example, in Erlang.

receives the confirmation ({booked, });4 otherwise, it terminates the execution
with the message “AgentN done!”, where N is either 1 or 2.

3 Backtracking in a Concurrent Imperative Language

In this section we describe a state-saving approach to reversibility in the con-
current imperative programming language described in Sect. 2.1. We begin by
discussing our approach and its use within the debugging of the airline example
(see Sect. 2.3), along with our simulation tool [20,21].

As described in more detail in [21], we have produced a simulator implement-
ing the operational semantics of our approach. This simulator is capable of pars-
ing a program, automatically inserting removal statements, construct identifiers
and paths, and simulating both forward and reverse execution. Each execution
can be either end-to-end, or step-by-step.

We first execute the forward version of our airline example completely. This
execution produces the annotated version in Fig. 2a, where the identifier stack for
each statement has been populated capturing an interleaving order that experi-
ences the bug as outlined in Sect. 2.3. The inverted version of the airline example
is shown in Fig. 2b, where the overall statement order has been inverted. Note
that some annotations are omitted to keep this source code concise (e.g., no paths

4 Anonymous variables are denoted by an underscore “ ”.
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Fig. 2. Final annotated and inverted versions of the airline example, with paths omitted

are shown). We start the debugging process at the beginning of the execution of
the inverted version (line 1 of Fig. 2b). Recall that all expressions or conditions
are not evaluated or used during an inverse execution. Using the final program
state showing the misbehaviour (produced via the annotated execution with
seats = -1), the simulator begins by opening the block and re-declaring both
local variables and the procedure, using identifiers 40–38. From here, the execu-
tion continues with the parallel statement. The final iteration of each while loop
is reversed (simulating the inversion of the closing of each agent) using identifiers
37–28. Now the penultimate iteration of each while loop must be inverted. The
consecutive identifiers 27 and 26 are then used to ensure that each of the condi-
tional statements (lines 11 and 19) are opened, using two true values retrieved
from the reversal information saved.

The execution then continues using identifiers 25–20, where each loop almost
completes the current iteration, reversing the last time each of them allocated a
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Fig. 3. Stopping position of the inverse execution (containing paths automatically
inserted by the simulator)

seat. This produces the state where seats = 1, and where the next available step
is to close either of the inverse conditional statements. Though the identifiers
ensure we must start by closing the conditional with identifier 19, the fact that
both can be closed implies that both are open at the same time. This current
position within the inverse execution is shown in Fig. 3, where the command
‘display loops’ outputs all current while loops (agents) with arrows indicating
the next statement to be executed. It is clear from our semantics (see [20]) that
the closing of an inverted conditional is the reverse of opening its forward version.
Since the two conditionals have been opened using consecutive identifiers, one
can see that each committed to selling a ticket. Given that the current state has
seats = 1, this execution commits to selling two tickets when only one remains.
It is therefore clear that this is an atomicity violation, since interleaving of
other actions is allowed between the checking for at least one free seat and the
allocation of it. We have therefore shown how the simulator implementing our
approach to reversibility can be used during the debugging process of an example
bug.

4 Causal-Consistent Reversibility in Erlang

In this section we will discuss how to apply causal-consistent reversible debugging
to the airline booking example in Sect. 2.3. Our approach to reversible debugging
is based on the following principles [29,30]:
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– First, we consider a reduction semantics for the language (a subset of Core
Erlang [5], which is an intermediate step in Erlang compilation). Our seman-
tics includes two transition relations, one for expressions (which is mostly a
call-by-value semantics for a functional language) and one for systems, i.e.,
collections of processes, possibly interacting through message passing. An
advantage of this modular design is that only the transition relation for sys-
tems needs to be modified in order to produce a reversible semantics.

– Then, we instrument the standard semantics in different ways. On the one
hand, we instrument it to produce a log of the computation; namely, by
recording all actions involving the sending and receiving of messages, as well as
the spawning of new processes (see [30] for more details). On the other hand,
one can instrument the semantics so that the configurations now carry enough
information to undo any execution step, i.e., a typical Landauer embedding.
Producing then a backward semantics that proceeds in the opposite direction
is not difficult. Here, the configurations may include both a log—to drive
forward executions—and a history—to drive backward executions.

– It is worthwhile to note that forward computations need not follow exactly
the same steps as in the recorded computation (indeed the log does not record
the total order of steps). However, it is guaranteed that the admissible com-
putations are causally equivalent to the recorded one; namely, they differ only
for swaps of concurrent actions. Analogously, backward computations need
not be the exact inverse of the considered forward computation, but ensuring
that backward steps are causal-consistent suffices. This degree of freedom is
essential to allow the user to focus on the process and/or actions of interest
during debugging, rather than inspecting the complete execution (which is
often impractical).

– Finally, we define another layer on top of the reversible semantics in order
to drive it following a number of requests from the user, e.g., rolling back
up to the point where a given process was spawned, going forward up to the
point where a message is sent, etc. This layer essentially implements a stack
of requests that follows the causal dependencies of the reversible semantics.

In the following, we consider the causal-consistent reversible debugger
CauDEr [27,28] which follows the principles listed above.

CauDEr first translates the airline example into Core Erlang [5]. Then one
can execute the program, either using a built-in scheduler, or using the log of an
actual execution [30].

Here, if we compile the program in the standard environment and execute
the call main(), we get the following output:

Seat sold!
Seat sold!
Seat sold!
Seat sold!
Agent1 done!
Agent2 done!
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Fig. 4. CauDEr debugging session

which is clearly incorrect since we only had three seats available.
By using the logger and, then, loading both the program and the log into

CauDEr (as described in [30]), we can replay the entire execution and explore
the sequence of concurrent actions. Figure 4 shows the final state (on the left)
and the sequence of concurrent actions (on the right), where process 63 is the
main process, and processes 67 and 68 are the agents.

Now, we can look at the sequence of concurrent actions, where messages are
labelled with a unique identifier, added by CauDEr, which is shown in brackets
to the right of the corresponding line:

Proc. 63 spawns Proc. 67
Proc. 63 spawns Proc. 68
Proc. 67 sends {’numOfSeats’,67} to Proc. 63 (0)

... 19 lines ...

Proc. 63 receives {’numOfSeats’,68} (10)
Proc. 63 sends {’seats’,1} to Proc. 68 (12)
Proc. 67 receives {’seats’,1} (9)
Proc. 67 sends {’sell’,67} to Proc. 63 (11)
Proc. 63 receives {’sell’,67} (11)
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Proc. 63 sends {’booked’,1} to Proc. 67 (14)
Proc. 68 receives {’seats’,1} (12)
Proc. 68 sends {’sell’,68} to Proc. 63 (13)
Proc. 63 receives {’sell’,68} (13)
Proc. 63 sends {’booked’,0} to Proc. 68 (16)
Proc. 67 receives {’booked’,1} (14)
Proc. 67 sends {’numOfSeats’,67} to Proc. 63 (15)
Proc. 63 receives {’numOfSeats’,67} (15)
Proc. 63 sends {’seats’,-1} to Proc. 67 (17)
Proc. 68 receives {’booked’,0} (16)
Proc. 68 sends {’numOfSeats’,68} to Proc. 63 (18)
Proc. 63 receives {’numOfSeats’,68} (18)
Proc. 63 sends {’seats’,-1} to Proc. 68 (19)

One can see that seat number 0 (which does not exist!) has been booked by
process 68, and the notification has been provided via message number 16.

A good state to explore is the one where message number 16 has been sent.
Here a main feature of causal-consistent reversible debugging comes handy: the
possibility of going to the state just before a relevant action has been per-
formed, by undoing it, including all and only its consequences. This is called a
causal-consistent rollback. CauDEr provides causal-consistent rollbacks for var-
ious actions, including send actions. Thus, the programmer can invoke a Roll
send command with message identifier 16 as a parameter.

In this way, one discovers that the message has been sent by process 63
(as expected, since process 63 is the main process). By exploring its state one
understands that, from the point of view of process 63, sending message 16 is
correct, since it is the only possible answer to a sell message. The bug should
be thus before.

From the program code, the programmer knows that whether seat Num is
available or not is checked by a message of the form {numOfSeats,Pid}, which
is answered with a message of the form {seats,Num}, where Num is the number
of available seats.

Looking again at the concurrency actions, the programmer can see that pro-
cess number 68 was indeed notified of the availability of a seat by message
number 12.

We can use again Roll send, now with parameter 12, to check whether this
send is correct or not. We discover that indeed the send is correct since, when the
message is sent, there is one available seat. However, here, another window comes
handy: the Roll log window that shows which actions (causally dependent on
the one undone) have been undone during a rollback, which shows:

Roll send from Proc. 63 of {’booked’,1} to Proc. 67 (14)
Roll send from Proc. 67 of {’numOfSeats’,67} to Proc. 63 (15)
Roll send from Proc. 63 of {’seats’,1} to Proc. 68 (12)
Roll send from Proc. 68 of {’sell’,68} to Proc. 63 (13)
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By checking it the programmer sees that also the interactions between process
67 and process 63 booking seat 1 are undone. Hence the problem is that, in
between the check for availability and the booking, another process may interact
with main, stealing the seat; thus, the error is an atomicity violation.

Of course, given the simplicity of the system, one could have spotted the bug
directly by looking at the code or at the full sequence of message exchanges,
but the technique above is quite driven by the visible misbehaviour, hence it
will better scale to larger systems (e.g., with more seats and agents, or with
additional functionalities).

We remark that, while the presentation above concentrates on the debugger
and its practical use, this line of research also deeply considered its theoretical
underpinning, as briefly summarised at the beginning of the section. Thanks to
this, relevant properties have been proved, e.g., that if a misbehaviour occurs in
a computation then the same misbehaviour will occur also in each replay [30].

5 Related Work

Reversible computation in general, and reversible debugging in particular, have
been deeply explored in the literature.

A line of research considers naturally reversible languages, that is languages
where only reversible programs can be written. Such approaches include the
imperative languages Janus [49,50], R-CORE [17] and R-WHILE [16], and the
object-oriented languages Joule [43] and ROOPL [18]. These approaches require
dedicated languages, and cannot be applied to mainstream languages like Erlang
or a classic imperative language, as we do in this paper.

The backtracking approach has been applied, e.g., in the Reverse C Compiler
(RCC) defined by Perumalla et al. [6,37]. It supports the entire programming
language C, but lacks a proof of correctness, which is instead provided by our
approaches. The Backstroke framework [48] is a further example, supporting
the vast majority of the programming language C++. This framework has been
used to provide reverse execution in the field of Parallel Discrete Event Simula-
tion (PDES) [13], as described in more recent works by Schordan et al. [40–42].
Similar approaches have been used for debugging, e.g., based on program instru-
mentation techniques [7]. Identifiers and keys are used to control execution in
the work by Phillips and Ulidowski [38,39]. Another related work is omniscient
debugging, where each assignment and method call is stored in an execution
history, which can be used to restore any desired program state. An example of
such a debugger written for Java was proposed by Lewis [32].

Causal-consistent reversibility has been mainly studied in the area of foun-
dational process calculi such as CCS [10] and its variants [35,38], π-calculus [9],
and higher-order π-calculus [26] and coordination languages such as Klaim [15].
The application to debugging has been first proposed in [14] in the context of
the toy functional language μOz. A related approach is Actoverse [44], for Akka-
based applications. It provides many relevant features complementary to ours,
such as a partial-order graphical representation of message exchanges. On the
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other side, Actoverse allows one to explore only some states of the computa-
tion, such as the ones corresponding to message sending and receiving. We also
mention Causeway [45], which however is not a full-fledged debugger, but just a
post-mortem traces analyser.

6 Conclusion

We presented two approaches to reversible debugging of concurrent systems, we
will now briefly compare them. Beyond the language they consider, the main
difference between the two approaches is in the order in which execution steps
can be reversed. The backtracking approach undoes them in reverse order of
execution. This means that there is no need to track dependencies, and the user
of the debugger can easily anticipate which steps will be undone by looking at
identifiers. The causal-consistent approach instead allows independent steps of
an execution to be reversed in any order, hence tracking dependencies between
steps is crucial. This offers the benefit that only the steps strictly needed to
reach the desired point of an execution need to be reversed, and steps which
happened in between but were actually independent are disregarded.

Debugging is a relevant application area for reversible computation, but
reversible debugging for concurrent and distributed systems is still in its infancy.
While different techniques have been put forward, they are not yet able to deal
with real, complex systems. A first reason is that they do not tackle mainstream
languages (Erlang could be considered mainstream, but only part of the language
is currently covered). When this first step will be completed, then runtime over-
head and size of the logs will become relevant problems, as they are now in the
setting of sequential reversible debugging.
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Abstract. Distributed programs are hard to get right because they are
required to be open, scalable, long-running, and dependable. In particu-
lar, the recent approaches to distributed software based on (micro-) ser-
vices, where different services are developed independently by disparate
teams, exacerbate the problem. Services are meant to be composed
together and run in open contexts where unpredictable behaviours can
emerge. This makes it necessary to adopt suitable strategies for monitor-
ing the execution and incorporate recovery and adaptation mechanisms
so to make distributed programs more flexible and robust. The typical
approach that is currently adopted is to embed such mechanisms within
the program logic. This makes it hard to extract, compare and debug.
We propose an approach that employs formal abstractions for specify-
ing failure recovery and adaptation strategies. Although implementation
agnostic, these abstractions would be amenable to algorithmic synthesis
of code, monitoring, and tests. We consider message-passing programs
(a la Erlang, Go, or MPI) that are gaining momentum both in academia
and in industry. We first propose a model which abstracts away from
three aspects: the definition of formal behavioural models encompassing
failures; the specification of the relevant properties of adaptation and
recovery strategy; and the automatic generation of monitoring, recovery,
and adaptation logic in target languages of interest. To show the efficacy
of our model, we give an instance of it by introducing reversible chore-
ographies to express the normal forward behaviour of the system and the
condition under which adaptation has to take place. Then we show how
it is possible to derive Erlang code directly from the global specification.

1 Introduction

Distributed applications are notoriously complex and guaranteeing their cor-
rectness, robustness, and resilience is particularly challenging. These reliability
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requirements cannot be tackled without considering the problems that are not
generally encountered when developing non-distributed software. In particular,
the execution and behaviour of distributed applications is characterised by a
number of factors, a few of which we discuss below:

– Firstly, communication over networks is subject to failures (hardware or soft-
ware) and to security concerns: nodes may crash or undergo management
operations, links may fail or be temporarily unavailable, access policies may
modify the connectivity of the system.

– Secondly, openness—a key requirement of distributed applications—
introduces other types of failures. A paradigmatic example are (micro-)
service architectures where distributed components dynamically bind and
execute together. In this context, failures in the communication infrastruc-
tures are possibly aggravated by those due to services’ unavailability, their
(behavioural) incompatibility, or to unexpected interactions emerging from
unforeseen compositions.

– Also, distributed components may belong to different administrative domains;
this may introduce unexpected changes to the interaction patterns that may
not necessarily emerge at design time. In addition, unforeseen behaviour may
emerge because components may evolve independently (e.g., the upgrade of
a service may hinder the communication with partner services).

– Another element of concern is that it is hard to determine the causes of errors,
which in turn complicates efforts to rectify and/or mitigate the damage via
recovery procedures. Since the boundary of an application are quite “fluid”,
it becomes infeasible to track and confine errors whenever they emerge. These
errors are also hard to reproduce for debugging purposes, and some of them
may even constitute instances of Heisenbugs [27].

For the above reasons (and others), developers have to harness their software
with mechanisms that ensure (some degree of) dependability. For instance, the
use of monitors capable of detecting failures and triggering automated counter-
measures can avoid catastrophic crashes in distributed settings [24]. The typical
mechanisms to foster reliability are redundancy (typically to tackle hardware
failures) and exception handling for software reliability. It has been observed
(see e.g., [42]) that the use of exception handling mechanisms naturally leads to
defensive approaches in software development. For instance, network communi-
cations in languages such as Java require to extensively cast code in try-catch
blocks in order to deal with possible exceptions due to communications. This
muddles the main program logic with auxiliary logic related to error handling.
Defensive programming, besides being inelegant, is not appealing; in fact, it
requires developers to entangle the application-specific software with the one
related to recovery procedures.

We advocate the use of choreographies to specify, analyse, and implement
reliable strategies for recovery and monitoring of distributed message-passing
applications. We strive towards a setup that teases apart the main program
logic from the coordination of error detection, correction and recovery. The rest
of the paper motivates our approach: Sect. 2 further introduces our motivations,



130 A. Francalanza et al.

Sect. 3 presents our (abstract) model by posing some research challenges, while
Sects. 4 to 6 provide and instance of such model. We draw some conclusions in
Sect. 7.

Disclaimer. This paper gathers the results obtained in [13,23] with the intent to
present them as a whole. In particular, the model presented in Sect. 3 is taken
from [13], while Sects. 4 to 6 are adapted from [23]. These results were obtained
during the COST Action IC1405 within the case study “Reversible Choreogra-
phies via Monitoring in Erlang” of the Working Group 4 on case studies. We
thank Carla Ferreira and Ulrik Pagh Schultz for having wisely led such working
group.

2 Motivation

We are interested in message-passing frameworks, i.e., models, systems, and
languages where distributed components coordinate by exchanging messages.
One archetypal model of the message-passing paradigm is the actor model [5]
popularised by industry-strength language implementations such as those found
in Akka (for both Scala and Java) [46], Elixir [44], and Erlang [15]. In particular,
one effective approach to fault-tolerance is the model adopted by Erlang.

Rather than trying to achieve absolute error freedom, Erlang’s approach
concedes that failures are hard to rule out completely in the setting of open
distributed systems. Accordingly, Erlang-based program development takes into
account the possibility of computation going wrong. However, instead of resort-
ing to the usual defensive programming, it adopts the so-called “let it fail” princi-
ple. In place of intertwining the software realising the application logic with logic
for handling errors and faults, Erlang proposes a supervisory model whereby
components (i.e., actors) are monitored within a hierarchy of independently-
executing supervisors (which can be monitor for other supervisors themselves).
When an error occurs within a particular component, it is quarantined by let-
ting that component fail (in isolation); the absence of global shared memory of
the actor model facilitates this isolation. Its supervisor is then notified about
this failure, creating a traceable event that is useful for debugging. More impor-
tantly to our cause, this mechanism also allows the supervisor to take remedial
action in response to the reported failure. For instance, the failing component
may be restarted by the supervisor. Alternatively, other components that may
have been contaminated by the error could also be terminated by the supervisor.
Occasionally supervisors themselves fail in response to a supervised component
failing, thus percolating the error to a higher level in the supervision hierarchy.

Erlang’s model is an instance of a programming paradigm commonly termed
as Monitor Oriented Programming (MOP) [16,35]. It neatly separates the appli-
cation logic from the recovery policy by encapsulating the logic pertaining to
the recovery policy within the supervision structure encasing the application.
Despite this clear advantage, the solution is not without its shortcomings. For
instance, the Erlang supervision mechanism is still inherently tied to the con-
structs of the host language and it is hard to transfer to other technologies.
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Despite it being localised within supervisor code, manual effort is normally still
required to disentangle it from the context where it is defined in order to be
understood in isolation. Also, the manual construction of logic associated with
recovery is itself prone to errors.

We advocate for a recovery mechanism that sits at a higher level of abstrac-
tion than the bare metal of the programming language where it is deployed. In
particular, we envisage the three challenges outlined below:

1. The explicit identification and design of recovery policies in a technology
agnostic manner. This will facilitate the comprehension and understanding
of recovery policies and allow for better separation of concerns during program
development.

2. The automated code synthesis from high-level policy descriptions. There exist
only a handful of methods for recovery policy specification and these have
limited support for the automatic generation of monitors that implement
those policies.

3. The evaluation of recovery policies. We require automated techniques that
allow us to ascertain the validity of recovery policies with respect to notions
of recovery correctness. We are also unaware of many frameworks that permit
policies to be compared with one another and thus determine whether one
recovery policy is better than (or equivalent to) another one.

To the best of our knowledge, there is a lack of support to take up the first
challenge. For instance, Erlang folklore’s to recovery policies simply prescribes
the “one-for-one” or the “one-for-all” strategies. Recently, Neykova and Yoshida
have shown how better strategies are sometimes possible [40]. We note that the
approach followed in [40] is based on simple yet effective choreographic models.

The second challenge somehow depends on the support one provides for the
design and implementation of recovery strategies. A basic requirement of (good)
abstract software models is that an artefact has a clear relationship with the
other artefacts that it interacts with, possibly at different levels of abstraction.
This constitutes the essence of model-driven design. The preservation of these
clearly defined interaction-points (across different abstraction levels) is crucial
for sound software refinement. Such a translation from one abstraction level to
a more concrete one forms the basis for an actual “compilation” from one model
to the other. In cases where such relations have a clear semantics, they can be
exploited to verify properties of the design (and the implementation) as well
as to transform models (semi-)automatically. In our case, we would expect run-
time monitors to be derived from their abstract models, to ease the development
process and allow developers to focus on the application logic (such as in [6,11]).

Finally, the right abstraction level should provide the foundations neces-
sary to develop formal techniques to analyse and compare recovery policies as
outlined in our third challenge. The right abstraction level would also permit
us to tractably apply these techniques to specific policy instances; these may
either have been developed specifically for the policy formalism considered by
the technique or obtained via reverse-engineering methods from a technology-
specific application. Possible examples that may be used as starting points for
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such an investigation are [20], where various pre-orders for monitor descriptions
are developed, and [21] where intrinsic monitor correctness criteria such as con-
sistent detections are studied.

3 The Model

We advocate that the development of recovery logic is orthogonal to the appli-
cation logic, and this separation of concerns could induce separate development
efforts which are, to a certain degree, independent from one another. Similar to
the case for the application logic, we envisage global and local points of view for
the recovery logic whereby the latter is attained by projecting the global strat-
egy. Our approach is schematically described in Fig. 1. The left-most part of the
diagram illustrates the top-down approach of choreographies of the application
logic described in Sect. 4.1. We propose to develop a similar approach for the
recovery logic as depicted in the right-most part of Fig. 1, where the triangu-
lar shape for monitors evokes that monitors are possibly arranged in a complex
structure (as e.g., the hierarchy of Erlang supervisors). In fact, we envisage that
a local strategy could correspond to a subsystem of monitors as in the case of
[6,10] (unlike the choreographies for the application logic, where each local view
typically yields one component).

Local View

proj projproj

Global View

Application Logic

Global Strategy

Recovery Logic

Monitors

Research Challenge 1

Local View Local View Local 
Strategy

projprojproj

Local 
Strategy

Local 
Strategy

Research Challenge  2

ComponentComponent Component

Research Challenge  3

Monitors Monitors

Fig. 1. A global-local approach to adaptation strategies incorporating the three
research challenges identified in Sect. 2

Models to Express Global and Local Strategies. Choreographic models should be
equipped with features allowing us to design and analyse the recovery logic of
systems. This requires, on the one hand, the identification of suitable linguis-
tic mechanisms for expressing global/local strategies and, on the other hand, to
define principles of monitors programming by looking at state-of-the-art tech-
niques. For example, the (global) recovery logic should allow us to specify recov-
ery points where parties can roll-back if some kind of error is met or compensa-
tions to activate when anomalous configurations are reached.
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A challenge here is the definition of projection operations that enable fea-
turing recovery mechanisms. A first step in this direction is a recent proposal of
Mezzina and Tuosto [39] who extend the global graphs reviewed in Sect. 4.1 with
reversibility guards to recover the system when it reaches undesired configura-
tions. A promising research direction in this respect is to extend the language
of reversibility guards with the patterns featured by adaptEr [10–12] and then
define projection operations to automatically obtain adaptEr monitors.

Properties of Recovery Logic. We should understand general properties of inter-
est of recovery as well as specific ones. One general property could be the fact
that the strategy guides the application toward a safe state (i.e. stability enve-
lope [35]) when errors occur. For example, the recovery strategy could guarantee
causal consistency, namely that a safe state is one that the execution could have
reached, possibly following a different interleaving of concurrent actions. Recov-
ery strategies may be subject to resource requirements that need to be taken into
consideration and/or adhered to. One such example would be the minimisation
of the number of components that have to be re-started when a recovery pro-
cedure is administered, whereby the restarted components are causally related
to the error detected. The work discussed in [10,11] provides another example
of resource requirements for recovery strategies: in an asynchronous monitoring
setting, component synchronisations are considered to be expensive operations
and, as a result, the monitors are expected to use the least number of component
synchronisations for the adaptation actions to be administered correctly.

Also, as typical for choreographies, we should unveil the conditions under
which a recovery strategy is realisable in a distributed settings. In other words,
not all globally-specified recovery policies are necessarily implementable in a
choreographed distributed setting; we therefore seek to establish well-formedness
criteria that allow us to determine when a global recovery policy can be projected
(and thus implemented) in a decentralised setup.

Compliance. In the case of recovery strategies, it is unclear when monitors are
deemed to be compliant with their local strategy. A central aspect that we
should tackle is that of understanding what it actually means for monitors and
local strategy to be compliant, and subsequently to give a suitable compliance
definition that captures this understanding. One possible approach to address
this problem is to emulate and extend what was done for the application logic
where several notions of behavioural compliance have been studied (e.g. [8,14]).

Another potential avenue worth considering is the work on monitorability
[2,22] and enforceability [4,43] that relates the behaviour of the monitor to that
specified by the correctness property of interest; the work in [25] investigates
these issues for a target actor calculus that is deeply inspired by the Erlang
model. In such cases we would need to extend the concept of monitorability and
enforceability to adaptability with respect to the local strategy derived from the
global specification.

Once we identify and formalise our notions of compliance, we should study
their decidability properties, and investigate approaches to check compliance
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such as type-checking or behavioural equivalence checking (e.g., via testing pre-
orders or bisimulations [3,20]).

Seamless Integration. A key driving principle of our proposed approach is that
the recovery logic should be orthogonal to the application logic. This separa-
tion of concerns allows the traditional designers to focus on the application logic
and just declare the error conditions to be managed by the recovery logic. The
dedicated designers of the recovery logic would then use those error conditions
and the structure of the choreography of the application logic to specify a recov-
ery strategy. Finally, the application and recovery logic should be integrated
via appropriate code instrumentation mechanisms to cater for reliability. The
driving principle we will follow is that of minimising the entanglement between
the respective models of the application logic and those of the recovery logic.
This principled approach with clearly delineated separation of concerns should
also manifest itself at the code level of the systems produced, that will, in turn,
improve the maintainability of the resulting systems.

4 An Instance

We propose a line of research that aims to combine the run-time monitoring and
local adaptation of distributed components with the top-down decomposition
approach brought about by choreographic development. Our manifesto may thus
be distilled as:

Local Runtime Adaptation + Static Choreography Specifications
= Choreographed MOP

Our work stems from two existing bodies of work. On the one hand, our
investigation is grounded on the Erlang monitoring framework developed and
implemented in [10,11], which showed that these concepts are realisable. On the
other hand, the end point of what we want to achieve is driven by the design of
a choreographic model for distributed computation with global views and local
projections of [34], reviewed in Sect. 4.1.

4.1 Global and Local Specifications

A key reason that makes choreographies appealing for the modelling, design, and
analysis of distributed applications is that they do not envisage centralisation
points. Roughly, in a choreographic model one describes how a few distributed
components interact in order to coordinate with each other. There is a range
of possible interpretations for choreographies [7]; a widely accepted informal
description is the one suggested by W3C’s [30]:

[...] a contract containing a global definition of the common ordering conditions
and constraints under which messages are exchanged, is produced that describes,
from a global viewpoint [...] observable behaviour [...]. Each party can then use
the global definition to build and test solutions that conform to it. The global
specification is in turn realised by combination of the resulting local systems
[...]
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According to this description, a global and a local view are related as in the
left-most diagram in Fig. 1 which evokes the following software development
methodology. First, an architect designs the global specification and then uses
the global specification to derive, via a ‘projection’ operation, a local specifica-
tion for the distributed components. Programmers can then use the local spec-
ifications to check that the implementation of their components are compliant
with the local specification. The keystones of this process are (i) that the global
specification can be used to guarantee good behaviour of the system abstracting
away from low level details (typically assuming synchronous communications),
(ii) that projection operation can usually be automatised so to (iii) produce
local specifications at a lower level of abstraction (where communication are
asynchronous) while preserving the behaviour of the global specification.

We remark that the relations among views and systems of choreographies are
richer than those discussed here. For instance, local views can also be compiled
into template code of components and the projection operation may have an
“inverse” (cf. [34]). Those aspects are not in scope here.

We choose two specific formalisms for global and local specifications. More
precisely, we adapt to our needs the global graphs of [34] for global specifications
and Erlang actors to express local views of choreographies.

Global Specifications. Global graphs, originally proposed in [18] and recently
generalised in [28,45], are a convenient specification language for global views
of message-passing systems. They yield both a formal framework and a sim-
ple visual representation that we review here, adapting notation and definition
from [45].

Hereafter we fix two disjoint sets P and M; the former is a finite set of
participants (ranged over by A, B, etc.) and M is the set of messages (ranged
over by m, x, etc.). To exchange messages and coordinate with each other, par-
ticipants use asynchronous point-to-point communication via channels following
the actor model [5,29]. We remark that global graphs abstract away from data;
the messages specified in interactions of global graphs have to be thought of as
data types rather than values.

The syntax of global graphs is defined by the grammar

G ::= A−→B : m | G;G′ | G |G′ | G+G′ | ∗G@A

A global graph can be a simple interaction A−→B : m (for which we require A �=
B), the sequential composition G;G′ of G and G′, the parallel composition (for
which the participants of G and of G′ are disjoint), a nondeterministic choice
G+G′ between G and G′, or the iteration ∗G@A of G. The syntax captures the
structure of a visual language of distributed workflows illustrated in Fig. 2. Each
global graphs G can be represented as a rooted diagram with a single source
node and a single sink node respectively represented as ◦ and �. Other nodes are
drawn as • and a dotted edge from/to a •-node singles out the source/sink nodes
the edge connects to. For instance, in the diagram for the sequential composition,
the top-most edge identifies the sink node of G and the other edge identifies the
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Fig. 2. A visual notation for global graphs

source node of G′; intuitively, • is the node of the sequential composition of G
and G′ obtained by “coalescing” the sink of G with the source of G′. In our
diagrams, branches and forks are marked respectively by and nodes; also,
to each branch/fork nodes corresponds a “closing” gate merge/join gate.

Example 1. Consider a protocol where iteratively participant C sends a newReq
message to a logging service L. In parallel, a C’s partner, A, makes either requests
of either type req1 or type req2 to a service B, which, in turn, replies via two
different types of responses, namely res1 and res2. Once a request is served, B
also sends a report to A, which logs this activity on L. This protocol can be
modelled with the graph G = ∗(

G1 |G′
1

)
;G2;G3@A where

G1 =C−→L : newReq
G2 =L−→C : ack |B−→A : rep
G3 =A−→L : log

G′
1 =A−→B : req1;B−→A : res1

+
A−→B : req2;B−→A : res2

The decision to leave or repeat the loop is non-deterministically taken by one
of the participants (in this case A) which then communicates to all the others
what to do. This will become clearer in Sect. 6. The diagram in Fig. 3 is the
visual counterpart of G. �

The (forward) semantics of global graphs can be defined in terms of partial
orders of communication events [28,45]. We do not present this semantics here
(the reader is referred to [28,45]) for space limitations; instead, we give only a
brief and informal account through a “token game” similar to the one of Petri
nets based on Fig. 3. The token game would start from the source node and flow
down along the edges in the diagram as described by the test in Fig. 3.

For the semantics of global graphs to be defined, well-branchedness [28,45] is a
key requirement. This is a simple condition guaranteeing that all the participants
involved in a distributed choice follow a same branch. Well-branchedness requires
that each branch in a global graph (i) has a unique active participant (that is a
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Fig. 3. The diagram of a global graph and its semantics

unique participant taking the decision on which branch to follow) and (ii) that
any other participant is passive, namely that it is either able to ascertain which
branch was selected from the messages it receives or it does not play any role in
the branching.

Example 2. In the branch of Example 1, A is the active participant while the
others are passive; in fact, C and L are not involved in the choice, while B can
determine that the left or the right branch was selected depending on which type
of request it receives. �

Local Specifications. We adopt systems of CFSMs [9] as our model of local spec-
ifications. A CFSM is a finite-state automaton where transitions represent input
or output events from/to other machines. Each machine in the system corre-
sponds to an actor which can send or receive messages to/from other machines.
Communications take place on unbound FIFO buffers: for each pair of machines,
say A and B, there is a buffer from A to B and one from B to A. Basically, when a
machine A is in a state q with a transition to a state q′ whose label is an output
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of message m to B, then m is put in the buffer from A to B and A moves to state
q′. Similarly, when B is in a state q with a transition to a state q′ whose label is
an input of m from B and the m is on the top of the buffer from A to B then B
pops m from the buffer and moves to state q′.

Noteworthy, the model of CFSMs is very close to the actor model and CFSMs
can be projected from global graphs automatically. Moreover, when the global
graph, say G, is well-formed then the behaviour of the projected machines faith-
fully refines the semantics of G [28]. In this paper, we will directly synthesise
Erlang code from the global specification, that is we will use Erlang actors to
model our local specifications.

5 Global Graphs for Reversibility

We propose a variant of global graphs, dubbed reversibility-enabling (global)
graphs (REGs for short) that generalises the branching construct to cater for
reversibility. We will use REGs to render the recovery model in Sect. 3.

Example 3. Recall the global graph in Example 1. A possible reversion guard for
B could specify that the port required to respond A needs to be available at the
time of communication, or that the size of the communication buffer for this port
does not exceed a given threshold. At runtime, both conditions may prohibit the
respective participants from completing the execution of the specified protocol.
By reversing the choice taken (i.e. A making requests of either type req1 or of
type req2), the participants involved can make alternative choices. �

The syntax of REGs uses control points1 to univocally identify positions
where choices have to be made on how to continue the protocol. Syntactically,
control points are written as i.G, where i is a strictly positive integer.

Definition 1 (Reversibility-enabling global graphs). The set G of rever-
sibility-enabling global graphs (REGs) consists of the terms G derived by the
following grammar:

G ::=A−→B : m | G;G′ | i.(G |G′) |
i.
(
G1 unless φ1 + G2 unless φ2

) | (1)

i.
(∗G@A

)
(2)

that satisfy the following conditions:

– in i.
(∗G@A

)
, A is the active participant of G and

– for any two control points i and j occurring in different positions of a REG it
must be the case that the indices are distinct, i �= j.

1 Control points can be automatically generated; for simplicity, we explicitly put them
in the syntax of REGs.
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In (1), the formulas φh (for h ∈ {1, 2}) are reversion guards expressed in terms
of boolean expressions.

In Definition 1, the participant A in (2) decides whether to repeat the body G
or exit an iteration. Hereafter, we consider equivalent REGs that differ only in
the indices of control points (the indices of control points are, in fact, irrelevant
as long as they are unique) and may omit control points when immaterial, e.g.
writing G unless φ + G′

unless φ′ instead of i.
(
G unless φ + G′

unless φ′).
The new branching construct (1) extends the usual branching construct of

choreographies to control reversible computations. The semantics of this con-
structs is rendered by the encoding in Sect. 6 which realises the following intended
behaviour. The execution of i.

(
G1 unless φ1 + G2 unless φ2

)
requires first to non-

deterministically choose h ∈ {1, 2} and execute the REG Gh. At the end of the
execution of Gh then its guard φh is checked. It the guard is false, then the exe-
cution exits the branch and continues executing normally. It the guard is true we
may have two sub-cases depending whether the other branch has been already
reversed or not. In the first case, then the execution is forced to proceed normally
(e.g., there is no alternatives to try), in the second case then the execution of
Gh is reversed and the other branch is executed.

Note that, by keeping track of all reversed branches and fully executing the
last branch when all the others have been reversed, we can easily generalise to a
branching construct i.

(
G1 unless φ1 + · · · + Gh unless φh

)
with h ≥ 2; for simplicity

we just consider h = 2 here.
Definition 1 parameterises REGs on the notion of reversion guard. However,

our study required us to address crucial design choice on how reversion guards
are rendered in a language like Erlang (without a global state). Roughly, rever-
sion guards can be thought of as propositions predicating on the state of the
forward execution. A key requirement for a proper projection, however, is that
the evaluation of such guards must be “distributable”, i.e. we want revision
guards to be “projectable” from the global view to the components realising the
behaviour of the participants. To meet this requirements, we use local guards,
i.e. boolean expression that predicate on the state of a specific participant and
assume that a revision guard is a conjunction of the local guards at each partici-
pant. More concretely, we exploit Erlang’s support [1] for accessing the status of
a process implementing a participant via system functions such as process info
or system info, which return a dictionary with miscellaneous information about
a process or a physical node respectively.

Example 4. Consider the following concrete examples of revision guards:
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Participant Actor Selector Actor

Participant Monitor Selector Monitor

Forward Attempt
(Phase 2)

φ

Guard Check
(Phase 3)

Continuation
(Phase 4)

Decision
(Phases 1 and 5) 

Decision
(Phase 5)

Fig. 4. The instrumentation architecture connecting participant actors, coordinating
(selector) actors and their respective monitor actors

Predicate queue len checks if the size of the mailbox is above a threshold,
whereas message exists checks for the presence of a message matching some
pattern in a mailbox. Other examples of reversion guards are conditions on PIDs
and port identifiers, heap size, or the status of processes (e.g., waiting, running,
runnable, suspended). �

Our reversible semantics still requires well-branchedness: a REG, say G, is
well-branched when the global graph obtained by removing reversion guards
from G is well-branched (as defined in Sect. 4). This guarantees communication
soundness in presence of reverse executions.

6 From REGs to Erlang

This section shows how we map REGs into Erlang programs. This mapping cor-
responds to the definition of projection from the global view provided by REGs
into Erlang implementations of their local view. Our encoding embraces the prin-
ciples advocated in [13] and reviewed in Sect. 3: we strive for a solution yielding
a high degree of decoupling between forward and reverse executions. Unsurpris-
ingly, the most challenging aspect concerns how branches are projected. This
is done by realising a coordination mechanism which interleaves forward and
reversed behaviour, as described in Sect. 5. In the following, we first describe the
architecture of our solution. We then show how forward and reversed executions
are rendered in it.

6.1 Architecture

The abstract architecture of our proposal is given in Fig. 4. Each participant
of a REG is mapped to a pair of Erlang actors, the participant actor and the
participant monitor which liaise with one another in order to realise reversible
distributed choices. The execution of a distributed choice is supported by another
pair of (dynamically generated) actors, the selector actor which liaises with its
corresponding selector monitor. The basic idea is that participant and selector
actors are in charge of executing the forward logic part of the choice while their
respective monitors deal with the reversibility logic.
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A key structural invariant of the architecture is that monitors can interact
only with their corresponding participant or with the monitors of the selectors
currently in execution, as depicted in Fig. 4. This organisation is meant to repre-
sent the information and control flow of our solution. The coordination protocol
required to resolve a distributed choice specified in a REG is made of the fol-
lowing phases:

1. Inception: The selector actor (started at a branching point) decides which
branch to execute and communicates its decision to the participants involved.

2. Forward attempt: Participant actors execute the selected branch accord-
ingly and report their local state at the end of the branch to their participant
monitor.

3. Guards checking: Participant monitors check their reversion guard and
communicate the outcome to the selector monitor.

4. Continuation: The selector monitor aggregates the individual outcome of all
participant monitors and reports the aggregated result to the selector actor.

5. Decision: Based on suggestion forwarded by the selector monitor, the selec-
tor actor decides whether to continue forward or reverse the execution and
communicates the decision to all participants, which in turn propagate it to
their participant monitor.

These phases roughly correspond to the arrows in Fig. 4.

6.2 Branching Actors and Monitors

We now describe the behaviour of actors and monitors in a choice, with the help
of their automata-like representation in Fig. 5. The coordination protocol that
we describe here resembles a 2-phase commit protocol where participants report
the outcome of local computations to a coordinator that then decides how to
continue the execution.

When participant actors (start to) reach a branching point, the inception
phase begins. The actor corresponding to the (unique) active participant of the
choice spawns the selector actor and waits from the selector message telling
which branch to take in the choice; all other participant actors just wait for the
selector’s decision. The act of spawning the selector arrow by the active partici-
pant is represented in Fig. 5 via the gray arrow and the cloud in the automaton
of the participant actor. Subsequently, all the actor participants involved in a
branch will wait from the selector to instruct them with the branch (either left or
right) to take—these are the yellow arrows in the automaton of Fig. 5. Upon the
receipt of such a message, participant actors first forward this message to their
monitor and then enter the second phase executing the branch—represented by
the cloud in the automaton. Unless the chosen branch diverges, the third phase
starts when participant actors finish the branch (possibly at different times)
and they signal to their monitor that they are ready to exit the choice. This
is signalled by the exit message which also carries the local state of execu-
tion (described in Sect. 5). At this point, participant actors take part only in
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Fig. 5. Automata-like description of actors and monitors for the projection of branches

the last phase: they receive from the selector either an ack message (confirming
that the choice has been resolved) or a rev message to reverse the execution.
In either case, they propagate the message to their monitor and either “com-
mit” the branch or return to the state that waits for the message dictating the
next branch to take. Participant actors behave uniformly but for the active one,
which has the additional task of spawning the selector at the very beginning
(for non-active participants the grey transition is an internal step not affecting
communications).

Each participant monitor waits for the message carrying the local state that
its participant actor sends at the end of the second phase in the exit message.
The state is used to check whether the reversion guard of the branch, say φ,
holds or not. If φ holds for the local state of the participant actor, then the
participant monitor sends the selector monitor a request to reverse the branch
(message rev). Otherwise the monitor sends a message to commit the choice
(message exit). In Fig. 5 this is represented by the label sel m!d, where d stands
for decision and sel m binds to the unique identifier of the selection monitor
implemented as an actor. After this, the monitor waits from its participant actor
for the rev or the ack message sent in the last phase: if rev is received the
monitor returns to its initial state and leaves the branch otherwise.
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The selector actor spawned in the inception phase starts by spawning a selec-
tor monitor and then deciding which branch to take initially—represented in
Fig. 5 by the grey transition and the cloud in the automaton of the selector.
After communicating its decision to all participant actors, the selector waits for
the request of its monitor and starts phase five of Sect. 6.1 by deciding whether
to reverse the branch or not. The decision process is as follows: if the selector
receives an ack message then the branch is committed and the selector monitor
terminates. Otherwise, the selector participants receive a rev message to reverse
the branch. If there are branches that have not been taken yet, then the last
executed branch is marked as “tried”, a branch that has not been attempted
yet is selected, and a rev message is sent to all participant actors. Otherwise,
the decision to commit the branch is taken and the ack message is sent to all
participant actors. In the former case, the selector returns to its initial state,
and terminates otherwise.

The selector monitor participates to the fourth phase. It first gathers all
the outcomes from the guard-checking phase from all the participant monitors
involved into the choice. Recall that a rev message is received from any par-
ticipant monitor whose revision guard becomes true, while an ack message is
received from any participant monitor whose revision guard does not hold. Then,
the selector monitor computes an outcome to be sent to the selector actor: if all
received messages are ack then an ack message is sent to the selector actor, oth-
erwise the monitor sends a rev message to the selector actor. In both cases, the
selector monitor terminates; a new selector monitor is spawned by the selector
actor if the branch is actually reversed.

Iteration is a simplification of a distributed choice: we just generate a selector
for an iteration but not its monitor. The reason for not having a monitor for
the iterator selector is due to the fact that there is no reversible semantics to be
implemented for the iteration. This does not imply that within the body of an
iteration a reversible step can not be taken (e.g. there can be an inner choice), but
just that iterations are not points at which the computation can be reversed.
The selector (instantiated by the active participant of the iteration, similarly
to choices) just decides whether to iterate or exit the loop. A participant actor
within a loop, after completing an iteration, awaits the decision from the selector
actor and continues accordingly.

6.3 Compiling to Erlang

The code generated for the projections from REGs to Erlang is discussed below.
We focus on the compiled code for the branches constructs, since the compilation
of the other constructs is standard and therefore omitted. Our discussion uses
auxiliary functions for which the code is not reported.
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The code for the participant actor (lines 1–21) is parametrised with respect
to cp, the value of the control point2 univocally identifying the point of branch in
the REG. The commented lines 2–5 are generated only for the code of the active
participant which spawns the selector actor of the branch CP. Note that the
process is registered under a unique name sel act cp (which is an atom). This
snippet is actually a template which would be filled up with the code generated
for the participant communications respectively on the left and on the right
branches (i.e. the commented lines 9 and 13).

The Erlang process spawned by a participant actor implementing the selector
actor executes the function on lines 44–70. This function takes two parameters:
the Attempt representing the branches chosen so far and the control point CP
identifying the choice. The former parameter is a list of atoms left and right;
note that the empty list is passed initially when the process is spawned and
that (in our case) the size of this list should never exceed 1. As discussed above,
the selector chooses a branch (lines 49–55) and communicates its decision to
the participants of the branch (lines 56–57, where participants is computed
at compile time, from the global graph script, and returns the participants of a
branch given its control point). Finally, the selector enters the fourth phase of
Sect. 6.1, waiting for the message from its monitor, and decides accordingly how
to continue the execution of the choreographed choice.

2 Note that the value cp is statically determined by the compiler.
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As in the case of the participant actor, the snippet of the participant monitor
(lines 22–43) does not make explicit the code for the monitoring of the left and
right branches (commented lines 25 and 30). The auxiliary function check guard
returns the evaluation of the guard for the state provided by the participant (lines
26–28 and 31–33). The function get selector monitor retrieves the PID of the
selector monitor from the control point value CP.

The selector monitor, spawned by the selector process, is registered with the
name sel mon cp (lines 45–48) where cp is the second actual CP when invoking
sel act. Note that the invocation to get selector monitor on line 35 returns
the atom sel mon cp. The snippet for the selector monitor uses the auxiliary
function participants returning the list of participant actors involved in the
branch cp. The outcome Msg is computed on lines 73–79 and sent to the selec-
tor on line 80. The selector monitor awaits a message from all the participant
monitors involved in the branch (lines 73–74), and then it decides the message
to communicate to the selector actor. If at least one of the messages received is
rev, then the final message is rev, otherwise the final message is ack.

7 Conclusions

We have presented a methodology to automate the process of adding recovery
strategies to message passing systems specified via a global protocol. In partic-
ular, our model abstracts from (1) the definition of formal behavioural models
encompassing failures, (2) the specification of the relevant properties of adapta-
tion and recovery strategy, (3) the automatic generation of monitoring, recovery,
and adaptation logic in target languages of interest.

In line with the principles advocated by our model, we then have presented a
minimally-intrusive extension to global graph choreographies [28] for expressing
reversible computation. We showed how these descriptions could be realised into
executable actor-based Erlang programs that compartmentalise the reversion
logic as Erlang monitors, minimally tainting the application logic.

Related Work. The closest work to ours is [19,33,40]. In [33] a reversible seman-
tics for a subset of Erlang is given. The goal of [33] is a debugger based on a
fully reversible semantics. To achieve this, they modify the Erlang semantics
in order to keep track of the computational history and build an ad-hoc inter-
preter for it. Our goal is different since we focus on controlled reversibility [31].
Our framework automates the derivation of rollback points (namely the exact
point at which the execution has to revert) from the recovery logic. Also, the
use of monitors avoids any changes to Erlang’s run-time support. Choreogra-
phies are used in [40] to devise an algorithm that optimises Erlang’s recovery
policies. More precisely, global views specify dependencies from which a global
recovery tables are derived. Such tables tell which are the safe rollback points.
The framework then exploits the supervision mechanism of Erlang to pair par-
ticipants with a monitor. In case of failure, the monitor restarts the actor to
a consistent rollback point. One could combine our approach with the recovery
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mechanism of [40] so as to generalise our reversible semantics to harness fault
tolerance. This is not a trivial task, because the fault-tolerance mechanism of [40]
needs to follow a specific protocol, making it unclear whether participants can
be automatically derived. In [19] actors are extended with checkpoints primi-
tives, which the programmer has to specify in order to rollback the execution.
In order to reach globally-consistent checkpoints severe conditions have to be
met. Thanks to the correctness-by-design principle induced by global views, our
approach automatically deals with checkpoints, relieving this burden from the
programmer.

Other works [37,38,41] have investigated the use of monitors to steer
reversibility in concurrent systems. In [41] a monitored reversible process algebra
is presented where each agent is paired with a monitor. But, unlike our approach,
the monitor tells the agent what to do both in the forward and in the reverse
way. In [37,38] the authors investigate the use of monitors to steer reversibil-
ity in message oriented systems. Here monitors are used as memories storing
information about the forward execution of the monitored participants, and this
information is then used to reconstruct previous states. As in our approach,
in [38] participants and their monitors are derived from a global specification
as well. We diverge from [37,38] in several aspects. Firstly, our monitors do not
store any information about the forward computation. Secondly, all the mon-
itors coordinate amongst each other to decide whether to revert a particular
computation or not. The coordination mechanism of our monitors is automat-
ically derived. Moreover in our approach reversibility is triggered at run-time
when certain conditions (specified at design-time in the recovery logic) are met.

Conclusions. We have presented a method to automatically derive reversible
computation as Erlang actors. A key aspect of our approach is the ability to
express, from a global point of view, when a reverse distributed computation
has to take place and not how. Starting from a global specification of the sys-
tem, branches can be decorated with conditions that at run-time will enable the
coordinated undoing of a certain branch. Another novelty of our approach is the
use of monitors to enact reversibility. We leave as future work the measurement
of the overhead of our approach on the normal forward semantics of the actors,
in terms of messages and memory consumption. Another research direction is
to integrate our recovery logic with existing monitoring frameworks for Erlang.
In [10,11], Cassar et al. developed the monitoring tool adaptEr3 for synthesis-
ing adaptation monitors for actor systems developed in Erlang. Specifications in
adaptEr are defined using a version of Safe Hennessy Milner Logic with recursion
(sHML) that is extended with data binding, if statements for inspecting data,
adaptations and synchronisation actions. We will investigate the idea of extend-
ing this logic with reversibility capabilities, and then to synthesise monitors
directly from this logic formulae.

3 The tool adaptEr is open-source and downloadable from https://bitbucket.org/
casian/adapter.

https://bitbucket.org/casian/adapter
https://bitbucket.org/casian/adapter
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Several works have shown that reversible debuggers can be built on top of
reversible semantics [17,26,32]. In line with these works, our ultimate goal would
also be to build a (reversible) debugger for Erlang systems. One idea could be
to integrate our automatic synthesis of reversible code with commercial sys-
tems which are able to monitor and aggregate several information (events) of a
message passing system. One of such candidate is WombatAOM4. Such an inte-
gration will allow our reversion guards to predicate on real runtime information.
On a different topic, REGs could also be used to enhance Continuous Inte-
grations [36] scenarios, by proposing a formalism to express workflows imbued
with reversible behaviour to support automatic tests generation and flakiness
detection.
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Abstract. In this chapter we give an overview of techniques for the
modelling and reasoning about reversibility of systems, including out-
of-causal-order reversibility, as it appears in chemical reactions. We con-
sider the autoprotolysis of water reaction, and model it with the Calculus
of Covalent Bonding, the Bonding Calculus, and Reversing Petri Nets.
This exercise demonstrates that the formalisms, developed for express-
ing advanced forms of reversibility, are able to model autoprotolysis of
water very accurately. Characteristics and expressiveness of the three
formalisms are discussed and illustrated.

Keywords: Reversible computation · Reaction modelling · Calculus of
Covalent Bonding · Bonding Calculus · Reversing Petri Nets

1 Introduction

Biological reactions, pathways, and reaction networks have been extensively
studied in the literature using various techniques, including process calculi and
Petri nets. Initial research was mainly focused on reaction rates by the mod-
elling and simulating networks of reactions, in order to analyse or even predict
the common paths through the network. Reversibility was not considered explic-
itly. Later on reversibility started to be taken into account, since it plays a crucial
rôle in many processes, typically by going back to a previous state in the sys-
tem. Two common types of reversibility are backtracking and causally-consistent
reversibility [8,19,25]. Backtracking executes exactly the inverse order of the for-
ward execution, and causally-consistent reversibility allows undoing effects before
causes, but not necessarily in the exact inverse order. Beyond backtracking and
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causally-consistent reversibility, there is a more general form of reversibility,
known as out-of-causal-order reversibility [28], which makes it possible to get to
states which cannot be reached by forward reactions alone. Such sequences of
forward and reverse reaction steps are important as they lead to new chemical
structures and new reactions, which would not be possible without out-of-causal-
order reversibility [28]. A typical example is a catalytic reaction: a catalyst C
enables compounds A and B to combine, a combination that would not normally
happen or be very unlikely without the presence of C. Initially, catalyst C binds
with B resulting in a compound BC. Then A combines with BC creating ABC.
Finally, with its job done, C breaks away from ABC, leaving A and B bonded.
This sequence of reactions can be written as follows:

A + B + C → A + BC → ABC → AB + C

This is a typical example of out-of-causal order reversibility since the bond
between B and C is undone before its effect, namely the bond from A to B
(which is not undone at all). The modelling of such reactions is the focus of
this chapter. For further motivation, formal definitions and more illustrating
examples of the various types of reversibility we refer the reader to [8,19,25,28].

1.1 Contribution

This chapter presents and compares three formalisms, the Calculus of Covalent
Bonding (CCB) [15,16], the Bonding Calculus [1], and Reversing Petri Nets [23],
that have been developed during COST Action IC1405. These models are vari-
ations of existing formalisms and set out to study reversible computation by
allowing systems to reverse at any time leading to previously visited states or
even new states without the need of additional forward actions. The contribution
of this chapter is a comparative overview of the three formalisms, a discussion of
their expressiveness, and a demonstration of their use on a common case study,
namely the autoprotolysis of water reaction.

Our case study was selected to be non-trivial, of manageable size, and to allow
us to exhibit the crucial features of the formalisms. It is a chemical reaction that
involves small molecules, so it is different from biological reactions that involve
proteins and other macromolecules. New modelling techniques may be needed in
order to capture fully reversible behaviour of biological systems, however, in this
chapter we concentrate on chemical reactions, a domain that offers interesting
examples of out-of-causal-order reversibility.

The discussed formalisms enable us to model the intermediate steps of chem-
ical reactions where some bonds are only “helping” to achieve the overall aim
of the reaction: specifically, they are only formed to be broken before the end of
the reactions. Thus, the allowed level of detail makes a more accurate depiction
of the reversibility possible, and allows a more thorough understanding of the
underlying reaction mechanisms compared to higher-level models.
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1.2 Related Work

Process calculi, originally designed for the modelling of sequential and concurrent
computation, have been applied to biochemical and biological systems. The main
instances are the π-calculus [34], BioAmbients [33], the stochastic π-calculus [30],
beta binders [31] and bioPEPA [6]. Another way to model biochemical reactions
is with rule-based formalisms such as BIOCHAM [10], the κ-calculus [7], and
the BioNetGen Language (BNGL) [9]. The formalisms κ and BNGL can be used
to model interactions between proteins, while this is not possible in BIOCHAM.
BNGL allows the use of molecule sites having the same name, which is not
allowed in the κ-calculus.

Most of the formalisms mentioned above do not explicitly represent reversibil-
ity. If an action is the reverse of another action performed before, there is no
explicit knowledge of that in the model. Reversibility was added explicitly to
process calculi in RCCS [8], CCSK [25], and reversible π [17,18]. CCSK and
RCCS are based on the Calculus of Communicating Systems (CCS) [21]. They
extend CCS by keeping track of past actions and enabling an undo of those. So a
reverse action is the reverse execution of a forward action. These calculi support
backtracking and causally-consistent reversibility. Out-of-causal-order reversibil-
ity was first addressed in CCSK extended with controller processes [28], and in
the context of reversible event structures [26,27,37]. CCB [16] allows all types
of reversibility in the context of chemical reactions and in other settings.

Petri nets (PNs) [35] are another formalism that has been widely used to
model and reason about a wide range of applications featuring concurrency and
distribution. They are a graphical language associated with a rich mathematical
theory and supported by a variety of tools. Their use in systems biology dates
back to [12,32]. Since then, they have been employed for the modelling, analysis,
and simulation of biochemical reactions in metabolic pathways, gene expression,
signal transduction, and neural processes [2,4,5]. Indeed, PNs seem to be a
natural framework for representing biochemical systems as they constitute a set
of interdependent transitions/reactions which consume and produce resources,
and are represented graphically in a similar fashion to the systems in question.
Several specialised Petri net classes, such as qualitative, stochastic, continuous,
or hybrid Petri nets and their coloured counterparts, have been used to describe
different biochemical systems [13,20,22,29,38].

Even though classical PNs and their extensions have been extensively used to
model biochemical systems, they cannot directly model reversibility. Specifically,
when modelling reversible reactions in these formalisms it is required to employ
mechanisms involving two distinct transitions, one for the forward and one for the
reverse version of a reaction. This may result in expanded models and less natural
and/or less accurate models of reversible behaviour. It is also in contrast to the
notion of reversible computation, where the intention is not to return to a state
via arbitrary execution but to reverse the effect of already executed transitions.
For this reason, the formalism of reversing Petri nets [23] has been proposed
to allow systems to reverse already executed transitions leading to previously
visited states or even new ones without the need of additional forward actions.
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Reversing Petri nets have also been extended with a mechanism for controlling
transition reversal by associating transitions with conditions [24].

1.3 Paper Organisation

In the next section, we introduce the autoprotolysis of water reaction, which will
be modelled using our three formalisms. This is followed by a section introducing
the formalisms, their syntax and, informally, their operational semantics. We also
give three models of the autoprotolysis of water using the formalisms. In Sect. 4,
we compare the formalisms and the models of our example reaction, and we
also briefly discuss software support for the three formalisms. Finally, Sect. 5
concludes the paper.

2 Autoprotolysis of Water

We consider a chemical reaction that transfers a hydrogen atom between two
water molecules. This reaction is known as the autoprotolysis of water and is
shown in Fig. 1. There, O indicates an oxygen atom and H a hydrogen atom.
The lines indicate bonds. Positive and negative charges on atoms are shown by
⊕ and � respectively. The meaning of the curved arrows and the dots will be
explained in the next paragraphs. The reaction is reversible and it takes place
at a relatively low rate, making pure water slightly conductive. We have chosen
this reaction as our example reaction, since it is non-trivial but manageable, and
has some interesting aspects to be represented.

Fig. 1. Autoprotolysis of water.

To model the reaction we need to understand why it takes place and what
causes it. The main reason is that the oxygen in the water molecule is nucle-
ophilic, meaning it has the tendency to bond to another atomic nucleus, which
would serve as an electrophile. This is because oxygen has a high electro-
negativity, therefore it attracts electrons and has an abundance of electrons
around it. The electrons around the atomic nucleus are arranged on electron
shells, where only those in the outer shell participate in bonding. Oxygen has
four electrons in its outer shell, which are not involved in the initial bonding
with hydrogen atoms. These electrons form two lone pairs of two electrons each,
which can form new bonds (lone pairs are shown in Fig. 1 by pairs of dots). All
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this makes oxygen nucleophilic: it tends to connect to other atomic nuclei by
forming bonds from its lone pairs. Since oxygen attracts electrons, the hydrogen
atoms in water have a positive partial charge and oxygen has a negative partial
charge.

The reaction starts when an oxygen in one water molecule is attracted by a
hydrogen in another water molecule due to their opposite charges. This results in
a hydrogen bond. This bond is formed out of the electrons of one of the lone pairs
of the oxygen. The large curved arrow in Fig. 1 indicates the movements of the
electrons. Since a hydrogen atom cannot have more than one bond, the creation
of a new bond is compensated by breaking the existing hydrogen-oxygen bond
(indicated by the small curved arrow). When this happens, the two electrons,
which formed the original hydrogen-oxygen bond, remain with the oxygen. Since
a hydrogen contains one electron and one proton, it is only the proton that is
transferred, so the process can be called a proton transfer as well as a hydrogen
transfer. The forming of the new bond and the breaking of the old bond are
concerted, meaning that they happen together without a stable intermediate
configuration. As a result we have reached the state where one oxygen atom
has three bonds to hydrogen atoms and is positively charged, represented on
the right side of the reaction in Fig. 1. This molecule is called hydronium and
is written as H3O+. The other oxygen atom bonds to only one hydrogen and
is negatively charged, having an electron in surplus. This molecule is called a
hydroxide and is written as OH−.

Note that the reaction is reversible: the oxygen that lost a hydrogen can
pull back one of the hydrogens from the other molecule, the H3O+ molecule.
This is the case since the negatively charged oxygen is a strong nucleophile
and the hydrogens in the H3O+ molecule are all positively charged. Thus, any
of the hydrogens can be removed, making both oxygens formally uncharged,
and restoring the two water molecules. In Fig. 1 the curved arrows are given for
the reaction going from left to right. Since the reaction is reversible (indicated
by the double arrow) there are corresponding electron movements when going
from right to left. These are not given in line with usual conventions, but can
be inferred.

In this simple reaction, the forward and the reverse step consist of two steps
each. The breaking of the old and the forming of the new bond occur simultane-
ously. This means that there is no strict causality of actions, since none of them
can be called the cause of the overall reaction. Furthermore, the reverse step can
be done with a different atom to the one used during the forward step because
each of the molecules are in a sense identical and in practice there does not exist
a single “reverse” path corresponding to a forward one.

It should be noted that there are two types of bonding modelled here. Firstly,
we have the initial bonds where two atoms contribute an electron each. Secondly,
the dative or coordinate bonds are formed where both electrons come from one
atom (an oxygen in this case). Both are covalent bonds, and once formed they
cannot be distinguished. Specifically, in the oxygen with three bonds all bonds
are the same and no distinction can be made. If one of the bonds is broken by
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a deprotonation (as in the autoprotolysis of water) the two electrons are left
behind and they form a lone pair. If the broken bond was not previously formed
as a dative bond, the electrons changed their “rôle”. This explains why any
proton can be transferred in the reverse reaction and not just the one that was
involved in the forward path.

3 Formalisms for Reversible Chemical Reactions

3.1 Calculus of Covalent Bonding

In this subsection we introduce the Calculus of Covalent Bonding (CCB) [16],
concentrating on the new general prefixing operator (s; b).P which, together with
a generalised composition operator, produces pairs of concerted actions. Then
we present a CCB model of the autoprotolysis of water.

Definition of CCB. We recall the definition of CCB, presenting only the main
ideas. More details can be found in [15,16]. First, we introduce some preliminary
notions and notations.

Let A be the set of (forward) action labels, ranged over by a, b, c, d, e, f . We
partition A into the set of strong actions, written as SA, and the set of weak
actions, written as WA. Reverse (or past) action labels are members of A, with
typical members a, b, c, d, e, f , and represent undoing of actions. The set P(A∪A)
is ranged over by L.

Let K be an infinite set of communication keys (or keys for short) [25], ranged
over by k, l,m, n. The Cartesian product A×K, denoted by AK, represents past
actions, which are written as a[k] for a ∈ A and k ∈ K. Correspondingly, we
have the set AK that represents undoing of past actions. We use α, β to identify
actions which are either from A or AK. It would be useful to consider sequences
of actions or past actions, namely the elements of (A ∪ AK)∗, which are ranged
over by s, s′ and sequences of purely past actions, namely the elements of AK∗,
which are ranged over by t, t′. The empty sequence is denoted by ε. We use the
notation “α, s” and “s, s′” to denote a concatenation of elements, which can be
strings or single actions.

We shall also use two sets of auxiliary action labels, namely the set (A) =
{(a) | a ∈ A}, and its product with the set of keys, namely (A)K. These labels
will be used in the auxiliary rules when defining the semantics of CCB. They
denote the execution of a weak action, which makes it possible in the SOS rules
to force breaking of a bond for those actions only.

The syntax of CCB is given below where P is a process term:

P ::= S
∣
∣ S

def
= P

∣
∣ (s; b).P

∣
∣ P |Q ∣

∣ P \L

The set of process identifiers (constants) PI contains typical elements S

and T . Each process identifier S has a defining equation S
def
= P where P contains
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only forward actions (and no past actions). There is also a special identifier 0,
denoting the deadlocked process, which has no defining equation. For restrictions
L ⊆ A holds.

We have a general prefixing operator (s; b).P , where s is a non-empty
sequence of actions or past actions. This operator extends the prefixing operator
in [28]. The action b is a weak action and it can be omitted, in which case the
prefixing is written as (s).P and is called the simple prefix. The simple prefix
(which is still a sequence) is the prefixing operator in [28]. Exactly one of the
actions in s in (s).P may be a weak action from WA. A weak action in s is
only allowed for the simple prefix, in the (s; b) operator b is the only allowed
weak action. If s is a sequence that contains a single action, then the action is
a strong action and the operator is the prefixing operator of CCS [21]. We omit
trailing 0s so, for example, (s).0 is written as (s). The new feature of the oper-
ator (s; b).P is the execution of the weak action b, which can happen only after
all the actions in s have taken place. Performing b then forces undoing one of
the past actions in s (by the concert rule in Fig. 4). If a (s; b) operator is followed
by another sequence of actions, where all actions in s have already taken place,
then there is a non-deterministic choice of either doing b or progressing to the
next sequence of actions (see act1 and act2).

P | Q represents two systems P and Q which can perform actions or reverse
actions on their own, or which can interact with each other according to a com-
munication function γ. As in the calculus ACP [11], the communication function
is a partial function γ : A × A → A which is commutative and associative. The
function γ is used in the operational semantics to define when two processes can
interact. Processes P and Q in P | Q can also perform a pair of concerted actions,
which is the new feature of our calculus. We also have the ACP-like restriction
operator \L, where L is a set of labels. It prevents actions from taking place
and, due to the synchronisation algebra used, it also blocks communication. If
γ(a, b) = c then a.P and b.Q cannot communicate in (a.P | b.Q) \ c.

The set Proc of process terms is ranged over by P,Q and R. In the setting
of CCB these terms are simply called processes. We define the semantics of our
calculus using SOS rules (Figs. 2, 3, 4) and rewrite rules (Fig. 5).

We use some predicates and functions, which are formally defined in [16].
Informally, a process P is standard, written std(P ), if it contains no past actions
(hence no keys). A key n is fresh in Q, written fsh[n](Q), if Q contains no past
action with the key n. Function k returns the keys in a sequence of actions,
whereas keys returns the keys in a process, and fn gives the actions of a process
which could be executed.

The forward and reverse SOS rules for CCB are given in Figs. 2 and 3. Figure 4
contains the SOS rules that define the new concerted actions transitions. The
rule concert defines when a pair of concerted actions takes place. This enables the
linking of forming and breaking of bonds, and therefore a degree of control over
the reversing of actions. The modelling in the next section will give examples of
the application. Note that the concert rule uses lookahead [36]. Lookahead is a
property of SOS rules, where a variable appears both on the right hand side and
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Fig. 2. Forward SOS rules for CCB. The condition (*) is γ(a, d) = c, and b ∈ WA.
Recall that s is a sequence of actions and past actions and t is a sequence of purely
past actions.

Fig. 3. Reverse SOS rules for CCB. The condition (*) is γ(a, d) = c, and b ∈ WA.

on the left hand side of a transition in the premises. for example P ′ and Q′ in
concert. The rule concert par requires that k is fresh in Q, correspondingly as in
par. Moreover, we need to ensure that when we reverse h with the key l in P we
do not leave out any actions with the key l in Q which make up a multiaction
communication with the key l. Hence, we also include the premise fsh[l](Q) in
concert par. The rule concert act requires, correspondingly as act, that k is fresh
in t. Our operational semantics guarantees that if a standard process evolves to
(t; b).P , for some P , and P reverses an action with the key l, then l is fresh in
t. Hence, we do not include fsh[l](t) in the premises of concert act. Overall, the
transitions in Figs. 2, 3 and 4 are labelled with a[k] ∈ AK, or with c[l] ∈ AK, or
with concerted actions (a[k], c[l]).

Next, we recall the main new rewrite rules for a reduction relation for CCB
in Fig. 5. All the rules can be found in [15,16] but here we only give rules for
promotion of actions. These are prom, move-r, and move-l which promote weak
bonds (here b) to strong bonds (here a). The rule prom applies to the full ver-
sion of our prefix operator (with the; construct), and move-r and move-l apply
only to the simple prefix. These three rules are here to model what happens in
chemical systems: a bond on a weak action is temporary and as soon as there
is a strong action that can accommodate that bond (as the result of concerted
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Fig. 4. SOS rules for concerted actions in CCB. The condition (*) is 1. α = c∨α = (c)
and ∃c ∈ A|γ(b, c) = e, and 2. γ(a, d) = f . The condition (**) is a, h /∈ L ∪ (L). Recall
that t ∈ AK∗, and b ∈ WA.

Fig. 5. New reduction rules for CCB. Sequences s, s′, s′′ are members of (A ∪ AK)∗.

actions) the bond establishes itself on the strong action thus releasing the weak
action. In order to align the use of these three rules to what happens in chemical
reactions, we insist that they are used as soon as they becomes applicable, a
formal definition is given in [15,16].

We shall call henceforth the transitions derived by the forward SOS rules
the forward transitions and, the transitions derived by the reverse SOS rules the
reverse transitions. Correspondingly, there are the concerted (action) transitions.

The Autoprotolysis of Water in CCB. When modelling the autoprotolysis
of water in CCB, we shall model the hydrogen and oxygen atoms as processes H
and O as follows, where h, o are actions representing the bonding capabilities of
the atoms and n, p representing negative and positive charges, respectively. H ′

and O′ are process constants, and p and n are weak actions.

H
def
= (h; p).H ′ O

def
= (o, o, n).O′

The synchronisation function γ is as follows:

γ(h, o) = ho γ(n, p) = np γ(n, h) = nh
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Each water molecule is a structure consisting of two hydrogen atoms and one
oxygen atom which are bonded appropriately. We shall use subscripts to distin-
guish the individual copies of atoms and actions; for example H1 is a specific
copy of hydrogen defined by (h1; p).H ′

1, similarly for O1 defined as (o1, o2, n).O′
1.

The atoms are composed with the parallel composition operator “|” using the
communication keys (which are natural numbers) to combine actions into bonds.
So a water molecule is modelled by the following process, where the key 1 shows
that h1 of H1 has bonded with o1 of O1 (correspondingly for key 2). The restric-
tion \{h1, h2, o1, o2} ensures that these actions cannot happen on their own, but
only together with their partners, forming a bond.

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) \ {h1, h2, o1, o2}

The system of two water molecules in Fig. 1 is represented by the parallel compo-
sition of two water processes, where the restriction \{n, p} represses actions n, p
from taking place separately by forcing them to combine into bonds (according
to γ).

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) \ {h1, h2, o1, o2} |

((h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2) \ {h3, h4, o3, o4}) \ {n, p}

Following a general principle in process calculi in the style of CCB we can move
the restrictions to the outside. The rule used can be written as (P | Q) \ L =
P \ L | Q if the actions of L are not used in Q. Applying this gives us a water
molecule modelled as follows:

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) | (h3[3]; p).H ′

3 |
(h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2)) \ {h1, h2, o1, o2} \ {h3, h4, o3, o4} \ {n, p}

Note the hi, oj , and n are not restricted: this allows us to break bonds via
concerted actions involving these actions. We will see an example of this shortly.
We now leave out the restrictions to improve readability.

Actions n in O1 and p in H3 combine (we use the new key 5), representing
a transfer of a proton from one atom of oxygen (O2 in our model) to another
one (O1 in our model). As a hydrogen atom consists of a proton and an elec-
tron, and the electron stays in such a transfer, it can either be called a proton
transfer or the transfer of a (positively charged) hydrogen atom. We perform
the transfer of H3 from O2 to O1. The creation of the bond with key 5 from
O1 to H3 forces a break of the bond with key 3 (between h3 and o3) due to the
property of the operator (s; b).P discussed earlier. These two reactions happen
almost simultaneously so we represent them as a pair of concerted actions.

(h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1 | (h3[3]; p).H ′

3

| (h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2)
{np[5],h3o3[3]}−−−−−−−−−→

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2
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We have now arrived at the state on the right hand side in Fig. 1. There are
weak bonds between n and p (denoted by key 5) and strong bonds between hi

and oj for all appropriate i, j. Since H3 is weakly bonded to O1 and its strong
capability h3 has become available, the bond 5 gets promoted to the stronger
bond, releasing the capability p of H3. We represent this change as a rewrite and
we obtain the following process:

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2

⇒
((h1[1]; p).H ′

1 | (h2[2]; p).H ′
2 | (o1[1], o2[2], n[5]).O′

1) | (h3[5]; p).H ′
3)

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2

Note that we wrote h3, o3 and the key 5, the actions and keys affected by the
promotion, in bold font to improve readability. We shall do correspondingly
below.

Oxygen O1 is still blocked, which represents it being fully bonded (and pos-
itively charged). Oxygen O2 has a free n capability and can remove any of the
hydrogens from O1. As a result the process can reverse to its original state.

We show this by again transferring H3. We then execute promotion again:

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1) | (h3[5]; p).H ′

3)
| (h4[4]; p).H ′

4 | (o3, o4[4], n).O′
2

{np[3],nh3[5]}−−−−−−−−−→
(((h1[1]; p).H ′

1 | (h2[2]; p).H ′
2 | (o1[1], o2[2],n).O′

1) | (h3;p[3]).H ′
3)

| (h4[4]; p).H ′
4 | (o3, o4[4],n[3]).O′

2

⇒
(((h1[1]; p).H ′

1 | (h2[2]; p).H ′
2 | (o1[1], o2[2],n).O′

1) | (h3[3];p).H ′
3)

| (h4[4]; p).H ′
4 | (o3[3], o4[4],n).O′

2

This corresponds to the original process. Putting back restrictions we obtain

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1 | (h3[3]; p).H ′

3

| (h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2) \ {h1, h2, o1, o2} \ {h3, h4, o3, o4} \ {n, p}
and then if we apply the movement of restrictions in reverse we get

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) \ {h1, h2, o1, o2} |

((h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2) \ {h3, h4, o3, o4}) \ {n, p}

3.2 Bonding Calculus

In this subsection we recall briefly the Bonding Calculus [1], and illustrate its
expressiveness by modelling the autoprotolysis of water.
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Definition of the Bonding Calculus. The abstraction “processes as interac-
tions” from process calculi is used in the Bonding Calculus, but processes are not
able to communicate values in order to interact. Just like in the BNGL [9], the
Bonding Calculus allows the use of molecule sites having the same name, while
this is not possible in the κ-calculus. While the κ-calculus describes molecules
as a set of sites and uses rules to manipulate these sites between two or more
molecules, in the Bonding Calculus a molecule is described by the sequence of
operations it can perform on its sites (including also non-deterministic choices),
regardless of the form of the other molecules. This allows to use the composi-
tionality of the process calculus.

The syntax of the Bonding Calculus syntax is presented in Fig. 6. Let us
consider the set N of natural numbers, the set N = {x, x+, x−, . . . } of bond
names, the set M = {a, b, . . . } of molecules and the set P = {P,Q, . . .} of
processes. A multiset over N is defined as a partial function N : N → N. In the
Bonding Calculus each molecule has a unique name, and the bond x between
two molecules a and b is denoted by {a −x b}.

Fig. 6. Syntax of the Bonding Calculus

A bond prefix x(b) is used to indicate the availability of a molecule with
name b to create a new bond with name x, while an unbond prefix x(b) indicates
the availability of b to destroy an existing bond x. Creating or breaking a bond
leads to an update of the global bond memory L. As several similar bonds can
exist between the same molecules, L is actually a multiset of bonds.

The process 0 denotes inactivity. The availability to perform an action α, and
then to continue the execution as process P is denoted by the process α.P . The
process P + Q offers a choice between the processes P and Q, while the process
P | Q allows the execution of processes P and Q in parallel, with possible
interactions between them by using appropriate actions.
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As we work with bonds, we use the function �: M × N
N × M → Bool to

check whether between two molecules there exist certain bonds. For example,
a �N b checks for the existence of all bonds in N between the molecules a and b;
it returns true when such bonds exist, and false otherwise. When we consider
N = ∅, then a �∅ b checks if at least a bond exists between the two molecules.
When b = ε, then a �N ε checks if a has all of bonds from N , regardless of
the molecules he has them with. The Boolean result a �N b used in the testing
process is defined formally as:

a �N b =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
⊎

x∈N

{a −x b}) ∈ L N 
= ∅ and a 
= b 
= ε

(
⊎

x∈N
{a −x b}) ∩ L 
= ∅ N = ∅ and a 
= b 
= ε

∧

x∈N

(|L|a,x = |N |x) N 
= ∅ and a 
= ε and b = ε

undefined otherwise,

where |L|a,x is the number of bonds containing the molecule a and bond name x
that appear in the multiset L, while |N |x is the number of occurrences of x in N .

Depending on the truth value of a �Nb, the process if a �Nb then P else Q
executes either P or Q. An identifier A(b1, . . . , bn) is used to provide recursion
by creating new instances of processes defined as A(a1, . . . , an) = P , where
ai 
= aj for all i 
= j ∈ {1, . . . , n}; the new process is defined as A(b1, . . . , bn) =
P{b1/a1, . . . , bn/an}, where {bi/ai} denotes the replacement of variable ai by
value bi. A system S is given as a composition of a process P and the multiset
of bonds L, written as P || L.

The structural congruence relation ≡ is the least congruence such that
(P,+,0) and (P, |,0) are commutative monoids and the unfolding law
A(b1, . . . , bn) ≡ P{b1/a1, . . . , bn/an} holds whenever A(a1, . . . , an) = P .

The calculus presented in [1] was intended to model the creation and breaking
of covalent bonds. In order to be able to model both covalent and hydrogen
bonds, we apply a minor update to the operational semantics in [1] because
we need two instances of the rules used to create and to break bonds. The only
difference between the two instances of the same rule is given by the names of the
bonds appearing in the interacting processes, and by the fact that a bond cannot
be created using the names x+ and x− if other bonds exist between the same
molecules; more details about this restriction are given in the example below.

The operational semantics of the Bonding Calculus is given in Fig. 7. The
rules (CREATE1) and (CREATE2) describe the creation of a new bond {a −x b},
while the rules (REMOVE1) and (REMOVE2) describe the breaking of a bond
{a −x b}. If there exist two bonds {a −x b} in L, then any of these bonds is
broken. The rule (PAR) is used to compose processes in parallel, while the rules
(TRUE) and (FALSE) choose one of the branches of the testing process based
on the result of the checking. The rule (IDE) describes the recursion, while the
(STRUCT) rule indicates the fact that we reason up to the structural congruence.
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Fig. 7. Operational Semantics of the Bonding Calculus.

The Autoprotolysis of Water in the Bonding Calculus. We use two types
of bond names, namely c and h, to stand for the covalent and hydrogen bonds,
respectively. Using our calculus, the system composed of two molecules of water
is described by:

MolOxy2(O1) | MolHy1(H1) | MolHy1(H2)
| MolOxy2(O2) | MolHy1(H3) | MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O2 −c H3, O2 −c H4}
where the molecules are those of hydrogen and oxygen that are described below:

MolHy0(Hi) = c(Hi).MolHy1(Hi)
MolHy1(Hi) = c(Hi).MolHy0(Hi) + h+(Hi).MolHy2(Hi);
MolHy2(Hi) = c(Hi).c(Hi).h+(Hi).MolHy1(Hi).
MolOxy0(Oi) = c(Oi).MolOxy1(Oi);
MolOxy1(Oi) = c(Oi).MolOxy0(Oi) + c(Oi).MolOxy2(Oi);
MolOxy2(Oi) = c(Oi).MolOxy1(Oi) + h−(Oi).MolOxy3(Oi).
MolOxy3(Oi) = h−(Oi).MolOxy2(Oi).
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Each molecule of water is a structure consisting of one molecule of oxygen
and two molecules of hydrogen which are properly bonded. For example, the
process MolOxy2(O1) | MolHy1(H1) | MolHy(H2) together with the bonds
{O1 −c H1, O1 −c H2} model one molecule of water. We use unique names
for the molecules given as Oi (for oxygen) and Hi (for hydrogen), while the
processes having the names MolHy i and MolOxy i identify processes modelling
hydrogen and oxygen molecules with i bonds, respectively. For example, the pro-
cess MolOxy1(Oi) can either create or break bonds, and this is why we use the
operator + to describe such a (non-deterministic) choice.

Now we present the steps of one of the possible sequences of reactions mod-
elling the autoprotolysis of water. The system of two molecules of water can be
rewritten as follows (where we extend the definitions for the processes that will
interact in the next step, and bold the actions to be executed):

c(O1).MolOxy1(O1) + h−(O1).MolOxy3(O1) | MolHy1(H1) | MolHy1(H2)
| MolOxy2(O2) | MolHy1(H3) | c(H4).MolHy0(H4) + h+(H4).MolHy2(H4)

|| {O1 −c H1, O1 −c H2, O2 −c H3, O2 −c H4}

This leads to the next system, where we again bold the processes to be executed:

MolOxy3(O1) | MolHy1(H1) | MolHy1(H2)

| c(O2).MolOxy1(O2) + h−(O2).MolOxy3(O1) | MolHy1(H3)

| c(H4).c(H4).h+(H4).MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O1 −h H4, O2 −c H3, O2 −c H4}
The creation of the hydrogen bond forces the break of the other bond in which the
hydrogen molecule H4 is involved. This leads to the following system containing
the H3O and HO molecules:

MolOxy3(O1) | MolHy1(H1) | MolHy1(H2)
| c(O2).MolOxy0(O2) + c(O2).MolOxy2(O2)
| MolHy1(H3) | c(H4).h+(H4).MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O1 −h H4, O2 −c H3}
Since some bonds are weaker, the system is evolving to:

h−(O1).MolOxy2(O1) | MolHy1(H1) | MolHy1(H2)

| MolOxy2(O2) | MolHy1(H3) | h+(H4).MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O1 −h H4, O2 −c H3, O2 −c H4}
followed by the breaking of the hydrogen bond O1 −h H4:

MolOxy2(O1) | MolHy1(H1) | MolHy1(H2)
| MolOxy2(O2) | MolHy1(H3) | MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O2 −c H3, O2 −c H4}
The obtained system contains again two water molecules of water.



166 S. Kuhn et al.

3.3 Reversing Petri Nets

In this subsection we present Reversing Petri Nets [23] (RPNs, pronounced as
‘reversing Petri nets’), an extension of Petri nets developed for the modelling
reversing computations, and we employ the formalism to model the autoprotol-
ysis of water.

Definition of RPNs. We consider an extension of reversing Petri nets suit-
able for describing chemical reactions by allowing multiple tokens of the same
type as well as the possibility for transitions to break bonds. Thus, a transition
may simultaneously create and/or destroy bonds, and its reversal results in the
opposite effect. Formally, a Reversing Petri net is defined as follows:

Definition 1. A reversing Petri net (RPN) is a tuple (P, T,A,AV , B, F ) where:

1. P is a finite set of places and T is a finite set of transitions.
2. A is a finite set of base or token types ranged over by a, b, . . .. A = {a | a ∈ A}

contains a “negative” version for each token type. We assume that for any
token type a there may exist a finite number of token instances. We write
a1, . . . , for instances of type a and AI for the set of all token instances.

3. AV is a finite set of token variables. We write type(v) for the type of variable
v and assume that type(v) ∈ A for all v ∈ AV .

4. B ⊆ A × A is a finite set of undirected bond types ranged over by β, γ, . . ..
We use the notation a−b for a bond (a, b) ∈ B. B = {β | β ∈ B} contains a
“negative” version for each bond type. BI ⊆ AI × AI is a finite set of bond
instances, where we write βi for elements of B.

5. F : (P × T ∪ T × P ) → P(AV ∪ (AV × AV ) ∪ A ∪ B) is a set of directed
labelled arcs.

A reversing Petri net is built on the basis of a set of tokens or bases. These
are organised in a set of token types A, where each token type is associated with
a set of token instances. Token instances correspond to the basic entities that
occur in a system and they may occur as stand-alone elements but as compu-
tation proceeds they may also merge together to form bond instances. Places
and transitions have the standard meaning and are connected via directed arcs,
which are labelled by a set of elements from AV ∪ (AV × AV ) ∪ A ∪ B. Intu-
itively, these labels express the requirements for a transition to fire when placed
on arcs incoming the transition, and the effects of the transition when placed on
the outgoing arcs. Graphically, a RPN is portrayed as a directed bipartite graph
where token instances are indicated by •, places by circles, transitions by boxes,
and bond instances by lines between token instances.

Before we recall the semantics of RPNs we need to introduce some notation.
Note that in what follows we omit the discussion of negative tokens and negative
bonds as they are not relevant to our case study. We write ◦t = {x ∈ P |
F (x, t) 
= ∅} and t◦ = {x ∈ P | F (t, x) 
= ∅} for the incoming and outgoing
places of transition t, respectively. Furthermore, we write pre(t) =

⋃

x∈P F (x, t)
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for the union of all labels on the incoming arcs of transition t, and post(t) =
⋃

x∈P F (t, x) for the union of all labels on the outgoing arcs of transition t.

Definition 2. A reversing Petri net is well-formed, if for all t ∈ T :

1. AV ∩ pre(t) = AV ∩ post(t),
2. F (t, x) ∩ F (t, y) ∩ AV = ∅ for all x, y ∈ P , x 
= y.

Thus, a reversing Petri net is well-formed if (1) whenever a variable exists in
the incoming arcs of a transition then it also exists on the outgoing arcs, which
implies that transitions do not erase tokens, and (2) tokens/bonds cannot be
cloned into more than one outgoing places.

As with standard Petri nets the association of token/bond instances to places
is called a marking such that M : P → 2AI∪BI , where we assume that if
(u, v) ∈ M(x) then u, v ∈ M(x). In addition, we employ the notion of a history,
which assigns a memory to each transition H : T → N. Intuitively, a history of
H(t) = 0 for some t ∈ T captures that the transition has not taken place, or
every execution of it has been reversed, and a history of H(t) = k, k > 0, cap-
tures that the transition had k forward executions that have not been reversed.
Note that H(t) > 1 may arise due to the consecutive execution of the transi-
tion with different token instances. A pair of a marking and a history, 〈M,H〉,
describes a state of a RPN with 〈M0,H0〉 the initial state, where H0(t) = 0 for
all t ∈ T .

Finally, we define con(ai, C), where ai ∈ AI and C ⊆ 2AI∪BI , to be the
token instances connected to ai as well as the bonds creating these connections
according to set C.

Forward Execution. During the forward execution of a transition in a RPN, a
set of tokens and bonds, as specified by the incoming arcs of the transition, are
selected and moved to the outgoing places of the transition, as specified by the
transition’s outgoing arcs, possibly forming or destructing bonds, as necessary.
Due to the presence of multiple instances of the same token type, it is possible
that different token instances are selected during the transition’s execution.

A transition is forward-enabled in a state 〈M,H〉 of a reversing Petri net if
there exists a selection of token instances available at the incoming places of the
transition matching the requirements on the transitions incoming arcs. Formally:

Definition 3. Given a RPN (P, T,A,AV , B, F ), a state 〈M,H〉, and a tran-
sition t, we say that t is forward-enabled in 〈M,H〉 if there exists a surjective
function U : pre(t) ∩ AV → AI such that:

1. for all v ∈ pre(t), if type(v) = a then type(U(v)) = a
2. for all a ∈ F (x, t), then U(a) ∈ M(x) and for all (a, b) ∈ F (x, t), then

(U(a), U(b)) ∈ M(x),
3. for all (a, b) ∈ post(t) − pre(t) then (U(a), U(b)) 
∈ M(x) for all x ∈ ◦t.
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Thus, t is enabled in state 〈M,H〉 if (1) there is a type-respecting assign-
ment of token instances to the variables on the incoming edges, with (2) the
token instances originating from the appropriate input places of the transition
and connected with bonds as required by the variable bonds occurring on the
incoming edges, and (3) if a bond occurs in the outgoing edges of the transi-
tion but not the incoming ones, then the selected instances associated with the
bond’s variables should not be bonded together in the incoming places of the
transition (thus transitions do not recreate bonds). We refer to U as a forward
enabling assignment.

To execute a transition t according to an enabling assignment U , the selected
token instances, along with their connected components, are relocated to the
outgoing places of the transition as specified by the outgoing arcs, with bonds
created and destructed accordingly. Furthermore, the history of the executed
transition is increased by one.

Definition 4. Given a RPN (P, T,A,AV , B, F ), a state 〈M,H〉, and an
enabling assignment U , we write 〈M,H〉 t→S 〈M ′,H ′〉 where for all x ∈ P :

M ′(x) = M(x) −
⋃

a∈f(x,t)

con(U(a),M(x)) ∪
⋃

a∈f(t,x),U(a)∈M(y)

con(U(a), S)

where S = (M(y) − {(U(a), U(b)) | (a, b) ∈ F (y, t)}) ∪ {(U(a), U(b)) | (a, b) ∈
F (t, x)}

and H ′(t′) =
{

H(t′) + 1, if t′ = t
H(t′), otherwise

Reversing Execution. We now move on to reversing transitions. A transition can
be reversed in a certain state if it has been previously executed and there exist
token instances in its output places that match the requirements on its outgoing
arcs. Specifically, we define the notion of reverse enabledness as follows:

Definition 5. Consider a RPN (P, T,A,AV , B, F ), a state 〈M,H〉, and a tran-
sition t. We say that t is reverse-enabled in 〈M,H〉 if (1) H(t) 
= 0, and (2) there
exists a surjective function W : post(t) ∩ AV → AI such that:

1. for all v ∈ post(t), if type(v) = a then type(W (v)) = a,
2. for all a ∈ F (t, x), then W (a) ∈ M(x) and for all (a, b) ∈ F (t, x), then

(W (a),W (b)) ∈ M(x),
3. for all (a, b) ∈ pre(t) − post(t) then (W (a),W (b)) 
∈ M(x) for all x ∈ ◦t.

Thus, a transition t is reverse-enabled in 〈M,H〉 if (1) the transition has been
executed and (2) there exists a type-respecting assignment of token instances,
from the instances in the out-places of the transition, to the variables on the
outgoing edges of the transition, and where the instances are connected with
bonds as required by the transition’s outgoing edges. Also we do not recreate
existing bonds when going backwards. We refer to W as a reversal enabling
assignment. To implement the reversal of a transition t according to a reversal
enabling assignment W , the selected instances are relocated from the outgoing
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places of the transition to the incoming places, as specified by the incoming arcs
of the transition, with bonds created and destructed accordingly.

Definition 6. Given a RPN (P, T,A,AV , B, F ), a state 〈M,H〉, and a tran-
sition t reverse-enabled in 〈M,H〉 with W a reversal enabling assignment, we
write 〈M,H〉 t� 〈M ′,H ′〉 where for all x:

M ′(x) = M(x) −
⋃

a∈f(t,x)

con(W (a),M(x)) ∪
⋃

a∈f(x,t),W (a)∈M(y)

con(W (a), S)

where S = (M(y) − {(W (a),W (b)) | (a, b) ∈ F (t, y)}) ∪ {(W (a),W (b)) | (a, b) ∈
F (x, t)}

and H ′(t′) =
{

H(t′) − 1, if t′ = t
H(t′), otherwise

The Autoprotolysis of Water in RPNs. Figure 8 shows the graphical
representation of the forming of a water molecule as a RPN. In this model,
we assume two token types, H for hydrogen and O for oxygen. They are
instantiated via four token instances of H (H1, H2, H3, and H4) and two
token instances of O, (O1 and O2). The net consists of five places and three
transitions and the edges between them are associated with token variables
and bonds, where we assume that type(o) = type(o1) = type(o2) = O and
type(h) = type(h1) = type(h2) = type(h3) = type(h4) = H. Looking at the tran-
sitions, transition t1 models the formation of a bond between a hydrogen token
and an oxygen token. Precisely, the transition stipulates a selection of two such
molecules with the use of variables o and h on the incoming arcs of the transition
which are bonded together, as described in the outgoing arc of the transition.
Subsequently, transition t2 completes the formation of a water molecule by select-
ing an oxygen token from place x and a hydrogen token from place v and forming
a bond between them, placing the resulting component at place y. Note that the
selected oxygen instance in this transition will be connected to a hydrogen token
via a bond created by transition t1; this bond is preserved and the component
resulting from the creation of the new o − h bond will be transferred to place y.
Finally, transition t3 models the autoprotolysis reaction: assuming the existence
of two distinct oxygen instances, as required by the variables o1 and o2 on the
incoming arc of the transition, connected with hydrogen instances as specified in
F (y, t3), the transition breaks the bond o2 − h3 and forms the bond o1 − h3. As
such, assuming the existence of two water molecules at place y, the transition
will form a hydronium (H+

3 O) and a hydroxin (OH−) molecule in place z of the
net. The reversibility semantics of RPNs ensures that reversing the transition t3
will result in the re-creation of two water molecules placed at y, while the use of
variables allows the formation of water molecules consisting of different bonds
between the hydrogen and oxygen instances.

The first net in Fig. 9 shows the system after the execution of transition
t1 with enabling assignment U(h) = H1, U(o) = O1. Note that the term [1]
written over transition t1 captures that at this point H(t1) = 1 since the
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Fig. 8. RPN model of the formation of a water molecule.

transition has been executed once. This notation is generally used for his-
tories in the graphical representation with occasional missing histories corre-
sponding to histories equal to 0. Subsequently, we have the model after exe-
cution of transition t2 with enabling assignment U(h) = H2, U(o) = O1,
creating the bond O1 − H2, thus forming the first water molecule. A second
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Fig. 9. RPN model of the execution of the autoprotolysis of water.

execution of transitions t1 and t2 results in the second molecule of water in
the system, placed again at place y, as shown in the third net in the figure.
At this state, transition t3 is forward-enabled and, with enabling assignment
U(o1) = O1, U(o2) = O2, U(h1) = H1, U(h2) = H2, U(h3) = H3, U(h4) = H4,
we have the creation of the hydronium and hydroxide depicted at place z in the
fourth net of the figure. At this stage, transition t3 is now reverse-enabled and
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the last net in the figure illustrates the state resulting after reversing t3 with
reversal enabling assignment W (o1) = O1,W (o2) = O2,W (h1) = H1,W (h2) =
H3,W (h3) = H2,W (h4) = H4.

4 Evaluation

We have presented three formalisms which can be used to model chemical reac-
tions. CCB is a reversible version of ACP that employs communication keys to
record executed actions. Its main feature is a mechanism to link forming and
breaking of bonds, which gives rise to a type of explicit reversibility we call
“locally controlled reversibility”. We have modelled a simple covalent chemi-
cal reaction in CCB. A similar modelling approach can be used to model more
complex atoms and reactions, for example, involving carbon atoms [16]. Finally,
CCB can also be used to model reactions beyond simple chemical reactions [14].
In CCB, we can actually distinguish different instances of the same atom or
molecule, and of identical actions in a process via the use of subscripts. As men-
tioned above, the reverse reaction in the autoprotolysis of water can work by
transferring any of the hydrogens of the hydronium. When reversing the reac-
tion in CCB, instead of the transition in Sect. 3.1, we could also have done this
(writing the transition and the rewrite together):

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1) | (h3[5]; p).H ′

3)
| (h4[4]; p).H ′

4 | (o3, o4[4], n).O′
2

{np[3],nh1[1]}−−−−−−−−−→⇒
(((h1[3]; p).H ′

1 | (h2[2]; p).H ′
2 | (o1[5], o2[2],n).O′

1) | (h3[5]; p).H ′
3)

| (h4[4]; p).H ′
4 | (o3[3], o4[4],n).O′

2

The result is different from that in Sect. 3.1, but identical from a chemical point
of view, since the hydrogens are all identical. On the other hand a technique
called isotopic labelling can be used to trace atoms by using different isotopes
of, in this case hydrogen, confirming that the different options happen in reality.
In CCB, we can trace the atoms as well as show which results are identical from
a chemical point of view (see Section 6.5 of [16]).

The Bonding Calculus is suitable for modelling in a natural way the autopro-
tolysis of water by using only bond and unbond actions. Simulations by using a
software platform can describe the dynamics of the bonding systems, and so it is
possible to test the validity of some underlying assumptions. Also, we can verify
various properties of the bonding compounds described by using the calculus.

Reversing Petri Nets are Petri net structures that assume tokens to be dis-
tinct and persistent. During the execution of transitions individual tokens can be
bonded/unbonded with each other, and the creation/destruction of these bonds
is considered to be the effect of a transition, whereas their destruction/creation
is the effect of the transition’s reversal. Reversing Petri Nets are a natural choice
to model and analyse biochemical reaction systems, such as the autoprotolysis
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of water, which by nature has multi-party interactions, is inherently concurrent,
and features reversible behaviour. In particular, the feature of token multiplicity
and the use of variables allows to non-deterministically select different com-
binations of atoms of a particular element when creating molecules. Also the
ability of transitions to break bonds allows to model concerted actions where,
for example, a transition simultaneously destroys a water molecule and creates
a hydronium whose reversal results in the opposite effect. Moreover, the collec-
tive token interpretation adopted in the framework, treating all tokens of the
same type as equivalent, allows the reaction to reverse into two different water
molecules than the original ones, i.e. using different instances of the atoms (as
is possible in CCB). Note that the presented model abstracts away the posi-
tive/negative charge of the atoms and captures the existence of electrons by the
enabledness of transitions. A model at a lower level of abstraction would be pos-
sible by introducing tokens to represent the electrons bonded to the associated
atom tokens to illustrate the relevant charges.

The three formalisms presented can model our example fairly well but, as
expected, there are some differences. In order to evaluate each formalism, we con-
sider as first criterion if all chemically valid interactions between the compounds
of the reaction can be represented well in our formalisms. CCB shows the linked
forming and breaking of bonds. RPNs can also express these concerted actions,
since a transition enables the simultaneous creation and destruction of bonds. In
the Bonding Calculus, this link is not expressed. Each of the formalisms can per-
form the forward reaction using any of the hydrogens involved. CCB and RPNs
can perform the reverse reaction by transferring arbitrary hydrogens, whereas
the Bonding Calculus in the reverse reaction permits only the transfer of exactly
those hydrogens that were used in the forward reaction. All models presented
use subscripts and enable the tracking of atoms.

The other criterion for assessing the suitability of our formalisms for the
modelling of chemical reactions is to ask if they enable in the produced model
any transitions that actually do not occur in reality. Each formalism does not
permit a H3O

+ molecule to be formed directly. CCB allows one reaction which is
not realistic: If there are many water molecules and therefore several hydroxide
and water molecules at the same time, it is possible that the remaining hydrogen
is transferred from the hydroxide to a water. In reality, this is not possible since
the hydroxide is strongly negatively charged and no hydrogen bond can form.
Due to the nondeterministic behaviour of processes written with the ‘+’ operator,
such as those for hydrogen and oxygen in Subsect. 3.2, the Bonding Calculus also
presents the same problem. However, this is not the case for RPNs since, on the
one hand, a transition’s conditions make restrictions on the types of molecules
that will participate in a transition firing or its reversal and, on the other hand,
places impose a form of locality for molecules. For instance, in the autoprotolysis
example, each place is the location of specific types of molecules, e.g., transition
t3 modelling the autoprotolysis reaction is only applied on water molecules and
its reversal only on pairs of a hydronium and a hydroxide molecule, as required.
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There are a number of software tools that can aid simulation and analysis
for our formalisms. Regarding the Bonding Calculus, we can simulate various
bonding descriptions by using an existing software platform called UPPAAL (as
shown in [1]). For CCB, there is a simulation tool presented in [14]. It allows
a much closer form of representation of chemical notation than that possible
with a typical programming language. Reversing Petri nets have been shown
to be closely related to Coloured Petri Nets, as a subset of the former model
has been encoded into the latter [3]. Thus, an algorithmic translation can be
implemented that transforms RPNs to CPNs in an automated manner using the
transformation techniques discussed in [3]. This allows RPNs to exploit tools
such as CPNTools that support traditional models of Petri nets.

5 Conclusion

We have presented the Calculus of Covalent Bonding, the Bonding Calculus,
and Reversing Petri Nets as models of chemical reactions and reversible pro-
cesses in general. We have shown that they can all model the out-of-causal-order
reversibility present in such reactions. We have also noted that the two process
calculi allow few reactions which do not happen in reality. This is due to the mod-
elling that abstracts away from some chemical properties of atoms and molecules
such as, for example, spacial arrangement and distance between molecules. In
future work, we plan to develop these formalisms further and apply them to the
modelling and reasoning about reversible biochemical reactions and processes.
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Abstract. Programming industrial robots is challenging due to the dif-
ficulty of precisely specifying general yet robust operations. As the com-
plexity of these operations increases, so does the likelihood of errors.
Certain classes of errors during industrial robot operations can however
be addressed using reverse execution, allowing the robot to temporar-
ily back out of an erroneous situation, after which the operation can be
automatically retried. Moreover reverse execution permits automatically
deriving programs that physically reverse the operations of an industrial
robot. This can be useful in industrial assembly, where a disassembly
program can be automatically derived from the assembly program.

In this case study we investigate robotic assembly from the point of
view of reversibility, investigating to what extent program inversion of
a robotic assembly sequence for a given product can be considered to
derive a robotic disassembly sequence for this same product, and investi-
gating to what extent changing the execution direction at runtime (i.e.,
backtracking and retrying) using program inversion can be used as an
automatic error handling procedure. The programming model used to
reversibly control industrial robots is based on an abstract semantics-
based model, extended with various features required for reversible con-
trol of industrial robots in real-world scenarios, and implemented as a
domain-specific programming language.

1 Introduction

Robots normally have one or more degrees of freedom controlled by a computa-
tional process; using reversible computing to control the robot potentially gives
rise to new reverse behaviours. For example, major industrial robot manufactur-
ers such as ABB and KUKA offer limited forms of ad-hoc reverse execution for
interactive programming and debugging, but due to limitations in the underlying
execution models, their programming models are incapable of reversing complex
actions such as steps of an industrial assembly process [5,6]. We attribute the
ad-hoc limitations to the lack of an underlying reversible model. The first inves-
tigation of fully reversible robot behaviours was for self-reconfigurable robots
[10]. The useful application of reversibility to this type of robot is however only
observed for self-reconfiguration operations, significantly limiting the notion of
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reversibility and real-world interaction that can be studied using this type of
robot. To better understand the underlying relation between reversible com-
putation and physical reversibility, we in this case study investigate reversible
control of industrial robots.

Programming industrial robots is challenging due to the difficulty of pre-
cisely specifying general yet robust operations. As the complexity of these oper-
ations increases, so does the likelihood of errors. Certain classes of errors during
industrial robot operations can however be addressed using reverse execution,
allowing the robot to temporarily back out of an erroneous situation, after which
the operation can be automatically retried. Specifically, this approach has been
shown to be useful for automatic error recovery for small-sized batch production
of assembly operations [11]. Moreover, reversibility can in this case be used to
automatically derive a disassembly sequence from a given assembly sequence, or
vice versa. These results were demonstrated using an initial design and imple-
mentation of a reversible domain-specific language (DSL) for specifying such
assembly sequences [5,11]. The area however remains largely unexplored, both
from a theoretical and practical point of view. There is for example a large design
space for different programming language approaches, both in terms of the gener-
ality of the language and the means by which reversibility is achieved. At a more
fundamental level, the notion of reversible control of a reversible physical sys-
tem remains largely unexplored. From a practical point of view, only the specific
case of assembly operations has been investigated, and only using a specific set
of industrial use cases. There has been no attempt at integration into an exist-
ing robotics platform, although we observe that many existing platforms offer
limited notions of reversibility for using during programming and debugging.

The result of this case study is significant progress in the area of reversibility
for industrial robots [4]. Key developments include an improved understanding
of the interaction between reversible computing and real-world systems that
only are partially reversible, as well as a substantial experimental evaluation of
the use of reversible languages to control industrial robots performing assembly
and disassembly in the context of small-batch production. Overall this work
experimentally demonstrates the use of reversible computing to improve system
reliability.

2 Related Work

Reversibility has previously been investigated for self-reconfigurable robots.
Self-reconfigurable, modular robots are distributed robotic devices that can
autonomously change their physical shape [13]. Self-reconfiguration from one
shape to another is typically achieved through a specific sequence of actuation
operations distributed across the modules of the robot. Automatically revers-
ing the sequence of operations can bring the robot back to its initial shape,
as has been experimentally demonstrated using the DynaRole reversible lan-
guage [10]. DynaRole however only allows simple sequences of operations to be
reversed, which is suitable for reversing self-reconfiguration sequences, but lacks



Reversible Control of Robots 179

the generality needed to implement more complex behaviours. Initial ideas on
generalising the DynaRole language to support a wider range of modular robot
control scenarios retain the possibility of reversing distributed sequences [8,9],
but have neither been formalised nor experimentally demonstrated.

Large-scale modular robotic systems can be considered as intensive parallel
systems [7]. Reversibility for intensive parallel systems was studied by Agrig-
oroaiei and Ciobanu [1]. Here, the process of reversing is presented as a form of
duality (a notion from category theory). A related approach presenting reversibil-
ity for the bio-inspired formalism of membrane systems is given by the same
authors [2].

Partial reversibility has been studied for reversible programming languages
[12] using logging of program state to handle irreversible operations. This app-
roach would in our case correspond to recording the motions of the robot and
replaying them in reverse, which is applicable to any operation but does not nor-
mally serve to reverse actions in the real world. Rather, our approach relies on
the programmer explicitly writing reverse code that, through a different sequence
of operations, brings the system back to a previous state. This approach can be
compared to causal-consistent reversibility [3] in the sense that the observable
events (i.e., the state of the system the robot is working on) is reversed in a
consistent way; unlike causal-consistent reversibility we however require the pro-
grammer to manually implement the basic reverse operations using the notion
of indirect reversibility.

3 Reversible Assembly Tasks

We investigate robotic assembly tasks from the point of view of reversibility,
investigating to what extent program inversion of a robotic assembly sequence
for a given product can be considered to derive a robotic disassembly sequence
for this same product, and investigating to what extent changing the execution
direction at runtime (i.e., backtracking and retrying) using program inversion
can be used as an automatic error handling procedure [4].

3.1 Robotics, Assembly, and Reversibility

Robotic assembly and disassembly is done in terms of sequences of operations
such as precise placement of objects, insertions with tight fits, screwing opera-
tions and so forth. All are challenged by uncertainties from sensors, robot kine-
matics and part tolerances; not all are reversible, some are not even repeatable.
Our approach has been tested with a standard robotic platform based on a Uni-
versal Robots UR5, shown in Fig. 1 together with the two industrial assembly
cases used to evaluate the approach [4].
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Fig. 1. The experimental platform and two assembly test cases (from [4]).

3.2 Reversibility

Many physical phenomena and actions are in principle reversible, although this
reversibility may depend on the abstraction level at which they are observed.
For example, an industrial robot that pushes an object to a new position could
easily move this object back to its original position, but cannot simply do this by
reversing its movements as pulling requires gripping the object first. Moreover,
some operations, such as cutting, should in general be considered nonreversible.
A study of 13 real-world industrial cases showed roughly 76% of the operations
to be reversible [4], but many of the operations require the robot to perform
different physical actions to reverse a given action. Based on this observation,
we can divide the reversible operations into two categories: directly reversible
and indirectly reversible operations. Operations which can be reversed through
program inversion are considered directly reversible. Indirectly reversible oper-
ations on the other hand can be reversed, but require a different sequence of
instructions.

3.3 Repeatability

Unlike Janus-style reversible computing, where programs can be said to be time-
invertible [14], with robotics physical changes made to the environment from the
execution influences the repeatability of operations. Operations that can be done
again and again can be referred to as fully repeatable. Other actions can only
be done a limited number of times, e.g., due to wear and tear, and are said to
be partially-repeatable. Last, nonrepeatable operations are those that cannot be
retried.
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3.4 Reversibility and Repeatability

Considering reversibility and repeatability together leads to a classification of
robotic assembly operations [4]. Operations that are fully repeatable and directly
reversible can be automatically managed using a program inversion approach,
whereas indirectly reversible operations require explicit reverse code to be pro-
vided by a programmer, partially repeatable operations limit how many times a
program can be reversed, and certain operations are fundamentally irreversible
and thus mark points across which the program cannot be reversed.

4 Programming Model

The programming model developed in our case study is based on an abstract
semantics-based model [11] extended with various features required for reversible
control of industrial robots in real-world scenarios [4].

4.1 Basic Model

A robot assembly task is programmed as a sequential flow of operations. It is
sequential since in practice assembly tasks tend to be a simple sequence of oper-
ations (except for error handling, but we aim to automatically handle errors
using reverse execution). Reversibility is relevant due to the presence of random
behaviour of the physical operations: reversing and re-executing an operation
may produce a different results. Each operation represents high-level assembly
case logic and is a sequence of instructions. Instructions are either reversible,
providing a two-way reversible forward/backward mapping of hardware instruc-
tions, or non-reversible, providing a single-directional mapping. Instructions are
implemented using traditional nonreversible programming. Taking inspiration
from Janus [14], it is possible to both call and uncall operations, the latter caus-
ing the operation to be interpreted in reverse.

The programming model used to represent robot assembly tasks is built on
the following principles. (1) Instructions always map the robot system from a
known state to a known state, but may have different semantics for forward and
reverse. (2) Indirect reversibility is achieved by modelling instruction sequences
that are different for forwards and reverse execution using the principle of over-
ridden reverse flow, where users can write different code for forwards and back-
wards execution. (3) Instructions can be marked as nonreversible. A directed
graph is used to model the underlying reversible assembly sequence. In this
graph each node corresponds to a primitive instruction which is executable on
the physical platform. Furthermore, each node contains pointers to the next for-
ward instruction and the next reverse instruction (if any). Overall the graph
is evaluated through forward/backwards interpretation and each instruction is
evaluated using instruction inversion in the sense that different semantics are
applied for forward and backwards execution.
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operation attach_nut_bolt {
state begin_nut_bolt (...tool pos...) bolt:(...pos...) nut:(...pos...)
moveto (...pos above table...)
pickup (nut, fixed_gripper, (...pos of nut...))
moveto (...)
...

}
operation apply_and_turn_nut { ...commands... }
reverse { ...commands that undo apply_and_turn_nut... }

Fig. 2. Sample RASQ program, vector constants are omitted for clarity (adapted
from [11]).

4.2 Implementation

The basic model provides the foundation for programming realistic assembly
cases [4]. The principle of indirect reversibility is in practice instantiated in many
different ways, such as movement or error detection instructions that only acti-
vate in one execution direction. Error handling is implemented in the interpreter:
when an error is detected during forwards execution the direction is immediately
reversed for a number of steps, after which forwards execution is again resumed.
The same model is applied for execution in reverse, and even applies recursively,
i.e., if an error is detected during reverse execution triggered due to an error.
Each instruction carries specific information describing how to handle switching
of execution direction, specifically whether the instruction should be repeated in
reverse or not when switching direction due to the instruction failing. A simple
error handling strategy that changes execution direction for a random number
of steps and that ensures termination by bounding the total number of steps was
observed to work well in practice.

4.3 Language

The idea of reversible control of industrial robots was initially presented using
a high-level programming language [11]. An example is shown in Fig. 2. The
program declares two operations, attach nut bolt and apply and turn nut. The
operation attach nut bolt only specifies a single (forwards) body for both for-
wards and reverse execution, so reverse execution will inversely evaluate the
forwards body in reverse order. The first statement is a state assertion, named
begin nut bolt, specifying the spatial positioning of the tool and the respective
positions of the bolt and nut objects. The next statement of the program is a
move, which moves the robot to the given position (again, the position is given
as a constant, not shown). After the move follows a pick up instruction that
causes the pickup operation associated with the name fixed gripper and the
object nut to be evaluated. Last follows the declaration of the second operation
apply and turn nut, which is not shown in detail, but has both a forwards and
a reverse body, so forwards execution evaluates the forwards body in forwards
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operation("screwdriver_activate").
io(screwdriver, Switch::on).
wait(0.3).
wait(screwingFinished).
reverseWith("screwing_finished_backwards");
io(screwdriver, Switch::off).
io(screwdriverBackwards, Switch::off);

Fig. 3. Sample SCP-RASQ program (adapted from [4]).

order, and reverse execution evaluates the reverse body in forwards order (i.e.,
in the order written in the program).

In practice it turned out to be more useful to rely on an internal DSL imple-
mented in C++, using a model-driven approach that serialises the program to an
XML structure that can subsequently be instantiated as the graph structure used
by the reversible interpreter. This internal DSL, named SCP-RASQ for “Sim-
ple C++ RASQ”, is exemplified in Fig. 3. This program declares an operation
that performs IO operations to communicate with the screwdriver, and shows
how indirect reversibility can be programmed in-place using the reverseWith

declaration.

5 Results

This section will give an overview of the experimental results demonstrated in
earlier work on several industrial use cases [4].

5.1 Methodology

Error recovery using reverse execution was tested using two industrial assembly
tasks use-cases; the physical robot platform and the assembled products are
shown in Fig. 1. An SCP-RASQ program was created for each of the use cases.
Both cases include a final step where the finished product is discarded into a
box. This step was not performed when running the programs backwards, as it is
a nonreversible task since our current setup cannot bin-pick the part out again.

5.2 Experiment 1: Reversing the Programs

Both use-cases were used to test the principle of reversible assembly. Forward
execution performs assembly while reverse execution performs disassembly. For
each case the program is executed forward to assemble an object. Afterwards the
finished objects is then manually placed back into the system, and the program
is then executed backwards to disassemble the object. This was done a total of
three times for each case, with no errors.

In our test programs directly reversible operations made up 45% of all oper-
ations. Moreover, directly reversible operations such as the “pick screwdriver”
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were used in both their forward and backwards form in the same program using
the call and uncall functionality. Both use-cases could be made almost entirely
reversible using either directly or indirectly reversible operations through the
execution model and the programming language. We believe that if the reversibil-
ity concept was to be integrated more deeply into the design of assembly pro-
cesses and external equipment such as feeders, an even greater degree of directly
reversible instructions could be achieved.

5.3 Experiment 2: Assembling 100 Objects

By assembling a large number of objects the use of reverse execution as an effec-
tive error correction tool was demonstrated. The workcell was set to assemble
100 objects of each type consecutively and without pause. During these 200
assemblies a total of 22 errors occurred, of which 18, corresponding to 82%,
were automatically resolved and corrected using reverse execution. Errors that
were automatically corrected include failed peg-in-hole operations (fixed by back-
tracking and trying again), dropping a tube (fixed by reversing until a new tube
was picked from the feeder), failed to grasp a screw, and screwing failing due
to misalignment. Errors that could not be automatically corrected include air-
tubing from the gripper getting stuck on the platform, causing the gripper to
misalign, and a screw being inserted at a skewed angle causing a bracket to mis-
align, which could not be corrected as the system had no means of detecting the
bracket misalignment.

This experiment shows that reverse execution is capable of solving a wide
variety of errors and that the exact method for solving each kind of error need
not always be the same, as backtracking was done randomly at different lengths
and sometimes resulted in different solutions to the same problem. Moreover
we see that the backtracking system is promising in handling errors related to
small uncertainties in the assembly tasks, but that errors resulting in larger
and mechanical failures still need to be addressed either in the design phase or
by some other error handling mechanism. Last, the experiments also show that
while reverse execution can be used for solving a wide variety of errors, it also
places strong demands on the error detection system.

6 Conclusion

From a society point of view, industrial robots are key to maintaining production
in Europe, and reversible computation has the potential to increase robustness
for specific kinds of operations such as small-batch assembly, and moreover facil-
itate the programming of such operations. In this case study we have introduced
a programming model which enables robot assembly programs to be executed
in reverse. We have experimentally demonstrated that temporarily switching
the direction of program execution can be an efficient error recovery mecha-
nism. Moreover, we have shown that additional benefits arise from supporting
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reversibility in our robotic assembly language, namely increased code reuse and
automatically derived disassembly sequences.

This case study has resulted in an improved understanding of the interaction
between reversible computing and real-world systems that only are partially
reversible, as well as a substantial experimental evaluation of the use of reversible
programming languages to control industrial robots performing assembly and
disassembly in the context of small-batch production. Overall this case study
has experimentally demonstrated the use of reversible computing to improve
system reliability.

Acknowledgements. Thanks to Gabriel Ciobanu for help in describing the related
work on reversibility of massively parallel systems.
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Abstract. Optimistic parallel discrete event simulation (PDES)
requires to do a distributed rollback if conflicts are detected during a
simulation due to the massively parallel optimistic execution approach.
When a rollback of a simulation is performed each node that is deter-
mined to be in a wrong state must be restored to one of its previous
states. This can be achieved through reverse computation or by restor-
ing a previous checkpoint. In this paper we investigate and compare both
approaches, reverse computation and a variant of checkpointing, incre-
mental state saving (also called incremental checkpointing), to restore a
previous program state as part of an optimistic parallel discrete event
simulation. We present a benchmark model that is specifically designed
for evaluating the performance of approaches to reversibility in PDES.
Our benchmarking model has mathematical properties that allow to tune
the amount of arithmetic operations relative to the amount of memory
operations. These tuning opportunities are the basis for our systematic
performance evaluation.

1 Introduction

Discrete event simulation (DES) is a simulation paradigm suitable for systems
whose states are modeled as changing discontinuously and irregularly at discrete
moments of simulation time. State changes occur at simulation times that are cal-
culated dynamically rather than determined statically as typical in time-stepped
simulations. Most irregular systems whose behavior is not describable by contin-
uous equations and do not happen to be suitable for simple time-stepped mod-
els are candidates for DES. Efficient parallel discrete event simulation (PDES)
is much more complicated than the sequential version. There are two broad
approaches to resolving the PDES synchronization issue, called conservative
and optimistic [1]. Recently Omelchenko and Karimabadi have developed an
asynchronous flux-conserving DES technique for physical simulations [2]. Their
preemptive event processing approach to parallel synchronization complements
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standard optimistic and conservative strategies for PDES. In this paper we will
discuss optimistic PDES, which requires reversibility, in more detail.

In particular, we will focus on PDES using the Time Warp optimistic synchro-
nization method [3]. The optimistic classification of Time Warp implies that it
employs speculative execution to enable parallelism. In order to allow roll-backs
needed to resolve incorrect speculation, the original formulation of Time Warp
utilized checkpointing of the entire system state. This can be very wasteful, so in
recent years reverse computation has become a key concept in optimistic paral-
lel discrete event simulation [4,5], as it allows one to reduce the overhead in the
forward execution in comparison to checkpointing and, thus, improve the per-
formance. Fundamentally, there are two ways to achieve reversibility: (1) incre-
mental state saving and (2) reverse execution. Incremental state saving (also
called incremental checkpointing in [5]) is a well-established approach, which
has the advantage that only a few language constructs need to be augmented to
establish reversibility of an arbitrary piece of code. However, it (often) results
in a high runtime overhead as any checkpointing is a memory-heavy method.
Reverse execution is based on the idea that for many programs there exists an
inverse program that can uncompute all results of the (forward) computed pro-
gram. The inverse program can be achieved either through implementation of
reverse code from a given forward code, or by implementing the program in a
reversible programming language that offers the capability to automatically gen-
erate the inverse program: the imperative reversible language Janus [6] has such
functionality.1

In this paper we systematically evaluate the generation of forward and reverse
C++ code from Janus code (Sect. 4) as well as automatically generated code
based on incremental state saving (Sect. 5). We also discuss the differences in
methodology, whether a model code is written in a “destructive” language such
as C/C++ or in the reversible language Janus, and its applications when imple-
menting (and debugging) a model for PDES.

For this purpose and in order to validate the simulator and also check cor-
rectness of generated code, we have developed a new discrete event benchmark
model that can be scaled in various dimensions. For execution of our model
codes we use the ROSS general purpose discrete event simulator. Our new dis-
crete event benchmark model is similar to the classic PHOLD benchmark model,
but includes some extra state variables and computations that aid in detecting
simulation errors. In our new model each event involves non-commutative matrix
algebra, and the matrix that results from the simulation of the model serves as
a checksum or hash of the simulation, and is sensitive to the order of events.
The size of this matrix can be controlled by the user, as can the number of bits
in its elements. This new benchmark is particularly useful for debugging simu-
lations that are computed with the Time Warp Algorithm as its mathematical
properties allow for checking of various assertions.

In our new model we can also tune the amount of arithmetic operations rel-
ative to the amount of memory modifying operations. This enables a systematic

1 Online Janus interpreter at https://topps.diku.dk/pirc/?id=janus.

https://topps.diku.dk/pirc/?id=janus
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comparison of hand-written reverse code with multiple approaches of automati-
cally generated reverse code and code instrumented for incremental state saving.

In our performance evaluation we use several different versions of the model
code: (1) the original forward code with hand written reverse code, (2) Back-
stroke instrumented code to perform incremental state saving [7], and (3) Janus
generated code for forward/reverse functions.

The forward/reverse code generated from Janus is particularly interesting
because it allows to get forward code with no memory overhead and in some
cases no runtime overhead, whereas for instrumented code one can only try to
reduce the runtime and memory overhead in the forward code.

To the best of our knowledge this is the very first runtime comparison of the
two approaches to reversible computation: generating reverse code and incre-
mental state saving. In the optimistic PDES setting incremental state saving is
suitable because optimistic PDES follows the Forward-Reverse-Commit (FRC)
paradigm. In that paradigm, after an event has been executed in the forward
direction, it can either be reversed (e.g. in the case it was incorrect to run it
forward in the first place), or committed (when it has been proved that it was
a correct event). When an event is committed its associated data is no longer
needed, which allows to dispose recorded traces with every commit. In this paper
we also investigate whether the combination of both the reversible language and
incremental checkpointing approaches can be beneficial.

After giving a brief overview of PDES in Sect. 2, we describe our benchmark
model and its properties in Sect. 3. In Sect. 4 we describe the reversible language
Janus and how we generated forward/reverse function from Janus code. In Sect. 5
we briefly describe what source code transformations are applied to code to sup-
port incremental state saving with the Forward-Reverse-Commit paradigm. In
Sect. 6 we describe the discrete event simulator that we use for optimistic par-
allel discrete event simulation and some adaptations that we implemented to
better support the Forward-Reverse-Commit paradigm. The performance evalu-
ation results are presented in Sect. 7. In Sect. 8 we discuss previous work that is
related to our evaluated approaches and in Sect. 9 we discuss conclusions from
the observed performance results.

2 Optimistic Parallel Discrete Event Simulation (PDES)

In this section we give a brief overview of PDES. A more detailed overview can be
found in our previous work [7]. The general approach is to divide the simulation
and its state into semi-independent units called LPs (logical processes) that
can execute concurrently and communicate asynchronously, each maintaining
its own state. A simulated event generally triggers a state change in one LP and
affects only that LP’s state. Any event may schedule other events to happen in
the future of the current LP’s simulation time. Events scheduled for other LPs
must be transmitted to them as event messages with a timestamp indicating the
simulation time when the event happens. Arriving event messages get enqueued
in the event queues of the receiving LPs in increasing time stamp order. The LP
has to allocate enough memory to store these queues.
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Every LP must execute all of its events in strictly non-decreasing timestamp
order irrespective of the order in which events may arrive or what timestamps
they may carry. This poses a synchronization problem.

In contrast to optimistic PDES, conservative synchronization in conservative
PDES uses conventional process blocking primitives along with extra knowledge
about the simulation model (called lookahead information) to prevent the exe-
cution from ever getting into a situation in which an event message arrives at
an LP with a timestamp in its past. Conservative synchronization is limited to
models with static communication graphs.

Optimistic synchronization, by contrast, employs speculative execution to
allow dynamic communication graphs and exposure of more parallelism. As a
result, there is the danger of a causality violation when an LP that is behind in
simulation time, e.g. at t1, sends an event message with a (future) timestamp
t2 > t1 that arrives at a receiver that has already simulated to time t3 > t2 due
to its optimistic execution. In that case the receiver has already simulated past
the simulation time when it should have executed the event at t2, but it would
be incorrect to execute events out of order because this may produce different
results. Whenever that occurs, the simulator needs to roll back the LP from t3
to the state it was in at time t2, cancel all event messages the LP had sent after
t2, execute the arriving event, and then re-execute forward from time t2 to t3
and beyond. All event executions are therefore speculative or provisional, and
are subject to rollback if the simulator detects a local causality conflict.

Each LP computes its local virtual time (LVT) based on the time stamps of
event messages it receives. Because of rollbacks the LVT can also be reset to an
earlier point in time. The global virtual time (GVT) is defined to be the minimum
of all of the LVTs. Several algorithms exist to compute an estimate of the GVT
during the simulation. Any events with time stamps older than GVT can be
committed because it is guaranteed that they never need to be reversed. For
more detail see [3,5]. That events are committed once they are older than GVT,
allows to delete all information that may have been stored to enable reversibility.
This commit operation is the same that we also use for incremental state saving,
described in Sect. 5, to dispose recorded execution traces of memory modifying
operations.

3 PDES Model Benchmark

In order to validate the simulator and also check the correctness of automatically
generated code suitable for reversible computation, we have developed a new
discrete event benchmark model. It is similar to the classic PHOLD benchmark
model, but includes some extra state variables and computations which aid in
detecting simulation errors. The state of each LP contains two square matrices:
an accumulation matrix A, and a transformation matrix T, each of size n × n,
where n is an integer constant chosen by the user. Each event message contains
the transformation matrix of the sender, and upon execution of an event the
receiving LP multiplies its accumulation matrix to the right with the received
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transformation matrix. When an event is executed the receiving LP schedules
a new event for a randomly selected LP at an exponentially distributed time
delay.

At the end of the simulation, the matrices of all LP’s are multiplied together,
in LP ID (rank) order. The resulting matrix is the output of the simulation. Since
matrix multiplication is in general non-commutative, the output depends on the
individual events being executed in the correct order. The output serves as a
check sum or hash of the simulation, and its size can be controlled by choosing
the matrix size and the number of bits in the matrix elements.

The kernel of the event execution is a matrix multiplication, which (in the
conventional implementation that we use) takes O(n3) arithmetic operations
for n × n matrices. Reverse computation involves calculating a matrix inverse
(or solving a matrix equation A′ = A × T for A), which also requires O(n3)
arithmetic operations. Each event or event message contains an n × n matrix
and requires n2 words of storage, and the same amount of data to be transmitted
if communicated over a network. For bench-marking studies we can tune the ratio
of arithmetic operations to memory/communication needs. This ratio is O(n) for
n × n matrices. We want to emphasize that this model is perfectly reversible,
in the sense that no extra state besides the event itself is needed to undo the
forward event: We simply invert the matrix in the event message and multiply
the accumulation matrix to the right with this inverse.

We let the matrix elements be of a standard unsigned integral data type
(e.g. 8, 16, 32, or 64 bits). For each of these types, the standard computer
multiplication, addition, and subtraction perform arithmetic in an associated
finite integer ring; Z2k where k is the number of bits in the data type, e.g.
k ∈ {8, 16, 32, 64}. In these finite rings, all odd numbers have an inverse, and so
half of the numbers in each ring can be used as denominators in division.

In this chapter we are interested in comparing different approaches to gen-
erate reversal of events to support roll-back. One of these approaches is reverse
computation. In order for reverse computation to be applicable, events execution
need to be reversible. To guarantee that, we select the transformation matrices to
be non-singular over the integer ring of their elements. To simplify the expression
of reversible multiplication, we additionally pick the transformation matrices so
that Gaussian elimination can be completed successfully without pivoting.

3.1 Ring Inverses and Non-singular Matrices

The C++ language provides us with addition, subtraction, and multiplication in
the relevant integer rings. We also need a division, which can be implemented as
multiplication with the inverse. In order to find a ring inverse, we can use Euclid’s
extended algorithm. To be specific, we use the following implementation:

The function in Listing 1.1 returns the inverse of b if b is invertible in Z2k ,
otherwise it returns zero. We have the relation b ≡ 1 mod 2 ⇒ b ∗ intinv(b) = b.



192 M. Schordan et al.

myuint intinv(myuint b) {
// Find inverse in integer ring of Z_{2ˆk}, where k is
// the number of bits in the myuint data type. It is
// expected that myuint is an unsigned integer type.
myuint t0 = 0,t = 1,q,r;
myuint a = 0; // Want initial a to be 2ˆk, which can not be

// represented, so we use the lower order bits,
// i.e. a = 0.

if(b <= 1) return b;

q = (∼a) / b; // Surrogate for 2ˆk div b, where ’div’
// is standard integer division (/). Unless
// b is a power of 2, 2ˆk div b = = (2ˆk-1) div b.

if(b∗q+b = = 0) return 0; // Catches when b is power of 2.

r = a - q∗b;
while(r > 0) {
const myuint temp = t0 -q∗t;
t0 = t;
t = temp;
a = b;
b = r;
q = a/b;
r = a - q∗b;

}
if(b = = 1) return t;
else return 0;

}

Listing 1.1. Computation of inverse in Z2k .

One might initially worry that it can be hard to find non-singular matri-
ces over Z2k . It turns out that a significant fraction of such matrices where
the elements are picked from a uniformly random distribution are non-singular.
We can determine this as follows. First, a matrix is non-singular if and only
if Gaussian elimination with row pivoting can be completed successfully. We
note that since we work with a finite set of numbers (ring), there is no need
to worry about stability – all calculations are exact and there are no round-off
errors. Let M be an n×n matrix with elements independently selected uniformly
from Z2k , where k > 0 is an integer. To perform Gaussian elimination on a M
we first need to find a pivot element p in the first row. Any invertible element
will do. The probability that we find one is 1 − (

1
2

)n. Assume p is in column
j. Now swap column j and column 1. For all rows r and for all columns c in
M , set M ′

rc = Mrc − Mr1p
−1M1c. Gaussian elimination proceeds by recursively

performing elimination of the submatrix S of M ′ resulting from removing its
first row and first column. For r > 1 and c > 1, the parity (oddness) of M ′

rc

is swapped if Mr1M1c is odd, and unchanged otherwise. The parity of Mrc is
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uniformly random, and the parity of Mr1M1c is independent of Mrc. Therefore
the parity of M ′

rc is also uniformly random, since an independent flip does not
change the distribution. By induction, the probability of finding a pivot ele-
ment in S is 1 − (

1
2

)n−1, and carrying out the recursion to the end, yields the
probability of M being non-singular to be

n∏

i=1

(
1 −

(
1
2

)n)
≈ 0.288788 . . . .

This means that a little bit over one quarter of all uniformly random matrices
over Z2k are non-singular. Therefore we can find suitable ones relatively effi-
ciently by trial and error. Further, in order to create matrices for which we can
do Gaussian elimination without pivoting, we pick a non-singular matrix T , and
then permute the columns in the schedule dictated by the pivot columns given
by computing Gaussian elimination with row pivoting on (a copy of) T .

4 Forward/Backward Code from Reversible Programs

The defining property of reversible programming languages is their forward and
backward determinism, that is, in each computation state not only the successor
state is uniquely defined, but also the predecessor state [8]. The computation
is information preserving. In contrast, mainstream (irreversible) programming
languages, such as C, are forward, but not backward deterministic.

In a reversible imperative programming language, such as Janus, every assign-
ment statement is non-destructive, that is a reversible update, such as x -= e,
where variable x may not occur in expression e on the right side (e.g., x -= x
is not backward deterministic). In case of an assignment to an array element, for
example a[i,j] -= a[k,l], a runtime check ensures that i �= k or j �= l.

All control-flow statements, such as conditionals and loops, are equipped with
assertions, in one way or another, to ensure their backward determinism. The
variant of Janus used for the programs in this paper has a two-way deterministic
loop iterate i = e1 to e2; s; end, where neither the index variable i
nor the variables occurring in expressions e1 and e2, defining the start- and
end-values of i, may be modified in the body statement s, which is executed
once per iteration. Hence, the number of iterations is known before and after the
loop.

An advantage of reversible programming languages is that their programs
do not require instrumentation to restore a previous computation state from
the current state, which is usually necessary in irreversible languages. Backward
determinism opens new opportunities for program development because a pro-
cedure p cannot only be called by a usual call p, but its inverse semantics can
be invoked by an uncall p. Forward and backward execution of a procedure
are equally efficient, thus is makes no difference which direction is implemented
in a program, which therefore is usually the one that is easier to write. We will
make use of this possibility to reuse code by uncalling a procedure.
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procedure crout(int LDU[][], int n)
iterate int j = 0 to n-1
iterate int i = j to n-1
iterate int k = 0 to j-1
LDU[i][j] -= LDU[i][k] ∗ LDU[k][j]

end
end
iterate int i = j+1 to n-1
iterate int k = 0 to j-1
LDU[j][i] -= LDU[j][k] ∗ LDU[k][i]

end
uncall mult(LDU[j][i], LDU[j][j])

end
end

Listing 1.2. Janus implementation of the Crout matrix decomposition.

Translation from Janus to C++. Reversible programs can be translated to a
mainstream (irreversible) programming language, which in this paper is C++.
Usually, this requires the implementation of additional runtime checks in the
target program to preserve the semantics of the source program. Assuming that
the source program is correct and only applied to values for which it is well
defined, the runtime checks in the target program can be turned off. The trans-
lation of Janus into C++ which we use for the benchmarks is straightforward,
e.g., iterate is translated into a for-loop, and no further optimizations are
performed by the Janus-to-C++ translator.

Only the translation of an uncall p requires an unconventional step in the
translator, namely first the program inversion of procedure p into its inverse
procedure p-inv, both p and p-inv written in Janus, followed by the trans-
lation of p-inv into the target language and the replacement of every uncall
p by the functionally equivalent call p-inv. The target program then con-
tains the C++ implementation of p and its inverse p-inv. Program inversion
is straightforward in a reversible language (cf. [6]), e.g., a reversible assignment
x -= e is inverted to x += e and a statement sequence is inverted to the
reversed sequence of its inverted statements.

As a non-trivial example, Listing 1.2 shows the Janus implementation of the
Crout algorithm for LDU matrix decomposition. The translation from Janus
into C++ for the forward code is straightforward, and a uncall mult in Janus
becomes a call to mult-inv in C++. To illustrate the generated inverted code,
its C++ translation can be found in Listing 1.3. The iteration is translated into
nested for-loops and the reversible assignment in Janus requires only a minor
adaptation to the C++ syntax. In the C++ listing the mult(a,b) is effectively
a standard integer product a := a× b with appropriate assertions that it can be
inverted, i.e. the inverse of b exists. mult-inv uses intinv from Listing 1.1 to
compute the ring inverse.
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template<typename myuint>
void crout_inv(myuint ∗LDU, int &n) {
for (int j = n - 1 ; j != 0 + 0 - 1 ; j += 0 - 1) {

for (int i = n - 1 ; i != j + 1 + 0 - 1 ; i += 0 - 1) {
mult(LDU[j∗n+i], LDU[j∗n+j]);
for (int k = j - 1 ; k != 0 + 0 - 1 ; k += 0 - 1) {

LDU[j∗n+i] += LDU[j∗n+k] ∗ LDU[k∗n+i];
}

}
for (int i = n - 1 ; i != j + 0 - 1 ; i += 0 - 1) {

for (int k = j - 1 ; k != 0 + 0 - 1 ; k += 0 - 1) {
LDU[i∗n+j] += LDU[i∗n+k] ∗ LDU[k∗n+j];

}
}

}
}

Listing 1.3. Reverse code of C++ translation of Listing 1.2.

procedure matrix_mult(int A[][], int B[][], int n)
call crout(B, n) // In-place LDU decomposition of B
call multLD(A, B, n) // A := A*LD in place
call multU(A, B, n) // A := A*U in place
uncall crout(B, n) // Revert LDU decomposition to recover B

Listing 1.4. Janus implementation of matrix multiplication.

Matrix Multiplication in Janus. A conventional matrix-matrix multiplication
needs temporary storage, and the individual steps are not reversible. Since a
reversible language requires each operation to be reversible we need a different
approach. One approach is to use LU or LDU decomposition, which can be
performed in place, and is step-wise reversible. Multiplication with the resulting
triangular matrices can also be done in-place and step-wise reversible. In the
approach here, to compute A := A × B, we perform the Crout algorithm for
LDU decomposition, B = L × D × U in place, then the sequence A := A × L,
A := A × D, A := A × U . Finally we reverse the LDU decomposition in place,
to recover the original input B. For a Janus implementation of the in-place
matrix multiplication, see Listing 1.4. The code for multiplication with triangular
matrices is shown in Listing 1.5. This approach needs no temporary storage and is
step-wise reversible. The price for this reversibility and in-place operation is more
arithmetic operations than a standard matrix product by a factor of about 5/3
(for sufficiently large n, say n > 10). In the full implementation, we used a local
temporary variable to reduce the number of calls to the ring-inverse function
for speed optimization, since it is much more costly than a multiplication or
addition. This does not change any of the reversibility features.
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procedure multLD(int A[][], int LDU[][], int n)
iterate int i = 0 to n-1
iterate int j = 0 to n-1
call mult(A[j][i], LDU[i][i])
iterate int k = i+1 to n-1
A[j][ i] += LDU[k][i] ∗ A[j][ k]

end
end

end

procedure multU(int A[][], int LDU[][], int n)
iterate int i = n-1 by -1 to 0
iterate int j = 0 to n-1
iterate int k = 0 to i-1
A[j][ i] += LDU[k][i] ∗ A[j][ k]

end
end

end

Listing 1.5. Janus implementation of in-place multiplication with triangular matrices.
multLD(A,LDU) computes A := A∗ (LD) and multU(A,LDU) computes A := A×U .

5 Automatic Generation of Reversible Code
for the Forward-Reverse-Commit Paradigm

In the forward-reverse-commit (FRC) paradigm [5] the original code is trans-
formed such that during its forward execution it stores all information required
to reverse all effects of the forward execution and restore the previous state of
the program, or commit (possibly deferred) operations at a later point in time.
Hence, we add the history of the computation to each saved state, which is usu-
ally called a Landauer’s embedding. In both reverse and commit functions the
additional information stored in the forward code is eventually disposed. Before
that the reverse function uses the stored data to undo all memory modifying
operations, in the commit function performs the deferred memory deallocation.

We generate transformed forward code to implement incremental state sav-
ing. The idea is to only store information about what changes in the program
state because of a state transition, not the entire state. This approach is also
briefly described in [5] for the programming language C (called “incremental
check pointing” by the author). After performing a forward execution of the
transformed program followed by a corresponding reverse operation, the pro-
gram is restored to its original state, i.e. the exact same state as the original
program was before performing any operation. Therefore, the execution of a for-
ward function and a reverse operation is equivalent to executing no code (i.e. a
no-op).
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After performing a forward execution of the transformed program followed
by a commit operation, the program is in the exact same state as executing
the original program. Therefore, the execution of a forward function and its
corresponding commit operation performs the same changes to the program
state as the execution of the original function.

This transformation can also be considered to turn the program into a trans-
actional program, where each execution step can be reversed (undone) or com-
mitted after which it cannot be reversed since all information necessary to reverse
it is disposed by the commit operation. This is an important aspect when
performing long running discrete event simulations: the forward-commit pairs
ensures that no additional memory is consumed after a commit has been per-
formed. As we shall see, the optimistic parallel discrete event simulation ensures
that such a point in time at which all events can be committed up to a certain
point in the past, can always be computed during the simulation.

In [9] we have shown how this approach can be extended to address C++
without templates. In [10] we have applied this approach to all of C++98, includ-
ing templates and in [7] we have shown that this approach is general enough to
be applied to C++11 standard containers and algorithms.

Our approach to generating reversible forward code introduces one additional
function call, an instrumentation, for each memory modifying operation. Mem-
ory modifying operations are destructive assignments and memory allocation and
deallocation. We only instrument operations of built-in types. For user-defined
types either the existing user-provided assignment operator is instrumented (like
any other code), or we generate a reversible default assignment operator if it is
not user-provided. This is sufficient to cover all forms of memory modifying
operations – of built-in types as well as user-defined types – because our run-
time library that is linked with the instrumented code performs all necessary
book-keeping at run-time. In particular, it also contains C++11 compile-time
predicates. Those predicates check whether a provided type is a built-in type
or a user-defined type and handle assignments of user-defined types (e.g. entire
structs) as fall-through cases because they are handled component-wise by the
respective overloaded assignment operator (which is either user-provided and
automatically instrumented or generated). For a formal definition of the seman-
tics of the instrumentations we refer the reader to [7].

We have implemented our approach in a tool called Backstroke2 as source-to-
source transformation based on the compiler infrastructure ROSE3. The Back-
stroke compiler for generating reversible programs from C++ was released to
the public in March 2017 (version 2.1.0). This was the first public release of
Backstroke V2 using incremental state saving.

2 https://github.com/LLNL/backstroke.
3 https://www.rosecompiler.org.

https://github.com/LLNL/backstroke
https://www.rosecompiler.org
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template<typename myuint>
void matmul(int n,myuint A[],myuint B[],myuint AB[]) {
for(int i = 0; i<n; i++) {
for(int j = 0; j<n; j++) {
myuint s = 0;
for(int k = 0; k<n; k++) {
s = s + A[i∗n+k]∗B[k∗n+j];

}
AB[i∗n+j] = s;

}
}

}

Listing 1.6. Original C++ Matrix Multiplication Code Fragment from the Bench-
mark.

template<typename myuint>
void matmul(int n,myuint A[],myuint B[],myuint AB[]) {
for(int i = 0; i<n; i++)
for(int j = 0; j<n; j++) {
myuint s = 0;
for(int k = 0; k<n; k++) {

(xpdes::avpushT(s)) = s +A[i∗n+k]∗B[k∗n+j];
}
(xpdes::avpushT(AB[i∗n+j])) = s;

}
}

Listing 1.7. Backstroke Generated Reversible C++ Forward Code (non-optimized).

5.1 Backstroke Instrumented Code

Three variants of the matrix multiplication are shown: (1) the original C++
code in Listing 1.6 for the matrix multiplication, (2) the non-optimized Back-
stroke generated code in Listing 1.7, and (3) the optimized Backstroke generated
code in Listing 1.8. Backstroke’s optimization detects local variables and ensures
that direct accesses to local variables are not instrumented because those never
need to be restored since memory for local variables is reserved on the run-
time stack. Backstroke instrumented code records memory modifications only
for heap allocated data since only this data persists across event function calls.
In the presence of pointers the accesses to memory locations on the stack may be
instrumented, but a runtime check in the Backstroke library ensures that only
heap allocated data is stored.

This runtime check is always performed in the xpdes::avpush function
because due to pointer aliasing, in general it is not known at compile time where
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template<typename myuint>
void matmul(int n,myuint A[],myuint B[],myuint AB[]) {
for(int i = 0; i<n; i++) {
for(int j = 0; j<n; j++) {
myuint s = 0;
for(int k = 0; k<n; k++) {

s = s + A[i∗n+k]∗B[k∗n+j];
}
(xpdes::avpushT(AB[i∗n+j])) = s;

}
}

}

Listing 1.8. Backstroke Generated Reversible C++ Forward Code (automatically
optimized).

the data that a pointer is referring to may be allocated. This check is performed
based on the memory addresses of the argument passed to avpush and the stack
boundaries determined as part of the initialization of the Backstroke runtime
library.

In the presented model only C++ assignments are instrumented because no
memory allocation happens in the event functions. The memory for the matrices
is allocated in the initialization of the simulation, i.e. in the initialization function
for each LP.

The avpush function passes a reference to the memory section denoted by
the respective expression as argument and stores a pair of the address (of the
denoted memory location) and the value at that address in a queue in the Back-
stroke runtime library. It returns the very same address such that the code can
execute as usual and perform the write access. Consequently, avpush always
stores the old value before the assignment happens. When a previous state needs
to be restored, the reverse function simply iterates over all those address-value
pairs stored by the avpush function and restores the memory locations at those
addresses to the stored value. The avpush functions are strictly typed, and
restoration follows in exact reverse order, which is important in case a mem-
ory location is written more than once or any forms of aliasing occur. For more
details on the instrumentation functions we refer the reader to [7].

The difference of the non-optimized version to the optimized version is that
the instrumentation in the innermost loop is not necessary because it is a write
to a local variable s. In Listing 1.8 the innermost loop is not instrumented and
therefore the number of instrumentations is only executed n2 times where n is
the size of the quadratic matrices. Without this optimization the Backstroke
generated code would always be slower than the Janus generated code as we
will discuss in more detail in Sect. 7. In general, accesses to memory which only
holds temporary data, not defining the state of an LP, need not be instrumented.
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The more precise a static analysis is that determines this property, the more
instrumentations to temporary memory locations can be avoided.

Backstroke also offers program annotations (through pragmas) for users to
manually minimize the number of instrumentations and interface functions to
turn on/off the recording of data at runtime. For example, with this feature one
can add conditions in loops to only record data in the very first iteration, but not
in subsequent iterations that write to the same memory location. Alternatively,
one can unroll a loop and only instrument the first (unrolled) iteration and
exclude the remaining loop from instrumentation. Thus, with Backstroke one
can also manually optimize the recording of data.

6 ROSS Simulator

For execution of our model codes we use the ROSS general purpose discrete
event simulator, developed at RPI by C. Carothers et al. [11]. ROSS has been
developed for more than a decade. It has the capability of running simulations
both sequentially and in parallel using either the YAWNS conservative or Time
Warp optimistic mechanism. Time Warp is an optimistic approach, where each
processor employs speculative execution to process any event messages it is aware
of. Causality conflicts, such as when a previously unknown message which should
already have been processed is received, are handled through local roll back.
During roll back the effects of messages that were processed in error are undone.

In order to use Time Warp in a ROSS model, a reverse event function must
be provided, which is responsible for undoing the state changes that the forward
event function incurred for the same event.

6.1 Adaptations of the ROSS Simulator for the FRC Paradigm

For our evaluation we are using the same ROSS implementation as in [7]. This
version offers a commit method. Whenever an event is committed (during fossil
collection) a commit function is called for the corresponding LP with the event as
an argument. This is a time when non-reversible functions such as file I/O can be
called safely. In particular, this is very useful for Backstroke, since commit time
is the earliest known moment at which the state saved by the Backstroke instru-
mented forward code can be released, and memory deallocated by the forward
event can be returned to the system. In addition to the commit methods, we
extended ROSS to support a C++ class for the simulation time data structure,
as opposed to the default double data type for representing time. This allows
the sender to encode additional bits in the message timestamp to help with tie
breaking of events.

7 Evaluation

We have evaluated the performance of three different implementations for the
forward and reverse code of the matrix mode: Original code with hand written
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Fig. 1. Top: Performance of original, Backstroke, and Janus versions of the matrix
model code. The graph shows the execution time per event for the three approaches.
The inset shows execution time relative to the original code. Bottom: The time for the
event function for the Backstroke code separated into event setup time, forward event
time, and commit time costs.

reverse code, forward code implemented in Janus with reverse code generated
by the Janus compiler, and forward code instrumented by Backstroke. For these
performance evaluations we used the Backstroke code with local variable opti-
mization.
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First we focus on forward event code, which consists of three phases: event
setup, forward computation, and commit. It is only the Backstroke instrumented
code that has any significant work to perform in the setup and commit phases.
We ran the matrix model sequentially using 8000 LP’s and running up to 20
time units.

Figure 1 shows the matrix model performance as a function of matrix size for
the four different reverse code approaches. The upper panel shows total event
execution time, while the lower panel shows the relative cost of the three event
execution phases for the Backstroke instrumented code.

The standard procedure, which we employ in the original code, for multi-
plying two n × n matrices performs n3 multiplications and additions, and thus
in general the execution time for an event should scale as O(n3) for sufficiently
large n.

The Janus code must perform an LU factorization before carrying out the
multiplications, and undo the factorization after the multiplication is complete.
The total number of operations is about 5

3 times as many as for the standard
procedure. We can thus expect the Janus code to be almost twice as slow as the
original code for large matrices. For very small matrices the number of operations
of the Janus implementation is similar to the original code.

The Backstroke instrumented code with local variable optimization instru-
ments 2n2 memory operations (n2 for the matrix multiplication, and another n2

for copying the result into the destination memory). Since there are O(n3) arith-
metic operations, we expect the Backstroke instrumented code to incur negligible
overhead for sufficiently large matrices.

We performed the runs using matrix sizes ranging from 2 to 640. The sim-
ulations were run on an cluster with Infiniband interconnect and 2.6GHz Intel
Xeon E5-2670 cpus, 16 cores per node. We used the GNU g++ compiler with
version 4.9.3, and the “-O3” optimization switches.

In the evaluation results we see that Janus performs best for small matrix
sizes, whereas the Backstroke generated incremental state saving code performs
better the larger the matrix size becomes, with a cross-over point at the size of a
matrix size of 20 and for a matrix size of 640 the performance becomes almost the
same as the non-instrumented version of the original forward code. The reason
is that the Backstroke generated code only instruments those memory modifica-
tions that actually change the state of the simulation, i.e. elements in the matrix,
whereas the computation of the intermediate results is not instrumented. This
optimization is straightforward because this corresponds to not instrumenting
accesses to local (stack-allocated) variables. Since optimistic PDES follows the
forward-reverse-commit paradigm the trace only grows to a certain size, until the
commit function is invoked by the simulator. The simulator guarantees that this
happens in reasonable time intervals. The non-monotonic performance behavior
for small matrices in Backstroke, and for intermediate size matrices in Janus (see
inset in Fig. 1), is likely due to simulator and timing overhead, and cache effects,
respectively.
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The advantage of Janus generated forward/reverse code is that it does not
need to store any additional data since the Janus implementation of the forward
code is reversible. Saving memory is useful particularly in Time Warp simu-
lations, since the amount of memory available dictates how much speculation
can be performed. A challenge to implementing an algorithm in Janus is that it
requires to writing assertions at the end of constructs that enable reverse exe-
cution to take the right execution path (i.e. reverse conditionals). In addition,
reversibility may require algorithms that use inherently more operations than
the most efficient ones available in traditional non-reversible computing.

8 Related Work

Jefferson started the subject of rollback-based synchronization in 1984 [3]. The
paper discusses rollback implemented by restoring a snapshot of an old state,
but today we are interested in using reverse computation and/or incremental
state saving for that purpose. Also, that paper is written as if discrete event
simulation is one of several applications of virtual time, but in fact it was then
and is now the primary application. Although the term “virtual time” is used,
you can safely read it as “simulation time”.

In 1999 Carothers et al. published the first paper [4], that suggests using
reverse computation instead of snapshot restoration as the mechanism for roll-
back, but it does not contemplate using a reversible language. It is written in
terms of very simple and conventional programming constructs (C-like rather
than C++ -like) and instrumenting the forward code to store near minimal
trace information to allow rollback of side effects by reverse computation.

Barnes et al. demonstrated in 2013 [12], how important reverse computation
can be in a practical application area. The fastest and most parallel discrete event
simulation benchmark ever executed was done at LLNL on one of the world’s
largest supercomputers using reverse computation as its rollback method for
synchronization. The reverse code was hand-generated, and methodologically
we know that this is unsustainable. For practical applications we need a way
of automatically generating reverse code from forward code, and this is what
we address with the work presented in this paper - to have a tool available,
Backstroke (version 2), for generating reverse code that can be applied to the
full C++ language.

Kalyan Perumalla and Alfred Park discuss the use of Reverse Computation
for scalable fault tolerant computations [13]. The paper is limited in a number of
ways, but they make a fundamental point, which is that Reverse Computation
can be used to recover from faults by mechanisms that are much faster than
check pointing mechanisms.

In [14] Justin LaPre et al. discuss reverse code generation for PDES. The
presented method is similar to one of our previous approaches in the work on
Backstroke [15] as it takes control flow into account and generates code for
computing additional information required to reconstruct the execution path
that had been taken in the forward code. The approach we evaluate in this paper
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is different as it does not need to take control flow information into account.
Our initial discussion of incremental state saving was presented in [9], but was
limited to C++ without templates. In this paper we evaluate a model that is
implemented using C++ templates as well. The automatic optimization that we
evaluate was also not present in [9].

An example for an optimistic PDES simulation with an automatically gener-
ated code using incremental state saving running thousands of LPs was published
for a Kinetic Monte-Carlo model in [10]. In this crystal grain simulation, a piece
of solid is modeled as a grid of unit elements. Each unit element represents a
microscopic piece of material, big enough to be able to exhibit a well defined
crystal orientation, but much smaller than typical grain sizes. These unit ele-
ments are commonly called spins, since the nature of grain evolution resembles
evolution of magnetic domains. In the experiment the biggest model was run
with a size of 768 × 768 spins divided into a grid of 96 × 96= 9216 LPs with a
slow-down factor in comparison to the hand-written reverse code of 4.7 to 4.3.
In a new experiment presented in [7], the model was run at a much bigger scale
with 1536 × 1536 spins in 256 × 256 logical processes (LPs) and implemented
using C++ Standard containers and algorithms and user-defined types. After
the transformation by Backstroke the model was run for 2 time units, or a total
of 47633718 events on LLNL’s IBM BlueGene/Q supercomputer with 16 cores
per node, using up to 8192 cores. This version showed a penalty of 2.7. to 2.9 in
comparison to the hand-written reverse code.

In [16] an autonomic system is presented that can utilize both an incremental
and a full checkpointing mode. At run time both code variants are available and
the system switches between the two variants, trying to select the more efficient
checkpointing version. With our approach to incremental checkpointing we aim
to reduce the number of instrumentations based on static analysis and offer a
directive to the user for enabling or disabling the recording of data at runtime,
allowing to also manually optimize instrumented code.

In [17] an instrumentation technique is applied to relocatable object files.
Specifically, it operates on the Executable and Linkable Format (ELF). It uses
the tool Hijacker [18] to instrument the binary code to generate a cache of
disassembly information. This allows to avoid disassembly of instructions at
run time. In contrast to our approach, the reverse instructions are built on-
the-fly at runtime, and using pre-compiled tables of instructions. Similar to our
approach there is also an overhead for each instrumentation. The information
that it extracts from instructions, the target address and the size of a memory
write, is similar to our address-value pairs. Recently progress has been made also
in utilizing hardware transactional memory for further optimizing single node
performance [19].

9 Conclusion

We have presented a new benchmark model for evaluating approaches to opti-
mistic parallel discrete event simulation. We evaluated the performance of using
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Janus generated forward/reverse code and incremental state saving (also called
incremental checkpointing). The benchmark model has as its core operation a
matrix multiplication.

From the results for our presented benchmark model we can conclude that
depending on the matrix size either the Janus generated code or the Backstroke
generated code performs best. Therefore, an implementation could include both
codes and call the respective implementation dependent on the matrix size. If
memory consumption becomes a limiting factor, the Janus implementation could
be favored over the Backstroke implementation as well, since the Janus code does
not store any additional data.

It also could be interesting to further explore how the Janus translator can
be optimized and how this impacts the native C++ compiler. The Janus trans-
lator used in the benchmarks is non-optimizing, which means it implements
every Janus statements in the target program, even when irreversible alterna-
tives provide a faster implementation and some statements may be redundant in
C++. Depending on the architecture, locality can be exploited to improve the
runtime behavior, e.g., when translating summation iterate ... A[i,j]+=e
end the use of a temporary variable in conventional assignments is an option:
s=A[i,j]; for ... s+=e end; A[i,j]=s;. Some optimizations are per-
formed by the native C++ compiler, others are better done by the Janus transla-
tor. Also, Janus may be extended with translator hints that allow a programmer
to mark compute-uncompute pairs, which makes it easier to determine redun-
dant statements.
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Abstract. This chapter presents pioneering work in applying reversible
computation paradigms to wireless communications. These applications
range from developing reversible hardware architectures for underwa-
ter acoustic communications to novel distributed optimisation proce-
dures in large radio-frequency antenna arrays based on reversing Petri
nets. Throughout the chapter, we discuss the rationale for introducing
reversible computation in the domain of wireless communications, explor-
ing the inherently reversible properties of communication channels and
systems formed by devices in a wireless network.

1 Introduction

Wireless communication systems come in different shapes and sizes: from radio
frequency (RF) systems we use in everyday life, to underwater acoustic communi-
cations (UAC) used where RF attenuation prevents use of radio communications.
These two examples are of interest to this case study, as we explored the poten-
tial role of reversible computation in improving modern wireless communications
in the RF and acoustic domains.

In the RF context, we examine the concept of distributed massive MIMO
(multiple input multiple output) systems. The distributed massive MIMO
paradigm will have an increasing relevance in fifth generation (5G) wireless
systems and post-5G era, as it will allow formerly centralised base stations to
operate as a group of hundreds (thousands) of small antennas distributed in
space, serving many users by beamforming the signal to them, operating using
distributed algorithms hence providing reduced power consumption and reduced
computational overhead. Our aim is to explore the application of reversible com-
putation paradigms in such systems to contribute in additional reduction of
power consumption, but also to help in fault recovery and meaningful undoing
of algorithmic steps in control and optimisation of such systems.

In the underwater acoustic context, we recognised the wave time reversal
scheme as a physical example of reversibility, a physical method waiting for
its reversible circuit implementation. The mechanism of wave time reversal is
analogous to reversible computation as we know it, and as such it admits elegant
and simple circuit implementation benefiting from all reversible computation
advantages. With this inherent reversibility in mind, we take the question of wave
c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 208–221, 2020.
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time reversal in underwater conditions a step further, and ask about realistic
models of such systems using reversible computation paradigms, and investigate
the options of controlling the environment in which this process is used for
communication.

Communication is inherently reversible: the communication channel changes
direction all the time, with the transmitter and the receiver changing roles and
transmitting through the same medium. Modulation and demodulation, coding
and decoding all these processes aim for information conservation and reversibil-
ity. Hence the motivation for this study is clear: can reversible computation help
in achieving goals of modern wireless communication: increasing access, decreas-
ing latency and power consumption, minimising information losses?

In this chapter, we present results on optimisation schemes for massive MIMO
based on reversing Petri nets, reversible hardware for wave time reversal, and
some preliminary thoughts on our work in progress on modelling and control
of wave time reversal in reversible cellular automata, as well as control of these
automata in general.

2 Reversing Petri Nets and Massive MIMO

2.1 The Problem

In the distributed massive MIMO system described in the previous section, not
all antennas need to be active at all times. Selecting a subset of antennas to
operate at a particular time instant allows the system to retain advantages of a
large antenna array, including interference suppression, spatial multiplexing and
diversity [16] while reducing the number of radio frequency (RF) chains and the
number of antennas to power [13]. The computational demand of optimal trans-
mit antenna selection for large antenna arrays [11] makes it impractical, suggest-
ing the necessity of suboptimal approaches. Traditionally, these approaches were
centralised and based on the knowledge of the communication channel between
every user and every antenna in the array; one widely used algorithm is the
greedy algorithm [12] which operates iteratively by adding the antenna that
increases the sum rate the most when joined with the set of already selected
antennas. In decentralised algorithms similar procedures are conducted on much
smaller subsets of antennas [21], leading to similar results in overall performance.
Our approach here is decentralised, and it relies on Reversing Petri nets (RPN)
[17] as the underlying paradigm. As this chapter focuses on applications, the
reader interested in details about reversing Petri nets used in this example is
advised to see [18]. The presentation here is based on [22].

The optimisation problem we are solving is downlink (transmit) antenna
selection of NTS antennas at the distributed massive MIMO base station with
NT antennas, in presence of NR single antenna users. We maximise the sum-
capacity

C = max
P,Hc

log2 det
(
I + ρ

NR

NTS
HcPHH

c

)
(1)
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where ρ is the signal to noise ratio (SNR), I a NTS × NTS identity matrix, P
a diagonal NR × NR power distribution matrix. Hc is the NTS × NR channel
submatrix for a selected subset of antennas from the NT × NR channel matrix
H [10].

In the case of receiver antenna selection, addition of any antenna to the set of
selected antennas improves the overall sum-capacity, as its equivalent of Eq. (1)
does not involve scaling by the number of selected antennas (i.e. there is not a
power budget to be distributed over antennas in the receive case). This prob-
lem is submodular and has a guaranteed (suboptimal) performance bound for
the previously described greedy algorithm. The greedy algorithm does not have
performance bound for the transmitter antenna selection, as the case described
by Eq. (1) does not fulfil the submodularity condition [24]; the addition of an
antenna to the already selected set of antennas can decrease channel capacity.

As done in [21,24], we optimise (1) with two variables, the subset of selected
antennas and the optimal power distribution over them successively: first, P is
fixed to having all diagonal elements equal to 1/NR (total power is equal to
ρNR/NTS), and after the antenna selection P is optimised by the water filling
algorithm for zero forcing.

Figure 1 illustrates the proposed algorithm based on RPN: the antennas are
Petri net places (circles A–G), with the token (bright circle) in a place indicat-
ing that the current state of the algorithm asks for that place (that antenna)
to be on. The places are divided into overlapping neighbourhoods (N1 and N2

in our toy example) and each two adjacent places have a common neighbour-
hood. Transitions between places move tokens around based on the sum capacity
calculations, with rules described below:

1. A transition is possible if there is a token in exactly one of the two places
(e.g. B and G in Fig. 1) it connects. Otherwise (e.g. A and B, or E and F) it
is not possible.

2. The enabled transition will occur if the sum capacity (1) calculated for all
antennas with a token in the neighbourhood shared by the two places (for B
and G, that is neighbourhood N1) is less than the sum capacity calculated
for the same neighbourhood, but with the token moved to the empty place
(in case of B-G transition, this means CAB < CAG, sum-capacity of antennas
A and B is smaller than that of A and G). Otherwise, it does not occur.

3. In case of several possible transitions from one place (A-E, A-D, A-C) the one
with the greatest sum-capacity difference (i.e. improvement) has the priority.

4. There is no designated order in transition execution, and transitions are per-
formed until a stable state is reached.

The algorithm starts from a configuration of n tokens in random places and
converges to a stable final configuration in a small number (in our experiments,
up to five) of iterations (passes) through the whole network. As the RPN con-
serves the number of tokens in the network, and our rules allow at most one token
per place, the algorithm results in n selected antennas. Executing the algorithm
on several RPNs in parallel (in our experiments, up to five) allows tokens to
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traverse all parts of the network and find good configurations even with a rel-
atively small number of antennas and users. The converged state of the RPN
becomes the physical state of antennas: antennas with tokens are turned on for
the duration of the coherence interval. At the next update of the channel state
information, the algorithm proceeds from the current state.

The computational footprint of the described algorithm is very small: two
small matrix multiplications and determinant calculations are performed at a
node which contains a token in a small number of iterations. As such, this
algorithm is significantly faster and computationally less demanding than the
centralised greedy approach which is a low-complexity representative of global
optimisation algorithms in antenna selection [11]. The worst case complexity of
the RPN based approach is O(Nω/a

T ) (here, NT denotes the number of antennas,
and ω, 2 < ω < 3 is the exponent in the employed matrix multiplication algo-
rithm complexity). The parameter a is related to the relative size of the neigh-
bourhood as a reciprocal exponent, assuming that a neighbourhood of N

1/a
T ,

a > 1 suffices for RPN algorithm (as
√

NT suffices in our case, we went for
a = 2). The constant factor multiplying the complexity is small because of few
computing nodes (only those with tokens) and few iterations.

Fig. 1. A toy model of antenna selection on a reversing Petri net

2.2 Results and Discussion

The algorithm was tested using the raytracing Matlab tool Ilmprop [9] on a sys-
tem composed of 64 omnidirectional antennas randomly distributed in space
shown in Fig. 2(a). In all computations, channel state information (CSI) in
matrix H was normalised to unit average energy over all antennas, users and sub-
carriers, following the practice from [10]. 75 randomly distributed scatterers and
one large obstacle are placed in the area with the distributed base station. The
number of (randomly distributed) users with omnidirectional antennas varied
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(a) Randomly distributed antennas

(b) The mapping to RPN topology

Fig. 2. Antennas in physical and computational domain

from 4 to 16, and we used 300 OFDM (orthogonal frequency-division multiplex-
ing) subcarriers, SNR ρ = –5 dB, 2.6 GHz carrier frequency, 20 MHz bandwidth.
Antennas are computationally arranged in an 4 × 16 array folded into a toroid,
creating a continuous infinite network, as shown in Fig. 2(b), e.g. antenna 1 is a
direct neighbour of antennas 2, 16, 17 and 49. Immediate Von Neumann (top,
down, left, right) neighbours can exchange tokens, and overlapping 8-antenna
neighbourhoods are placed on the grid: e.g. for antenna 1, transitions to 16 and
17 are decided upon within the neighbourhood {16, 32, 48, 64, 1, 17, 33, 49}
and the transitions to 2 and 49 are in {1, 17, 33, 49, 2, 18, 34, 50}. In Fig. 3 we
compare greedy and random selection with two variants of our RPN approach:
the average of five concurrently running RPNs, and the performance of the best
RPN out of those five. The performance is comparable in all cases, and both
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variants of our proposed algorithm tend to outperform the centralised approach
as the number of users grows. This in practice means that a single RPN suffices
for networks with a relatively large expected number of users.

The inherent reversibility of this problem and its solution generalises to the
common problem of resource allocation in wireless networks, and sharing any
pool of resources (power, frequency, etc.) can be handled between antennas (and
antenna clusters) over a Reversing Petri Net. At the same time, such a solution
would be robust to changes in the environment, potential faults, sudden changes
in the mode of operation, and could operate on reversible hardware.

Fig. 3. Achieved sum rates for 4–16 users using the proposed algorithm vs random and
centralised greedy selection

Fig. 4. The effects of imperfect CSI and random selection of subcarriers on optimisation
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In [21], it has been shown that the distributed algorithms are resistant to
errors in CSI and that they perform well even with just a (randomly selected)
subset of subcarriers used for optimisation. Results in Fig. 4 in the case of 12
users confirm this for the RPN algorithm as well.

3 Reversible Hardware for Time Reversal

The technique called wave time reversal [6] has been introduced in acoustics
almost three decades ago, and has since been applied to other waves as well–
optical and RF. In our work, we focused on acoustic time reversal, thinking of
its applications in acoustic underwater communications. However, it is worth
noting that wave time reversal plays a significant role in RF communications as
well–conjugate beamforming for MIMO systems is based on it. In the remainder
of this section, we introduce the concept of wave time reversal and explain our
proposed solution for its reversible hardware implementation. The presentation
here follows the one in [20].

3.1 Wave Time Reversal

Time reversal mirrors (TRMs) [6] are based on emitter–receptor antennas posi-
tioned on an arbitrary enclosing surface. The wave is recorded, digitised, stored,
time-reversed and rebroadcasted by the same antenna array. If the array on the
boundary intercepts the entire forward wave with a good spatial sampling, it
generates a perfect backward-propagating copy. The procedure begins when the
source radiates a wave inside a volume surrounded by a two-dimensional sur-
face with sensors (microphones) along the surface which record the field and
its normal derivative until the field disappears (Fig. 5). When this recording is
emitted back, it created the time-reversed field which looks like a convergent
wavefield until it reaches the original source, but from that point it propagates
as a diverging wavefield. This can be compensated by an active source at the
focusing point cancelling the field, or a passive sink as a perfect absorber [3].

Fig. 5. A closed surface is filled with transducer elements [7]. The wavefront distorted
by heterogeneities comes from a point source and is recorded on the cavity elements.
The recorded signals are time-reversed and re-emitted by the elements. The time-
reversed field back-propagates and refocuses exactly on the initial source.
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Fig. 6. Time-reversal experiment through a diffusive medium [7]

This description asks for the whole surface to be covered with the TRM
transceivers, and for both the signal and the derivative to be stored: for practical
purposes, less hardware-demanding solutions are needed. First, we note that the
normal derivative of the field is proportional to the field in case the TRM is in
the far field, halving the necessity for signal recording. Second, we note that a
TRM can use complex environments to appear as an antenna wider than it is,
resulting in a refocusing quality that does not depend on the TRM aperture [4].
Hence, it can be implemented with just a subset of transceivers located in one
part of the boundary, as seen in Fig. 6.

Fig. 7. (a) The three realms of reversibility, (b) The classical (top) and the reversible
solution (bottom) for the classical time reversal chain

3.2 The Design

Figure 7 illustrates the challenge of designing a reversible hardware solution for
a TRM:

1. The environment is reversible to an extent (we will return to this question
later in this chapter). The physics of wave propagation in water is reversible,
but issues arise as we lose information in the process.

2. The analog computation part of the TRM loses information due to filter-
ing and analog-to-digital/digital-to-analog conversion (ADC/DAC), ampli-
fiers accompanying the filters and the converters themselves, at the transition
to the digital domain.
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3. Finally, the digital computation part of the TRM is reversible and no increase
in entropy is necessary: writing in memory and unwriting, in the fashion of
Bennett’s trick, enabling reuse of memory for the next incoming wave, while
not increasing the entropy.

Analog Processing. The real amplifier is an imperfect device with a limited
bandwidth, hence prone to losing signal information. By definition, it takes addi-
tional energy for the signal, so it asks for an additional power source. At the same
time, the analog to digital and digital to analog converters both lose information
because of the finite resolution in time and amplitude, preventing full reversibil-
ity. However, a single device can be both an ADC and a DAC depending on
the direction [14]. In this solution, we assume bi-directional converters placed
together with bi-directional amplifiers [14]. The conversion is additionally simpli-
fied in the one-bit solution [5] where the receivers at the mirror register only the
sign of the waveform and the transmitters emit the reversed version based on this
information. It is a special case of analog-to-digital and digital-to-analog conver-
sion with single bit converters. The reduction in discretisation levels also means
simplification of the processing chain and making its reversal (bi-directivity)
even simpler. The question of the information loss is not straightforward: while
the information about the incoming wave is lost in the conversion process (and
the loss is maximal due to minimal resolution), spatial and temporal resolution
are not significantly degraded. This scheme can also be called “one-trit” (trit is
a ternary digit, analogous to a bit) reversal: there are three possible states in
the practical implementation: positive pressure, negative pressure, and “off”.

Digital Processing. The first, straightforward way of performing time reversal
of a digitally sampled wave is storing it in memory and reading the samples in
the reverse order (last in, first out, LIFO), analogous to storing the samples
on the stack. The design of registers in reversible logic is a well-explored topic
[15] and both serial and parallel reading/writing can be implemented. Design
of latches in reversible logic is a well-studied problem with known solutions;
a combination of latches makes a flip-flop, and a series of flip-flops makes a
register (and a reversible address counter). In the case of wave time reversal,
the recording of data is a large register being loaded serially with wave data.
m bits from the ADC are memorised at the converter’s sample rate inside a
k × m bit register matrix (where k is the number of samples to be stored for
time reversal). In the receiving process the bits are stored, in the transmission
process they are unstored, returning the memory into the blank state it started
from (uncomputation). We utilise Bennett’s trick and lose information without
the entropic penalty: the information is kept as long as it is relevant.

When additional signal processing, e.g. filtering or modulation is performed,
it is convenient to reverse waves in the frequency domain: there, time domain
reversal is achieved by phase conjugation, i.e. changing the sign of the signal’s
phase. The transition from the time to the frequency domain (and vice versa)
in the digital domain is performed by the Fast Fourier Transform (FFT) and



Reversible Computation in Wireless Communications 217

its inverse counterpart, which are reversibly implementable [23]. The necessary
phase conjugation is an arithmetic operation of sign reversal, again reversible.
Any additional signal processing can be reversible as well: e.g. filter banks and
wavelet transforms. These processes remain reversible with preservation of all
components of signals [2].

Figure 8(a) gives a comparison of the bit erasures in different implementa-
tions of the digital circuitry: frequency domain (FFT) and time domain reversal
performed by irreversible circuits, compared to reversible implementations. The
number of erasures changes depending on two parameters: bit resolution of the
ADC and the waiting time–the length of the interval in which samples are col-
lected before reversal starts, equivalent to the number of digitised samples. The
increase in both means additional memory locations and additional dissipation
for irreversible circuits. The irreversible FFT implementation has an additional
information loss caused by additional irreversible circuitry compared to the irre-
versible time domain implementation. Our implementation has no bit erasures
whatsoever. The price that is paid reflects in the larger number of gates used
in the circuit: the number of gates has only spatial consequences, information-
related energy dissipation is zero thanks to information conservation.

On the other hand, Fig. 8(b) shows the information loss in the analog part of
the system, and we differentiate two typical environments, the chaotic cavity and
the complex (multiple scattering) medium. The chaotic cavity is an ergodic space
with sensitive dependence on initial conditions for waves. In such an environment
there is little to no loss in the information if the waiting time is long enough
and the ADC resolution is high enough. In the complex media, the difference
is caused by some of the wave components being reflected backwards by the
scattering environment, hence not reaching the TRM. Again, more information is
retained with the increase in the ADC resolution. However, as reported in [5], the
information loss from low-resolution ADC use does not affect the performance
of the algorithm. The analog part of the scheme remains a topic of our future
work, as it leaves space for improvements of the scheme.

4 Reversible Environment Models and Control

Time reversal described in the previous section is an example of a reversible
process in a nominally reversible environment. While dynamics of water subject
to waves are inherently reversible, most of the sources of the water dynamics
do not reverse naturally: e.g. the Gulf stream or a motion of a school of fish.
Hence, even though it would rarely be completely reversed, the model for UAC
should be reversible. We discuss the questions of reversible models following
the exposition in [19], and the work in progress on control of reversible cellular
automata (RCA).

RCA lattice gas models are cellular automata obeying the laws of fluid
dynamics described by the Navier-Stokes equation. One such model, FHP
(Frisch- Hasslacher-Pomeau) lattice gas [8] is simple and yet following the Navier-
Stokes equations exactly. It is defined on a hexagonal grid with the rules of parti-
cle collision shown in Fig. 9. The FHP lattice gas provides us a two-dimensional
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Fig. 8. Information loss in (a) the digital and (b) the analog part of the system. Units
are omitted as the particular aspects of implementation are not relevant for the illus-
tration of effects. Plot (a) is obtained by counting operations, plot (b) by simulation
of back-scattering.

Fig. 9. FHP rules
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model for UAC, easily implementable in software and capturing the necessary
properties of the reversible medium.

Following the exposition in the previous section, we observe a model with an
original source (transmitter) which causes the spread of an acoustic wave, the
original sink (receiver) waiting for the wave to reach it, as well as scatterers and
constant flows (streams) in the environment. The constant stream and the loss
of information caused by some wave components never reaching the sink will
result in an imperfect reversal at the original source. The measure of returned
power gives us a directivity pattern (focal point). The amplitude of the peak
will fluctuate based on the location of the original source and is a measure
of reversibility, akin to fidelity or Loschmidt Echo. For us, it is a measure of
the quality of communication, but in a more general context it can measure
reversibility of a cellular automaton.

From the control viewpoint, it is interesting to ask the following: if a certain
part of the environment is controllable (i.e. a number of cells of the RCA does
not obey the rules of the RCA but allows external modification), how can it be
used to achieve better time reversal? This is a compensation approach where
we engineer the environment to compensate for effects caused by sources of
disturbance out of our control. The approach we take is one of control of cellular
automata [1], and it is expected that RCA are easier to control than regular CA,
with easier search strategies and the ability to calculate control sequences.

5 Conclusions

In this chapter, we provided an overview of results obtained in the case study on
reversible computation in wireless communications. Some of the presented work,
such as optimisation in massive MIMO and reversible hardware for wave time
reversal is finished and subject to further extensions and generalisations; other
work, mainly the parts focused on RCA and modelling of reversible physics of
communication, is still ongoing and more results are to come. This has been a
pioneering study into reversibility in communications, and the results obtained
promise a lot of space for improvement and applications in the future. We hope
these efforts will serve as an inspiration and a trigger for the development of this
field of research.
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Abstract. Quantum Key Distribution (QKD) protocols allow the estab-
lishment of symmetric cryptographic keys up to a limited distance at
limited rates. Due to optical misalignment, noise in quantum detectors,
disturbance of the quantum channel or eavesdropping, an error key recon-
ciliation technique is required to eliminate errors. This chapter analyses
different key reconciliation techniques with a focus on communication
and computing performance. We also briefly describe a new approach to
key reconciliation techniques based on artificial neural networks.

Keywords: Error reconciliation · Quantum key distribution ·
Performances · Reversibility

1 Introduction

QKD provides an effective solution for resolving the cryptographic key estab-
lishment problem by relying on the laws of quantum physics. Unlike approaches
based on mathematical constraints whose security depends on the attacker’s
computational and communication resources, QKD does not put a limit on the
available resources but limits the length of the link implementation [1]. A QKD
link can be realized only to a certain distance and at certain rates since it involves
usage of two channels: quantum/optical and public/classical.
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Quantum cryptography focuses on photons (particles of light), using some
of their properties to act as an information carrier. Principally, information is
encoded in a photon’s polarization; a single polarized photon is referred to as a
qubit (quantum bit) which cannot be split, copied or amplified without intro-
ducing detectable disturbances.

The procedure for establishing a key is defined by QKD protocol, and three
basic categories are distinguished: the oldest and widespread group of discrete-
variable protocols (BB84, B92, E91, SARG04), efficient continuous-variable (CV-
QKD) protocols and distributed-phase-reference coding (COW, DPS) [2,3]. The
primary difference between these categories is reflected in the method of prepar-
ing and generating photons over a quantum channel [4–6].

A quantum channel is used only to exchange qubits, and it provides the QKD
protocol with raw keys. All further communication is performed over a public
channel, and it is often denoted as post-processing. It includes steps that need to
be implemented for all types of protocols [2], exchanging only the accompanying
information that helps in the profiling of raw keys. The overall process is aimed
at establishing symmetric keys on both sides of the link in a safe manner.

The initial post-processing step is called a sifting phase, and it is used to
detect those qubits for which adequate polarization measurement bases have
been used on both sides. Therefore, user B, typically designated Bob informs user
A, usually named Alice in literature, about bases he used, and Alice provides
feedback advising when incompatible measurement bases have been used. It is
important to underline that information about the measurement results is not
revealed since only details on used bases are exchanged. Bob will discard bits
for cases when incompatible bases have been used, providing the sifted key.

Further, it is necessary to check whether the eavesdropping of communica-
tion has been performed. This step is known as error-rate estimation since it
is used to estimate the overall communication error. The eavesdropper is not
solely responsible for errors in the quantum channel since errors may occur due
to imperfection in the state preparation procedure at the source, polarization ref-
erence frame misalignment, imperfect polarizing beam splitters, detector dark
counts, stray background light, noise in the detectors or disturbance of the quan-
tum channel. However, the threshold of bit error rate pmax for the quantum
channel without the presence of eavesdropper Eve is known in advance, and this
information can be compared with the measured quantum bit error rate (QBER)
p of the channel. The usual approach for estimation of the QBER in the chan-
nel (p) is to compare a small sample portion of measured values. The selected
portion should be sufficient to make the estimated QBER credible where the
question about the length of the sample portion is vital [4,7,8]. After estimating
QBER, the obtained value can be compared with the already known threshold
value of pmax. If the error rate is higher than a given threshold (p > pmax),
the presence of Eve is revealed which means that all measured values should
be discarded and the process starts from the beginning. Otherwise, the process
continues.
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Although the estimated value is lower than the threshold value, there are
still measurement errors that need to be identified, and those bits need to be
corrected or discarded. The process of locating and removing errors is often
denoted as “error key reconciliation”. As shown in traffic analysis experiments [9,
10], error key reconciliation represents a highly time demanding and extensive
computational part of the whole process. Depending on the implementation, a
key reconciliation step may affect the quantum channel and considerably impact
the key generation rate.

In the following sections, we analyze the most popular error reconciliation
approaches. Cascade protocol is discussed in Sect. 2, overview of Winnow proto-
col is given in Sect. 3. Section 4 outlines LDPC approach while the comparison
is given in Sect. 5. We introduce the new key reconciliation protocol in Sect. 6
and provide conclusion in Sect. 7.

2 Cascade

The most widely used error key reconciliation protocol is cascade protocol due
to its simplicity and efficiency [11]. Cascade is based on iterations where random
permutations are performed with the aim of evenly dispersing errors throughout
the sifted key. The permuted sifted key is divided into equal blocks of ki bits,
and after each iteration and new permutations, the block size is doubled: ki =
2 · ki−1. The results of the parity test for each block are compared, and a binary
search to find and correct errors in the block is performed. However, to improve
the efficiency of the process, the cascade protocol investigates errors in pairs of
iterations in a recursive way.

Instead of rejecting error bits in the first stage, information about the pres-
ence of an error bit in the block is used in the further iterations to detect
errors that have not been detected due to the measurement parity. For any
error detected in further iterations, at least one matching error can be identified
in the same block of the previous iteration which was previously considered as
a block without errors. Using a binary search, a deep search for errors in such
a block is performed, and the masked errors can be recursively detected. Two
passes of cascade protocol are illustrated in Fig. 1.

The length of the initial block k1 is a critical parameter which depends on
the estimated QBER. The empirical analysis described in [11] proposes the use
of value k1 = 0.73/p as the optimal value, where p is the estimated QBER.
Sugimoto modified the cascade protocol to bring the cascading protocol closer
to theoretical limits [12]. Besides, he confirmed that four iterations are sufficient
for the effective key reconciliation as originally proposed in [11]. However, due
to the dependence of the initial block’s length on the estimated QBER, it is
advisable to execute all the iterations (as long as the length of the block ki is
not equal to the length of the key). In [4], Rass and Kollmitzer showed that
adopting block-size to variations of the local error rate is worthwhile, as the
efficiency of error correction can be increased by reducing the number of bits
revealed to an adversary [13].
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Fig. 1. Illustration of the first two passes of reconciliation using a Cascade protocol.
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Cascade protocol relies on the use of the binary search to locate an error
bit. The binary search includes further division of the block into two smaller
subblocks for which the results of parity check values are compared until an error
is found. For each block with an error bit, in total 1+ �log2 ki� parity values are
exchanged since 1+ �log2 ki� is the maximum number of times that block ki can
be splitted, and only one parity value is exchanged for blocks without errors.

In addition to discarding the sample portion bits used to estimate QBER
value, it is advised to discard the last bit of each block and subblock for which
the parity bit was exchanged to minimize the amount of information gained by
Eve. The maximum number of discared bits denoted as Di can be calculated
based on ki value in the ith iteration as follows:

∑
Di =

∑

i

(
∑

initially
even

blocks

1 +
∑

initially
odd

blocks

(1 + �log2 ki�) +
∑

other
errors

corrected

�log2 ki�) (1)

As proposed in [14], Eq. (1) can be shortened to:

D =
∑

Di =
∑

i

(
n

ki
+

∑

errors
corrected

�log2 ki�) (2)

where ki = 2 ·ki−1, ki < n
2 and n denotes the amount of the measured values

in sifting phase. The number of discarded bits depends on the QBER value and
initial block size. However, Sugimoto showed [12] that most errors are corrected
in the first two iterations. The empirical analysis of cascade protocol is given
in [15], while the practical impact of cascade protocols on post-processing is
considered in [9,16]. In [17], Chen proposed the extension of random permuta-
tions using interleaving technique optimized to reduce or eliminate error clusters
from burst errors. Nguyen proposed modifying the permutation method used in
cascade [18]. Yan and Martinez proposed modifications based the initial key’s
length in [19,20] while the use of Forward Error Correction was analyzed in [21]
(Table 1).

Table 1. Error correction per passes using Cascade protocol

Iteration 1 2 3 4

Corrected errors (%) 54.522% 45.347% 0.451% 0.002%

3 Winnow

In 2003, Winnow protocol based on Hamming codes was introduced [22]. The
aim was to increase the throughput and reduce the interactivity of Cascade by
eliminating the binary search step.
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Both parties, Alice and Bob, divide their random keys Ma and Mb into blocks
of equal length (recommended starting size is k = 8) and calculate syndrome
values Sa and Sb based on a Generator matrix G and a parity check Matrix H
where H ·GT = 0. For each block of size k, based on his key values Mb, Bob will
generate and transmit his syndrome Sb = H · Mb to Alice, which will calculate
the syndrome differences Sd. If Sd is non-zero, Alice will attempt to correct the
errors with the fewest changes leading to syndrome zero values.

Sa = H · MT
a =

⎡

⎣
0 1 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 0 1

⎤

⎦ · [
0 1 1 0 0 1 1

]T =

⎡

⎣
1
0
0

⎤

⎦

Sb = H · MT
b =

⎡

⎣
0 1 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 0 1

⎤

⎦ · [
0 1 0 0 0 1 1

]T =

⎡

⎣
0
1
0

⎤

⎦

Sa

⊗
Sb =

⎡

⎣
1
1
0

⎤

⎦

1 · 20 + 1 · 21 + 0 · 22 = 3 (bit on position 3 is the error) (3)

The Hamming distance dmin between codewords limits the number of errors
that are suitable for correction where a code word with the number of errors
greater than dmin

2 may closely resemble different code word then correcting
the considered code word. Due to reliance on Hamming codes, the Winnow
protocol may actually introduce errors, which is the main disadvantage of the
shortly described approached. Its efficiency is lower when compared to Cascade
for QBER values below 10% that are useful for practical QKD [23].

To achieve information-theoretical secrecy, Buttler suggested discarding an
additional bit of each block of size k in the privacy maintenance phase [22].

4 Low Density Parity Check

With terrestrial links, Alice and Bob are usually not limited to execution time,
computation and communication complexity. However, with satellite links, the
parties need to consider significant losses in the channel, limited time to establish
a key due to periodic satellite passage where communication and computation
complexity puts additional constraint. Therefore, in previous years, researchers
have turning to the application of Gallager’s Low Density Parity Check (LDPC)
codes that have recently been shown to reconcile errors at rates higher than those
of Cascade and Winnow [24–26]. LDPC provides low communication overhead
and inherent asymmetry in the amount of computation power required at each
side of the channel.

LDPC linear codes are based on a parity check matrix H and a generator
matrix G where a decoding limit of the code is defined with the minimum dis-
tance. The dimensions of H and G are m×n where m = n·(1−r) and r is defined
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as code rate in range [0, 1]. The code rate value is usually defined beforehand; it
defines the correcting power and efficiency. The reconciliation algorithm based
on LDPC includes following steps:

– An estimation of QBER of the communication channel is performed,
– Based on estimated QBER, Alice and Bob choose the same m × n generator

matrix G and parity check matrix H,
– For each sifted key, Bob calculates syndrome Sb and send it to Alice,
– Alice attempts to reconcile sifted key, assuming that Bob has the correct

sifted key. Her goal is to resolve Bob’s key vector x, based on her key
vector y, received syndrome Sb, the parity-check matrix H, and estimated
QBER value. Alice can use several techniques to decode LDPC such as belief
propagation decoding algorithm (also known as the Sum-Product algorithm)
or Log-Likelihood Ratios which significantly lower computational complex-
ity [4,16,23].

Decoding LDPC code requires larger computational and memory require-
ments than either the Cascade or Winnow algorithms. However, it has a signifi-
cant advantage due to the reduction of communication resources since only one
information exchange is required. In networks with limited resources (bandwidth
and latency), such tradeoff provides potentially large gains in overall runtime and
secrecy. In the context of QKD, LDPC was firstly used as a base for the BBN
Niagara protocol in DARPA QKD network [27].

5 Comparisson

For testing purposes, Cascade, Winnow and LDPC code were implemented in
C++ programming language on servers Intel (R) Xeon (R) Silver 4116 CPU @
2.10 GHz with 8 GB, and 512 GB HDD. For each value of QBER, 10.000 random
keys were tested with the same random seed, which allowed repeating scenarios
for different protocols used (Cascade, Winnow and LDPC). In total, 870,000
tests were performed.

The total number of leaked bits is defined as follows:

– Cascade: For each exchange of parity value, one bit is discarded.
– Winnow: For each block k, one bit is discarded.
– LDPC: Total length of syndrome Sb value exchanged.

Figure 2 shows that for small values of QBER (up to 0.05%), Cascade quickly
finds and removes errors resulting in a small number of iterations. However, as
the QBER value increases (up to 0.10%), LDPC shows better efficiency in terms
of overhead and information exchanged.

Figure 3 shows that the overhead efficiency has its price in terms of execution
time. Due to the simplicity of algorithms, Cascade and Winnow codes have
almost fixed execution time, while in LDPC, the code execution time varies, and
gradually increases with the QBER increase.
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Fig. 2. The number of bits leaked (discarded) for different QBER values. Due to its
simplicity, the binary search within Cascade protocol can locate errors in a short time
for lower values of QBER. However, for more significant QBER values, binary search
requires deeper checking of the sifted key, which increases communication. In the case
of Winnow, syndrome message per each block of length k is exchanged which can be
used to detect errors in early stages.

Fig. 3. The execution time for different QBER values. LDPC predominantly requires
more time to execute key reconciliation tasks while due to its simplicity, the execution
time of the Cascade and Winnow protocols is almost constant. LDPC based on the
belief propagation algorithm was used for decoding.
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6 Error Correction Based on Artificial Neural Networks

Using artificial neural networks for error correction during a key reconciliation
process is a new concept, introduced in [28]. This proposal assumes the use of
mutual synchronization of artificial neural networks to correct errors occurring
during transmission in the quantum channel. Alice and Bob create their own
neural networks based on their keys (with errors). After the mutual learning
process, they correct all errors and can use the final key for cryptography pur-
poses.

6.1 Tree Parity Machines

Tree parity machine (TPM) is a type of artificial neural networks (ANN) –
a family of statistical learning models inspired by biological neural networks
[29]. It consists of artificial neurons (analogous to biological neurons) which are
connected and are able to transmit a signal from one neuron to another [30].
Neurons are usually organized in layers: the first layer consists of input neurons
which can send the data to the second layer (called hidden). The last layer –
called the output layer – consists of output neurons. TPM contains only one
hidden layer and has a single neuron in the output layer. It consists of KN
input neurons, where K is the number of neurons in the hidden layer and N is
the number of inputs into each neuron in the hidden layer. An example of TPM
is presented in Fig. 4.

Fig. 4. Structure of TPM machine [28]

TPMs have another important feature: connections between neurons can
store parameters (called weights) that can be manipulated during calculation.
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Each connection between the input layer and hidden layer is characterized by its
weight, which is an integer from the range [−L,L]. The output value of neuron
k in the hidden layer depends on input x and weight w and is calculated as:

σk = sgn(
N∑

n=1

xkn ∗ wkn) (4)

where signum function is:

sgn(z) =

{
−1 z ≤ 0
1 z > 0

(5)

The output value of the neuron in the output layer is calculated as:

τ =
K∏

k=1

σk (6)

When Alice and Bob build their own TPMs with the same structure (K, N
and L), they can synchronize these artificial networks after mutual learning [31].
At the beginning of this process, each TPM generates random values of weights,
however after the synchronization process both users have TPMs with the same
values of weights. Therefore, Alice and Bob can use this phenomenon to correct
errors occurring in the quantum channel.

In order to synchronize neural networks, Alice or Bob generates random
inputs and both users compute outputs from each TPM. If the outputs have the
same value, they start the learning process, but if the outputs are different, a
new string of bits must be generated. Alice and Bob can choose any learning
algorithm; however, the generalized form of Hebbian method is the most popular
in practical implementations [32]. This algorithm strengthens the connections
which have the same value as the TPM output. The new weights are calculated
by means of the following formula:

w�
kn = νL(wkn + xkn ∗ σk ∗ Θ(σk, τ)) (7)

where:

Θ(σk, τ)) =

{
0 if σk �= τ

1 if σk = τ
(8)

and function νL limits values of connections to the range [−L,L]:

νL(z) =

⎧
⎪⎨

⎪⎩

−L if z ≤ −L

z if − L < z < L

L if z ≥ L

(9)

After the appropriate number of iterations, the synchronization process ends,
and the weights of both TPM machines are the same. However, synchronization
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of TPMs requires public channel for communication between Alice and Bob
where Eve can eavesdrop and try to synchronize her own TPM machine with
Alice and Bob. Fortunately, if the output of Eve’s TPM machine is different
than the outputs of Alice and Bob’s machines, the learning process cannot be
performed. Therefore, the synchronization of Eve’s TPM is much slower than the
synchronization of the TPMs belonging to Alice and Bob. An example of the
synchronization process is presented in Fig. 5 (TPM machines with parameters:
N = 8, K = 6, L = 2 and Hebbian learning algorithm). Alice and Bob synchronized
neural networks before 200 iterations, but the attacker was not able to do it for
1000 iterations.

Fig. 5. Example of TPMs synchronization: Alice’s TPM and Bob’s TPM, Bob’s TPM
and Attacker’s TPM (TPM machines with parameters: N= 8, K = 6, L = 2 and Hebbian
learning algorithm)

6.2 Error Correction Based on TPMs

We can use the presented synchronization of the TPM machines to correct errors
in the quantum cryptography. In the beginning, Alice and Bob create their own
TPM machines based on their own strings of bits. The users change the string
of bits into weights in their own TPM machines (bits into numbers from the
range [−L,L] ). Values {−L,−L + 1, ...L − 1, L} become weights of connections
between the input neurons and the neurons in the hidden layer. In this way,
Alice and Bob construct very similar neural networks – the TPM machines
have the same structure, and most of the weights are the same. The differences
are located only in the places where errors occurred: for example, if QBER
≈3%, it means that ≈97% of bits are correct. After this, synchronization of the
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TPM machines begins and continues until all weights in both machines become
the same. When each random input is chosen (input strings have KN length),
the users compute outputs and compare the obtained values. When the TPM
machines are synchronized, the weights are the same in both neural networks.
Therefore Alice and Bob can convert the weights back into bits because both
strings are now the same. All errors have been corrected.

Importantly, Alice’s binary string is very similar to Bob’s string of bits. The
typical value for QBER does not exceed a few percent; therefore we must correct
only a small part of the whole key. This means that the TPM machines are close
to synchronization and the learning process will finish much faster than in the
case of synchronization of random strings of bits. Of course, this increases the
security level significantly.

It is worth mentioning that this idea – using the mutual synchronization of
neural networks to correct errors – is a special case when this process makes
sense. In general, TPM machines cannot be used for error correction of digital
information because we are not able to predict the final weights after the learning
process.

7 Conclusion

In this chapter, we analyzed techniques of implementing the key reconciliation
using Cascade, Winnow, Low-density parity-check code and the application of
neural networks with a focus on communication and computing performances.

Our previous results [9] showed that key reconciliation process takes the
dominant part of QKD post-processing. With increasing interest in satellite and
global QKD connections, minimizing the duration of key establishment process
is becoming an increasingly attractive area. It is necessary to take into account
the possibilities of asymmetric processing, which simplifies the requirements for
computing power budgets as well as requirements for minimizing the exchange
of packets to reduce overhead and the ability to work in networks with weaker
network performance (bandwidth and network delay).

Since the development of metropolitan QKD testbed networks [33–39], LDPC
is increasingly being considered as an adequate basis for the key reconciliation
process in QKD, and there are noticeable variations in how this protocol is
implemented. However, techniques of reversibility or on artificial neural networks
can significantly improve the process to reduce communication and computing
resources and represent areas of great interest for further research.
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