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{jpospinalo,jeortiz}@unal.edu.co

2 Universidad Manuel Beltran, Bogotá, Colombia
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Abstract. The design and development of future communications net-
works call for a careful examination of biological and social systems.
New technological developments like self-driving cars, wireless sensor
networks, drones swarm, Internet of Things, Big Data, and Blockchain
are promoting an integration process that will bring together all those
technologies in a large-scale heterogeneous network. Most of the chal-
lenges related to these new developments cannot be faced using tradi-
tional approaches, and require to explore novel paradigms for building
computational mechanisms that allow us to deal with the emergent com-
plexity of these new applications. In this article, we show that it is possi-
ble to use biologically and socially inspired computing for designing and
implementing self-organizing communication systems. We argue that an
abstract analysis of biological and social phenomena can be made to
develop computational models that provide a suitable conceptual frame-
work for building new networking technologies: biologically inspired com-
puting for achieving efficient and scalable networking under uncertain
environments; socially inspired computing for increasing the capacity
of a system for solving problems through collective actions. We aim to
enhance the state-of-the-art of these approaches and encourage other
researchers to use these models in their future work.

Keywords: Self-organization · Natural computing · Complex
systems · Ad hoc networks

1 Introduction

During the last decades, the number of services and technologies available for
networking applications has increasing significantly. These developments have
shown a direct relationship with different aspects of human society like the
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economy, education, politics, and quality of life. Computational devices seem
to be ubiquitous and are present in almost all aspect of our daily life. This
trend is promoting a technological integration that has already gone beyond of
what traditional networking paradigms can do regarding scalability, dynamic
environments, heterogeneity and collaborative operation. As a result, these con-
ditions impose several challenges for building the envisioned future networking
technology and show the need to explore new engineering approaches.

The next generation of communication networks will be composed of ubiqui-
tous and self-operating devices that will transform our immediate environment
into an intelligent computational system. New technological developments like
self-driving cars, wireless sensor networks, drones swarm, Internet of Things,
Big Data, and Blockchain are promoting an integration process that will bring
together all these technologies in a large-scale heterogeneous network. All these
applications involve a set of autonomous components (with possibly conflicting
goals) interacting asynchronously, in parallel, and peer-to-peer without a cen-
tralized controller; they should be easily accessible by users and operate with
minimum human intervention.

Given those conditions, it is necessary that all computational devices can
operate autonomously and collaborate with others to offer services through col-
lective actions. Besides, the future communication networks will require high
levels of self-organization for both, face challenges related to scalability, het-
erogeneity, and dynamic environments, and minimize centralized control and
human intervention during the processes of planning, deployment, and optimiza-
tion of the network. Indeed, these requirements cannot be faced using traditional
approaches; they are not able to deal with scale, heterogeneity, and complexity of
the future networking applications, making necessary to explore novel paradigms
for designing and implementing communication systems that can operate under
those conditions.

Accordingly, our aim in this paper is to introduce and overview the biologi-
cally and socially inspired computing used as technological solutions in network-
ing and artificial systems. The principal idea is to show that it is possible to
create analogies between living and artificial systems that enable us to inspire
mimetic solutions (biological, social, economic or political) and translate those
principles into engineering artifacts. Living systems show desirable properties
like adaptation, robustness, self-organization, and learning, all of them required
to handle the complexity of the future networking systems. In this regard, we can
analyze biological and social phenomena as a source of inspiration for new tech-
nological developments; biologically inspired computing for achieving efficient
and scalable networking under uncertain environments, and socially inspired
computing for increasing the capacity of a system for solving problems through
collective actions. In this work, we expect to provide a better comprehension
of the opportunities offered by these models and encourage other researchers to
explore these approaches as part of their future work.

The rest of the article is organized as follows: in Sect. 2 we present a histor-
ical review of the scientifical and technological development of communication



Socially and Biologically Inspired Computing 463

systems. In Sect. 3 we summarize the most challenging issues of the next genera-
tion of communication networks from the perspective of biologically and socially
inspired computing. Section 4 introduces a general method for developing these
models; the main idea is to expose how to create a technological solution from
properties and behaviors observed in living systems. Section 5 concludes the
article.

2 Self-organizing Communication Networks:
A Historical Review

In this Section, the need of using self-organization as control paradigm for the
next generation of communication networks is discussed. First, we provided a his-
torical review of the scientific paradigms used for studying and building commu-
nications systems. Second, we show complexity signs related to traffic, topologies
and chaotic behaviors because of interactions among users, nodes, and applica-
tions. Third, a comparison of the current control and management paradigms
used for designing, controlling, and developing artificial systems is presented.
Finally, we depict some properties required for the future communications sys-
tems based on self-organizing properties.

2.1 Scientific Paradigms in Communications Networks Development

Traditionally, the scientific paradigm used for communications networks devel-
opment has been reductionism. Engineers conceived communication systems as a
hierarchical structure that allows offer services through protocols and distributed
algorithms; each layer was studied individually, and a communication interface
among them was used to provide functionalities during the network operation
[21]. Devices, protocols, and applications were designed separately, and linear
behavior in the whole system was expected. This idea arose from the first math-
ematical models used for planning and dimensioning communications systems,
in which engineers used stochastic models and queue theory to compute the
average traffic and assign resources according to the users demands [48,90]. This
approach played an essential role in traditional telephone networks in which
there was only one service and the performance required for all users was the
same. Thus, it was easy to combine the traffic flows and take advantage of their
homogeneous features for analytical purposes. However, an increasing amount of
networking technologies and also more complex software applications changed
the linear behavior expected inside communications networks [25].

During the last decades, integration of services and technologies available for
networking applications have occurred. Nowadays is possible to find data trans-
fer, online games, video, email, e-commerce, and browsing, working on the same
network infrastructure [86]. Also, we can find different transmission technologies
like wired connections, optical fiber, IEEE 802.11, WiMAX or Bluetooth, and
the performance required for each application (bandwidth, delay, and errors han-
dling) is different every case [85]. As a consequence, this increasing number of
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services and technologies changed the design principle on which engineers based
the networking development: linearity. Communication networks do not have
linear behaviors anymore, and it is necessary to see them as complex systems if
we want to design algorithms and control mechanisms capable of operating in a
dynamic environment with non-linear properties [39,65].

Fig. 1. Control paradigms evolution in artificial systems [25]

2.2 Complexity Signs: Self-similar Traffic, Chaos
and Scale-Free Topologies

Because of technologies and services integration, communications networks
started showing complexity signs like self-similar traffic, chaotic behaviors and
scale-free topologies. Although none of these properties were in the initial con-
ceptual framework used by engineers for design and building communications
systems, nowadays there is enough evidence to consider them as an inherent
part of the communication networks. A brief overview of these complexity signs
is exposed below.

Usually, traffic is modeled as a stochastic process that shows the amount
of data moving across a network and establishes a measure to represent the
demand that users imposed on the network resources. Both requests per time
unit and the incoming packets have been modeled as sequences of independent
random variables (call duration, packet lengths, file sizes, etc.) to make easier
their analytical treatment [48]. However, the correlation among these variables
persists through several time scales and has a significant impact on the network
performance [25,103]. It is important to mention that self-similarity is not a
property of traffic sources; it arises as emergent behavior from interactions among
users, applications, and networking protocols. Besides, traditional traffic models
based on Poisson processes has proven not be suitable to describe traffic patterns
in modern communications networks [3,90].

Similarly, chaotic behaviors take place in dynamical systems that are high-
sensitivity to initial conditions; small differences in the system states can produce
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a significant number of different outcomes. Chaos theory studies these behaviors
and tries to deal with the apparent randomness present in strange attractors,
feedback loops, and self-similarity. For example, in communications networks,
this behavior appears through interactions between TCP protocol and the RED
algorithm used for queue management [88]. Other examples are presented in [70]
in which chaos appear in the profile of daily peak hour call arrival and daily call
drop of a sub-urban local mobile switching center, or in [93] in which chaotic
patterns serve as a mobility model for an ad hoc network. More examples can
be found in [53,106,110].

Finally, the scale-free property is another complexity sign that suggests self-
similarity patterns in terms of the network topology [11]. The structure of the
network has nodes with more connections than others, and follows a power law
distribution. This pattern was found in the late 1990s when a part of the World
Wide Web was mapped in a moment of internet connection [58]. This phe-
nomenon could be explained analyzing the evolution of communications networks
in terms of their physical and logical topologies according to the preferential con-
nectivity principle [69]. If a web page is created, is reasonable to assume that
links to highly connected sites like Google, social networks, services companies,
etc., will be added. Also, the physical topology of the internet is also defined
by economic and technological requirements of the Internet Service Providers
(ISP) [3].

2.3 Control Paradigms Evolution

All artificial systems, including communications networks, use management and
control processes to regulate their behaviors. The management process consists
in manipulate subsystems, parameter updates, and verify the system state. On
the other hand, control is about feedback and run-time control according to
variations in the environment. Both processes define the routines to maintain,
operate, and adapt the system during operation time. Figure 1 shows a historical
review of the current control paradigms for artificial systems [25].

Initially, communications networks were composed by a single device and
some remote terminals. There was a single control process and all parameters
required for the network operation, e.g., addresses, access privileges and resources
were pre-configured by default. Changes in topology and applications were pos-
sible but required a complete manual configuration of the system [25]. Figure 1a
presents an example of these control paradigm through a hierarchical architec-
ture; the root shows the control process and the leaves the subsystems it can
handle. For instance, traditional telephone networks and client/server applica-
tions are classic examples of this approach [90]. Even though there are others
control schemes, centralized systems are still the preferred solution due to its
simplicity and effectiveness; if only a few well-known subsystems have to be
managed, there is no need for the high computational cost of distributed algo-
rithms or possibly less deterministic self-organizing methods [29,38].

The next paradigm is the distributed control [25,102]. Distributed systems
are composed of a set of independent nodes that works as a single coherent
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system. In this case, a logical abstraction is deployed as middleware in each
device to hide the internal structure and the communication process for the
application layer. Figure 1b shows a scheme for this paradigm. Although the
control process works in a centralized way, it is possible to locate it dynami-
cally inside any node to improve the fault tolerance and achieve a better use
of the resources. Cellular networks, distributed databases [1], orchestration soft-
ware [98], and multi-agent systems like JADE [12] are examples of this control
paradigm. Distributed systems offer several advantages to operate and combine
resources from different nodes. However, some issues like impossible synchro-
nization and overhead for resource management show the limits of this approach
[25,71]. The need to maintain complete information about the system state and
handle changes related to configuration and topology is an expensive computa-
tional task in highly dynamic environments [25].

Finally, we have self-organizing systems [38,39]. In this approach, the man-
agement and control process is completely distributed, i.e., each sub-system has
its own control process. The functionalities and the system structure arise as
emergent behaviors from interactions among elements. Similarly, the goals of
the system should not be designed, programmed, or controlled by default; the
components should interact with each other until they reach the expected con-
figuration. Self-organizing control is flexible, adaptive, robust, and scalable, it
does not need perfect coordination and can operate in dynamic environments
[47]. Since each component is autonomous, it is necessary to develop additional
mechanisms to promote cooperation, coordination, and synchronization among
the system components. It is important to mention that self-organization is not
a human invention; it is a natural principle that has been used for designing,
building, and controlling artificial systems, and face limitations of centralized and
distributed approaches [25]. Examples of this control paradigm can be found in
Smart Grids [77], communication networks [64], transportation systems [18], and
logistical processes [42].

Although self-organization increase scalability, also causes less deterministic
behaviors. The system predictability is reduced due to self-organized control.
Nevertheless, this is not a real disadvantage in a dynamic system with non-
linear properties in which an approximate solution can be very useful. Addition-
ally, we are in a transition process from distributed to self-organizing systems
due to changes in the network architectures, new computational technologies
and the need to build large-scale communication systems [85,86]. To sum up,
Table 1 describes the relationship between resources and control according to the
different paradigms presented above.

2.4 Current Self-organizing Communications Networks

The increasing use of mobile devices, pervasive computing, wireless sensor net-
works (WSNs), and cloud computing establish new requirements for future com-
munications systems (See Sect. 3). New applications like self-driving cars [28],
drones swarm [116], Internet of Things [59], Big Data and Blockchain [30] are
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Table 1. Control vs resources: a comparison for artificial systems.

Control paradigms for artificial systems

Centralized systems Resources Centralized

Control Centralized

Distributed systems Resources Distributed

Control Centralized

Self-organizing systems Resources Distributed

Control Distributed

promoting a technological integration that will bring together all these applica-
tions in a large scale heterogeneous network. As a result, the future networking
applications will require high levels of self-organization for both, face challenges
related to scalability, heterogeneity, and dynamic environments, and minimize
centralized control and human intervention during the processes of planning,
deployment, and optimization of the network. These challenges may be faced
through a set of networking functionalities based on self-organizing properties
[85–87]:

– Self-configuration: in this context, configuration refers to how the network is
set up. Nodes and applications should configure and reconfigure themselves
automatically under any predictable or unpredictable condition with mini-
mum human intervention. Self-configuration expects to reduce the effects of
networking dynamics to users.

– Self-deployment: preparation, installation, authentication, and verification of
every new network node. It includes all procedures to bring a new node or
applications into operation. Also, self-deployment try to find strategies to
improve both coverage and resource management in networking tasks.

– Self-optimization: it refers to the use of measurements and performance indi-
cators to optimize the local parameters according to global objectives. It is
a process in which the network settings are autonomously and continuously
adapted to the network environment regarding topology, resources, and users.

– Self-healing: execution of routines that keep the network in the steady state
and prevent problems from arising. These methods can change configuration
and operational parameters of the overall system to compensate failures.

3 Networking Challenges

Indeed, the majority of the requirements for the next generation of communi-
cation networks cannot be faced using traditional approaches [27,38,86]. In this
Section, we present some of those challenges and their possible relationship with
biological and social phenomena. It is important to mention that this Section is
not a full reference of challenges in networking but could be seen a list we can
address through biologically and socially inspired computing.
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3.1 Scalability

One of the most desirable properties in communication networks is the capacity
to increase the network size and be able to receive new nodes and applica-
tions without affecting the quality of the services [73]. This property, known
as scalability, is one of the leading challenges in protocols design, and it is a
requirement for building large-scale communication systems. Scalability can be
measured regarding applications, users, physical resources, and the network abil-
ity to react properly to unexpected conditions [71]. For example, wireless sensor
networks usually need to collect data from several hundred sensors, and during
this process the capacity of the network can be easily exceeded, causing loss of
packets, low network reliability, and routing problems [113].

Furthermore, the decision process required to operate a large-scale network is
too fast, too frequent and too complex for being handled by human operators. As
a result, network components need to self-organize by themselves across different
scales of time and space to adapt their behavior to any variation in the network
size [38,82]. Fortunately, there are many biological and social systems with self-
organization mechanisms we can learn from to inspire the design of scalable
systems [105]. For instance, data dissemination based on epidemic spreading
[27], routing protocols based on Ant Colony Optimization (ACO) [24], and trust
and reputation models for controlling free-riders may help to face challenges
related to large-scale networking [68].

3.2 Dynamic Nature

Unlike traditional communication networks in which infrastructure and applica-
tions were static, the future networking schemes will be highly dynamic regarding
devices, users, resources, and operating conditions [64,86]. For example, the net-
work topology may change according to different mobility patterns, and appli-
cations will need different levels of performance concerning bandwidth, delay,
and errors handling [16]. Also, cognitive radio allows to configure the spectrum
dynamically through overlapping spectrum bands, and users may decide what
will be their role in the network due to the absence of centralized control [120].
Additionally, the increasing autonomy in the network components may cause
unexpected behaviors, turning into a difficult task to predict the temporal evolu-
tion of the system. Under these conditions, self-organizing protocols are essential
to improve adaptation, robustness, and face challenges related to highly dynamic
environments [25,38].

3.3 Need for Infrastructure-Less and Autonomous Operation

The current levels of heterogeneity in communication systems in terms of users,
devices and services become centralized control an impractical solution [25,86].
Moreover, there is another trend towards automation in which networking appli-
cations require to operate with minimum human intervention. For example,
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drone swarm [116], delay tolerant networks [35], sensor networks [113] and cogni-
tive radio [64], demand networking protocols that can operate without a central-
ized control, recover from failures, and deal with highly dynamic environments.
In order to address these needs, networking protocols could be equipped with
self-organizing mechanisms observed in biological and social systems to develop
autonomous applications and decrease the level of centralized control required
for the network operation [27,50].

3.4 Heterogeneous Architectures

Future communications networks require integrating several technologies
through internet-based platforms. Given the diverse range of networking com-
ponents and the numerous interactions among them, it is reasonable to expect
complex global behaviors. The next generation of networking applications will
be composed of WSNs, ad hoc networks, wireless fidelity networks, VANETs,
etc., all of them working on a large-scale communication system [85,86]. For
instance, one of the emerging and challenging future networking architectures is
the Internet of things (IoT) [112]. This paradigm includes the pervasive presence
of network devices that through wireless connections can communicate among
them, and transform our immediate environment into an intelligent large-scale
computational system. Also, Wireless Mesh Networks and WiMAX are expected
to be composed of heterogeneous devices and protocols [64].

Heterogeneity needs to be understood, modeled and managed regarding tech-
nologies, users, and applications if we want to take advantage of large-scale
heterogeneous networks [27]. Therefore, we can analyze living systems with high
levels of heterogeneity and use them to inspire technological solutions. For exam-
ple, biological and social phenomena show stable behaviors through the cooper-
ation of a heterogeneous set of subsystems, e.g., nervous system, immune system
and normative social systems. This functionality is called homeostasis and can
be used for designing computational mechanisms to face challenges related to
heterogeneity [22].

3.5 Solving Problems Through Collective Actions

A standard requirement in self-organizing communication networks is to produce
coordination, cooperation, and synchronization among the network components
to achieve individual and collective goals. This process can be understood as
a requirement to solve problems through collective actions, in which accom-
plishment of tasks depends on interaction and interoperation of unreliable and
conflicting components [78]. Likewise, due to the absence of a centralized con-
trol, the network is instead relying on self-organization mechanisms to produce
the system functionalities. These models are useful for resource provisioning in
grid computing [79], cooperation in mobile clouds [34], platooning in vehicular
networks [4] and coordination in drone swarms [116].
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Collective actions are necessary to construct new levels of social organization;
multicellular organisms, social insects, and human society use it to take advan-
tage of skills and knowledge of others to achieve collective benefits [72]. Although
this is a common phenomenon in living systems, it is important to mention that
human society has more complex collective actions patterns than other species
and we can use them as a source of inspiration for engineering developments.
For example, computational justice models could be used for appropriation and
distribution of resources in mobile clouds and ad hoc networks [79], coopera-
tion models for controlling free-riders and promote collaborative work among
network components [68]. Also, collective behaviors from biological systems like
firefly synchronization and swarm intelligence could improve routing and net-
work optimization [27,38].

3.6 Appropriation and Distribution of Resources

One advantage offered by the next generation of communication networks is the
opportunity to share resources among nodes, users, and services, through the
combination of wireless technologies, mobile devices and the network capacity to
operate as a self-organizing system. For example, a mobile cloud allows to exploit
distributed resources inside a network if they are wirelessly connected; energy,
storage, communication interfaces and software applications can be exchanged,
moved, augmented and combined in novel ways [34]. Also, grid and cloud com-
puting provided an infrastructure based on common pool resources to support
on-demand computing applications [79]. As a consequence, optimal mechanisms
for resources appropriation and distribution are required [81,84]. This process
may be in a stochastic or deterministic manner, and the network components
need to self-organize themselves to achieve a distributed resources operation. In
this regard, several challenges related to how to carry out a sustainable cooper-
ation process in environments composed of potentially selfish components arise.
One solution could use electronic institutions and social capital as a way to
increase the capacity of the network to use collective actions. Applications of
this approach can be found in Smart Grids [80], VANET’s [37] and Multi-agent
systems [76].

3.7 Security and Privacy

Since the networks become a flexible, attackers can get sensitive information ana-
lyzing the messages embedded in communications channels and relay nodes [85].
Also, according to mobility patterns the network topology may change in dynam-
ical and unpredictable ways changing routing tables and increasing the risks of
exposing crucial private information [86]. As a result, there are several security
challenges such as a denial of service, black hole, resource consumption, location
disclosure, wormhole, and interference [64]. For instance, the future internet of
things will transfer a significant amount of private information through wireless
channels, and security protocols need to defend malicious attacks to provide a rel-
atively secure network environment [85]. One solution could use game theory to
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address situations where multiple players with contradictory goals or incentives
compete among them. Many biological and social systems have inspired solutions
to deal with security and privacy issues. For example, artificial immune systems
for anomaly and misbehavior detection and trust and reputations models to
control free-riders and selfish behaviors [27].

One purpose of this work is to introduce and overview the biologically and
socially inspired models used as technological solutions in networking and artifi-
cial systems. The main idea is to show how an abstract analysis of living systems
(biological, social, economic or political) can be made to develop computational
models that may provide a suitable conceptual framework for technological devel-
opments. According to this purpose, this Section is organized as follows: first,
we present a general method for developing computational models inspired by
biological and social phenomena. Second, we try to classify them and present
some selected examples to motivate their applications in the current network-
ing developments. Finally, we depict the need for both biologically and socially
inspired computing in the next generation of communications systems.

3.8 A General Methodology

The modeling approach presented below should not be seen as a general principle,
but it may work as a guideline to design algorithms and protocols for artificial
systems. It is important to mention that the proposed steps are not new and
have been used by many researchers during the last years [8,27,31]. However, we
try to take the essential parts of the approaches presented by Dressler for bio-
logically inspired networking [27], Pitt for socially inspired computing [50], and
Gershenson for designing and controlling of self-organizing systems [38]. Our aim
is to show the necessary steps for developing biologically and socially inspired
models, and also present how they may have a remarkable impact on techno-
logical developments. Figure 2 presents the steps included in this methodology.
It starts with a required system functionality, i.e. what the system should do,
and enables the designer to produce a protocol or an algorithm that fulfills those
requirements. Also, it is not necessary to follow this steps in order; according to
the designer needs, it is possible to return to an early step to make any necessary
adjustment.

4 Biological and Social Computing Inspiring
Self-organizing Networks Design

Identification of Analogies Between Living and Artificial Systems. In
the first step, an analogy between living and technological systems must be made
to identify similar patterns that help to understand and propose new compu-
tational solutions [27,50]. Analogies are the tools of the comprehension; people
understand new concepts by relating them to what they already knew [107]. If
we chose the right analogy, the model reaches a level of abstraction that allows
people foreign to the problem get a better understanding through a well-known
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Fig. 2. A modeling approach for socially and biologically inspired computing

vocabulary. Also, create analogies among different systems will enable us to
inspire mimetic solutions (biological, social, economic or political) and trans-
late those principles into engineering artifacts. However, analogies could have a
limitation regarding expressiveness; using a specific description to represent a
problem, may limit its comprehension if the analogy is not good enough. There-
fore, you can not use every analogy you know, it is necessary to master the
selection process to get access to new interpretation tools.

Representation. In this step, a pre-formal representation that relates the
observed biological or social phenomenon with a technological problem is devel-
oped. The designer should always remember the distinction between the model
and the modeled; there are many representations of a system, and it is not
possible to say one is better than another independently of a context [38,50].
Similarly, the initial representation can be made in natural language or through
any tool that allows us to describe variables, abstraction levels, granularity and
interactions among components.

Although there is a wide diversity of systems, we can use a general method
for developing an initial representation [38]. First, we need to divide the systems
into components and identify their internal goals. Second, since the number of
components may increase the complexity of the model, we should group them
according to their dynamic, and analyze the most important based on the prob-
lem requirements. Finally, the designer should consider at least two abstrac-
tion levels to capture emergent properties and possible collectives behaviors.
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Nevertheless, if the initial description has just few elements, probably the sys-
tem is predictable, and we could get a better understanding using traditional
approaches [39].

Modelling. In science and engineering, models should be as simple as possible
and predict as much as possible; they should provide a better understanding
of problems and not complicate them unnecessary [38,56,95]. Also, the quality
of the model is related to the analogies we chose to describe the system; if
the model becomes impractical, the selected representation should be carefully
revised [107]. This stage should not be driven by implementation issues because
of its primary goal is to achieve a clear understanding of the problem through a
formal analysis of biological and social phenomena.

Furthermore, this stage should specify a control paradigm that ensures the
expected behavior of the system. Since we are interested in self-organizing prop-
erties, the control mechanisms need to be internal and distributed. Given these
conditions, several approaches like actions languages, modal logic, game theory
and agent-based modeling have been extensively used to model complex systems
and may help during this process. Finally, the expected result of this stage is
a formal characterization that will enables us to translate biological and social
principles into computational protocols [50].

Application. This step aims both to translate the current model into compu-
tational routines, and tune its parameters through different test scenarios. This
process should be made from general to particular. Usually, little details take
time to develop, and sometimes we will require an ideal scenario to test the cen-
tral concepts involved in the model (for example through simulation techniques)
[38,56]. Particular details can influence the system behavior, and they should
not be included meanwhile their mechanisms and effects are not understood.
According to the application results, modeling and representation stages should
be improved.

Moreover, to get algorithms or protocols with acceptable computational
tractability, probably we need some degree of simplification in the concepts
involved in the model. However, it is a good practice to get as transparent as
possible an idea of what is going to be simplified; any simplification that needs
to be done should be carried out carefully with the purpose of not to dismiss
essential parts of the model [50]. In an ideal scenario, application stage should
not be constrained by considerations of computational tractability.

Performance Evaluation. The purpose of this step is to measure and compare
the performance of resulting algorithms or protocols with the performance of
previous results. This is an essential part of the method because allow integrating
our results with the current scientifical and engineering developments. Also, if the
system has multiple designers, they should agree on the expected functionality
of the system [27,38]. According to the performance evaluation, the efforts to
improve the model should continue as long as possible and even return to an
early step to do any necessary adjustment.
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Table 2. Categorization of biologically inspired models

Biological principle Application fields in networking POE Selected references

Swarm intelligence
and social insects

Distributed search and optimization;
routing in computer networks especially
in MANETs, WSNs, and overlay
networks; task and resource allocation

E [23,32,40,43,52,92,
119]

Firefly

synchronization

Robust and fully distributed clock

synchronization

E [13,20,45,46,51,91,

118]

Artificial inmune
system

Network security; anomaly and
misbehavior detection

E [2,14,49,60,62,74,
104]

Epidemic
spreading

Content distribution in computer
networks (e.g. in DTNs); overlay
networks; analysis of worm and virus
spreading

PE [19,36,63,100,111,
114,115]

Evolutionary
computing

Optimization, cooperation strategies,
adaptation to dynamic conditions

PO [66,68,89,94,121–
123]

4.1 Classification and Categorizations

The majority of the proposed solutions for self-organizing networks are based on
biologically inspired computing, which have successfully solved problems related
to routing, synchronization, security, and coordination [27]. However, there is a
new kind of socially inspired computing coming up; human society has many
self-organizing mechanisms that we can learn from to enhance the capacity of
artificial systems to solve problems through collective actions [50,78,82]. Not
only these models are useful to face the tension between individual and collec-
tive rationality, but also they help to answer questions like: are the cooperation
processes sustainable? Is the resources distribution efficient and fair? Can a set
of rules evolve autonomously in an artificial system? Socially inspired computing
tries to answer these question through a formal analysis of social phenomena.
It is important to mention that neither all socially and biologically inspired
models are related to self-organizing properties, nor all self-organizing behav-
iors arise from living systems. However, this work focus on computing models
with distributed and internal control related to social and biological systems. An
overview of these models is presented in the following subsections.

Biologically Inspired Computing. Biological systems exhibit a wide range
of desirable characteristics, such as evolution, adaptation, fault tolerance and
self-organizing behaviors. These properties are difficult to produce using tra-
ditional approaches, and make necessary to consider new methods [26]. Thus,
the purpose of biologically inspired computing is design algorithms and proto-
cols based on biological behaviors that allow artificial systems to face challenges
related to optimization, collective behavior, pattern recognition and uncertain
environments [15,57]. Classical examples of these models can be found in swarm
intelligence, firefly synchronization and evolutionary algorithms [27,75]. Table 2
shows a summary of biologically inspired models successfully used in networking.
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Furthermore, if we analyze living organisms, three different levels of organi-
zation are found: Phylogeny (P), Ontogeny (O), and Epigenesis (E) [97]. First,
Phylogeny is related to the temporal evolution of the genetic program. This pro-
cess is fundamentally non-deterministic and gives rise to the emergence of new
organisms through recombination and mutation of the genetic code. Second,
Ontogeny is related to the development of a single individual from its genetic
material. Finally, Epigenesis is concerned about the learning process in which an
organism can integrate information from the outside world through interactions
with the environment. The distinction among these categories cannot be easily
drawn and may be subject to discussion.

POE model can be used in the context of engineering to classify biologically
inspired models and identify possibles directions for future research [15]. We can
understand the POE model as follows: Phylogeny involves evolution, Ontogeny
involves development and Epigenesis involves learning. In this regard, evolution-
ary computing can be seen as a simplified artificial counterpart of Phylogeny
in nature. Multicellular automata, self-replicating and self-healing software are
based on ontogeny properties. For example, when a program can produce a copy
of its code or regenerate parts of itself to compensate failures. Finally, artificial
neural network and artificial immune systems can be seen as examples of epi-
genetic processes. In Table 2 a classification of the biologically inspired models
according to POE model is presented.

Socially Inspired Computing. Pitt, Jones, and Artikis introduced social
inspired computing as a way to create mechanisms that allow artificial systems
to solve problems through collective action [50]. Even though this is not the first
attempt to use social models in computer science [8,44], from the author’s knowl-
edge is the first proposal that presents a systematic method to develop them.
These models are useful in systems formed by a set of co-dependent components
in which there is a tension between individual and collective rationality [54,78].
In such systems, the achievement of individual and collective goals depends on
possible unreliable and conflicting components, interacting in the absence of
centralized control or other orchestration forms.

Although biological processes are the foundation of social systems, they are
not the core of sociability. Despite the fact that both living organisms and soci-
eties can be considered as meta-systems, the difference between them is the level
of autonomy in their components; while the units of an organism have little or
no independence, those of social systems have a maximum level of autonomy.
As a result, new kinds of self-organizing phenomenon appear, and it is valuable
to make a difference between biologically and socially inspired computing. On
the other hand, human society has more complex social patterns than other
species; cooperation, institutions, symbolic language and justice could be useful
to inspire computational mechanisms that allows translating these principles into
technological artifacts [44,82]. In Table 3 a summary of socially inspired models
successfully used in ad hoc networks, smart grids, and multi-agent systems is
presented.
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Table 3. Categorization of socially inspired models

Social
principle

Application fields in networking and
artificial systems

Selected references

Trust Cooperation mechanisms in
self-organizing artificial systems: Ad
hoc networks, WSNs, Smart grids,
Multi-agent systems

[41,55,61,67,101,109]

Justice Resources distribution and allocation;
Smart grids, VANETs, multi-agent
systems; Social dilemmas

[37,77–79,81,84,96]

Norms and
institutions

Evolution of norms. Institutions as a
mechanism for collective actions.
Self-organizing open systems

[6,7,17,83,99,117]

Negotiation Resources negotiation in ad hoc
network and multi-agent systems

[5,9,10,33]

4.2 The Need for Biological and Social Self-organizing Approaches

The design and development of communication networks, as well as all self-
organizing artificial systems, call for a careful examination of biological and social
concepts. In this section, we present the relationship between the networking
challenges presented in Sect. 3 and the biologically and socially inspired models
that we may use to deal with them. Although both biological and social inspired
models exhibit self-organizing patterns, in each case their goals are different.
Biologically inspired computing try to achieve efficient and scalable networking
under uncertain environments, and socially inspired computing is useful for solv-
ing problems through collective behaviors. Therefore, the combination of these
two approaches allows us to develop communication networks not only enough
robust and adaptive to be able to operate in highly dynamic environments, but
also with the capacity to use collective actions for solving complex problems. In
Fig. 3 the relationship between the biologically and socially inspired models and
the networking challenges presented in Sect. 3 is shown.

In general terms, a self-organizing network is a dynamic system of many
agents (which may represent nodes, services, applications, users) working in
parallel, always acting and reacting to what the other agents are doing. The
control process is highly dispersed and decentralized, and any expected behav-
ior in the network need to arise from competition, cooperation or coordination
among network components [108]. Biological and social systems have dealt with
similar situations for thousands of years, and we can learn from them to develop
new types of computational solutions. Although biologically inspired computing
has been successfully used during the last years, at this moment it is necessary to
design technological artifacts able to solve problems through collective actions.
Therefore, socially inspired computing turns into an opportunity for the next
generation of artificial systems, giving us a route to include these properties in
the future engineering developments.
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Fig. 3. Biologically and socially inspired computing for artificial systems

5 Conclusions

In this article, we have shown that is possible to use biologically and socially
inspired computing for building communications systems. We argue that an
abstract analysis of biological and social phenomena can be made to create a
conceptual framework for developing a new kind of networking technology. Bio-
logically inspired computing can be used for achieving efficient and scalable net-
working under uncertain conditions, and socially inspired computing for solving
problems through collective actions. The combination of these two approaches
enables us to develop communication networks not only enough robust and adap-
tive to operate in highly dynamic environments but also with the capacity to
use collective behaviors for solving complex problems.

Furthermore, we showed the challenges of the next generation of communica-
tion networks from the perspective of biologically and socially inspired comput-
ing; we introduced a general method for developing these models and presented
an overview in Tables 2 and 3. Also, we argue that the expected features of
the next generation of communications networks become centralized control an
impractical solution, and as a result, self-organization will take an essential role
in the future networking developments.

Despite the considerable amount of ongoing advances on biologically and
socially inspired computing, the research community is still quite young. There
are many challenges that we need to face if we want to integrate these models
with the emerging networking architectures. We expect this review will provide
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a better comprehension of the opportunities for biologically and socially inspired
computing inside technological developments and encourage other researchers to
explore these approaches as part of their future work.
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Firefly-based universal synchronization algorithm in wireless sensor network. In:
Grzenda, M., Awad, A.I., Furtak, J., Legierski, J. (eds.) Advances in Network
Systems. AISC, vol. 461, pp. 71–86. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-44354-6 5

21. Day, J.D., Zimmermann, H.: The OSI reference model. Proc. IEEE 71(12), 1334–
1340 (1983). https://doi.org/10.1109/PROC.1983.12775

22. Dell, P.F.: Beyond homeostasis: toward a concept of coherence. Fam. Process
21(1), 21–41 (1982)

23. Di Caro, G., Ducatelle, F., Gambardella, L.M.: AntHocNet: an adaptive nature-
inspired algorithm for routing in mobile ad hoc networks. Trans. Emerg. Telecom-
mun. Technol. 16(5), 443–455 (2005)

24. Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I.
(eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer, Boston (2011).
https://doi.org/10.1007/978-0-387-30164-8

25. Dressler, F.: Self-Organization in Sensor and Actor Networks. Wiley, Hoboken
(2008)

26. Dressler, F., Akan, O.B.: Bio-inspired networking: from theory to practice. IEEE
Commun. Mag. 48(11), 176–183 (2010)

27. Dressler, F., Akan, O.B.: A survey on bio-inspired networking. Comput. Netw.
54(6), 881–900 (2010)

28. Dressler, F., Klingler, F., Sommer, C., Cohen, R.: Not all vanet broadcasts are
the same: context-aware class based broadcast. IEEE/ACM Trans. Netw. 26(1),
17–30 (2018)

29. Dressler, F., et al.: Self-organization in ad hoc networks: overview and classifica-
tion. University of Erlangen, Department of Computer Science, vol. 7, pp. 1–12
(2006)

30. Dunphy, P., Petitcolas, F.A.: A first look at identity management schemes on the
blockchain. arXiv preprint arXiv:1801.03294 (2018)

31. Eigen, M., Schuster, P.: The Hypercycle: A Principle of Natural Self-Organization.
Springer, Heidelberg (2012)

32. Fahad, M., et al.: Grey wolf optimization based clustering algorithm for vehicular
ad-hoc networks. Comput. Electr. Eng. 70, 853–870 (2018)

33. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for
autonomous agents. Robot. Auton. Syst. 24(3), 159–182 (1998)

34. Fitzek, F.H., Katz, M.D.: Mobile Clouds: Exploiting Distributed Resources in
Wireless, Mobile and Social Networks. Wiley, Hoboken (2013)

35. Galati, A.: Delay tolerant network (2010)
36. Gan, C., Yang, X., Liu, W., Zhu, Q., Jin, J., He, L.: Propagation of computer virus

both across the internet and external computers: a complex-network approach.
Commun. Nonlinear Sci. Numer. Simul. 19(8), 2785–2792 (2014)

37. Garbiso, J.P., Diaconescu, A., Coupechoux, M., Pitt, J., Leroy, B.: Distributive
justice for fair auto-adaptive clusters of connected vehicles. In: 2017 IEEE 2nd
International Workshops on Foundations and Applications of Self* Systems (FAS*
W), pp. 79–84. IEEE (2017)

https://doi.org/10.1007/978-3-319-44354-6_5
https://doi.org/10.1007/978-3-319-44354-6_5
https://doi.org/10.1109/PROC.1983.12775
https://doi.org/10.1007/978-0-387-30164-8
http://arxiv.org/abs/1801.03294


480 J. P. Ospina et al.

38. Gershenson, C.: Design and control of self-organizing systems. CopIt ArXives
(2007)

39. Gershenson, C., Heylighen, F.: When can we call a system self-organizing? In:
Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003.
LNCS (LNAI), vol. 2801, pp. 606–614. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-39432-7 65

40. Giagkos, A., Wilson, M.S.: BeeIP-a swarm intelligence based routing for wireless
ad hoc networks. Inf. Sci. 265, 23–35 (2014)

41. Grieco, L.A., et al.: IoT-aided robotics applications: technological implications,
target domains and open issues. Comput. Commun. 54, 32–47 (2014)

42. Grippa, P., Behrens, D.A., Bettstetter, C., Wall, F.: Job selection in a network of
autonomous UAVs for delivery of goods. arXiv preprint arXiv:1604.04180 (2016)

43. Hammoudeh, M., Newman, R.: Adaptive routing in wireless sensor networks: QoS
optimisation for enhanced application performance. Inf. Fusion 22, 3–15 (2015)

44. Hatfield, U.: Socially inspired computing (2005)
45. He, J., Cheng, P., Shi, L., Chen, J., Sun, Y.: Time synchronization in WSNs: a

maximum-value-based consensus approach. IEEE Trans. Autom. Control 59(3),
660–675 (2014)

46. He, J., Li, H., Chen, J., Cheng, P.: Study of consensus-based time synchronization
in wireless sensor networks. ISA Trans. 53(2), 347–357 (2014)

47. Heylighen, F., Gershenson, C.: The meaning of self-organization in computing.
IEEE Intell. Syst. 18(4), 72–75 (2003)

48. Iversen, V.B.: Teletraffic engineering and network planning. Technical University
of Denmark, p. 270 (2010)

49. Jamali, S., Fotohi, R.: Defending against wormhole attack in MANET using an
artificial immune system. New Rev. Inf. Netw. 21(2), 79–100 (2016)

50. Jones, A.J., Artikis, A., Pitt, J.: The design of intelligent socio-technical systems.
Artif. Intell. Rev. 39(1), 5–20 (2013)

51. Jung, J.Y., Choi, H.H., Lee, J.R.: Survey of bio-inspired resource allocation algo-
rithms and MAC protocol design based on a bio-inspired algorithm for mobile ad
hoc networks. IEEE Commun. Mag. 56(1), 119–127 (2018)

52. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence.
Artif. Intell. Rev. 31(1–4), 61 (2009)

53. Kocarev, L.: Complex Dynamics in Communication Networks. Springer, Heidel-
berg (2005). https://doi.org/10.1007/b94627

54. Kollock, P.: Social dilemmas: the anatomy of cooperation. Ann. Rev. Sociol.
24(1), 183–214 (1998)

55. Kshirsagar, V.H., Kanthe, A.M., Simunic, D.: Trust based detection and elimina-
tion of packet drop attack in the mobile ad-hoc networks. Wireless Pers. Commun.
100(2), 311–320 (2018)

56. Law, A.M.: Simulation Modeling and Analysis, vol. 3. McGraw-Hill, New York
(2007)

57. Leibnitz, K., Wakamiya, N., Murata, M.: Biologically inspired networking. In:
Cognitive Networks: Towards Self-Aware Networks, pp. 1–21 (2007)

58. Li, L., Alderson, D., Willinger, W., Doyle, J.: A first-principles approach to under-
standing the internet’s router-level topology. In: ACM SIGCOMM Computer
Communication Review, vol. 34, pp. 3–14. ACM (2004)

59. Li, S., Da Xu, L., Zhao, S.: 5G internet of things: a survey. J. Ind. Inf. Integr. 10,
1–9 (2018)

https://doi.org/10.1007/978-3-540-39432-7_65
https://doi.org/10.1007/978-3-540-39432-7_65
http://arxiv.org/abs/1604.04180
https://doi.org/10.1007/b94627


Socially and Biologically Inspired Computing 481

60. Li, W., Yi, P., Wu, Y., Pan, L., Li, J.: A new intrusion detection system based on
KNN classification algorithm in wireless sensor network. J. Electr. Comput. Eng.
2014 (2014)

61. Li, Y., Xu, H., Cao, Q., Li, Z., Shen, S.: Evolutionary game-based trust strategy
adjustment among nodes in wireless sensor networks. Int. J. Distrib. Sens. Netw.
11(2), 818903 (2015)

62. Liaqat, H.B., Xia, F., Yang, Q., Xu, Z., Ahmed, A.M., Rahim, A.: Bio-inspired
packet dropping for ad-hoc social networks. Int. J. Commun. Syst. 30(1), e2857
(2017)

63. Liu, B., Zhou, W., Gao, L., Zhou, H., Luan, T.H., Wen, S.: Malware propagations
in dwireless add hoc networks. IEEE Trans. Dependable Secure Comput. 15(6),
1016–1026 (2016)

64. Loo, J., Mauri, J.L., Ortiz, J.H.: Mobile Ad Hoc Networks: Current Status and
Future Trends. CRC Press, Boca Raton (2016)

65. Maldonado, C.E.: Complejidad: ciencia, pensamiento y aplicaciones, vol. 1 (2007)
66. Nagula Meera, S.K., Kumar, D.S., Rao, S.: Ad hoc networks: route discovery

channel for mobile network with low power consumption. In: Satapathy, S.C.,
Bhateja, V., Chowdary, P.S.R., Chakravarthy, V.V.S.S.S., Anguera, J. (eds.) Pro-
ceedings of 2nd International Conference on Micro-Electronics, Electromagnet-
ics and Telecommunications. LNEE, vol. 434, pp. 665–671. Springer, Singapore
(2018). https://doi.org/10.1007/978-981-10-4280-5 70

67. Mejia, M., Pena, N., Munoz, J.L., Esparza, O.: A review of trust modeling in ad
hoc networks. Internet Res. 19(1), 88–104 (2009)
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