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Abstract. Indoor localization has attracted much attention due to its
many possible applications e.g. autonomous driving, Internet-Of-Things
(IOT), and routing, etc. Received Signal Strength Indicator (RSSI) has
been used extensively to achieve localization. However, due to its tem-
poral instability, the focus has shifted towards the use of Channel State
Information (CSI) aka channel response. In this paper, we propose a deep
learning solution for the indoor localization problem using the CSI of an
8×2 Multiple Input Multiple Output (MIMO) antenna. The variation of
the magnitude component of the CSI is chosen as the input for a Multi-
Layer Perceptron (MLP) neural network. Data augmentation is used
to improve the learning process. Finally, various MLP neural networks
are constructed using different portions of the training set and different
hyperparameters. An ensemble neural network technique is then used to
process the predictions of the MLPs in order to enhance the position esti-
mation. Our method is compared with two other deep learning solutions:
one that uses the Convolutional Neural Network (CNN) technique, and
the other that uses MLP. The proposed method yields higher accuracy
than its counterparts, achieving a Mean Square Error of 3.1 cm.

Keywords: Indoor localization · Channel State Information · MIMO ·
Deep learning · Neural networks

1 Introduction

Localization is the process of determining the position of an entity in a given
coordinate system. Knowing the position of devices is essential for many appli-
cations: autonomous driving, routing, environmental surveillance, etc. The local-
ization system depends on multiple factors. The environment, whether indoors
or outdoors, is one of the most dominant factors. In outdoor environments, the
Global Positioning System (GPS) is widely used to localize nodes. In [1], the
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authors present a location service which targets nodes in a Mobile Ad-hoc Net-
work (MANET). The aim is to use the GPS position information obtained from
each device and disseminate this information to other nodes in the network while
avoiding network congestion. Each node broadcasts its position with higher fre-
quency to nearby nodes and lower frequency to more distant nodes. The notion
of closeness is determined by the number of hops. In this way, nodes have more
updated position information of nearby nodes that is sufficient for routing appli-
cations, for instance. While the GPS satisfies the requirements of many outdoor
applications, it is not functional in indoor environments. Consequently, in such
scenarios, other measurements have to be exploited to overcome the absence
of GPS.

One family of localization methods is known as range-based localization. In
this method, a physical phenomenon is used to estimate the distance between
nodes. Then, the relative positions of nodes within a network can be com-
puted geometrically [2]. One of the most used phenomena is the Received Signal
Strength Indicator (RSSI). RSSI is an indication of the received signal power.
It is mainly used to compute the distance between a transmitter and a receiver
since the signal strength decreases as the distance increases. In [3], the distances
between nodes along with the position information of a subset of nodes, known as
the anchor nodes, are used to locate other nodes in a MANET. This is achieved
using a variant of the geometric triangulation method. The upside of RSSI is
that it does not need extra hardware to be computed and is readily available.
Another physical measure to compute the distance between devices is the Time-
Of-Arrival (TOA) or Time-Difference-Of-Arrival (TDOA). Here, the time taken
by the signal to reach the receiver is used to estimate the distance between
devices. Using TOA in localization proves to be more accurate than RSSI, but
requires external hardware to synchronize nodes [4]. In the case where only the
distance information is available, a minimum of three anchor nodes with previ-
ously known positions are needed to localize other nodes with unknown positions.
In order to relax this constraint, the Angle-Of-Arrival (AOA) information can be
used in addition to the distance. Knowing the angle makes it possible to local-
ize nodes with only one anchor node [5]. However, the infrastructure needed to
compute AOA is more expensive than TOA both in terms of energy and cost.

RSSI has been extensively used in indoor localization [6]. However, it exhibits
weak temporal stability due to its sensitivity to multi-path fading and environ-
mental changes [6]. This leads to relatively high errors in distance estimation
which, in turn, deteriorates the accuracy of position estimation. With the data
rate requirements of the 5G reaching up to 10 Gbps, the communication trend
is switching to the use of MIMO antennas where signals are sent from multiple
antennas simultaneously [7]. Furthermore, with orthogonal frequency-division
multiplexing (OFDM), each antenna receives multiple signals on adjacent sub-
carriers. This introduces the possibility of computing a finer-grained physical
phenomenon at the receiver, which is known as Channel State Information (CSI).
In other words, as opposed to getting one value per transmission with RSSI,
with CSI, it is possible to estimate CSI values which are equal to the number
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of antennas multiplied by the number of subcarriers. CSI represents the change
that occurs to the signal as it passes through the channel between the trans-
mitter and the receiver e.g. fading, scattering and power loss [8]. Equation (1)
specifies the relation between the transmitted signal Ti,j and the received signal
Ri,j at the ith antenna and the jth subcarrier. The transmitted signal is affected
by both the channel through the CSIi,j , which is a complex number, and the
noise N .

Ri,j = Ti,j · CSIi,j + N (1)
In Sect. 2, we present state-of-the-art solutions that use CSI to achieve Indoor

Localization. In Sect. 3, the building blocks of the proposed solution are intro-
duced. First, the choice of magnitude component and the data preprocessing
steps are briefly explained. Second, the data augmentation step is presented,
followed by the ensemble neural network technique. The localization accuracy of
our solution is compared with two state-of-the-art solutions in Sect. 4. Finally,
the conclusion and future work are discussed in Sect. 5.

2 Related Work

One of the very first attempts to use CSI for indoor localization is FILA [9].
With 30 subcarriers, the authors compute an effective CSI which represents
the 30 CSI values at each of the subcarriers. Then, they present a parametric
equation that relates the distance to the effective CSI. The parameters of the
equation are deduced using supervised learning. Finally, using a simple trian-
gulation technique, the position is estimated. In [10], the authors carry out an
experiment where a robot carrying a transmitter traverses a 4 × 2 meter table
and communicates with an 8 × 2 MIMO antenna. The transmission frequency
is 1.25 GHz and the bandwidth is 20 MHz. Signals are received at each of the
16 subantennas over 1024 subcarriers from which 10% are used as guard bands.
Using a convolutional neural network (CNN), the authors use the real and imag-
inary components of the CSI as an input to the learning model to estimate the
position of the robot. The authors publish the CSI and the corresponding posi-
tions (≈17,000 samples) readings which are used as a test bed for our algorithm.
Therefore, the comparison with their results is fair since both algorithms process
the same data. Figure 1 shows the experimental setup as well as a sketch of the
MIMO antenna and the position of its center. The lower part of the figure shows
the table which is traversed through the experiment and the MIMO antenna.
The upper part shows a sketch of the MIMO antenna showing its center at (3.5,
−3.15, 1.8) m in the local coordinate system. The distance between adjacent
antennas is lambda/2 which is computed from the carrier frequency.

Another solution that is tested on the same data set is NDR [11] which is
based on the magnitude component of the CSI. First, the magnitude values are
preprocessed by fitting a line through the points. Then a reduced number of
magnitude points are chosen on the fitted line to represent the whole spectrum
of the CSI. By achieving this, both the dimensionality of the input and the noise
are reduced. Since the proposed solution is based on a similar approach, we will
provide a brief explanation of the preprocessing step.
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Fig. 1. Experimental setup (bottom) and a sketch of the MIMO antenna (top) [10]

3 Methodology

3.1 Input of the Learning Model

Since the CSI is a complex number, it can be represented in both polar and
Cartesian forms. Thus, there are a total of four components to represent the
CSI; real, imaginary, magnitude, and phase. Equations (2) and (3) show the
conversion from one form to another.

CSIi,j = Re + iIm (2)

Mag =
√

Re2 + Im2

φ = arctan(Re, Im)
(3)

A good input feature is one that is stable for the same output. In other
words, if the transmission occurs multiple times from the same position, the fea-
ture values are expected to be similar. In order to examine the behaviour of the
components, the four components are plotted for four different transmissions
from the same position. Figure 2 shows the CSI components of four different
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transmissions from the same position. The example shown is for antenna 0 at
position (3.9, −0.44, −0.53) m. Each sub-figure shows the four CSI components
of one transmission. It should be noted that the phase values are all scaled to
be in the same order as the other components. With careful inspection, it can
be noticed that the magnitude component shows the highest stability. This con-
clusion is further supported by the analysis performed in [11,12]. Consequently,
we chose the magnitude to be the input component to the deep learning model.

Fig. 2. Real, Imaginary, Magnitude and Phase components estimated from 4 transmis-
sions from the same position.

3.2 Data Preprocessing

After choosing the magnitude as the input feature, the number of input values to
estimate one position is 924 × 16. As seen in Fig. 2, the magnitude points appear
to follow a continuous line with noise scattering points around this line. The
first step is to retrieve a line that passes through the magnitude values. Since
this process has to be performed for each of the 15k training samples multiplied
by the 16 antennas, it has to be relatively fast. This process is achieved by
polynomial fitting on four sections over the subcarrier spectrum [11]. Figure 3
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shows the four batches, each in a different color, and the degree of the polynomial
used to fit the line. The polynomial degree is chosen by attempting several values
and choosing the degree that yields the highest accuracy. Dividing the spectrum
into four sections increases the accuracy of the overall fitting. More details of
the fitting process can be found in [11].

Fig. 3. Fitting a line through the magnitude values. (Color figure online)

The following step is to use a reduced number of points along the fitted
lines instead of the whole set of 924 points. This mitigates the noise that leads
to the scattering around the line. In addition, the reduction allows us to build
a more complex MLP that can be trained in less time. In [11], 66 points are
used to represent the whole spectrum. We chose the input feature to be the
difference (slope) between two consecutive points. For the 66 points, there are
65 slope values. Using the same MLP structure as in [11], the mean square error
is reduced from 4.5 cm to 4.2 cm over a 10-fold cross validation experiment. Even
though this is a slight improvement of around 7%, it shows that the absolute
value of the magnitude is not the decisive factor to determine the position, but
rather the variation of the magnitude along the spectrum.
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3.3 Data Augmentation

Data augmentation is a method to increase the training set which is the main
driver of the learning process. The artificially created training samples are con-
structed from the available samples with some mutation. In an image recognition
context; blurring, rotating, zooming in or out are all ways to generate a new
training sample from an existing one.

In our case, a training sample is composed of a set of 924 × 16 magnitude
points and the corresponding position. In our solution, we propose the mutation
to the input and the output sides of the training sample. As for the output posi-
tion, we know the measuring error of the tachymeter used to calculate the given
position, which is around 1 cm [10]. We model this error by a Gaussian distri-
bution with zero mean, which is the given position, and a standard deviation
which is 1/3 cm. Thus, the position of the augmented sample is computed using
this distribution. As for the magnitude points, first, a line is fitted through the
points using the previously mentioned method. Next, the standard deviation of
the absolute error between the line and the values is computed. The augmented
sample is then calculated by scattering the points around the fitted line with a
Gaussian distribution with zero mean and twice the computed standard devia-
tion. This can be seen as an equivalent to the blurring in the image recognition
context. Figure 4 shows an example of an augmented magnitude sample in red
from an original training sample in blue using a fitted line in black.

In order to test the effect of data augmentation on localization accuracy, an
MLP neural network is constructed with the hyperparameters listed in Table 1.
Training the MLP is then executed with different percentages of augmented
data. Figure 5 shows the effect of the number of augmented data samples on the
mean square error of the position estimation.

It is worth mentioning that the larger the augmented data set, the better
the localization accuracy. The mean square error is reduced from 8 cm to 6.7 cm
using an augmented sample from each training sample.

3.4 Ensemble Neural Networks

The last part of our algorithm is to construct several neural networks with differ-
ent characteristics. The difference between MLPs can be in the hyperparameters
or the samples used to train the model. For instance, the neural networks used to
plot Fig. 5 are different since they are trained on different training sample sizes.
Also, in k-fold cross validation, neural networks are trained on the same data
size but on different samples. Moreover, changing any of the hyperparameters
shown in Table 1 leads to different results.

Mixing the prediction of each neural network with different characteristics
can lead to a significant increase in accuracy. We examine different ways to mix
the prediction results of the MLPs:

1. Mean: The simplest way to mix the results is to compute the arithmetic mean
position of all the predictions.
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Fig. 4. Data augmentaion sample from an original training sample. (Color figure
online)

2. Weighted mean: Each of the MLPs is given a weight that is proportional to
its individual localization accuracy. Thus, the higher the accuracy, the higher
the weight. Then the final prediction is a weighted average of the individual
prediction.

3. Weighted power mean: The effect of weights is further magnified by raising
them to a certain power before computing the weighted average.

4. Median: The idea is to pick one of the predictions that is closest to all other
predictions. This makes sense when the ensemble has three or more MLPs.
This mitigates the effect of the large errors of some predictions.

5. Random: The final prediction is a randomly selected individual prediction.
6. Best pick: This is used as an indication of the best possible result one can

attain with the given ensemble. The final prediction is the closest individual
prediction to the actual position. This is not feasible since in normal cases
the actual position is not given.

Figure 6 shows the effect of adding one or more neural networks to the ensem-
ble. The x-axis represents the number of neural networks in the ensemble. Beside
the number of the NNs, there is a number between brackets representing the
mean square error of the added neural network. This means that the first MLP
has a Mean Square Error (MSE) of 3.9 cm. This is the best individual MLP that
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Table 1. Hyperparameters selection.

Hyperparameter Value

Number of layers 5

Units per layer 512

Epochs 100

Activation function relu

Learning rate 0.0005

Optimizer Adam

L2 regularization Without L2

Dropout percentage 0%

Batch sizes [128, 256, 512, 1024, 2096]

Fig. 5. Effect of data augmentation on localization accuracy.

was constructed using the data augmentation technique. The y-axis shows the
MSE for each type of prediction mixing. One of the types in Fig. 6 is labeled
“median + wght” meaning the average prediction of both mixing methods. It
can be seen that with different mixing techniques, except for the random pick,
the estimation accuracy can be improved even if the added MLP has a higher
individual error. The best accuracy achieved is 3.1 cm MSE using 11 MLPs. This
result outperforms [10] which uses a CNN learning from real and imaginary com-
ponents and achieves an error of 32 cm. It also outperforms [11] which uses an
MLP learning from the magnitude values and achieves an error of 4.5 cm. It is
to be noted that the accuracy can be further increased if there is a way to select
the best individual estimation of the MLPs ensemble.
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Fig. 6. Mixing the predictions of a neural network ensemble.

4 Experimental Results

In this section, we compare the localization accuracy of the proposed Ensemble
NN method based on the variation of magnitude and data augmentation with
the NDR [11] and CNN [10] methods. NDR is an MLP where the input is the
magnitude values, and the hyperparameters are chosen emperically to get the
lowest mean square error estimation. CNN is a convolutional network where the
input is the real and imaginary components of the CSI. The estimation results
in NDR and CNN are presented while varying the number of antennas used
(Fig. 7).

As expected, a lower number of antennas is used the estimation error is high.
In all solutions, the estimation improves with more data provided from the added
antennas. The proposed Ensemble NN technique outperforms NDR and CNN.
The error of CNN is much higher than NDR and Ensemble NN, probably due to
the high temporal instability of the real and imaginary CSI components. While
the error difference between Ensemble NN and NDR methods seems small, the
improvement is relatively significant. When using 16 antennas, NDR achieves an
MSE of 4.5 cm while the proposed Ensemble technique achieves 3.1 cm which is
an improvement of ≈30%.
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Fig. 7. Comparing Ensemble NN with NDR [11] and CNN [10]

5 Conclusion

In this work, we propose a deep learning solution for the indoor localization
problem based on the CSI of a 2× 8 MIMO antenna. The variation of the mag-
nitude component is chosen to be the input feature for the learning model. Using
the magnitude variation instead of the absolute values improves slightly the esti-
mation. This shows that the focus should be on better describing the change in
magnitude along the subcarrier spectrum rather than the absolute values. Data
augmentation is then used to further increase the estimation accuracy. Finally,
an ensemble neural network technique is presented to mix results of different
MLPs and achieves an accuracy of 3.1 cm, outperforming two state-of-the-art
solutions [10,11]. This work can be improved through the detection and correc-
tion of outliers as some of the errors are much larger than the mean error. The
possibility of using another learning layer to detect outliers or select the best
individual MLP estimation from the ensemble might enhance the estimation
accuracy.
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2. Čapkun, S., Hamdi, M., Hubaux, J.-P.: GPS-free positioning in mobile ad hoc
networks. Cluster Comput. 5(2), 157–167 (2002)

3. Sobehy, A., Renault, E., Muhlethaler, P.: Position certainty propagation: a local-
ization service for ad-hoc networks. Computers 8(1), 6 (2019)

4. Nandakumar, R., Chintalapudi, K.K., Padmanabhan, V.N.: Centaur: locating
devices in an office environment. In: Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking, pp. 281–292. ACM (2012)

5. Cidronali, A., Maddio, S., Giorgetti, G., Manes, G.: Analysis and performance of a
smart antenna for 2.45-GHz single-anchor indoor positioning. IEEE Trans. Microw.
Theory Tech. 58(1), 21–31 (2009)

6. Yang, Z., Zhou, Z., Liu, Y.: From RSSI to CSI: indoor localization via channel
response. ACM Comput. Surv. (CSUR) 46(2), 25 (2013)

7. Jungnickel, V., et al.: The role of small cells, coordinated multipoint, and massive
MIMO in 5G. IEEE Commun. Mag. 52(5), 44–51 (2014)

8. He, S., Gary Chan, S.-H.: Wi-Fi fingerprint-based indoor positioning: recent
advances and comparisons. IEEE Commun. Surv. Tutor. 18(1), 466–490 (2015)

9. Wu, K., Xiao, J., Yi, Y., Gao, M., Ni, L.M.: FILA: fine-grained indoor localization.
In: 2012 Proceedings IEEE INFOCOM, pp. 2210–2218. IEEE (2012)

10. Arnold, M., Hoydis, J., ten Brink, S.: Novel massive MIMO channel sounding
data applied to deep learning-based indoor positioning. In: 12th International ITG
Conference on Systems, Communications and Coding (SCC 2019), pp. 1–6. VDE
(2019)

11. Sobehy, A., Renault, E., Muhlethaler, P.: NDR: noise and dimensionality reduction
of CSI for indoor positioning using deep learning. In: GlobeCom, Hawaii, United
States, Dec 2019. (hal-023149)

12. Wang, X., Gao, L., Mao, S., Pandey, S.: DeepFi: deep learning for indoor finger-
printing using channel state information. In: 2015 IEEE Wireless Communications
and Networking Conference (WCNC), pp. 1666–1671. IEEE (2015)


	CSI Based Indoor Localization Using Ensemble Neural Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Input of the Learning Model
	3.2 Data Preprocessing
	3.3 Data Augmentation
	3.4 Ensemble Neural Networks

	4 Experimental Results
	5 Conclusion
	References




