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Abstract. Data clustering is one of the most important unsupervised classifi-
cation method. It aims at organizing objects into groups (or clusters), in such a
way that members in the same cluster are similar in some way and members
belonging to different cluster are distinctive. Among other general clustering
method, k-means is arguably the most popular one. However, it still has some
inherent weaknesses. One of the biggest challenges when using k-means is to
determine the optimal number of clusters, k. Although many approaches have
been suggested in the literature, this is still considered as an unsolved problem.
In this study, we propose a new technique to improve the gap statistic approach
for selecting k. It has been tested on different datasets, on which it yields
superior results compared to the original gap statistic. We expect our new
method to also work well on other clustering algorithms where the number k is
required. This is because our new approach, like the gap statistic, can work with
any clustering method.
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1 Introduction

There are still many open challenges in the clustering task. Those challenges are getting
even worse in the current big data era, where data is collected from many sources at
high speed. This paper focuses on answering the question: how to decide on the
number of clusters k? Being one of the oldest question in the clustering literature, the
question has been tackled by hundreds of researchers with many solutions that have
been proposed. Among these solutions, the gap statistic is one of the most modern
approaches. It is backed by the rigorous theoretical foundation and has been shown to
outperform many other heuristic-based approaches such as elbow or silhouette.
However, there are still several drawbacks to the original design of the gap statistic,
which limits its applicability in real applications. This paper introduces a new technique
to mitigate those limitations. The technique can improve the effectiveness of the gap
statistic in multiple dimensions. The gap statistic that uses the newly proposed
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technique is called the “new gap” for short. The following few subsections describe
literature reviews.

The Elbow Approach
The oldest method called ‘elbow’ has been proposed to determine the number of
clusters for k-mean clustering algorithm [6]. This is a visual method. The idea of the
elbow method is to run clustering method on the dataset for a range of values of k (for
example from 1 to 10), and for each value of k calculate clusters and internal index (it
could be the sum of squared error (SSE), the percentage of variance, etc.). Then plot a
line chart of the internal index for each value of k. At some value of k the value of
internal index drops dramatically, and after that, it reaches a plateau when k is
increased further. This is the best k value we can expect. Figure 1 illustrates how the
elbow method work. In Fig. 1, the line chart goes down rapidly with k increasing from
1 to 2, and from 2 to 3, and reaches an elbow at k = 3. After that, it decreases very
slowly. Looking at the chart, it looks like maybe the right number of cluster is three
because that is the elbow of this curve.

However, the elbow method does not always work well. Sometimes, there are more
than one elbow, or no elbow at all.

Average Silhouette Approach
Average silhouette method computes the average silhouette of observations for dif-
ferent values of k [2, 3]. The optimal number of clusters k is the one that maximizes the
average silhouette over a range of possible values for k [7]. Given a clustering result
with k clusters (k > 1), we can estimate how well an observation i is clustered by
calculating its silhouette statistic sk ið Þ. Let a(i) be the average distance from obser-
vation i to other points in its cluster, and b(i) be the average distance from observation
i to points in its the nearest cluster, then the silhouette statistic sk ið Þ is calculated by:

k (the number of clusters)
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Fig. 1. Identification of Elbow point
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sk ið Þ ¼ b ið Þ � a ið Þ
max a ið Þ; b ið Þf g

A point is well clustered if sk ið Þ is large. The average silhouette score avgS kð Þ gives
an estimation of the overall clustering quality when clustering the dataset into
k clusters:

avgS kð Þ ¼ 1
n

Xn
i¼1

sk ið Þ;

where n is the number of data points.
Therefore, we select k so that it maximizes the average silhouette score. However,

this average silhouette is only a heuristic metric, which can be shown to perform poorly
in many cases. Note that avgS(k) is not defined at k = 1.

Hartigan Statistic
Hartigan proposed the statistic [1]:

H kð Þ ¼
Wk

Wkþ 1
� 1

n� k � 1
;

where Wk is the average within-cluster sum of squares around the cluster means. The
formula to calculate Wk is given in the next section about the gap statistic.

The idea is to start with k = 1 and keep adding a cluster until H(k) is sufficiently
large. Hartigan suggested the “sufficiently large” cut-off is 10. Hence the estimated
number of clusters is the smallest k� 1 such that H kð Þ� 10.

Gap Statistic
Gap statistic was introduced in 2001 by Tibshirani et al. [4] and is still a state-of-the-art
method for estimating k. It has been shown to outperform the elbow, average silhouette,
and Hartigan methods in both synthesized and real datasets [4, 5]. The method works
by assuming a null reference distribution. It then compares the change in within-cluster
dispersion with the expected change if the null distribution is true. If when k = K and
the within-cluster dispersion starts decreasing slower than the expected rate of the
reference distribution, the gap statistic returns k as the expected number of clusters. The
formal definition of the gap statistic is given as follows:

Let dij ¼ xi � xj
�� ��2 denotes the Euclidean distance between observation i and j, Dr

is the sum of the pairwise distance for all points in a given cluster Cr containing nr
points.

Dr ¼
X
i2Cr

X
j2Cr

dij

Then measure of compactness of clusters Wk is the average within – cluster sum of
squares around the cluster means:
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Wk ¼
Xk
r¼1

1
2nr

Dr

The purpose of clustering is with a given K finding the optimal Wk, when k in-
creases, Wk decreases. But the speed reduction of Wk also decreases. The idea of elbow
method is to choose the k corresponding to the “elbow” (finding k that point has the
most significant increase in goodness-of-fit). The problems when using elbow method
is no reference clustering to compare, and the differences Wk �Wk�1’s are not nor-
malized for comparison.

The main idea of the gap statistic is to standardize the graph of log Wkð Þ by com-
paring it with its expectation under an appropriate null reference distribution of the
data. Estimate of the optimal number of clusters is then the value of k for which
log Wdata

k

� �
falls the farthest below this reference curve log Wnull

k

� �
:

Gapn kð Þ ¼ E�
n log Wnull

k

� �� log Wdata
k

� �� �

With E�
n is the expectation under a sample size of n from reference distribution, we

estimate E�
n log Wnull

k

� �� �
by an average of B copies log Wnull

k

� �
, each of which is

computed from a Monte Carlo sample from reference distribution. Cluster the Monte
Carlo samples into k groups and compute logWkb, b = 1, 2 …, B, k = 1, 2 …,
K. Compute the (estimated) gap statistic:

Gap kð Þ ¼ 1
B

XB
b¼1

logWnull
kb � log Wdata

k

� �

Those logWnull
kb from the B Monte Carlo replicates exhibit a standard error sd kð Þ

which, accounting for the simulation error, is turned into the quantity

sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

B

r
:sd kð Þ

Finally, the optimal number of cluster K is the smallest k such that

Gap kð Þ�Gap kþ 1ð Þ � skþ 1

The above rule to select k is presented in the original gap statistic paper and called
the “Tibs2001SEmax” rule in the R clustering implementation of the gap statistic.
Since 2001, several other alternatives to this rule have been proposed, such as the
“firstSEmax” rule [8] or the “globalSEmax” rule [9]. In this study, the Tibs2001SEmax
rule in all experiments was used as the baseline approach. In this paper, the term “gap
statistic” refers to the function Gap(k) with the Tibs2001SEmax is used as the k-
selecting rule.

Figure 2 provides an example of how the gap statistic works. Figure 2a plots the
example dataset with two well-separated clusters. Figure 2b shows the line
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Fig. 2. How the gap statistic works on a dataset with two well-separated clusters
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representing the within sum of squares Wdata
k , which is a downward trend in number of

cluster k. Figure 2c shows the log of the expected rate log(Wnull
kb Þ using an assumed null

distribution (uniform distribution in this case). Figure 2d shows the gap statistic, which
is calculated by subtracting the log expected rate log(Wnull

k Þ for the log(Wdata
kb Þ. The

optimal number of k is the smallest k such that there is a significant chance that Gap
(k) is higher than Gap(k + 1), which is k = 2 in this case. Tibshirani used one standard
deviation skþ 1 to determine when the chance is significant.

2 Methodology

Although being backed by a rigorous theoretical foundation (unlike other heuristic-
based methods like elbow or silhouette), the Gap statistic still has several drawbacks
that limit its applicability to practical applications. In this section, we conduct several
experiments with synthesized datasets to demonstrate those limitations. Based on the
insights learned from those experiments, we then introduced a new technique to
improve the gap statistic.

2.1 The Gap Statistic Limitations

By design, the gap statistics can only work well when all the clusters in the dataset are
well-separated from each other. However, this is rarely the case in practice, where
clusters usually overlap up to a certain degree. This “non-overlapping” assumption is
one of the main reason that limits the gap statistics effectiveness in real applications.
Figure 3 shows how the gap statistics fail to identify the correct K in simple synthe-
sized datasets, that the clusters only barely overlap each other.

(a) the ovl2Gauss dataset: 400 data points in 2 dimensions that sampled equally from

the two 2D Gaussian distributions: N 0
0

� 	
;

1 0:7
0:7 1

� 	
 �
and N 4

0

� 	
;




1 �0:7
�0:7 1

� 	
Þ.

(b) gap statistic with Tibs2001SE rule suggests k = 3 instead of 2 for the ovl2Gauss.
(c) the ovl3Gauss dataset: 600 data points in 2 dimensions that sampled equally

from the three Gaussian distributions: N 0
0

� 	
;

1 0:7
0:7 1

� 	
 �
, N 0

8

� 	
;




1 0:7
0:7 1

� 	
Þ, and N 0

4

� 	
;

1 �0:7
�0:7 1

� 	
 �
.

(d) gap statistic with Tibs2001Se rule suggests k = 4 instead of 3 for the ovl3Gauss.

However, clusters should not overlap with each other too much. Otherwise, the
notion of “cluster” will become very fuzzy. This is because the data density in the
overlapping area is the sum of the data density of the two clusters in that area. This can
potentially make the overlapping area become another cluster. In some applications, we
indeed want to recognize that overlapping space as a cluster, while that behavior is
unexpected in other applications. Figure 4 illustrates this confusion in the case of two
strongly overlapping clusters.
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Besides the non-overlapping assumption, the gap statistic also assumes that there is
no hierarchical clustering structure in the dataset. This means in the dataset; there is no
cluster that consists of many smaller clusters. In addition, the gap statistics require a lot
of computing power to compute the expected Wk under the null reference distribution

Fig. 3. Overlapping clusters problem with gap statistic

Fig. 4. Two strongly overlapping clusters can be correctly seen as one, two, or 3 clusters.
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E�
n log Wkð Þf g. It has to sample the null reference distribution B times B� 50ð Þ, for each

sample b, we run the clustering algorithm. In this case, the clustering algorithm is
PAM, which takes O n2ð Þ with n is the number of data points. In total, the complexity of
the algorithm to estimate the E�

n log Wkð Þf g is O Bn2ð Þ. This would make it impossible to
apply gap statistic on dataset with more than several thousands of data points.

2.2 The New Gap

As described in the previous section, the gap statistic method has largely three limi-
tations. However, we only focus on the overlapping issue to produce a new gap. The
other limitation issues will be covered in the further research.

The 1stDaccSEmax Rule for Overlapping Clusters. The Tibs2001SEmax rule
returns the smallest k such that the gap at that point has a significant chance (one
standard error) to be higher than the next gap. As shown in the previous section, this
rule is very sensitive to overlapped clusters. In fact, when there are overlapping clusters
in the dataset, the gap does not decrease but slightly increase after k ¼ K (where K is
the real number of clusters in the dataset). This results in over-estimation of K.

Therefore, instead of using the gap statistic directly, we propose to use the
deceleration of the gap statistic (Dacc statistic for short). The Dacc is calculated as
follows:

Dacc kð Þ ¼ Gap kð Þ � Gap k � 1ð Þ½ � � Gap kþ 1ð Þ � Gap kð Þ½ �
¼ 2Gap kð Þ � Gap k � 1ð Þ � Gap kþ 1ð Þ

Figure 5 shows how the Dacc(k) statistic can be computed from the Gap
(k) statistic.

kk-1 k+1

G
ap

( + 1) − ( )
( ) − ( − 1)

( ) [ ( ) − ( − 1)] [ ( + 1) − ( )]

Fig. 5. How to compute Dacc(k) from Gap(k)
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We designed this statistic based on the insight that when k is going from 1 to K, the
Gap(k) increases with constant or accelerated speed, up to the point where k = K. At that
point, the Gap(k) will suddenly slow down its speed of increasing or start to decreasing
(negative speed). Figure 6 illustrates how the Dacc(k) looks like in different scenarios.

Figure 6(a–c) Different cases where Dacc kð Þ\0; Dacc kð Þ ¼ 0 and Dacc kð Þ[ 0.
Figure 6(d) In dataset with K non-overlapping clusters: Gap(k) increases when

k\K, reaches its first local maxima at k ¼ K, and starts decreasing when k ¼ Kþ 1.
Therefore, k ¼ K is also the first local maxima of Dacc(k).

Figure 6(c) In dataset with K clusters where some clusters slightly overlap each
other: Gap(k) still increases from k = K to k = K + 1, making Gap(k = K) no longer
the first local maxima. However, since the overlapping area is small (slightly-
overlapping assumption), the increasing speed from Gap(K) to Gap(K + 1) is signifi-
cantly smaller than the increasing speed from Gap(K - 1) to Gap(K), making the Dacc
statistic still maximize at k = K. Therefore, the Dacc(k) is more robust than the Gap
(k) in a dataset with slightly-overlapping clusters.

Fig. 6. The Dacc kð Þ value in different scenarios;

A New Approach to Determine the Optimal Number of Clusters 235



Figure 6(f) In dataset with K clusters where some clusters strongly overlap each
other: the definition between clusters becomes very fuzzy. Two strongly overlapping
clusters can be correctly considered as one, two, or three clusters. Therefore, both Dacc
and Gap statistic behave unpredictably in this case.

To take into account the sampling error occurring when estimating the expected Wk

under the null distribution, I incorporate the standard error sk to the Dacc kð Þ to get the
DaccSE kð Þ as follows:

DaccSE kð Þ ¼ Gap kð Þ � 0:5skð Þ � Gap k � 1ð Þþ 0:5sk�1ð Þ½ �
� Gap kþ 1ð Þþ 0:5skþ 1ð Þ � Gap kð Þ � 0:5skð Þ½ �

DaccSE kð Þ ¼ 2Gap kð Þ � Gap k � 1ð Þ � Gap kþ 1ð Þ � 0:5sk�1 � 0:5skþ 1 � sk

As we can see, the higher the sampling errors at k - 1, k, or k + 1, the more DaccSE
penalizes the Dacc estimation. Note that I used half standard error in the DaccSE
(k) formula. We can choose to use different factor for the standard error based on how
“aggressive” or “conservative” you want the DaccSE to behave. Figure 7 illustrates
how the DaccSE(k) is calculated. While the Dacc is calculated based on the green line,
the DaccSE is calculated based on the dashed orange line. The DaccSE penalizes the
Gap(k − 1), Gap(k) and Gap(k + 1) estimation according to how big the sk�1, sk, and
skþ 1 are.

The Gap(k) chart can have multiple peaks, especially when the dataset has a
hierarchical clustering structure. Therefore, instead of selecting k where the DaccSE
(k) reaches its global maxima, we select the k where DaccSE(k) reaches its first local
maxima. This is similar to the idea of searching for the first local maxima of the
Tibs2001SEmax rule introduced in the original gap paper. This new rule is called the
1stDaccSEmax rule. Generally, the 1stDaccSEmax rule keeps looking for k with the

Fig. 7. How the DaccSE(k) is derived from Gap(k) and sk.
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highest positive DaccSE, with k sequentially running from k = 2 to k = kmax and stop
at the point where Gap kð Þ higher than Gap kð Þ � skþ 1: Figure 8 shows how the
1stDaccSEmax rule works in different situations.

Note that although the DaccSE(k) statistic does not define when k = 1, the
1stDaccSEmax rule can still detect if there is no cluster in the dataset. This can happen
in two situations, which are illustrated in Fig. 8. In Fig. 8b, Gap(1) > Gap(2) by a
margin bigger than s2. Therefore, we stop looking for k right from the beginning and
return k = 1 right away. In Fig. 8c, all the DaccSE is negative (there is no k at which
the gap decreases). Therefore, we also return k = 1 in this case.

Figure 9 shows the effectiveness of the 1stDaccSEmax rule on synthesized datasets
with overlapping clusters.

Figure 9(a) The ovl2Gauss dataset.
Figure 9(b) Tibs2001SEmax suggests k = 3 because Gap(k) still increases from

Gap(2) to Gap(3) due to the overlapping. The 1stDaccSEmax predicts correctly that
k = 2, because the decrease at k = 3 is smaller than the decrease at k = 2.

Figure 9(c) The ovl3Gauss dataset.

Fig. 8. How the 1stDaccSEmax works in different kinds of Gap charts
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Figure 9(d) The Tibs2001SEmax predicts wrongly that k = 4 due to the overlap-
ping issue. The 1stDaccSEmax rule correctly predicts that k = 3.

3 Conclusion

This study focuses on improving the gap statistic for the task of predicting the number
of clusters k of a dataset. It identifies and demonstrates three main limitations of the gap
statistic, including the overlapping clusters problem, the hierarchical clustering struc-
ture problem, and the big dataset problem. Based on these insights, we proposed the
new technique to tackle the overlapping problem: the 1stDaccSEmax rule. The per-
formance of the new method is evaluated with several synthetic datasets. It is believed
that the performance of the new gap method would be shown to be better than all other
traditional approaches. The further numerical experiments will be done on several real
datasets with some other new techniques to overcome the other gap limitations.
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Fig. 9. Apply the 1stDaccSEmax rule on synthesized overlapping clusters datasets.
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