Skip to main content

Maximal Quadratic-Free Sets

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2020)

Abstract

The intersection cut paradigm is a powerful framework that facilitates the generation of valid linear inequalities, or cutting planes, for a potentially complex set S. The key ingredients in this construction are a simplicial conic relaxation of S and an S-free set: a convex zone whose interior does not intersect S. Ideally, such S-free set would be maximal inclusion-wise, as it would generate a deeper cutting plane. However, maximality can be a challenging goal in general. In this work, we show how to construct maximal S-free sets when S is defined as a general quadratic inequality. Our maximal S-free sets are such that efficient separation of a vertex in LP-based approaches to quadratically constrained problems is guaranteed. To the best of our knowledge, this work is the first to provide maximal quadratic-free sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the reader familiar with the notion of exposed point from convex analysis, we would like to point that if C is convex with 0 in its interior and the valid inequality \(\alpha ^\mathsf {T}x \le 1\) has an exposing point, then \(\alpha \) is an exposed point of the polar of C.

References

  1. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic sets. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 37–48. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9_4

    Chapter  MATH  Google Scholar 

  2. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear sets based on lattice point free convex sets. Math. Oper. Res. 35(1), 233–256 (2010)

    Article  MathSciNet  Google Scholar 

  3. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72792-7_1

    Chapter  Google Scholar 

  4. Balas, E.: Intersection cuts–a new type of cutting planes for integer programming. Oper. Res. 19(1), 19–39 (1971). https://doi.org/10.1287/opre.19.1.19

    Article  MathSciNet  MATH  Google Scholar 

  5. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces. Math. Oper. Res. 35(3), 704–720 (2010). https://doi.org/10.1287/moor.1100.0461

    Article  MathSciNet  MATH  Google Scholar 

  6. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Minimal inequalities for an infinite relaxation of integer programs. SIAM J. Discrete Math. 24(1), 158–168 (2010). https://doi.org/10.1137/090756375

    Article  MathSciNet  MATH  Google Scholar 

  7. Basu, A., Dey, S.S., Paat, J.: Nonunique lifting of integer variables in minimal inequalities. SIAM J. Discrete Math. 33(2), 755–783 (2019). https://doi.org/10.1137/17m1117070

    Article  MathSciNet  MATH  Google Scholar 

  8. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: On families of quadratic surfaces having fixed intersections with two hyperplanes. Discrete Appl. Math. 161(16–17), 2778–2793 (2013)

    Article  MathSciNet  Google Scholar 

  9. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization. In: Al-Baali, M., Grandinetti, L., Purnama, A. (eds.) Numerical Analysis and Optimization. SPMS, vol. 134, pp. 1–35. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17689-5_1

    Chapter  MATH  Google Scholar 

  10. Bienstock, D., Chen, C., Munoz, G.: Outer-product-free sets for polynomial optimization and oracle-based cuts. Math. Program. 1–44 (2020)

    Google Scholar 

  11. Bienstock, D., Chen, C., Muñoz, G.: Intersection cuts for polynomial optimization. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 72–87. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3_6

    Chapter  MATH  Google Scholar 

  12. Bodur, M., Dash, S., Günlük, O.: Cutting planes from extended LP formulations. Math. Program. 161(1–2), 159–192 (2017)

    Article  MathSciNet  Google Scholar 

  13. Bonami, P., Linderoth, J., Lodi, A.: Disjunctive cuts for mixed integer nonlinear programming problems. In: Progress in Combinatorial Optimization, pp. 521–541 (2011). (chapter 18)

    Google Scholar 

  14. Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints. Math. Oper. Res. 34(3), 538–546 (2009). https://doi.org/10.1287/moor.1080.0370

    Article  MathSciNet  MATH  Google Scholar 

  15. Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. 162(1–2), 393–429 (2017)

    Article  MathSciNet  Google Scholar 

  16. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-generating functions and S-free sets. Math. Oper. Res. 40(2), 276–391 (2015). https://doi.org/10.1287/moor.2014.0670

    Article  MathSciNet  MATH  Google Scholar 

  17. Conforti, M., Cornuéjols, G., Zambelli, G.: Corner polyhedron and intersection cuts. Surv. Oper. Res. Manage. Sci. 16(2), 105–120 (2011). https://doi.org/10.1016/j.sorms.2011.03.001

    Article  MATH  Google Scholar 

  18. Cornuéjols, G., Wolsey, L., Yıldız, S.: Sufficiency of cut-generating functions. Math. Program. 152(1–2), 643–651 (2015)

    Article  MathSciNet  Google Scholar 

  19. Dey, S.S., Wolsey, L.A.: Lifting integer variables in minimal inequalities corresponding to lattice-free triangles. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 463–475. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4_32

    Chapter  MATH  Google Scholar 

  20. Dey, S.S., Wolsey, L.A.: Constrained infinite group relaxations of MIPs. SIAM J. Optim. 20(6), 2890–2912 (2010). https://doi.org/10.1137/090754388

    Article  MathSciNet  MATH  Google Scholar 

  21. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Intersection cuts for bilevel optimization. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp. 77–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33461-5_7

    Chapter  MATH  Google Scholar 

  22. Fischetti, M., Monaci, M.: A branch-and-cut algorithm for mixed-integer bilinear programming. Eur. J. Oper. Res. (2019). https://doi.org/10.1016/j.ejor.2019.09.043

  23. Glover, F.: Convexity cuts and cut search. Oper. Res. 21(1), 123–134 (1973). https://doi.org/10.1287/opre.21.1.123

    Article  MathSciNet  MATH  Google Scholar 

  24. Goberna, M., González, E., Martínez-Legaz, J., Todorov, M.: Motzkin decomposition of closed convex sets. J. Math. Anal. Appl. 364(1), 209–221 (2010). https://doi.org/10.1016/j.jmaa.2009.10.015

    Article  MathSciNet  MATH  Google Scholar 

  25. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra. Math. Program. 3–3(1), 23–85 (1972). https://doi.org/10.1007/bf01584976

    Article  MathSciNet  MATH  Google Scholar 

  26. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs. Math. Oper. Res. 41(2), 477–510 (2015)

    Article  MathSciNet  Google Scholar 

  27. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Math. Program. 154(1–2), 463–491 (2015)

    Article  MathSciNet  Google Scholar 

  28. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  29. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 149, pp. 157–270. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09686-5_7

    Chapter  Google Scholar 

  30. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976). https://doi.org/10.1007/bf01580665

    Article  MATH  Google Scholar 

  31. Conforti, M., Cornuejols, G., Zambelli, G.: Integer Programming. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-11008-0

    Book  MATH  Google Scholar 

  32. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015)

    Article  MathSciNet  Google Scholar 

  33. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer programming: convexification techniques for structured sets. Math. Program. 155(1–2), 575–611 (2016)

    Article  MathSciNet  Google Scholar 

  34. Morán, D., Dey, S.S.: On maximal S-free convex sets. SIAM J. Discrete Math. 25(1), 379–393 (2011). https://doi.org/10.1137/100796947

    Article  MathSciNet  MATH  Google Scholar 

  35. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. arXiv preprint arXiv:1911.12341 (2019)

  36. Serrano, F.: Intersection cuts for factorable MINLP. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 385–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3_29

    Chapter  Google Scholar 

  37. Shahabsafa, M., Góez, J.C., Terlaky, T.: On pathological disjunctions and redundant disjunctive conic cuts. Oper. Res. Lett. 46(5), 500–504 (2018)

    Article  MathSciNet  Google Scholar 

  38. Shor, N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25, 1–11 (1987)

    MathSciNet  MATH  Google Scholar 

  39. Tuy, H.: Concave programming with linear constraints. In: Doklady Akademii Nauk, vol. 159, pp. 32–35. Russian Academy of Sciences (1964)

    Google Scholar 

  40. Yıldız, S., Kılınç-Karzan, F.: Low-complexity relaxations and convex hulls of disjunctions on the positive semidefinite cone and general regular cones. Optim. Online (2016)

    Google Scholar 

Download references

Acknowledgements

We are indebted to Franziska Schlösser for several inspiring conversations. We would like to thank Stefan Vigerske, Antonia Chmiela, Ksenia Bestuzheva and Nils-Christian Kempke for helpful discussions. We would also like to thank the three anonymous reviewers for their valuable feedback. Lastly, we would like to acknowledge the support of the IVADO Institute for Data Valorization for their support through the IVADO Post-Doctoral Fellowship program and to the IVADO-ZIB academic partnership. The described research activities are funded by the German Federal Ministry for Economic Affairs and Energy within the project EnBA-M (ID: 03ET1549D). The work for this article has been (partly) conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (BMBF grant number 05M14ZAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Muñoz .

Editor information

Editors and Affiliations

Appendix

Appendix

Example 1 (Homogeneous case)

Consider the set \(S_{\le 0}\), defined as

$$\begin{aligned} S_{\le 0}= \{(x_1, x_2 , y) \in \mathbb {R}^3 \,:\,\Vert x \Vert \le |y |, \quad a^\mathsf {T}x + d y \le 0 \} \end{aligned}$$

with \(a = (-1/\sqrt{2},1/\sqrt{2})^\mathsf {T}\) and \(d=1/\sqrt{2}\), and \((\bar{x},\bar{y})=(-1, -1 ,0)^\mathsf {T}\). This point satisfies the linear inequality in \(S_{\le 0}\), but it is not in \(S_{\le 0}\). It is not too hard to check that \(G(\lambda ) = \{-1\}\). In Fig. 1 we show \(S_{\le 0}\), the \(S_{\le 0}\)-free set given by \(C_{\lambda }\) and the set \(C_{G(\lambda )}\). In this case \(\Vert a\Vert = 1 > 1/\sqrt{2} = | d |\), so we have no guarantee on the \(S_{\le 0}\)-freeness of \(C_{G(\lambda )}\). Even more, it is not \(S_{\le 0}\)-free.

Moving forward, since \(\lambda ^\mathsf {T}a = 0\) we have

$$\begin{aligned} \lambda ^\mathsf {T}a \Vert y\Vert + d^\mathsf {T}y \le 0 \Longleftrightarrow y\le 0. \end{aligned}$$

A simple calculation using (8) yields

$$\phi _{\lambda }(y) = {\left\{ \begin{array}{ll} - y , &{}\text { if } y \le 0 \\ \frac{y}{\sqrt{2}} &{}\text { if } y > 0 \end{array}\right. } $$

In Fig. 4 we show the set \(C_{\phi _{\lambda }}\), which is maximal \(S_{\le 0}\)-free.

Fig. 4.
figure 4

\(S_{\le 0}\) in Example 1 (orange) and \(C_{\phi _{\lambda }}\) set (blue). The latter is maximal \(S_{\le 0}\)-free. (Color figure online)

Fig. 5.
figure 5

Plots of \(S_{\le 0}\), H and \(C_1\) as defined in Example 2 showing that \(C_1\) is maximal \(S_{\le 0}\)-free with respect to H.

Example 2 (Non-homogeneous case)

We continue with \(S_{\le 0}\) defined in Example 1, but we now look for maximality with respect to

$$\begin{aligned} H= \{ (x,y) \in \mathbb {R}^{n+m} \,:\,a^\mathsf {T}x + d^\mathsf {T}y = -1 \}. \end{aligned}$$

In this case, \(C_{\phi _{\lambda }}\cap H\) is not maximal \(S_{\le 0}\cap H\)-free, as shown in Fig. 2. Since \(\lambda = \frac{1}{\sqrt{2}}(-1,-1)^\mathsf {T}\), we see that

$$\begin{aligned} C_{\phi _{\lambda }}= \{ (x,y) \,:\,&\frac{1}{\sqrt{2}}(x_1 + x_2) - y \le 0, \end{aligned}$$
(12a)
$$\begin{aligned}&\frac{1}{\sqrt{2}}(x_1 + x_2) + \frac{1}{\sqrt{2}}y \le 0 \}. \end{aligned}$$
(12b)

It is not hard to check that \(-(\tfrac{1}{\sqrt{2}},\tfrac{1}{\sqrt{2}},\sqrt{2}) \in S_{\le 0}\cap H \cap C_{\phi _{\lambda }}\) exposes inequality (12a). This is the tangent point in Fig. 2b. On the other hand, (12b), which is obtained from \(\beta =1\), does not have an exposing point in \(S_{\le 0}\cap H \cap C_{\phi _{\lambda }}\), and corresponds to an inequality we should relax as per our discussion. This inequality, however, is exposed by \(({x_\beta }, \beta ) =(0,-1, 1) \in S_{\le 0}\cap C_{\phi _{\lambda }}\). Consider now the sequence defined as

$$\begin{aligned} (x_n,\beta ) = \left( \frac{1}{\sqrt{n^2+1}} , -\frac{n}{\sqrt{n^2+1}}, 1\right) \in S_{\le 0}. \end{aligned}$$

Clearly the limit of this sequence is \((0,-1, 1)\) and

$$\begin{aligned} a^\mathsf {T}x_n + d^\mathsf {T}\beta = \frac{1}{\sqrt{2}}\left( -\frac{1}{\sqrt{n^2+1}} -\frac{n}{\sqrt{n^2+1}} + 1\right) < 0. \end{aligned}$$

Now we let

$$\begin{aligned} z_n = -\frac{(x_n, \beta )}{a^\mathsf {T}x_n + d^\mathsf {T}\beta } \in S_{\le 0}\cap H. \end{aligned}$$

which diverges. In Fig. 3, we plot the first two components of the sequence \((z_n)_{n\in \mathbb {N}}\) along with \(S_{\le 0}\cap H\) and \(C_{\phi _{\lambda }}\cap H\). The sequence \((z_n)_{n\in \mathbb {N}}\) moves along the boundary of \(S_{\le 0}\cap H\) towards an “asymptote” from where we deduce \(r(\beta )\).

In this case \(r(-1) = 0\), and it can be checked that \(r(1) = 1 \) using its formula. Now, let

$$\begin{aligned} C_1&= \{ (x,y) \,:\,-\lambda ^\mathsf {T}x + \nabla \phi _{\lambda }(\beta )^\mathsf {T}y \le r(\beta ), \text { for all } \beta \in D_1(0) \}\\&= \{ (x,y) \,:\,\frac{1}{\sqrt{2}}(x_1 + x_2) - y \le 0, \frac{1}{\sqrt{2}}(x_1 + x_2) + \frac{1}{\sqrt{2}}y \le 1 \}. \end{aligned}$$

Figure 5 shows the same plots as Fig. 2 with \(C_1\) instead of \(C_{\phi _{\lambda }}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muñoz, G., Serrano, F. (2020). Maximal Quadratic-Free Sets. In: Bienstock, D., Zambelli, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2020. Lecture Notes in Computer Science(), vol 12125. Springer, Cham. https://doi.org/10.1007/978-3-030-45771-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45771-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45770-9

  • Online ISBN: 978-3-030-45771-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics