Skip to main content

On a Generalization of the Chvátal-Gomory Closure

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12125))

Abstract

Many practical integer programming problems involve variables with one or two-sided bounds. Dunkel and Schulz (2012) considered a strengthened version of Chvátal-Gomory (CG) inequalities that use 0–1 bounds on variables, and showed that the set of points in a rational polytope that satisfy all these strengthened inequalities is a polytope. Recently, we generalized this result by considering strengthened CG inequalities that use all variable bounds. In this paper, we generalize further by considering not just variable bounds, but general linear constraints on variables. We show that all points in a rational polyhedron that satisfy such strengthened CG inequalities form a rational polyhedron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: Cutting planes from wide split disjunctions. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 99–110. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3_9

    Chapter  Google Scholar 

  2. Braun, G., Pokutta, S.: A short proof for the polyhedrality of the Chvátal-Gomory closure of a compact convex set. Oper. Res. Lett. 42, 307–310 (2014)

    Article  MathSciNet  Google Scholar 

  3. Crowder, H., Johnson, E., Padberg, M.: Solving large-scale zero-one linear programming problems. Oper. Res. 31, 803–834 (1983)

    Article  Google Scholar 

  4. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discret. Math. 4, 305–337 (1973)

    Article  MathSciNet  Google Scholar 

  5. Dadush, D., Dey, S.S., Vielma, J.P.: On the Chvátal-Gomory closure of a compact convex set. Math. Program. 145, 327–348 (2014)

    Article  MathSciNet  Google Scholar 

  6. Dash, S., Günlük, O., Lee, D.: Generalized Chvátal-Gomory closures for integer programs with bounds on variables, June 2019. http://www.optimization-online.org/DB_HTML/2019/06/7245.html

  7. Dirichlet, G.L.: Verallgemeinerung eines Satzes aus der Lehre von den Kettenbriichen nebst einigen Anwendungen auf die Theorie der Zahlen, Bericht iiber die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, pp. 93–95 (1842). (Reprinted in: L. Kronecker (ed.), G. L. Dirichlet’s Werke, vol. I, G. Reimer, Berlin 1889 (reprinted: Chelsea, New York 1969), pp. 635–638)

    Google Scholar 

  8. Dunkel, J., Schulz, A.S.: A refined Gomory-Chvátal closure for polytopes in the unit cube, Technical report, March 2012. http://www.optimization-online.org/DB_HTML/2012/03/3404.html

  9. Dunkel, J., Schulz, A.S.: The Gomory-Chvátal closure of a nonrational polytope is a rational polytope. Math. Oper. Res. 38, 63–91 (2013)

    Article  MathSciNet  Google Scholar 

  10. Fischetti, M., Lodi, A.: On the Knapsack closure of 0-1 integer linear programs. Electron. Notes Discret. Math. 36, 799–804 (2010)

    Article  Google Scholar 

  11. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64, 275–278 (1958)

    Article  MathSciNet  Google Scholar 

  12. Pashkovich, K., Poirrier, L., Pulyassary, H.: The aggregation closure is polyhedral for packing and covering integer programs arXiv:1910.03404 (2019)

  13. Del Pia, A., Linderoth, J., Zhu, H.: Integer packing sets form a well-quasi-ordering arXiv:1911.12841 (2019)

  14. Schrijver, A.: On cutting planes. Ann. Discret. Math. 9, 291–296 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is supported, in part, by the Institute for Basic Science (IBS-R029-C1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabeen Lee .

Editor information

Editors and Affiliations

A Proof of Lemma 5

A Proof of Lemma 5

First of all, Claims 1 and 2 below are proved inside the proof of Lemma 4.10 in [6].

Claim 1

\(\mu \ge \mathbf {0}\) and \(\text {supp}(\mu )=\text {supp}(\lambda )\).

Claim 2

\(\mu b=\min \left\{ \mu Ax:x\in {P^{\uparrow }}\right\} \) and therefore \((\mu A,\mu b)\in \varPi _{{P^{\uparrow }}}\).

Since \(\text {supp}(\mu )=\text {supp}(\lambda )\) by Claim 1 and \(Ar^j\ge \mathbf {0}\) for all \(j\in N_r\), it follows that \(r\text {-supp}(\mu A)=r\text {-supp}(\lambda A)\), and therefore, \(t(\mu , A) = t(\lambda , A)\).

The next claim extends Claim 3 of Lemma 4.10 in [6].

Claim 3

Let \(Q = \left\{ x \in {{\,\mathrm{cone}\,}}\left\{ e^1,\ldots ,e^{n_1},r^1,\ldots ,r^{n_r}\right\} :\;\mu b \le \mu A x \le \mu b + \varDelta \right\} \). There is no point \(x\in Q\) that satisfies

$$\begin{aligned} \sum _{i=1}^{\ell } p_ia_ix \ge 1+ \sum _{i=1}^{\ell } p_ib_i. \end{aligned}$$
(14)

Proof

Suppose for a contradiction that there exists \(\tilde{x} \in Q\) satisfying (14). Recall that for the index k defined in (8), the inequality \(\mu Ar^k>0\) holds. Let \(v = \frac{\mu b}{\mu Ar^k}r^k\). Then \(\mu A v =\mu b\) and \(v\in Q\). In addition, for the index \(\ell \) defined in (10), we have \(\sum _{i=1}^\ell p_ia_iv =0\) since \(k\not \in \bigcup _{i=1}^{t-1}r\text {-supp}(a_i)\) and \(a_ir^k=0\) for \(i\le t-1\). As \(\tilde{x} \in Q\) satisfies (14) and \(v\in Q\) satisfies \(\sum _{i=1}^\ell p_ia_iv =0\), we can take a convex combination of these points to get a point \(\bar{x} \in Q\) such that

$$\begin{aligned} \sum _{i=1}^\ell p_ia_i \bar{x}=1+\sum _{i=1}^\ell p_ib_i \quad \Rightarrow \quad \sum _{i=1}^\ell p_i(a_i \bar{x}-b_i) =1. \end{aligned}$$
(15)

As \(\mu A \bar{x} \le \mu b + \varDelta \), we have

$$\begin{aligned} \sum _{i=1}^\ell \mu _i(a_i\bar{x}-b_i) \le -\sum _{j=\ell +1}^m\mu _j(a_j\bar{x}-b_j) + \varDelta . \end{aligned}$$
(16)

As in [6], we can rewrite (16) as:

$$\begin{aligned} \frac{\lambda _\ell }{p_\ell }\left( 1 + \sum _{i=1}^\ell \varepsilon _i(a_i\bar{x}-b_i)\right)&\le -\sum _{j=\ell +1}^m\mu _j(a_j\bar{x}-b_j) + 2\varDelta \nonumber \\&\le \sum _{j=\ell +1}^m\mu _jb_j + 2\varDelta \le \lambda _{\ell +1}(mB + 2D) =~\frac{1}{2}\lambda _{\ell +1}M_1 \end{aligned}$$
(17)

where the second inequality in (17) follows from the assumption that \(A\in \mathbb {Z}^{m\times n}\) and \(b\in \mathbb {Z}^m\) satisfy (3), the third inequality follows from the fact that \(\mu _i = \lambda _i \le \lambda _{\ell +1}\) for \(i=\ell +1, \ldots , m\) by (12) and that \(b_j \le B\) by Definition 2, and the last equality simply follows from the definition of \(M_1\).

Next, we obtain a lower bound on the first term in (17). As \(a_i\bar{x}\ge 0\), \(b_i\ge 0\), and \(\varepsilon _i \in [ -\varepsilon , \varepsilon ]\), we have

$$\begin{aligned} \sum _{i=1}^\ell \varepsilon _i\left( a_i\bar{x}-b_i\right) = \sum _{i=1}^\ell \varepsilon _i a_i\bar{x}- \sum _{i=1}^\ell \varepsilon _i b_i \ge - \varepsilon \sum _{i=1}^\ell (a_i\bar{x} + b_i). \end{aligned}$$
(18)

Following the same argument in Claim 3 of Lemma 4.10 in [6], we can show that \(-\varepsilon \sum _{i=1}^\ell (a_i\bar{x} + b_i) \ge -\frac{1}{2}\). Then it follows from (18) that \(\sum _{i=1}^\ell \varepsilon _i(a_i\bar{x}-b_i)\ge -{1}/{2}\). So, the left hand side of (17) is lower bounded by \({\lambda _\ell }/{2p_\ell }\).

Since the first term in (17) is at least \({\lambda _\ell }/{2p_\ell }\), we obtain \(\lambda _\ell \le p_\ell \lambda _{\ell +1} M_1\) from (17), implying in turn that \(M_\ell < p_\ell M_1\) as we assumed that \(\lambda _\ell > M_\ell \lambda _{\ell +1}\) as in (10). However, (11) implies that \(M_\ell \ge p_\ell M_1\), a contradiction.   \(\square \)

Claim 4

\(\mu A x\ge \lceil \mu b \rceil _{S,\mu A}\) dominates \(\lambda A x\ge \lceil \lambda b \rceil _{S,\lambda A}\).

Proof We will first show that

$$\begin{aligned} \mu b\le \lceil \mu b \rceil _{S,\mu A}\le \mu b+\varDelta \end{aligned}$$
(19)

holds. Set \((\alpha ,\beta )=(\mu A,\mu b)\). By Claim 2, we have that \(\beta =\min \{\alpha x:x\in {P^{\uparrow }}\}\). As the extreme points of \({P^{\uparrow }}\) are contained in \({{\,\mathrm{conv}\,}}(S)\), it follows that \(\beta \ge \min \{\alpha z:z\in S\}\). If \(\beta =\min \{\alpha z:z\in S\}\), then \(\beta = \lceil \beta \rceil _{S,\alpha }\). Thus we may assume that \(\beta >\min \{\alpha z:z\in S\}\), so there exists \(z'\in S\) such that \(\beta >\alpha z'\). Remember that by (7), \(\varDelta =\min \{\lambda Ar^j:j\in r\text {-supp}(\lambda A)\}\), and let j be such that \(\lambda Ar^j=\varDelta \). As \(r\text {-supp}(\lambda A)=r\text {-supp}(\mu A)\), we have \(\alpha r^j>0\) and \(\kappa =({\beta - \alpha z'})/{\alpha r^j}>0\). Therefore \(z''=z'+\lceil \kappa \rceil r^j\in S\). Observe that

$$\begin{aligned} \beta = \alpha z' + (\beta -\alpha z') =\alpha \left( z'+\kappa r^j\right) \le \alpha \left( z'+\lceil \kappa \rceil r^j\right) =\beta +\alpha r^j(\lceil \kappa \rceil -\kappa ) \le \beta +\alpha r^j. \end{aligned}$$

As \(\lambda \ge \mu \), we have \(\varDelta \ge \alpha r^j\) implying \(\beta \le \alpha z''\le \beta +\varDelta \) and (19) holds, as desired.

Using (19), we will show that \(\mu A x\ge \lceil \mu b \rceil _{S,\mu A}\) dominates \(\lambda A x\ge \lceil \lambda b \rceil _{S,\lambda A}\). Let \(z\in S\) be such that \(\mu A z=\lceil \mu b \rceil _{S,\mu A}\). As z is integral and \(\mu b\le \lceil \mu b \rceil _{S,\mu A}\le \mu b+\varDelta \) by (19), Claim 3 implies that \(\sum _{i=1}^\ell p_ia_i z < 1 + \sum _{i=1}^\ell p_ib_i\), and therefore, \(\sum _{i=1}^\ell p_ia_i z = \sum _{i=1}^\ell p_ib_i - f\) for some integer \(f \in [0,\sum _{i=1}^\ell p_ib_i]\). Consider \(z+fr^j\in S\) and observe that

$$\begin{aligned} \lambda A\left( z+fr^j\right) =\lambda A z+f\lambda Ar^j&=\left( \mu A+\varDelta \sum _{i=1}^\ell p_ia_i\right) z+\varDelta \sum _{i=1}^\ell p_i(b_i - a_iz)\\ {}&=\lceil \mu b \rceil _{S,\mu A}+\varDelta \sum _{i=1}^\ell p_ib_i. \end{aligned}$$

Since \(\lceil \mu b \rceil _{S,\mu A} \ge \mu b\), we must have \(\lceil \mu b \rceil _{S,\mu A}+\varDelta \sum _{i=1}^\ell p_ib_i\ge \mu b+\varDelta \sum _{i=1}^\ell p_ib_i=\lambda b.\) Then \(\lceil \mu b \rceil _{S,\mu A}+\varDelta \sum _{i=1}^\ell p_ib_i\ge \lceil \lambda b \rceil _{S,\lambda A}\). Then the inequality \(\lambda A x\ge \lceil \lambda b \rceil _{S,\lambda A}\) is dominated by \(\mu A x\ge \lceil \mu b \rceil _{S,\mu A}\), as the former is implied by the latter and a nonnegative combination of the inequalities in \(Ax\ge b\), as required.

   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dash, S., Günlük, O., Lee, D. (2020). On a Generalization of the Chvátal-Gomory Closure. In: Bienstock, D., Zambelli, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2020. Lecture Notes in Computer Science(), vol 12125. Springer, Cham. https://doi.org/10.1007/978-3-030-45771-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45771-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45770-9

  • Online ISBN: 978-3-030-45771-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics