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Abstract. We study the problem of achieving statistical privacy in
interactive proof systems and oblivious transfer – two of the most well
studied two-party protocols – when limited rounds of interaction are
available.

– Statistical Zaps: We give the first construction of statistical Zaps,
namely, two-round statistical witness-indistinguishable (WI) proto-
cols with a public-coin verifier. Our construction achieves computa-
tional soundness based on the quasi-polynomial hardness of learning
with errors assumption.

– Three-Round Statistical Receiver-Private Oblivious Trans-
fer: We give the first construction of a three-round oblivious trans-
fer (OT) protocol – in the plain model – that achieves statistical
privacy for receivers and computational privacy for senders against
malicious adversaries, based on polynomial-time assumptions. The
round-complexity of our protocol is optimal.

We obtain our first result by devising a public-coin approach to compress
sigma protocols, without relying on trusted setup. To obtain our second
result, we devise a general framework via a new notion of statistical hash
commitments that may be of independent interest.

1 Introduction

We study the problem of achieving statistical privacy in two-party cryptographic
protocols. Statistical privacy is very appealing in cryptography since it guaran-
tees everlasting security – even if the adversary is computationally unbounded
during the protocol execution and later post-processes the protocol transcript
for as long as it wants, it cannot violate the privacy guarantee. For this reason,
perhaps unsurprisingly, statistical privacy is typically much harder to achieve
than computational privacy. For example, achieving statistical privacy for both
participants in two-party protocols is impossible in general.

Nevertheless, in many scenarios, “one-sided” statistical privacy is possible to
achieve. In other words, it is typically possible to design protocols that guarantee
statistical privacy for one participant and computational privacy for the other. In
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this work, we investigate the possibility of achieving such asymmetric guarantees
when limited rounds of interaction are available. We narrow the focus of our
study on interactive proof systems [2,24] and oblivious transfer [17,39], two of
the most well-studied two-party protocols in the cryptography literature.

Statistical Zaps. The notion of witness-indistinguishable (WI) proofs [19]
allows a prover to convince a verifier about the validity of a statement (say)
x in a manner such that the proof does not reveal which one of possibly multiple
witnesses that attest to the validity of x was used in the computation. More
specifically, if w1, w2 are both witnesses for x, then the verifier should not be
able to distinguish between an honest prover using w1 from an honest prover
using w2. Despite offering a weaker privacy guarantee than zero-knowledge (ZK)
proofs [24], WI has found wide applications in cryptography. One reason for its
appeal is that most known round-complexity lower bounds for ZK do not apply
to WI.

The seminal work of Dwork and Naor [15] proved that unlike ZK [23], WI
can be achieved in two rounds, without relying on a trusted setup. They con-
structed two-round WI protocols with a public-coin verifier message, which they
termed Zaps, from non-interactive zero-knowledge (NIZK) proofs in the common
random string model [12,18]. By relying on known constructions of such NIZKs,
their methodology can be used to obtain Zaps from quadratic residuosity [12],
trapdoor permutations [18] and the decisional linear assumption over bilinear
groups [26]. More recently, Zaps were also constructed based on indistinguisha-
bility obfuscation [6].

Over the years, Zaps have found numerous applications in cryptography. Part
of their appeal is due to the public-coin verifier property which is crucial to many
applications. In particular, it implies public verifiability, a property which is often
used in the design of round-efficient secure multiparty computation protocols
(see, e.g., [27]). Moreover, it also allows for the verifier message to be reusable
across multiple proofs, a property which is often used, for example, in the design
of resettably-secure protocols (see, e.g., [13]).

Remarkably, all known constructions of Zaps (as well as non-interactive
WI [5,6,25]) only achieve computational WI property. Despite several years of
research, the following fundamental question has remained open:

Do there exist statistical Zaps?

In fact, even two-round statistical WI that only satisfy public-verifiability or
reusability, in isolation, are not known currently. This is in contrast to NIZKs,
which are indeed known with statistical privacy [8,38] or even perfect privacy
[26]. One reason for this disparity is that the methodology of [15] for constructing
Zaps is not applicable in the statistical case.

The recent work of Kalai, Khurana and Sahai [31] comes close to achieving
this goal. They constructed two round statistical WI with private-coin verifier
message based on two round statistical sender-private oblivious transfer (OT)
[1,7,28,30,36]. The use of a private-coin verifier message is, in fact, instrumental
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to their approach (which builds on [4,29]). As such, a different approach is
required for constructing statistical Zaps with a public-coin verifier.

Statistical Receiver-Private Oblivious Transfer. An oblivious transfer
(OT) [17,39] protocol allows a “sender” to transfer one of its two inputs to
a “receiver” without learning which of the inputs was obtained by the receiver.
OT is of special importance to the theory and practice of secure computation
[22,41] since OT is both necessary and complete [33].

Nearly two decades ago, the influential works of works of Naor and Pinkas
[36] and Aiello et al. [1] constructed two-round OT protocols that achieve game-
based security against malicious adversaries in the plain model. An important
property of these protocols is that they guarantee statistical privacy for senders
(and computational privacy for receivers). Subsequent to these works, new con-
structions of such protocols were proposed based on a variety of assumptions (see,
e.g., [7,28,30]). Over the years, such OT protocols have found many applications
such as constructions of two-round (statistical) WI [4,29,31], non-malleable com-
mitments [32], and more.

A natural question is whether it is possible to construct such OT protocols
with a “reverse” guarantee, namely, statistical privacy for receivers (and com-
putational privacy for senders). As observed in [31], two rounds are insufficient
for this task: statistical receiver privacy implies that there exists different ran-
domness tapes for receiver that explains a fixed receiver message for both input
bits 0 and 1. Thus, a non-uniform malicious PPT receiver could simply start a
two-round protocol with non-uniform advice that consists of such a message and
randomness tapes, and then use both random tapes to learn both inputs of the
sender, thereby violating sender privacy.

In the same work, [31] also proved that three rounds are sufficient for this
task. Namely, they constructed three round statistical receiver-private OT with
game-based security against malicious adversaries, in the plain model. However,
they achieve this result by relying upon super-polynomial-time hardness assump-
tions. In contrast, two-round statistical sender-private OT protocols are known
from polynomial-time assumptions. This leaves open the following important
question:

Does there exist three-round statistical receiver-private OT in the plain model
based on polynomial-time assumptions?

1.1 Our Results

In this work, we resolve both of the aforementioned questions in the affirmative.

I. Statistical Zap Arguments. We give the first construction of statistical
Zaps with computational soundness, a.k.a. statistical Zap arguments. The sound-
ness of our protocol is based on the quasi-polynomial hardness of the learning
with errors (LWE) assumption. While we focus on achieving statistical privacy,
we note that our construction, in fact, also yields the first computational Zap
argument system based on (quasi-polynomial) LWE.
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Theorem 1 (Informal). Assuming quasi-polynomial LWE, there exists a sta-
tistical Zap argument system.

In order to obtain our result, we depart significantly from prior approaches
for constructing Zaps. Specifically, our approach combines the recent statistical
NIZK arguments of Peikert and Shiehian [38] in a non-black-box manner with a
two-round public-coin statistically-hiding extractable commitment scheme (see
Sect. 4.1). Previously, such a commitment scheme in the private-coin setting was
constructed by [31].

Roughly speaking, while the work of [38] (following [8]) instantiates the Fiat-
Shamir methodology [19] for compressing sigma protocols [10] into a NIZK
using collision-intractable hash (CIH) functions [9], our approach can be seen
as a way to compress sigma protocols into statistical Zaps using CIH and two-
round public-coin statistically-hiding extractable commitments, without using a
trusted setup. Importantly, while prior approaches for compressing sigma pro-
tocols into two-round WI [4,29,31] lose the public-coin property of the sigma
protocol, our approach retains it. We refer the reader to Sect. 2.1 for more details
on our technical approach.

Related Work. In a concurrent and independent work, Badrinarayanan et al. [3]
also construct statistical Zap arguments from quasi-polynomial LWE. In another
concurrent and independent work, Lombardi et al. [34] construct computational
Zap arguments from quasi-polynomial LWE. In a follow up work, Lombardi
et al. [35] construct statistical Zaps with private verifier randomness from quasi-
polynomial decisional linear assumption over groups with bilinear maps.

II. Three-Round Statistical Receiver-Private Oblivious Transfer. We
devise a general framework for constructing three-round statistical receiver-
private OT via a new notion of statistical hash commitments (SHC). This notion
is inspired by hash proof systems [11] that were previously used to design two-
round statistical sender-private OT [28,30]. Roughly speaking, an SHC scheme
is a two-round statistically hiding commitment scheme where the opening veri-
fication simply involves an equality check with a hash output (computed w.r.t.
a hashing algorithm associated with the scheme).

We devise a generic transformation from any SHC scheme with statistical
hiding property to three-round statistical receiver-private OT. The resulting
OT scheme achieves game-based security against malicious adversaries in the
plain model. For the case of senders, we in fact, achieve a stronger notion of
distinguisher-dependent simulation security [16,29]. Next, we provide two instan-
tiations of an SHC scheme:

– A direct construction based on a search assumption, specifically, the compu-
tational Diffie-Hellman (CDH) problem. This construction, in fact, achieves
perfect hiding property.

– We provide another construction of SHC based on any two-round statistical
sender-private OT. Such schemes are known based on a variety of assump-
tions, including DDH, Quadratic (or N th) Residuosity, and LWE. This yields
a new approach for OT reversal [40] in the context of game-based security.
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Putting these together, we obtain the following result:

Theorem 2 (Informal). Assuming the existence of any two-round statistical
sender-private OT (resp., polynomial hardness of CDH), there exists a three-
round statistical (resp., perfect) receiver-private OT in the plain model.

2 Technical Overview

2.1 Statistical Zap Arguments

We now prove a high-level overview of the main ideas underlying our construction
of statistical Zaps. Roughly speaking, we devise a strategy to compress sigma
protocols into statistical Zaps. While the idea of compressing sigma protocols
to two-round WI arguments has been considered before [4,29,31], the resulting
protocol in these works were inherently private coin as they use oblivious transfer
to “hide” the verifier message in the underlying sigma protocol. To obtain a
public-coin protocol, we take a different approach.

Our starting point is the recent construction of NIZKs from LWE [8,38] that
compresses any “trapdoor” sigma protocol into a NIZK by instantiating the
Fiat-Shamir transformation [19] in the CRS model. We start by briefly recalling
these constructions.

Recent Constructions of NIZKs from LWE. The main tool underlying
the constructions of NIZK in [8,38] is the notion of Correlation Intractable Hash
(CIH) functions. Roughly speaking, correlation intractability means that for any
multi-bit-output circuit f , if we sample a hash function Hk(·) from the CIH
function family, it is hard to find an input x such that Hk(x) coincides with
f(x).

The work of [38] construct a NIZK for the Graph Hamiltonian Language1

starting from a sigma protocol for the same language. Recall that the first round
prover message in the sigma protocol consists of commitments to some random
cycle graphs. Let α denote the cycle graphs. The compression strategy works
as follows: first, the prover prepares commitments to α by using a public-key
encryption scheme, where the public-key is a part of the CRS setup. Next, the
prover computes the verifier’s challenge in the sigma protocol by evaluating the
CIH function over the first round message, where the CIH key is also fixed by
the CRS setup. Given this challenge, the prover finally computes the third round
message of the sigma protocol. The NIZK proof simply consists of this transcript.

Roughly speaking, the zero knowledge property of this construction relies on
the semantic security of the public key encryption scheme (used to commit α) as
well as the programmability of the CIH. Moreover, when the public key is lossy,
then the NIZK in fact achieves statistical zero knowledge property.

The soundness property crucially relies upon the ability to extract the values
α from the commitments by using the secret key corresponding to the public-key
fixed by the CRS, as well as the correlation intractability of the CIH. Specifically,
1 Their construction, in fact, works for any trapdoor sigma protocol.
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for any instance that is not in the language, given the secret key of the public key
encryption, one can extract α from the commitment by decrypting it using the
secret key, and then check if α corresponds to cycle graphs or not. Note that this
checking procedure can be viewed as a function f . Then, if the malicious prover
can find an accepting proof for the false statement, it implies that the output of
the function f (with the secret key hardwired) evaluated over first round prover
message coincides with the verifier’s challenge bits, which are outputted by the
CIH function. However, from the correlation intractability of CIH, such a prover
shouldn’t exist.

Starting Observations. Towards constructing statistical Zaps in the plain
model, a naive first idea would be to simply let the verifier generate and send
the CRS of the (statistical) NIZK in the first round, and then require the prover
to compute and send the NIZK proof based on this CRS in the second round.
This attempt, however, fails immediately since the verifier may use the trap-
door corresponding to the CRS (specifically, the secret key corresponding to the
public-key encryption) to extract the prover’s witness.

One natural idea to address this issue is to replace the public-key encryp-
tion scheme with a two-round statistically-hiding commitment scheme. However,
while this seems to address witness privacy concerns, it is no longer clear how
to argue soundness since the proof of soundness (as discussed above) crucially
requires the ability to extract the α values.

Achieving Weak Privacy. In order to devise a solution to the above prob-
lems, let us first consider a significantly weaker goal of constructing a two-round
protocol that achieves computational soundness but only a very weak form of
privacy guarantee, namely, that the verifier can learn the prover’s witness with
probability at most one-half. Moreover, we do not require the protocol to be
public-coin, but only satisfy the weaker property of public verifiability.

To obtain such a protocol, we rely on a 2-round statistical sender-private
oblivious transfer protocol in plain model [7,28,30,36]. In such an OT scheme,
even if the receiver is malicious, at least one of the sender’s messages remains
statistically hidden from the receiver. Given such an OT scheme, we construct
the desired two-round protocol as follows:

– In the first round, the verifier acts as the OT receiver, and sends a first round
OT message with a random input bit b.

– In the second round, the prover prepares a transcript of the sigma protocol in
the same manner as in the NIZK construction earlier, with the following key
difference: it flips a coin b′ and instead of computing the first round prover
message as encryptions of α values, it computes OT sender messages where
in each message, he uses inputs m0,m1, where mb′ = α and m1−b′ = ⊥.

With probability one-half, the random bit b of the verifier and the random
coin b′ of the prover are different. In this case, the statistical sender-privacy of
the OT ensures that the α values remain hidden from the verifier. As such, the
construction satisfies weak privacy, as required.
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For computational soundness, consider any instance that is not in the lan-
guage. Suppose we have an efficient cheating prover that can generate an accept-
ing proof with non-negligible probability. In this case, we can run the cheating
prover multiple times to estimate the distribution of the random coin b′. Note
that at least one side of the random coin appears with probability no less than
half. Without loss of generality, let assume such side is 0. Now we can switch
the verifier’s random hidden bit b in the first round message of OT to 0. Since
the first round message of OT computationally hides b, the efficient cheating
prover should not notice the switch, and hence the two random bits coincide
with constant probability. However, when the two bits coincide, we can extract
α by using the receiver’s trapdoor of the OT. This allows us to contradict the
correlation intractability of CIH, in the same manner as before.

Finally, note that the verifier does not need to use the randomness of the OT
receiver to verify the proof; as such the above construction is publicly verifiable.

Amplifying Privacy. In order to amplify the privacy guarantee of the above
scheme, we consider a modified approach where we replace the random bits b
and b′ – which collide with probability one-half – with random strings of length
� that collide with 1

2� probability. Specifically, consider a two-round protocol
where the receiver’s input is a random string b of length �, while the sender also
chooses a random string b′ of length and “encrypts” some message m. Suppose
that the protocol satisfies the following “extractability” property, namely, if b
and b′ are equal, then the receiver can extract the encrypted message; otherwise,
m remains statistically hidden.

Now consider a modified version of our weakly-private two-round argument
system where we replace the two-round OT with the above “string” variant.
Note that with probability 1−2�, b and b′ chosen by the prover and the verifier
would be different, in which case, the α values would remain statistically hidden.
This observation can, in fact, be turned into a formal proof for statistical witness
indistiguishability.

The proof of computational soundness, however, now requires more work.
Specifically, we now run the cheating prover for ≈ 2� times, and estimate a b′

0

that the cheating prover is most likely to output (with probability ≥ 1/2�). We
then switch b to b′

0. If the first round message of the receiver is secure against 2�-
time adversaries, then the cheating prover would not notice the switch. We can
now extract α values and derive a contradiction in a similar manner as before.

Two Round Public-Coin Statistical-Hiding Extractable Commit-
ments. A two-round protocol that achieves statistical hiding property for the
sender as well as extractability property of the aforementioned form was first
formalized as a statistical-hiding extractable commitment scheme in the work
of [31]. Their construction, however, is private coin for the receiver. Below, we
briefly recall their construction, and then discuss how it can be adapted to the
public-coin setting.
– In the first round, the receiver samples a uniformly random string b of length

�. For each bit of the b, the receiver sends a first round 1-out-of-2 OT message
with the input bit specified by b.
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– The committer first samples a uniformly random string b′ of length �. To
commit to a message m, the committer firstly uses the xor secret sharing to
share m to � shares. It then generates � second round OT messages: for the
i-th second round OT message, if the i-th bit of b′ is 0, then the committer
puts the share in the first input slot, and puts a random value in the second
slot. Otherwise, the committer puts the share in the second slot, and put a
random value in the first slot.

From statistical sender-privacy of the underlying OT, the above construc-
tion achieves statistically hiding with probability 1 − 2�, even if the first round
messages are maliciously generated.

Let us now explain the extractability property. For any committer, there
exists a string b0 of length �, such that the second string coincides with b0 with
probability no less than 2−�. Therefore, we can switch the first round message
of the commitment to hide b0. If we set � to be sub-linear, and assume the
first round message is secure against sub-exponential-time adversaries, then the
committer would not notice the switching. Hence, when the two strings coincide,
we can extract the committed message.

The aforementioned statistical-hiding extractable commitment scheme is a
private coin scheme. To obtain a public-coin scheme, we rely on the fact that in
many known statistical sender-private OT schemes, the first round message is
pseudorandom. For example, in the recent construction of two-round statistical
sender-private OT from LWE [7], the first round message is either statistical
close to uniformly random, or is an LWE instance, which is computationally
indistinguishable from the uniform distribution.

Putting It All Together. Our final construction combines the above ideas to
obtain a statistical Zap argument system:

– In the first round, the receiver simply sends the first round message of a
two-round public-coin statistical-hiding extractable commitment scheme.

– Next, the prover samples a random string b′ and computes a transcript of
the sigma protocol in the same manner as before, except that it commits to α
values within the second round messages of the public-coin statistical-hiding
extractable commitment scheme.

We argue the statistical WI property by relying on the statistical-hiding
property of the commitment scheme. The proof of soundness relies on the
ideas discussed above. In order to base security on quasi-polynomial hardness
assumptions, we set the parameter � for the commitment scheme to be super-
logarithmic rather than sub-linear. Given any cheating prover with inverse poly-
nomial advantage, we run the cheating prover several times to estimate a string
b0 of length � such that the string chosen by the prover coincides with b0

with some inverse quasi-polynomial probability. This estimation takes quasi-
polynomial time. Next, we switch the first round verifier message to one that is
computed using b0. This switch is not noticeable to the prover since the first
round message hides b0 even from adversaries that run in time 2�. This allows us
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to extract the α values and then invoke the correlation intractability of the CIH
function as before. Note that we can construct the function f for CIH explicitly
by using the receiver randomness for the first round message.

2.2 Three Round Statistical Receiver-Private OT

In this section, we describe our main ideas for constructing statistical receiver-
private OT in three rounds in the plain model.

Prior Work Based on Super-Polynomial Time Assumptions. We start
by briefly recalling the recent work of [31] who investigated the problem of
statistical receiver-private OT in three rounds. Since security w.r.t. black-box
polynomial-time simulation is known to be impossible to achieve in three rounds
[20], [31] settled for the weaker goal of achieving security w.r.t. super-polynomial
time simulation [37]. To achieve their goal, [31] implemented an OT reversal app-
roach, starting from a two-round statistical sender-private OT to obtain a three-
round statistical receiver-private OT based on super-polynomial-time hardness
assumptions. In fact, the use of super-polynomial-time hardness assumptions
seems somewhat inherent to their approach.

Motivated by our goal of basing security on standard polynomial-time hard-
ness assumptions, we take a different approach, both in our security definition as
well as techniques. On the definitional side, we consider distinguisher-dependent
simulation security [16,29] for senders. On the technical side, we develop a gen-
eral framework for three round statistical receiver-private OT via a new notion
of statistical hash commitment. We elaborate on both of these aspects below.

Defining Security. In the setting of interactive proof systems, a well-studied
security notion is weak zero-knowledge [16] which relaxes the standard notion
of zero knowledge by reversing the order of quantifiers, namely, by allowing the
simulator to depend upon the distinguisher. A recent work of [29] dubbed this
idea as distinguisher-dependent simulation and studied it for proof systems and
some other two-party functionalities. Following their approach, in this work, we
formalize security for senders in three round OT via distinguisher-dependent
simulation. Roughly speaking, this notion requires that for every malicious PPT
receiver and PPT distinguisher, there must exist a PPT simulator that can
simulate an indistinguishable view of the receiver.

Towards achieving distinguisher-dependent simulation security for senders,
we first consider (computational) game-based security definition for senders.
Interestingly, it is not immediately clear how to define game-based security for
senders when we also require statistical receiver privacy. This is because in any
protocol that achieves statistical receiver privacy, the protocol transcript does
not fix the receiver message in an information-theoretic sense. As such, unlike the
case of two-round computational receiver-private OT (where the receiver’s input
is information-theoretically fixed by the transcript), we cannot simply require
indistinguishability of views generated using (say) sender inputs (mb,m1−b) and
(mb,m

′
1−b), where b is presumably the input bit of the receiver.
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We resolve this conundrum by using an observation from [29]. In order to
build proof systems with distinguisher-dependent simulation security, the work
of [29] used the following natural property of two-round OT with computational
privacy for senders and receivers – the distribution over receiver views generated
using (say) sender inputs (m0,m1) must be indistinguishable from at least one
of the following:

– Distribution over receiver views generated using sender inputs (m0,m0).
– Distribution over receiver views generated using sender inputs (m1,m1).

Intuitively, the first case corresponds to receiver input bit 0, while the second
case corresponds to receiver input bit 1.

It is not difficult to see that the above stated property is, in fact, meaningful
even when the receiver’s input is only fixed in a computational sense by the pro-
tocol transcript, which is the case in our setting. A recent work of [14] formulated
a game-based security definition for senders that captures the above intuition,
and we adopt it in this work. We also show that for our three round setting,
game-based security for senders can be used to achieve distinguisher-dependent
simulation security for senders.

So far, we have focused on formalizing security for senders. Formalizing secu-
rity for receivers is easier; we consider game-based security that requires statis-
tical/perfect indistinguishability of views generated with receiver inputs 0 and
1, against unbounded-time malicious senders.

In the remainder of this section, we describe our main ideas for constructing
three-round OT with game-based security for senders and receivers.

A General Framework via Statistical Hash Commitment. We introduce
a new notion of an statistical hash commitment (SHC) scheme – a two-round
statistically hiding commitment scheme where the decommitment verification
simply involves an equality check with a hash output (computed w.r.t. a hashing
algorithm associated with the scheme). We start by informally defining this
notion and then discuss how it can be used to construct three-round OT with
our desired security properties.

An SHC scheme is a two-round commitment scheme between a committer C
and a receiver R, that comes equipped with three additional algorithms – a key
generation algorithm KGen, a commitment algorithm Com, and a hash algorithm
H.

– In the first round, the Receiver R samples a key pair (pk, k) ← KGen and
sends pk to the committer C.

– In the second round, to commit a bit b ∈ {0, 1}, the committer C executes
(c, ρ) ← Com(pk, b), and sends c to the receiver R.

– In the opening phase, the committer C sends (b, ρ) to the receiver R.
– The verification algorithm only involves an equality check: R computes the

hash algorithm H using the private key k on input (c, b) and then matches the
resulting value against ρ. If the check succeeds, then R accepts the opening,
else it rejects.
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– Computational Binding This property requires that no PPT malicious
committer C can successfully compute a commitment c, and a opening ρ0
and ρ1 for both bits b = 0 and b = 1. Put differently, for an instance x
and a second round message α, a PPT malicious committer cannot compute
H(k, c, b) for both b = 0 and b = 1.

– Statistical (Perfect) Hiding This property requires that, every (possibly
maliciously computed) public key pk, the commitment of 0 and 1 are statis-
tically close.

Looking ahead, we use computational binding property of SHC to achieve
computational game-based security for senders in our construction of three-
round OT. The statistical (resp., perfect) hiding property, on the other hand, is
used to achieve statistical (resp., perfect) game-based security for receivers.

From SHC to Three-Round OT. We next describe a generic transformation
from an SHC scheme statistical/perfect receiver-private OT. In our protocol
design, the OT sender plays the role of the receiver in SHC, while the OT
receiver plays the role of the committer for SHC. In the discussion below, let b
denote the input bit of the OT receiver and let (m0,m1) denote the input bits
of the OT sender.

– In the first round, the sender samples a key pair (pk, k) using the key gener-
ation algorithm KGen for SHC, and sends pk to the sender.

– In the second round, it runs the commitment algorithm Com for SHC on
input (pk, b) to compute a second round message c and an opening ρ, and
sends c to the sender.

– In the last round, the sender samples two random strings (r0, r1) and then
computes two “mask” bits z0 and z1, one each for its inputs m0,m1. The
mask zi (for i ∈ {0, 1}) is computed as hc

(
H(k, c, i), ri

)
, where hc(·, ·) is the

Goldreich-Levin universal hardcore predicate [21].

To argue computational game-based security for senders, we crucially rely
upon the strong soundness of SHC. In particular, the strong soundness of SHC,
coupled with the security of the hardcore predicate ensures that at least one of
the two mask bits zi must be hidden from a malicious PPT receiver when the
instance x is sampled from a hard distribution. Statistical (resp., perfect) security
for receivers, on the other hand, follows from the statistical (resp., perfect) hiding
property of the commitment.

We next discuss two different constructions of SHC.

Instantiating SHC from CDH. We first describe a construction of SHC that
achieves perfect hiding property, based on CDH.

Let M =
(

1 0
y 1

)
, which must be full rank. Note that gM can be computed

using gy.

– In the first round, the receiver R samples a random 2-by-1 column vector
k as the secret key of the hash function, and sets the public key pk to be
pk = (gy, gM·k). It then sends pk to the committer C.
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– The committer C (with input bit b ∈ {0, 1}) samples a random 2-by-1 matrix
α, and uses pk to compute c = gαT ·M · g[0,b]. The committer sends c to the
verifier, and then compute ρ = gαT M·k.

– The receiver R parse c = gz, and computes H(k, c, b) = g(z−[0,b])·k. If
H(k, c, b) = ρ, then accept, otherwise reject.

We next informally argue the security of the above construction. Let us first
consider computational binding property. Intuitively, for any prover who wants
to compute two accepting last round messages ρ0, ρ1 for both b = 0 and b = 1, it
must compute the inverse of M, which requires that the prover knows the witness
y. More formally, to prove the computational binding property, we build a PPT
extractor that extracts y to derive a contradiction. Specifically, for any cheating
committer who can output two accepting ρ0, ρ1 for b = 0 and b = 1, we can divide
them to derive g[0,1]·k. If we parse k as k = (s, t), then this implies that given
(gy, gMk̇) = (gy, gsy, gsy+t), an efficient algorithm can compute g[0,1]·k = gt. We
can then divide it from gsy+t and derive gsy. This gives us an efficient adversary
for CDH.

To prove statistical hiding property, for any (potentially maliciously com-
puted) pk, the commitment of bit b ∈ {0, 1} is c = gαT ·M+[0,b]. Since the matrix
M is full rank, and α is uniformly random, we have that c is uniformly random.
Hence, the commitment statistically hides b.

Instantiating SHC from Statistical Sender-Private 2-round OT. We
next show a construction of SHC from any statistical sender-private 2-round OT
protocol (OT1,OT2,OT3), where OT3 denotes the receiver output computation
algorithm.

– In the first round, the receiver R samples a random string r of length �.
Then for each bit r[i], it invokes OT1 to generate a first round OT message
(ot1,i, sti) ← OT1(1λ, r[i]). The public key pk is set to be the tuple of messages
{ot1,i}i∈[�], while the private key k is set to be the tuple of private states
{sti}i∈[�].

– The committer C receives pk, and its input is a bit b. It first samples a random
string r′ of length �. For each position i ∈ [�], it generates the second round
OT messages ot2,i = OT2(ot1,i, r

′[i], r′[i] ⊕ b). The commitment c is set to be
the tuple of second round OT messages {ot2,i}i∈[�], and the opening ρ = r′.

– The verification process first computes H(k, c, b) as follows: parse k as
{sti}i∈[�], and the commitment c as {ot2,i}i∈[�]. Then, compute ρ0,i ←
OT3(ot2,i, sti), set ρ1,i = ρ0,i ⊕ r[i] for each i ∈ [�], and set {ρb,i}i∈[�] to
be the output of H(k, c, b). If this output equals ρ, accept, otherwise, reject.

To show the completeness of this protocol, from the construction of the com-
mitter, we know that ρ0,i = r′[i]⊕(r[i]·b). From the computation of H(k, c, b), we
have that ρb,i = ρ0,i⊕(r[i]·b) = (r′[i]⊕(r[i]·b))⊕(r[i]·b) = r′[i] = ρ. The statisti-
cal hiding property follows from the statistical hiding property of the underlying
OT. Finally, to show the construction is computational binding, our observa-
tion is that the construction of H always satisfies H(k, c, 0)⊕H(k, c, 1) = r.
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Hence, any adversary breaking the computational binding property can also
find ρ0⊕ρ1 = H(k, c, 0)⊕H(k, c, 1) = r, given only the first round messages ot1,i.
This breaks the computational receiver privacy of the OT.

3 Preliminaries

For any two (discrete) probability distributions P and Q, let SD(P,Q) denote
statistical distance between P,Q. Let Z denote the set containing all integers.
For any positive integer q, let Zq denote the set Z/qZ. Let S be a discrete set,
and let U(S) denote the uniform distribution over S. Throughout the paper,
unless specified otherwise, we use λ to denote the security parameter.

3.1 Learning with Errors

We first recall the learning with errors (LWE) distribution.

Definition 1 (LWE distribution). For positive integer n and modulus q, and
an error distribution χ over Z, the LWE distribution As,χ is the following dis-
tribution. First sample a uniform random vector a ← Z

n
q , and an error e ← χ,

then output (a, 〈a, s〉 + e) ∈ Z
n
q × Zq.

Standard instantiations of LWE distribution usually choose χ to be discrete
Gaussian distribution over Z.

Definition 2 (Quasi-polynomial LWE Assumption). There exists a poly-
nomial n = n(λ) and a small real constant c ∈ (0, 1/2) such that for any non-
uniform probabilistic oracle adversary D(·)(·) that runs in time 2O(log4 λ), we
have

Advλ(D) =
∣
∣
∣Pr

[
DU(Zn

q ×Zq)(1λ) = 1
]

− Pr
[
s ← Z

n
q : DAs,χ(1λ) = 1

]∣∣
∣ < c

Where the adversary is given oracle access to the uniform distribution U(Zn
q ×Zq)

or the LWE distribution As,χ.

In the following Lemma 1, we show that quasi-polynomial LWE assumption
implies that any adversary running in a slower quasi-polynomial time can only
have inverse quasi-polynomial advantage. We defer the proof to the full version.

Lemma 1. Assuming quasi-polynomial hardness of LWE, for any non-uniform
probabilistic adversary D that runs in time 2O(log2 λ), we have

Advλ(D)=
∣
∣
∣Pr

[
DU(Zn

q ×Zq)(1λ)=1
]

− Pr
[
s ← Z

n
q : DAs,χ(1λ)=1

]∣∣
∣ < 2−Ω(log4 λ)
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3.2 Computational Diffie-Hellman Assumption

Definition 3. Let G be a cyclic group of order q generated by g, where each
element of G can represented in a polynomial n = n(λ) number of bits. The CDH
assumption states that for any non-uniform PPT adversary A, there exists an
negligible function ν(λ) such that

Pr[x ← Zq, y ← Zq, z ← A(1λ, gx, gy) : z = gxy] < ν(λ)

3.3 Goldreich-Levin Hardcore Predicate

Definition 4. Let f be an one-way function from {0, 1}n → {0, 1}m, where
n = n(λ) and m = m(λ) are polynomials of λ. The Goldreich-Levin hardcore
predicate hc is defined as hc(x, r) = 〈x, r〉2, where x, r ∈ {0, 1}n, and 〈·, ·〉2 is
the inner product function modulo 2.

Theorem 3 (Goldreich-Levin Theorem [21], modified). If there exists an
PPT adversary A such that

Pr[x ← {0, 1}n, r ← {0, 1}n, b ← A(1λ, (f(x), r)) : b = hc(x, r)] > 1/2 + ε(λ)

where ε(λ) is an non-negligible function of λ, then there exits a PPT inverter A′

s.t.

Pr[x ← {0, 1}n, x′ ← A′(1λ, f(x)) : x′ = x] > ε′(λ)

where ε′(λ) is also an non-negligible function λ.

3.4 Statistical Zap Arguments

Zaps [15] are two-round witness indistinguishable proof systems with a public-
coin verifier message. Below, we define statistical Zap arguments, i.e., Zaps that
achieve statistical WI property and computational soundness.

Let P denote the prover and V denote the verifier. We use Trans(P(1λ, x, ω)
↔ V(1λ, x)) to denote the transcript of an execution between P and V, where
P and V both have input a statement x and P also has a witness ω for x.

Definition 5. Let L be a language in NP. We say that a two round protocol
〈P,V〉 with a public-coin verifier message is a statistical Zap argument for L if
it satisfies the following properties:

Completeness For every x ∈ L, and witness ω for x, we have that

Pr
[
Trans(P(1λ, x, ω) ↔ V(1λ, x)) is accepted by V]

= 1

Computational Soundness For any non-uniform probabilistic polynomial
time (cheating) prover P∗, there exists a negligible function ν(·) such that for
any x /∈ L, we have that Pr

[
Trans(P∗(1λ, x) ↔ V(1λ, x)) is accepted by V]

<
ν(λ).
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Statistical Witness Indistinguishability For any (unbounded cheating) ver-
ifier V∗, there exists a negligible function ν(·) such that for every x ∈ L, and
witnesses ω1, ω2 for x, we have that

SD
(
Trans(P(1λ, x, ω1) ↔ V∗(1λ, x)),Trans(P(1λ, x, ω2) ↔ V∗(1λ, x))

)
< ν(λ)

3.5 Statistical Sender-Private Oblivious Transfer

Definition 6. A statistical sender-private oblivious transfer (OT) is a tuple of
algorithms (OT1,OT2,OT3):

OT1(1λ, b): On input security parameter λ, a bit b ∈ {0, 1}, OT1 outputs the first
round message ot1 and a state st.

OT2(1λ, ot1,m0,m1): On input security parameter λ, a first round message ot1,
two bits m0,m1 ∈ {0, 1}, OT2 outputs the second round message ot2.

OT3(1λ, ot2, st): On input security parameter λ, the second round message ot2,
and the state generated by OT1, OT3 outputs a message m.

We require the following properties:

Correctness For any b,m0,m1 ∈ {0, 1},

Pr
[
(ot1,st)←OT1(1

λ,b),ot2←OT2(1
λ,ot1,m0,m1),

m←OT3(1
λ,ot2,st)

: m = mb

]
= 1

Statistical Sender Privacy There exists a negligible function ν(λ) and an
deterministic exponential time extractor OTExt such that for any (potential
maliciously generated) ot1, OTExt(1λ, ot1) outputs a bit b ∈ {0, 1}. Then
for any m0,m1 ∈ {0, 1}, we have SD

(
OT2(1λ, ot1,m0,m1),OT2(1λ, ot1,mb,

mb)) < ν(λ).
Quasi-polynomial Pseudorandom Receiver’s Message For any b ∈ {0, 1},

let ot1 be the first round message generated by OT1(1λ, b). For any non-
uniform probabilistic adversary D that runs in time 2O(log2 λ), we have

Advλ(D) =
∣
∣
∣
∣ Pr

[D(1λ, ot1) = 1
]

− Pr
[
u ← {0, 1}|ot1| : D(1λ, u) = 1

] ∣
∣
∣
∣ < 2−Ω(log4 λ)

Lemma 2. Assuming quasi-polynomial hardness of LWE, there exists a statis-
tical sender private oblivious transfer scheme.

A statistical sender-private OT scheme from LWE was recently constructed
by [7]. Their construction satisfies correctness and statistical sender-privacy. Fur-
ther, the receiver’s message in their scheme is pseudorandom, assuming LWE. We
observe that assuming quasi-polynomial LWE and using Lemma1, their scheme
also satisfies quasi-polynomially pseudorandom receiver’s message property.
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3.6 Correlation Intractable Hash Function

The following definition is taken verbatim from [38].

Definition 7 (Searchable Relation [38]). We say that a relation R ⊆ X ×Y
is searchable in size S if there exists a function f : X → Y that is implementable
as a Boolean circuit of size S, such that if (x, y) ∈ R then y = f(x).

Correlation intractable hash function is a family of keyed hash functions sat-
isfying the following property: for any searchable relation R, it is hard for a com-
putationally unbounded adversary to find an element x such that (x, f(x)) ∈ R.

Definition 8 (Correlation Intractable Hash Function, slightly mod-
ified from [38]). Correlation Intractable Hash Function (CIH) is a triple of
algorithms (KGen,FakeGen,H(·)(·)), with the following properties:

Let s = s(λ), � = �(λ), d = d(λ) be poly(λ)-bounded functions. Let {Rλ,s,�,d}λ

be a family of searchable relations, where each relation R ∈ Rλ,s,�,d is searchable
by a circuit of size s(λ), output length �(λ) and depth d(λ).

Statistical Correlation Intractable There exists a negligible function ν(·)
such that, for any relation R ∈ Rλ,s,�,d, and circuit Cλ that searches
for a witness for R, we have Pr[k ← FakeGen(1λ, 1|Cλ|, Cλ) : ∃x s.t.
(x,Hk(x)) ∈ R] < ν(λ).

Quasi-polynomial Pseudorandom Fake Key For any circuit Cλ with size
s, output length �, and depth d, KGen(1λ, 1|Cλ|) outputs an uniform random
string. Furthermore, for any non-uniform adversary D that runs in time
2O(log2 λ), we have

∣
∣
∣
∣
Pr

[

D(1λ, 1|Cλ|,KGen(1λ, 1|Cλ|)) = 1
]

− Pr
[

D(1λ, 1|Cλ|,FakeGen(1λ, 1|Cλ|, Cλ)) = 1
]
∣
∣
∣
∣
≤ 2−Ω(log4 λ)

Theorem 4. Assuming quasi-polynomial hardness of LWE, there exists a con-
struction of correlation intractable hash function with quasi-polynomial pseudo-
random fake key.

The construction of such a function is given in [8,38]. Specifically, we use the
construction of [38], which satisfies statistical correlation intractability. Moreover,
the FakeGen algorithm in their construction simply consists of some ciphertexts
that are pseudorandom assuming LWE. Thus, if we assume quasi-polynomial
hardness of LWE, their construction satisfies quasi-polynomial pseudorandom
fake key property.

For our application, we require a slightly stronger property than statistical
correlation intractability as defined above. Specifically, we require that the dis-
tinguishing probability in statistical correlation intractability is 2−λ for a special
class of relations.

We show in Lemma 3 that by using parallel repetition, we can construct a
CIH with the above property from any CIH.
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Lemma 3 (Amplification of Statistical Correlation Intractability).
There exists a correlation intractable hash function (KGen,FakeGen,H(·)(·)) such
that the following additional property holds.

2−λ-Statistical Correlation Intractability Let {Cλ}λ be a family of Boolean
circuits, where Cλ has polynomial size s(λ), polynomial depth d(λ), and out-
puts a single bit. There exists a polynomial � = �(λ) such that the following
holds. Let

−−→
Cλ,� be the circuit

−→
Cλ(c1, c2, . . . , c�) = (Cλ(c1), Cλ(c2), . . . , Cλ(c�)),

then for large enough λ,

Pr
[
k ← FakeGen

(
1λ, 1|−−→

Cλ,�|,
−−→
Cλ,�

)
: ∃x s.t. Hk(x) =

−−→
Cλ,�(x)

]
< 2−λ

The CIH in [38] already satisfies the above property. In the full version, we
describe a generic transformation from any CIH to one that achieves the above
property.

4 Statistical Zap Arguments

4.1 Public Coin Statistical-Hiding Extractable Commitments

In this section, we start by defining and constructing a key building block in our
construction of statistical Zaps, namely, a statistical-hiding extractable commit-
ment scheme. The notion and its construction are adapted from [31], with some
slight modifications to fit in our application. The main difference between our
definition and that of [31] is that we require the first round message to be public
coin as opposed to private-coin.

Our syntax departs from the classical definition of commitment schemes. We
consider a tuple of four algorithms (Com1,FakeCom1,Com2,Dec), where Com1

corresponds to the honest receiver’s algorithm that simply outputs a uniformly
random string. Com2 corresponds to the committer’s algorithm that takes as
input a message m as well as a random string b′ of length μ and outputs a
commitment string. We require two additional algorithms: (1) FakeCom1 that
takes a binary string b of length μ as input and produces a first round message
that “hides” the string b, and (2) Dec that takes as input a transcript generated
using FakeCom1 and Com2 and outputs the committed message if the strings b
and b′ used for computing the transcript are equal.

Let C, R denote the committer and the receiver, respectively. We now proceed
to give a formal definition.

Definition 9. A public coin statistical-hiding extractable commitment is a tuple
(Com1,FakeCom1,Com2,Dec). The commit phase and open phase are defined as
follows.

Commitment Phase

Round 1 On input parameters (1λ, 1μ), R executes Com1 to sample a uniform
random string com1. R sends com1 to C.
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Round 2 On input (1λ,m), C chooses b′ ← {0, 1}μ uniformly at random and
computes com2 ← Com2(1λ, 1μ, com1,b′,m; r) with randomness r. C sends
(b′, com2) to R.

Opening Phase
C sends the message and the randomness (m, r) to R. R checks if com2 =
Com2(1λ, 1μ, com1,b′,m; r).

We require the following properties of the commitment scheme.

Statistical Hiding There exists a negligible function ν(·), a deterministic expo-
nential time algorithm ComExt, and a randomized simulator Sim, such that
for any fixed (potentially maliciously generated) com1, ComExt(1λ, 1μ, com1)
outputs b ∈ {0, 1}μ, and for any b′ �= b, and m ∈ {0, 1}, we have

SD
(
Com2(1λ, 1μ, com1,b′,m),Sim(1λ, 1μ, com1)

)
< μ · ν(λ) (1)

Quasi-polynomial Pseudorandom Receiver’s Message For any b ∈
{0, 1}μ, FakeCom1(1λ, 1μ,b) and a uniform random string outputted by
Com(1λ, 1μ) are quasi-polynomially indistinguishable. Specifically, for any
non-uniform adversary D that runs in time 2O(log2 λ), we have

∣
∣
∣
∣ Pr[D(1λ, 1μ,Com1(1λ, 1μ)) = 1]

− Pr[D(1λ, 1μ,FakeCom1(1λ, 1μ,b)) = 1]
∣
∣
∣
∣ ≤ μ · 2−Ω(log4 λ)

Extractable FakeCom1 and Dec satisfy the following property. For any b ∈
{0, 1}μ, we have

Pr
[
(com1,st)←FakeCom1(1

λ,1μ,b),

com2←Com2(1
λ,1μ,com1,b,m)

: Dec(1λ, 1μ, st, com2) = m
]

= 1

Lemma 4. Assuming quasi-polynomial hardness of LWE, there exists a public
coin statistical-hiding extractable commitment scheme.

In the full version, we construct a public coin statistical hiding extractable
commitment by slightly modifying the commitment scheme of [31]. Their con-
struction already satisfies extractability and statistical hiding properties. How-
ever, their construction, as originally described, is private coin. We note that the
receiver’s message in their scheme simply consists of multiple receiver messages
of a statistical sender-private OT scheme. Then, by instantiating their construc-
tion with an OT scheme that satisfies quasi-polynomial pseudorandom receiver’s
message property (see Sect. 3.5), their scheme can be easily adapted to obtain a
public coin statistical-hiding extractable commitment. Specifically, in the modi-
fied construction, the honest receiver’s algorithm Com(1λ, 1μ) simply computes
a uniform random string, while FakeCom1 corresponds to the receiver algorithm
in the construction of [31].
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4.2 Our Construction

In this section, we describe our construction of a statistical Zap argument system
for Graph Hamiltonicity, which is an NP-Complete problem.

Notation. We describe some notation that is used in our construction. Let
LHAM denote the Graph Hamiltonicity language over graphs G = (V,E) of n
vertices, where V denotes the set of vertices and E denotes the set of edges
in G. We slightly abuse notation and use G to denote its adjacency matrix
G = (Gi[s, t])s,t∈[n].

Let (Com1,FakeCom1,Com2,Dec) be a public coin statistical-hiding
extractable commitment scheme (Definition 9). We set the parameter μ of the
commitment scheme as Θ(log2 λ). Let (KGen,FakeGen,H(·)(·)) be a family of
CIH (Definition 8). We choose the polynomial � = �(λ) in Lemma 3 such that
the CIH is 2−λ-statistical correlation intractable.

Circuit Cst. Let Cst denote the following Boolean circuit.

Input: a n × n matrix c = (cs,t)s,t∈[n].
Output: a boolean value.

1. For any s, t ∈ [n], execute G[s, t] = Dec(1λ, 1μ, st, cs,t).
2. If G = (Gi[s, t])s,t∈[n] is a cycle graph, then output 0. Otherwise output 1.

For ease of exposition, we extend the notation Cst to a series of matrices
(c1, c2, . . . , c�). Specifically, Cst(c1, c2, . . . , c�) is defined as (Cst(c1), Cst(c2), . . . ,
Cst(c�)).

Construction. The verifier V and prover P are both given input the security
parameter λ and a graph G = (V,E) of n vertices. The prover is additionally
given as input a witness ω for G.

Round 1 Verifier V computes and sends uniform random strings (com1 ←
Com1(1λ, 1μ), k ← KGen(1λ, 1|Cst|), where Cst takes � separate n × n matrices
as input, and outputs � bits.

Round 2 Prover P does the following:
1. Choose a random b′ ← {0, 1}μ.
2. Compute � first round messages of Blum’s sigma protocol for Graph

Hamiltonicity. Specifically, for every i ∈ [�], first sample a random
cycle graph Gi = (Gi[s, t])s,t∈[n]. Next, for each s, t ∈ [n], compute
ci[s, t] ← Com2(1λ, 1μ, com1,b′, Gi[s, t]; r

(s,t)
i ) using randomness r

(s,t)
i .

Finally let ci = (ci[s, t])s,t∈[n].
3. Compute (b1, b2, . . . , b�) = Hk(c1, . . . , c�).
4. For every i ∈ [�], compute the answer to challenge bi in Blum’s sigma

protocol. Specifically, if bi = 0, then set zi = (Gi, (r
(s,t)
i )s,t∈[n]). Else, if

bi = 1, then compute a one-to-one map φ : G → Gi such that φ(w) is the
cycle Gi, and set zi = (φ, (r(s,t)

i )(s,t)=φ(e),e/∈E).
5. Send Π = (b′, (ci)i∈[�], (zi)i∈[�]) to the verifier.
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Verification Upon receiving the proof Π = (b′, (ci)i∈[�], (zi)i∈[�]), the verifier
first computes (b1, b2, · · · , b�) = Hk(c1, c2, . . . , c�), and then verifies each
copy (ci, bi, zi) of the proof as in Blum’s protocol. Specifically, if bi = 0,
then parse zi = (Gi, (r

(s,t)
i )s,t∈[n]) and check if ci = (Com2(1λ, 1μ, com1,

b′, Gi[s, t]; r
(s,t)
i )s,t∈[n] and Gi is a cycle graph. Otherwise if bi = 1, then parse

zi = (φ, (r(s,t)
i )(s,t)=φ(e),e/∈E) and check if φ is a one-to-one map, and for each

e /∈ E, and (s, t) = φ(e), check if ci[s, t] = Com2(1λ, 1μ, com1,b′, 0; r(s,t)
i ). If

all of the checks succeed, then accept the proof, otherwise reject.

This completes the description of our construction. We defer the proof of
completeness and statistical witness indistinguishability to the full version. We
next prove that our construction satisfies computational soundness.

Theorem 5. The construction in Sect. 4.2 satisfies computational soundness.

Suppose G /∈ LHAM and there exists a cheating prover P∗ such that
Pr[P∗ succeeds] ≥ 1/λc for infinite many λ. Then for each such λ, there must
exist a b′

0 such that Pr[P∗ succeeds ∧ b′ = b′
0] ≥ λ−c2−μ, where b′ is outputted

by the cheating prover P∗ in the second round.

b′
0-Extractor Ext. We first describe an algorithm Ext that extracts a b′

0 from
any cheating prover P∗, such that Pr[P∗ succeeds ∧ b′ = b′

0] ≥ λ−c2−μ−1. Ext
receives oracle access to P∗.

1. Initialize an empty multiset S = {}.
2. For j ∈ [21.5μ], set fresh random tape for P∗. Compute and send uniformly

random first round message (Com1(1λ, 1μ), k ← KGen(1λ, 1|Cst|)) to P∗. Let
(b′(j), (c(j)i )i∈[�], (z

(j)
i )i∈[�]) be the response of P∗. Execute the verifier algo-

rithm; if verification succeeds, then append multiset S = S ∪ {b′(j)}.
3. Output b′

0 that appears for the maximum number of times in the multiset S.

In the sequel, we denote pλ = Pr[P∗ succeeds].

Lemma 5. The algorithm Ext runs in time O(21.5μ) = 2O(log2 λ). Furthermore,
with probability 1−exp(−Ω(20.5μpλ)), it outputs a b′

0 such that Pr[P∗ succeeds ∧
b′ = b′

0] ≥ pλ/2−μ−1.

We defer the proof of the Lemma 5 to the full version. Now we use the extrac-
tor Ext to build the following hybrids.

Hybrid H0: Compute b′
0 ← Ext(P∗). Generate uniformly random string

(com1 ← Com1(1λ, 1μ), k ← KGen(1λ, 1|Cst|)). Send (com1, k) to P∗. Let
(b′, (ci)i∈[�], (zi)i∈[�]) be the output of P∗.
If b′ = b′

0 and (b′, (ci)i∈[�], (zi)i∈[�]) passes the verification, then the hybrid
outputs 1, otherwise outputs 0.
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Hybrid H1: Compute b′
0 ← Ext(P∗). Generate (com1, st) ← FakeCom(1λ, 1μ,b′

0),
k ← KGen(1λ, 1|Cst|). Send (com1, k) to P∗. Let (b′, (ci)i∈[�], (zi)i∈[�]) be the
output of P∗.
If b′ = b′

0 and (b′, (ci)i∈[�], (zi)i∈[�]) passes the verification, then the hybrid
outputs 1, otherwise output 0.

Hybrid H2: Compute b′
0 ← Ext(P∗). Generate (com1, st) ←

FakeCom(1λ, 1μ,b′
0), k ← FakeGen(1λ, 1|Cst|, Cst). Send (com1, k) to P∗. Let

(b′, (ci)i∈[�], (zi)i∈[�]) be the output of P∗.
If b′ = b′

0 and (b′, (ci)i∈[�], (zi)i∈[�]) passes the verification, then the hybrid
outputs 1, otherwise outputs 0.

This completes the description of the hybrids. We now prove Lemmas 6 and
7 to establish the indistinguishability of the hybrids.

Lemma 6. |Pr[H0 = 1] − Pr[H1 = 1]| < 2−Ω(log4 λ).

Proof. We prove this Lemma by relying on quasi-polynomial pseudorandom
receiver’s message property of the commitment scheme (Definition 9). We build
the following adversary D trying to distinguish the receiver’s message of com-
mitment scheme from random string.

D takes as input (1λ, 1μ, com1). Firstly, D computes b′
0 ← Ext(P∗).

Then, it generates k ← KGen(1λ, 1|Cst|) and sends (com1, k) to P∗. Let
(b′, (ci)i∈[�], (zi)i∈[�]) be the response of P∗. If b′ = b′

0 and (b, (ci)i∈[�], (zi)i∈[�])
passes the verification, then output 1. Otherwise output 0.

Now D(1λ, 1μ,Com1(1λ, 1μ)) simulates the environment of H0 for P∗. Hence,
Pr

[D(1λ, 1μ,Com1(1λ, 1μ)) = 1
]

= Pr[H0 = 1]. Also, D(1λ, 1μ,FakeCom(1λ, 1μ,

b′
0)) simulates the environment of H1. Hence, Pr

[D(1λ, 1μ,FakeCom1(1λ, 1μ,
b′
0)) = 1] = Pr[H1 = 1].

From Lemma 5, D runs in time 2O(log2 λ). Since the distributions Com(1λ, 1μ)
and FakeCom(1λ, 1μ,b′

0) are quasi-polynomially indistinguishable,

| Pr
[D(1λ, 1μ,Com1(1λ, 1μ)) = 1

]

− Pr
[D(1λ, 1μ,FakeCom1(1λ, 1μ,b′

0) = 1
] | < 2−Ω(log4 λ)

Thus, we derive that |Pr[H0 = 1] − Pr[H1 = 1]| ≤ 2−Ω(log4 λ). ��

Lemma 7. |Pr[H1 = 1] − Pr[H2 = 1]| < 2−Ω(log4 λ).

Proof. We prove this lemma by relying on quasi-polynomial pseudorandom fake
key property of CIH. We build adversary D trying to distinguish the fake CIH
key from uniform random string.

D takes as input (1λ, 1μ, k). It first computes b′
0 ← Ext(P∗). Next,

it generates com1 ← FakeCom1(1λ, 1μ,b′
0) and sends (com1, k) to P∗. Let

(b′, (ci)i∈[�], (zi)i∈[�]) be the response of P∗. If b′ = b′
0 and (b, (ci)i∈[�], (zi)i∈[�])

passes the verification, then output 1. Otherwise output 0.
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Now D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) simulates the environment of H1 for
P∗. Hence, Pr[D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) = 1] = Pr[H1 = 1].

Also, D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) simulates the environment of
H2. Hence, Pr[D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) = 1] = Pr[H2 = 1].

From Lemma 5, D runs in time 2O(log2 λ). Since the distributions
KGen(1λ, 1|Cst|) and FakeGen(1λ, 1|Cst|, Cst) are quasi-polynomially indistinguish-
able, we have

| Pr[D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) = 1]

− Pr[D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) = 1]| < 2−Ω(log4 λ)

Thus, we derive |Pr[H1 = 1] − Pr[H2 = 1]| ≤ 2−Ω(log4 λ). ��
We now prove the following lemma to lower bound the probability that the

output of H2 is 1.

Lemma 8. Pr[H2 = 1] ≥ λ−c2−μ−2 − 2 · 2−Ω(log4 λ)

Proof. From Lemma 5, we have

Pr[H0 = 1] = Pr[b′
0 ← Ext(P∗) : P∗ succeeds ∧ b′ = b′

0]

≥ Pr
[
b′
0 ← Ext(P∗) : P∗ succeeds ∧ b′ = b′

0∧
Pr[P∗ succeeds ∧ b′ = b′

0] > pλ2−μ−1
]

= Pr[P∗ succeeds ∧ b′ = b′
0|Pr[P∗ succeeds ∧ b′ = b′

0] > pλ2−μ−1]

· Pr[b′
0 ← Ext(P∗) : Pr[P∗ succeeds ∧ b′ = b′

0] > pλ2−μ−1]

> λ−c2−μ−1 · (
1 − exp

(−Ω(20.5μpλ)
)) ≥ λ−c2−μ−2

Combining the above with the Lemmas 6 and 7, we have Pr[H2 = 1] ≥
λ−c2−μ−2 − 2 · 2−Ω(log4 λ). ��

In the remainder of the proof, we use the 2−λ-correlation intractability prop-
erty of the CIH to reach a contradiction. Towards this, we first show in the fol-
lowing lemma that H2 = 1 implies that there exists a ‘collision’ for CIH and Cst.
Specifically, we show that any accepting proof in hybrid H2 such that b′ = b′

0,
we can find a ‘collision’ for CIH and Cst.

Lemma 9. If hybrid H2 outputs 1, denote COM = (c1, c2, . . . , c�) in the accept-
ing proof. Then Hk(COM) = Cst(COM).

Proof. We will prove by contradiction. Denote (b1, b2, . . . , b�) = Hk(COM). Sup-
pose there is an i ∈ [�] such that bi �= Cst(ci). Now we consider two cases: (1).
bi = 0, Cst(ci) = 1, (2). bi = 1, Cst(ci) = 0.

For case (1), since bi = 0, zi must be of the form (Gi, (r
(s,t)
i )s,t∈[n]), where Gi

is a cycle graph, and ci[s, t] = Com2(1λ, 1μ, com1,b′, Gi[s, t]; r
(s,t)
i ) for each s, t ∈

[n]. From the extractability property of the commitment scheme and b′ = b′
0,
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we have Dec(1λ, 1μ, st, ci[s, t]) = Gi[s, t]. Since Gi is a cycle graph, Cst(ci) = 0.
Therefore, we reach a contradiction.

For case (2), since bi = 1, zi must be the form (φ, (r(s,t)
i )e/∈E,(s,t)=φ(e)),

where φ is a one-to-one map, and ci[s, t] = Com2(1λ, 1μ, com1,b′, 0; r(s,t)
i )

for each e /∈ E, (s, t) = φ(e). Let Gi[s, t] = Dec(1λ, 1μ, st, ci[s, t]) for each
s, t ∈ [n]. Since Cst(ci) = 0, Gi is a cycle graph. For each edge e′ = (s′, t′)
of the cycle graph, Gi[s′, t′] = 1. Now we will show that (φ−1(s′), φ−1(t′)) ∈
E. We show this by contradiction. Suppose (φ−1(s′), φ−1(t′)) /∈ E, then
ci[s′, t′] = Com2(1λ, 1μ, com1,b′, 0; r(s

′,t′)
i ). From extractable property of com-

mitment scheme, Dec(1λ, 1μ, st, ci[s′, t′]) = 0, which implies Gi[s′, t′] = 0. Thus,
we find a contradiction. Hence, for each edge e in cycle graph Gi, φ−1(e) is an
edge in G. Now we have found a Hamiltonian cycle φ−1(Gi) ⊆ G, which is a
contradiction to G /∈ LHAM. ��

Combining Lemmas 8 and 9, we derive that

Pr
[
k ← FakeGen(1λ, 1|Cst|, Cst) : ∃COM,Hk(COM) = Cst(COM)

]

≥λ−c2−μ−2 − 2 · 2−Ω(log4 λ)

However, the above contradicts the 2−λ-statistical correlation intractability
of CIH.

5 Statistical Hash Commitments

Intuitively speaking, a statistical hash commitment (SHC) scheme is a two-round
statistical hiding commitment scheme, where the verification of the decommit-
ment is a simple equality check with a hash output (computed w.r.t. a hashing
algorithm associated with the scheme).

Definition 10. A statistical hash commitment scheme is a tuple of algorithms
(KGen,Com,H, C,R). It proceeds as follows.

Round 1 R executes (pk, k) ← KGen(1λ), and sends pk to C.
Round 2 C’s input is a bit b ∈ {0, 1}. Compute (c, ρ) ← Com(pk, b) and send c

to R.
Opening C sends (b, ρ) to the R.
Verification R accepts iff ρ is equal to H(k, c, b).

We require the scheme to satisfy the following properties.

Completeness For any b ∈ {0, 1}, we have

Pr
[
(pk, k) ← KGen(1λ), (c, ρ) ← Com(pk, b) : ρ = H(k, c, b)

]
= 1



Statistical Zaps and New Oblivious Transfer Protocols 691

Computational Binding We say that the commitment scheme is computa-
tional binding, if for any non-uniform probabilistic polynomial time adversary
A, there exists a negligible function ν(·) such that

Adv(A)
Δ
= Pr

[

(pk, k) ← KGen(1λ), (c, ρ0, ρ1) ← A(1λ, pk) : ρ0=H(k,c,0)∧
ρ1=H(k,c,1)

]

< ν(λ)

Statistical Hiding For any (maliciously generated) pk, there exists a negligible
function ν(λ) such that SD (c0, c1) ≤ ν(λ), where (cb, ρb) ← Com(pk, b) for
every b ∈ {0, 1}. If ν(λ) = 0, then we say that the scheme is perfectly hiding.

5.1 Construction from CDH

Let q be an integer, and G = 〈g〉 be a cyclic group generated by g of order q.

Construction. We describe our construction of the SHC scheme.

KGen(1λ) Randomly sample s, t ← Zq, and x ← G. Output (pk = (x, gs, xs ·
gt), k = (s, t)).

Com(pk, b) Parse pk as (x, a1, a2) ∈ G×G. Randomly sample u, v ← Zq. Output
(c = (gu · xv, gv · gb), ρ = au

1 · av
2).

H(k, c, b) Parse c as (z1, z2) ∈ G×G, and parse k as (s, t). Output zs
1 · (z2 · g−b)t.

We now prove the properties of this construction. We defer the proof of
completeness to the full version.

Lemma 10 (Computational Binding). Assuming CDH, the above construc-
tion of SHC is computational binding.

Proof. For any n.u. probabilistic polynomial time adversary A, we construct the
following adversary A′ for CDH problem.

Adversary A′(1λ, gs, gy). Sample u ← Zq uniformly at random. Set x =
gy, pk = (x, gs, gu). Execute (c, ρ0, ρ1) ← A(1λ, pk). Output gu · ρ−1

0 · ρ1.
We now prove that Pr[a ← A′(1λ, gs, gy) : a = gsy] ≥ Adv(A). Since in

our construction, pk = (x, gs, xs · gt), where t is uniformly random. The second
component of pk is uniformly random over G. Hence, the distributions of pk in
real execution and the adversary A′ are identical.

Now for any u ∈ Zq, there exists an unique t′ ∈ Zq such that xs · gt′
= gu.

Then, for adversary A′, we have

Pr[a = gsy] = Pr[gu · ρ−1
0 · ρ1 = gsy] = Pr[gt′

= ρ0 · ρ−1
1 ]

≥Pr [ρ0 = H(k, c, 0) ∧ ρ1 = H(k, c, 1)] = Adv(A)

where k = (s, t′). By the hardness of CDH, we conclude that Adv(A) is
negligible. ��
Lemma 11 (Perfect Hiding). The Construction 5.1 is perfect hiding.

Proof. For any fixed pk = (x, a1, a2), since v is uniformly random, gv · gb is
uniformly random. Furthermore, conditioned on gv · gb, since u is uniformly
random, gu · xv is also uniformly random. Hence, c is uniformly random over
G × G. ��
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5.2 Construction from Any 2-round Statistical Sender-Private OT

We now describe our construction of SHC from statistical sender-private OT.
Let � = �(λ) be a polynomial in λ, and let (OT1,OT2,OT3) be any statistical
sender private 2-round OT scheme.

KGen(1λ) Randomly sample r ← {0, 1}�.
For i ∈ [�], execute (ot1,i, sti) ← OT1(1λ, r[i]).
Output pk = ((ot1,i)i∈[�], k = (sti)i∈[�]).

Com(pk, b ∈ {0, 1}) Parse pk as (ot1,i)i∈[�]. Randomly sample r′ ← {0, 1}�.
For i ∈ [�], execute ot2,i ← OT2(ot1,i, r

′[i], r′[i] ⊕ b).
Output (c = (ot2,i)i∈[�], ρ = r′).

H(k, c, b) Parse k = (sti)i∈[�], c = (ot2,i)i∈[�].
For i ∈ [�], Let ρ0,i ← OT3(sti, ot2,i).
Let ρb = (ρ0,i ⊕ (r[i] · b))i∈[�].
Output ρb.

We defer the proof of completeness and statistical hiding property to the full
version Below, we prove computational binding.

Lemma 12 (Computational Binding). Assuming computational indistin-
guishability of OT1, the above construction of SHC is computational binding.

Proof. For any PPT adversary A trying to break the computational binding
property, we construct the following hybrids.

Hybrid H0 Randomly sample r ← {0, 1}�. For i ∈ [�], execute (ot1,i, sti) ←
OT1(1λ, r[i]). Let pk = (ot1,i)i∈[�]. Execute (c, ρ0, ρ1) ← A(1λ, pk). If
ρ0 ⊕ ρ1 = r, then output 1, otherwise output 0.

Hybrid Hi∗
0.5 Randomly sample r ← {0, 1}�. For 1 ≤ i ≤ i∗, execute (ot1,i, sti)

← OT1(1λ, 0). For i∗ < i ≤ �, execute (ot1,i, sti) ← OT1(1λ, r[i]). Let pk =
(ot1,i)i∈[�]. Execute (c, ρ0, ρ1) ← A(1λ, pk). If ρ0 ⊕ ρ1 = r, then output 1,
otherwise output 0.

Hybrid H1 Randomly sample r ← {0, 1}�. For i ∈ [�],
execute (ot1,i, sti) ← OT1(1λ, 0). Let pk = (ot1,i)i∈[�]. Execute (c, ρ0, ρ1) ←
A(1λ, pk). If ρ0 ⊕ ρ1 = r, then output 1, otherwise output 0.

Lemma 13. Pr[H0 = 1] ≥ Adv(A).

Proof. From the construction of H, we now that H(k, c, 0)⊕H(k, c, 1) = r.
Hence, when A wins the security game, (c, ρ0, ρ1) ← A(1λ, pk) with ρ0 =
H(k, x, 0)∧ ρ1 = H(k, x, 1) implies ρ0 ⊕ ρ1 = H(k, x, 0) ⊕ H(k, x, 1) = r. ��
Lemma 14. Hybrid H0 and Hybrid H0

0.5 are identical. Furthermore, there exits
a negligible function ν(λ) such that for each i = 0, . . . , � − 1, |Pr[Hi∗

0.5 = 1] −
Pr[Hi∗+1

0.5 = 1]| < ν(λ).
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Proof. When i∗ = 0, all ot1,i are generated in the same way as in Hybrid H0, for
all i ∈ [�]. Hence, Hybrid H0 and Hybrid H0

0.5 are identical.
To show Hi∗

0.5 ≈ Hi∗+1
0.5 , we consider the following adversary D for receiver’s

computational privacy.

D(1λ, ot1) Randomly sample r ← {0, 1}�. For i ∈ [�] \ {i∗ + 1}, let (ot1,i, sti) ←
OT1(1λ, r[i]). If r[i∗ + 1] = 0, then let (ot1,i∗+1, sti∗+1) ← OT1(1λ, 0), other-
wise let ot1,i∗+1 = ot1. Let pk = (ot1,i)i∈[�]. Execute (c, ρ0, ρ1) ← A(1λ, pk).
If ρ0 ⊕ ρ1 = r, then output 1, otherwise output 0.

If ot1 is generated from OT1(1λ, 0), then D simulates the environment of
Hi∗+1

0.5 for A. Hence, Pr[Hi∗+1
0.5 = 1] = Pr[(ot1, st) ← OT1(1λ, 0) : D(1λ, ot1) = 1].

If ot1 is generated from OT1(1λ, 1), then D simulates the environment of Hi∗
0.5

for A. Hence, Pr[Hi∗
0.5 = 1] = Pr[(ot1, st) ← OT1(1λ, 1) : D(1λ, ot1) = 1].

From the indistinguishability of ot1, we know that the right hand ot01 gener-
ated by OT1(1λ, 0) and ot11 generated by OT1(1λ, 1) are indistinguishable. Hence,
there exits a negligible function ν(λ) such that |Pr[Hi∗

0.5 = 1] − Pr[Hi∗+1
0.5 = 1]| <

ν(λ). ��
Lemma 15. Hybrid H�

0.5 is identical to H1. Furthermore, Pr[H1 = 1] = 1/2�.

Proof. When i∗ = �, we know that all ot1,i are generated in the same way as in
Hybrid H1. Hence, H�

0.5 and H1 are identical.
In Hybrid H1, pk is completely independent of r. Hence, Pr[H1 = 1] =

Pr[ρ0 ⊕ ρ1 = r] = 1/2�. ��
By the hybrid argument, combining Lemmas 13, 14, and 15, we have

Adv(A) < neg(λ). ��
We defer the proof of statistical hiding property to the full version.

6 Three Round Statistical Receiver-Private Oblivious
Transfer

We start by presenting the definition for 3-round statistical receiver-private obliv-
ious transfer. We capture statistical receiver privacy via a game-based defini-
tion. We consider two definitions to capture computational sender privacy: a
game-based definition that intuitively requires that any malicious receiver who
interacts with an honest sender can only learn one of its two inputs, and a
distinguisher-dependent simulation based definition. We defer the formal treat-
ment of the latter as well as the proof of implication from the former to the
latter definition to the full version.

Definition 11 (3-round Statistical Receiver-Private Oblivious Trans-
fer). A 3-round oblivious transfer is a tuple of algorithms (OT1,OT2,OT3,OT4),
which specify the following protocol.

Round 1 The sender S computes (ot1, stS) ← OT1(1λ) and sends ot1 to the
receiver R.
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Round 2 The receiver R with input β ∈ {0, 1}, computes (ot2, stR) ←
OT2(1λ, ot1, β) and sends ot2 to S.

Round 3 S with input (m0,m1) ∈ {0, 1}2 computes ot3 ← OT3(1λ,
ot2, stS ,m0,m1) and sends ot3 to the receiver.

Message Decryption The receiver computes m′ ← OT4(1λ, ot1, ot3, stR).

We require the protocol to satisfy the following properties.

Correctness2 For any β ∈ {0, 1}, (m0,m1) ∈ {0, 1}2, we have

Pr

⎡

⎣
(ot1,stS)←OT1(1

λ)

(ot2,stR)←OT2(1
λ,ot1,β)

ot3←OT3(1
λ,ot2,stS ,m0,m1)

m′←OT4(1
λ,ot1,ot3,stR)

: m′ = mβ

⎤

⎦ = 1

Game-Based Statistical Receiver-Privacy For any (potentially maliciously
generated) ot∗1, denote (ot(0)2 , st

(0)
R ) ← OT2(1λ, ot∗1, 0), and (ot(1)2 , st

(1)
R ) ←

OT2(1λ, ot∗1, 1). Then we have SD(ot(0)2 , ot
(1)
2 ) < ν(λ), where ν(·) is a neg-

ligible function.
Game-Based Computational Sender-Privacy For any probabilistic polyno-

mial time distinguisher A0,A1, and any probabilistic polynomial time mali-
cious receiver R∗, we define the following games.
Interact with R∗ The challenger plays the role of an honest sender for the

first round and the second round with the malicious receiver R∗. Specifi-
cally, the challenger executes (ot1, stS) ← OT1(1λ). Then send ot1 to R∗.
Then the receiver R∗ sends ot∗2 to the challenger.

Game G0(m0,m1) This game interact with adversary A0. In the beginning,
the adversary A0 is given input View(R∗). Then the challenger samples
b0 ← {0, 1} at random, and send ot3 ← OT3(1λ, ot∗2, stS ,mb,m1) to A0.
Finally A0 outputs a bit b′

0. If b0 = b′
0, then we say A0 wins the game.

Game G1(m0,m1) This game interact with adversary A1. In the beginning,
the adversary A1 is given input View(R∗). Then the challenger samples
b1 ← {0, 1} at random, and send ot3 ← OT3(1λ, ot∗2, stS ,m0,mb) to A1.
Finally A1 outputs a bit b′

1. If b1 = b′
1, then we say A1 wins the game.

We define the following advantage

Adv(A0,A1,R∗) Δ=EView(R∗)

[
min

{

max
m0,m1∈{0,1}

(∣
∣
∣
∣Pr[A0(View(R∗)) winsG0(m0,m1)]− 1

2

∣
∣
∣
∣

)
,

max
m0,m1∈{0,1}

(∣
∣
∣
∣Pr[A1(View(R∗)) winsG1(m0,m1)]− 1

2

∣
∣
∣
∣

)}]

We say the oblivious transfer scheme is game-based computational sender-
secure, if for any probabilistic polynomial time distinguisher A0,A1, and any
probabilistic polynomial time malicious receiver R∗, there exist a negligible
function ν(·) such that Adv(A0,A1,R∗) < ν(λ).

2 We can relax the definition to be statistical correctness, which only requires the
probability to be 1 − negl(λ).
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6.1 Our Construction

We now describe a generic transformation from SHC scheme to three-round
statistical receiver-private oblivious transfer.

Construction. Let (KGen,Com,H, C,R) be an SHC scheme. Let hc denote the
Goldreich-Levin hardcore predicate [21]. The 3-round statistical receiver-private
oblivious transfer proceeds as follows.

OT1(1λ) Execute (pk, k) ← KGen(1λ). Let ot1 = pk, stS = k.
OT2(1λ, ot1, β) Parse ot1 = pk. Run (c, ρ) ← Com(pk, β). Output ot2 = c, stR =

ρ.
OT3(1λ, ot2, stS ,m0,m1) Parse ot2 = c, and stS = k. For any b ∈ {0, 1}, sample

rb ← {0, 1}λ, encrypt mb as cb = (hc(H(k, c, b), rb) ⊕ mb, rb). Output ot3 =
(c0, c1).

OT4(1λ, ot1, ot3, stR) Parse ot1 = pk, ot3 = (c0, c1), and stR = ρ. Parse cβ as
cβ = (uβ , rβ). Output m′ = uβ ⊕ hc(ρ, rβ).

We now prove the required properties of the protocol. We defer the proof of
correctness to the full version.

Lemma 16 (Statistical Receiver-Privacy). If the underlying SHC is sta-
tistical (resp. perfect) hiding, then the construction above is statistical (resp.
perfect) receiver-private.

Proof. From the statistical hiding property of the SHC scheme, for any pk, we
have SD(ot02, ot

1
2) ≤ neg(λ), where (otb2, ρ

b) ← Com(pk, b) for any b ∈ {0, 1}.
Hence, for any ot1, OT2(1λ, ot1, 0) and OT2(1λ, ot1, 1) are statistically (resp.
perfectly) close. ��
Lemma 17 (Game-based Computational Sender-Privacy). If the under-
lying SHC scheme is computational binding, then the 3-round oblivious transfer
constructed above is game-based computational sender-private.

Proof. For any probabilistic polynomial time adversary A0,A1 and any proba-
bilistic polynomial time malicious receiver R∗ with Adv(A0,A1,R∗) > δ, where
δ is a non-negligible function of λ. Then, with probability at least δ/2 over
View(R∗),

∃ m0 ∈ {0, 1}2,m1 ∈ {0, 1}2 :
∣
∣
∣
∣Pr[A0(View(R∗)) wins G0(m0)] − 1

2

∣
∣
∣
∣ >

δ

2
∧

∣
∣
∣
∣Pr[A1(View(R∗)) wins G1(m1)] − 1

2

∣
∣
∣
∣ >

δ

2

Denote this fraction of View(R∗) as GOOD. Randomly sample m0,m1 ← {0, 1}2.
With probability 1/16, we have m0 = m0 ∧ m1 = m1.

From Goldreich-Levin Theorem [21], there exits two inverters A′
0,A′

1 such
that A′

0 takes input (View(R∗), r0, hc(H(k, c, 1), r1) ⊕ m1, r1), output x′
0. A′

1

takes input (View(R∗), r1, hc(H(k, c, 0), r0) ⊕ m0, r0), output x′
1. Furthermore,
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the inverters A′
0,A′

1 satisfy the property that for any v ∈ GOOD and m0 =
m0 ∧ m1 = m1, Pr[x′

0 = H(k, c, 0)] > δ′ and Pr[x′
1 = H(k, c, 1)] > δ′, where

δ′ = δ′(λ) is a non-negligible function. We construct the following adversary A
to attack the computational binding property of the SHC scheme.

Adversary A(1λ, pk). Set random coins and execute R∗. Send R∗ the first round
message ot1 = pk, then R∗ replies ot∗2. Sample r0 ← {0, 1}λ, b1 ← {0, 1}, r1 ←
{0, 1}λ, then execute x′

0 ← A′
0(View(R∗), r0, b1, r1). Sample r′

1 ← {0, 1}λ, b0 ←
{0, 1}, r′

0 ← {0, 1}λ, then execute x′
1 ← A′

1(View(R∗), r′
1, b0, r

′
0). Output (c =

ot∗2, x
′
0, x

′
1). We now prove that the advantage of A satisfies

Adv(A) = Pr
[
(pk, k) ← KGen(1λ), (c, ρ0, ρ1) ← A(1λ, pk) : ρ0=H(k,c,0)∧

ρ1=H(k,c,1)

]
≥ δ · δ′2

128
Hybrids H0 (pk, k) ← KGen(1λ). Set random coins and execute R∗. R∗ replies

ot∗2. Sample r0 ← {0, 1}λ, r1 ← {0, 1}λ. Let b1 = hc(H(k, c, 1), r1) ⊕ m1.
Execute x′

0 ← A′
0(View(R∗), r0, b1, r1). Sample r′

0 ← {0, 1}λ, r′
1 ← {0, 1}λ.

Let b0 = hc(H(k, c, 0), r′
0) ⊕ m0. Execute x′

1 ← A′
1(View(R∗), r′

1, b0, r
′
0). If

ρ0 = H(k, c, 0) ∧ ρ1 = H(k, c, 1), then output 1; else output 0.
Hybrids H1 (pk, k) ← KGen(1λ). Set random coins and execute R∗. R∗ replies

ot∗2. Sample r0 ← {0, 1}λ, r1 ← {0, 1}λ. Let b1 ← {0, 1}. Execute x′
0 ←

A′
0(View(R∗), r0, b1, r1). Sample r′

0 ← {0, 1}λ, r′
1 ← {0, 1}λ. Let b0 ← {0, 1}.

Execute x′
1 ← A′

1(View(R∗), r′
1, b0, r

′
0). If ρ0 = H(k, c, 0)∧ρ1 = H(k, c, 1), then

output 1; else output 0.
Hybrids H2 (pk, k) ← KGen(1λ), (c, ρ0, ρ1) ← A(1λ, pk). If ρ0 = H(k, c, 0)∧ρ1 =

H(k, c, 1), then output 1; else output 0.

From the construction of A, the hybrids H1 and H2 are identical. Hence,
Adv(A) = Pr[H2 = 1] = Pr[H1 = 1]. Furthermore, in hybrids H1, with probabil-
ity 1/4, b1 = hc(H(k, c, 1), r1)⊕m1 ∧ b0 = hc(H(k, c, 0), r′

0)⊕m0. Conditioned on
such event, H0 and H1 are identical. Hence, Pr[H1 = 1] ≥ Pr[H0 = 1]/4. In hybrid
H0, the fraction of View(R∗) ∈ GOOD is at least δ/2. With probability 1/16, the
guess of m0,m1 is correct. With probability δ′2, both A′

0 and A′
1 inverts cor-

rectly. Hence, Adv(A) ≥ δ
2 · 1

16 · δ′2 · 1
4 = δ · δ′2/128. If δ(λ) is non-negligible, then

Adv(A) is also non-negligible. This contradicts with the computational binding
property of the SHC scheme. ��
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