
Statistical ZAP Arguments

Saikrishna Badrinarayanan1(B), Rex Fernando2(B), Aayush Jain2,
Dakshita Khurana3, and Amit Sahai2

1 VISA Research, Palo Alto, USA
bsaikrishna7393@gmail.com
2 UCLA, Los Angeles, USA

{rex,aayushjain,sahai}@cs.ucla.edu
3 University of Illinois Urbana-Champaign, Champaign, USA

dakshita@illinois.edu

Abstract. Dwork and Naor (FOCS’00) first introduced and constructed
two message public coin witness indistinguishable proofs (ZAPs) for
NP based on trapdoor permutations. Since then, ZAPs have also been
obtained based on the decisional linear assumption on bilinear maps, and
indistinguishability obfuscation, and have proven extremely useful in the
design of several cryptographic primitives.

However, all known constructions of two-message public coin (or even
publicly verifiable) proof systems only guarantee witness indistinguisha-
bility against computationally bounded verifiers. In this paper, we con-
struct the first public coin two message witness indistinguishable (WI)
arguments for NP with statistical privacy, assuming quasi-polynomial
hardness of the learning with errors (LWE) assumption. We also show
that the same protocol has a super-polynomial simulator (SPS), which
yields the first public-coin SPS statistical zero knowledge argument. Prior
to this, there were no known constructions of two-message publicly veri-
fiable WI protocols under lattice assumptions, even satisfying the weaker
notion of computational witness indistinguishability.

1 Introduction

Witness indistinguishability (WI) is one of the most widely used notions of pri-
vacy for proof systems. Informally, WI protocols [13] allow a prover to convince a
verifier that some statement X belongs to an NP language L, with the following
privacy guarantee: if there are two witnesses w0, w1 that both attest to the fact
that X ∈ L, then a verifier should not be able to distinguish an honest prover
using witness w0 from an honest prover using witness w1. WI is a relaxation of
zero-knowledge and has proven to be surprisingly useful. Since WI is a relax-
ation, unlike zero-knowledge, there are no known lower bounds on the rounds of
interaction needed to build WI protocols in the plain model.

Indeed, Dwork and Naor [10,12] introduced the notion of two-message public-
coin witness indistinguishable proofs (ZAPs) without any setup assumptions, and
also constructed it assuming trapdoor permutations. We observe that the public-
coin feature of ZAPs yield public verifiability of the resulting proof system, since
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a third party can use the public coins of the verifier to determine whether or not
the prover’s response constitutes a valid proof. Subsequently, Groth et al. [15]
constructed ZAPs assuming the decisional linear assumption, and Bitansky and
Paneth [2] constructed ZAPs from indistinguishability obfuscation and one way
functions.

Our Goal: ZAPs with Statistical Privacy. As originally introduced, ZAPs
satisfied soundness against unbounded provers (i.e. were proofs), and witness
indistinguishability against computationally bounded verifiers. In this work, we
examine whether these requirements can be reversed: can we achieve witness
indistinguishability against computationally unbounded verifiers, while achiev-
ing soundness against computationally bounded cheating provers? We call such
objects statistical ZAP arguments.

An analogue of this question has a long history of study in the context
of zero-knowledge protocols. Indeed, zero-knowledge protocols for NP were
originally achieved guaranteeing privacy to hold only against computationally
bounded verifiers [14]. In the case of zero-knowledge, the notion of statistical
zero-knowledge arguments was achieved soon after [6,8], that strengthened the
privacy requirement to hold against computationally unbounded verifiers, while
requiring soundness to hold only against computationally bounded provers.

Because ZAPs require a single message each from the verifier and the prover,
a better comparison would perhaps be to non-interactive zero-knowledge (NIZK)
[4]. Even in the case of NIZKs, we have had arguments for NP satisfying statis-
tical zero-knowledge since 2006 [15]. And yet, the following natural question has
remained open since the introduction of ZAPs nearly two decades ago.

Do there exist statistical ZAP arguments for NP in the plain model?

Statistical witness indistinguishability, just like its zero-knowledge counterpart,
guarantees everlasting privacy against malicious verifiers, long after protocols
have completed execution. Of course, to achieve statistical privacy, we must nec-
essarily sacrifice soundness against unbounded provers. But such a tradeoff could
often be desirable, since soundness is usually necessary only in an online setting:
in order to convince a verifier of a false statement, a cheating prover must find
a way to cheat during the execution of the protocol.

The Main Challenge: Achieving a Public-coin Protocol. The recent work
of Kalai et al. [20] constructed the first two message statistically witness indistin-
guishable arguments in the plain model under standard sub-exponential assump-
tions. However, their arguments are only privately verifiable.

The blueprint of [20], which builds on other similar approaches in the compu-
tational witness indistinguishability setting [1,18], uses oblivious transfer (OT)
to reduce interaction in a Σ-protocol. In all these approaches, the verifier obtains
the third message of the Σ-protocol via the output of the OT, and therefore
these approaches fundamentally require the use of private coins for verification.
It is also worth noting that these protocols are not sound against provers that
have access to the private coins of the verifier, which restricts their applicability.
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Additionally, the verifier’s message is not reusable, which means that soundness is
not guaranteed if the same verifier message is reused across multiple executions.

On the other hand, a public coin argument, which is the focus of this work,
does not suffer from any of these limitations. In fact, where the verifier’s mes-
sage only needs to be a uniformly random string. Such a string can easily be
generated, for example, via an MPC protocol, and can then be reused across
multiple executions with no loss in soundness.

We stress that prior to our work, even two message statistically witness indis-
tinguishable arguments that were only publicly verifiable (and not necessarily
public coin) were not known.

1.1 Our Results

In this paper, we construct the first two message public coin statistically wit-
ness indistinguishable arguments for NP in the plain model. Our constructions
assume quasi-polynomial hardness of the learning with errors (LWE) problem.
In fact, these are the first known two-message public coin (or even publicly veri-
fiable) arguments based on lattice assumptions, satisfying any notion of witness
indistinguishability (computational/statistical). We provide an informal theorem
below.

Informal Theorem 1. Assuming quasi-polynomial hardness of the learning
with errors (LWE) assumption, there exist two message public-coin statistically
witness indistinguishable arguments for NP in the plain model.

Our results are obtained by combining two recent results in a new way: recent
constructions of correlation-intractable hash functions based on LWE [7] and the
statistically hiding extractable commitments of [20] (which are built upon [21]).
This yields a new method of using correlation intractable hash functions to
instantiate the Fiat-Shamir transform, by extracting messages from statistically
hiding commitments, instead of from statistically binding trapdoor commitments
– that we believe may be of independent interest.

Additionally, we observe that the same protocol has a super-polynomial
zero knowledge simulator assuming subexponential LWE, giving the following
theorem.

Informal Theorem 2. Assuming subexponential hardness of the learning with
errors (LWE) assumption, there exist two message public-coin super-polynomial
simulation statistical zero knowledge arguments for NP in the plain model.

2 Overview of Techniques

In this section, we provide a brief overview of the techniques we use to build
a two message public coin statistical WI argument (henceforth referred to as
a ZAP).

Our starting point is the popular technique to construct ZAPs for NP, due
to Dwork and Naor [11]. Their construction makes use of a statistically sound
NIZK in the common random string model, and can be described as follows.
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• In the first round, the verifier picks uniformly random strings crs1, ...., crsλ,
where λ denotes the security parameter, and sends them to the prover.

• In the second round, the prover samples a uniformly random string crs′. It
computes proofs (π1, ..., π�) where πi is a NIZK proof for the instance x that
verifies under crs′i = crs′ ⊕ crsi The prover sends crs′ along with proof strings
(π1, ..., π�) to the verifier.

The soundness of this protocol can be proven based on the statistical soundness
of NIZK, in the following way. Fix an instance x /∈ L. Statistical soundness of
the NIZK implies that with probability at least 1/2 over the choice of crs from
the domain of the common random string of NIZK, there does not exist a proof
π that verifies for instance x with respect to crs. Put another way, for fixed x,
for at least 1/2 of the strings in the domain of the common random string of
the NIZK, there does not exist a proof for x. One can use this fact to argue
combinatorially that over the choice of random crs1, ..., crsλ, the probability that
there exists crs′ for which there exist proofs with respect to every member of the
set {crs′i = crs′ ⊕ crsi}i∈[�], is negligible.

The proof of witness indistinguishability follows quite simply, by switching
the witness in each of the proofs one by one.

But when applied to our context, this approach immediately encounters the
following problems.

1. The soundness argument outlined above crucially requires that with high
probability over the CRS of the NIZK, there just should not exist a proof for
any fixed false instance. This translates to requiring statistical soundness of
the underlying NIZK.

2. One cannot hope to get a WI argument secure against unbounded verifiers
via this transform, unless the underlying NIZK also satisfies privacy against
unbounded verifiers, i.e. satisfies statistical zero-knowledge.

3. It is believed that statistically sound and statistical zero-knowledge NIZKs for
all of NP cannot exist.

4. Even if we only desired computational witness indistinguishability based on
lattice assumptions, no statistically sound NIZKs in the common random
string model are known from lattice assumptions.

As an intermediate objective, we will first try to tackle problem #4 and build
a publicly verifiable computational WI argument based on LWE.

2.1 A Simple Two-Message Public-Coin Computational WI
Argument

We make a few modifications to the template above so as to obtain a publicly
verifiable computational WI argument based on LWE.

Before we describe these modifications, we list a few ingredients. We will
assume that there exists a dense public key encryption scheme PKE, that is,
a scheme for which every string in {0, 1}|pk| corresponds to a valid public key
(and therefore every string has a valid secret key). We will further assume the



646 S. Badrinarayanan et al.

existence of a correlation intractable hash function family. Informally, a hash
function family H is correlation-intractable for a function family F if:

• Given a fixed function f ∈ F , and a randomly generated key K (that
can depend on f), the probability that an adversary outputs x such that
(x,H(K,x)) = (x, f(x)) is at most ε.

• The hash key K statistically hides the function f , such that adversaries cannot
distinguish a random key from a key for f with advantage better than ε.

We will set ε = 2−2|pk|. We will use Π to denote a parallel repetition of Blum’s Σ-
protocol for Graph Hamiltonicity, represented as {ai = com(âi)}i∈[λ], {ei}i∈[λ],
{zi}i∈[λ]}, where {ai}i∈[λ] represents the first commitments sent by the prover,
{ei}i∈[λ] is a challenge string sent by the verifier and {zi}i∈[λ] represents the
corresponding third message by the prover. Let the instance be x and its witness
be w. Then, the protocol is described as follows.

1. In the first round, the verifier randomly samples a key K for the correlation
intractable hash function H for bounded size NC1 functions.

2. In the second round, the prover picks a key pair (pk, sk) for the scheme PKE.
Then the prover uses PKE.Enc(pk, ·) as a commitment scheme to compute the
commitments {ai}i∈[λ]. Next, the prover computes e = H(K,x, {ai}i∈[λ]) ∈
{0, 1}λ, and uses (x,w, a, e) to compute z = (z1, ..., zλ) according to the
protocol Π. It outputs (pk, {ai = PKE.Enc(pk, âi)}i∈[λ], e, z)

While witness indistinguishability of this protocol is easy to see, arguing
soundness is trickier. In order to argue soundness, the reduction will simple try
to guess the public key pk∗ that the prover will use, and will abort if this guess
is not correct. Note that such a guess is correct with probability at least 2−|pk∗|.

Suppose a cheating prover convinces a verifier to accept false statements with
probability 1

p(λ) for some polynomial p(·). Then, with probability at least 1
p(·) ·

2−|pk∗|, the reduction guesses pk∗ correctly, and the prover provides a convincing
proof of a false statement using pk∗.

In the next hybrid, the challenger guesses pk∗ together with the correspond-
ing secret key sk∗, and then samples a correlation intractable hash key for a
specific function fsk∗(·). The function fsk∗(·) on input x, along with a (the mes-
sages committed in the Σ-protocol), outputs the only possible string ebad for
which there exists a string z such that (a, ebad, z) verifies for x /∈ L.1 Note that
this function is in NC1. By ε-security of the correlation intractable hash family
(where ε = 2−2|pk|), with probability at least

(
1

p(·) − 2−|pk|
)

· 2−|pk|, the reduc-
tion guesses pk∗ correctly, and the prover provides a convincing proof of a false
statement using pk∗.

Finally, since the correlation intractable hash function is ε-secure, in the final
hybrid adversary cannot produce a proof for x with probability greater than ε,
as this will mean that he output a∗, e∗, z∗ such that e∗ = fbad(x, a∗).
1 Note that this property is satisfied by any Σ-Protocol with a 1/2−special soundness

where the bad challenge ebad can be computed efficiently from the precommitted
values {âi}, such as Blum’s Σ-protocol.
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The protocol sketched above is public-coin, because when we instantiate the
correlation-intractable hash family with the LWE-based one by [24], the hash
keys are statistically close to uniform.

In the description above, we also relied on a dense public key encryption
scheme, which is unfortunately not known to exist based on LWE. However, we
note that we can instead use a scheme with the property that at least 1/2 of
the strings in {0, 1}�PKE correspond to correct encryption keys with a valid secret
key, and the property that public keys are pseudorandom. Then, the verifier
sends λ public keys pk1, . . . , pkλ, and the prover outputs pk′, and then uses the
public keys {(pk′ ⊕ pki)}i∈[λ] to compute λ proofs. Soundness can be obtained
by arguing that with overwhelming probability, there will exist an index i ∈ [λ]
such that (pk′ ⊕ pki) has a secret key, just like the [11] technique described at
the beginning of this overview.

However, the construction above falls short of achieving statistical witness
indistinguishability against malicious verifiers. The reason is the following: argu-
ing that the construction described above satisfies soundness requires relying on
correlation intractability of the hash function. In order to invoke the correlation
intractable hash function, it is crucial that the prover be “committed” to a well-
defined, unique message {ai}i∈[λ], that can be extracted using the secret key sk∗

of the public key encryption scheme. At first, statistical hiding, together with
such extraction, may appear to be contradictory objectives.

Indeed, we will try obtain a weaker version of these contradictory objectives,
and specifically, we will rely on a two-message statistically hiding extractable
commitment scheme [20].

2.2 Using Correlation-Intractable Hashing with Statistically Hiding
Extractable Commitments

In the recent exciting work on using LWE-based correlation-intractable hash-
ing [7,24] for achieving soundness, as well as in the “warm up” ZAP protocol
described above, the correlation-intractable hash function is used as follows.
Because the LWE-based CI-hash function is designed to avoid an efficiently
computable function f of the prover’s first message, it is used together with a
public-key encryption scheme: the prover’s first message is encrypted using the
public key, and the function f is built to contain the secret key of the encryption
scheme, so that it can decrypt the prover’s first message in order to calculate
the challenge that must be avoided.

Our work imagines a simple modification of this strategy of using correlation-
intractable hashing for arguing soundness. The main idea is that we want to
replace the encryption scheme (which necessarily can only at most provide com-
putational hiding) with an extractable statistically hiding commitment scheme.
We will describe what this object entails in more detail very shortly, but the
main observation is that such an extractable commitment in fact reveals the
value being committed to with a tiny (but tunable) probability – crucially in a
way that prevents a malicious prover from learning whether the commitment will
reveal the committed value or not. With such a commitment scheme, the efficient
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function f underlying the correlation-intractable hash function will only “work”
in the rare case that the commitment reveals the value being committed. But
since a cheating prover can’t tell whether its committed values will be revealed
or not, soundness will still hold overall, even though the actual guarantee of the
correlation-intractable hash function is only invoked with a tiny probability in
the proof of soundness. We now elaborate.

2.3 Statistically Hiding Extractable Commitments

Any statistically hiding commitment must lose all information about the com-
mitted message, except with negligible probability. This makes it challenging to
define notions of extraction for statistically hiding commitments. In 4 rounds
or more, this notion is easier to define, as extraction is possible even from
statistically hiding commitments, simply by rewinding the adversary. However,
traditional rewinding techniques break down completely when considering two-
message commitments.

Nevertheless, the recent work of [20], building on [21], defined and constructed
two-message statistically hiding extractable commitments, which they used to
construct two-message statistical WI arguments, that were privately verifiable. In
what follows, we abstract out the properties of a statistically hiding extractable
commitment. A more formal description can be found in Sect. 5. We point out
that we only need to rely on significantly simpler definitions than the ones in [20],
and we give much simpler proofs that the constructions in [20] according to our
new definitions. This may be of independent interest.

Defining Statistically Hiding Extractable Commitments. We start with
an important observation about statistically hiding commitments, which gives a
hint about how one can possibly define (and construct) two-message statistically
hiding extractable commitments. Namely, any statistically hiding commitment
must lose all information about the committed message, but may retain this
information with some small negligible probability. Specifically,

• A commitment that leaks the committed message with probability ε (where ε
is a fixed negligible function in the security parameter) and statistically hides
the message otherwise, will continue to be statistically hiding.

• At the same time, one could ensure that no matter the behavior of the com-
mitter, the message being committed does get leaked to the honest receiver
with probability at least ε.

• Moreover, the committer does not know whether or not the committed mes-
sage was leaked to the receiver. This property is important and will be cru-
cially used in our proofs.

In spirit, this corresponds to establishing an erasure channel over which the com-
mitter transmits his message to the receiver. This channel almost always erases
the committed message, but is guaranteed to transmit the committed message
with a very small probability (ε). Moreover, just like cryptographic erasure chan-
nels, the committer does not know whether or not his message was transmitted.
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Additionally, because this is a commitment, we require computational binding:
once the committer transmits his message (that is, commits), he should not
be able to change his mind about the message, even if the message did not get
transmitted. Finally, we say that “extraction occurs” whenever the message does
get transmitted, and we require that extraction occur with probability at least
ε, even against a malicious committer.

Next, we describe how we interface these commitments with correlation
intractable hash functions to obtain two-message statistical ZAP arguments.

2.4 Statistical ZAP Arguments

With this tool in mind, we make the following observations:

1. We would like to replace the encryption scheme used for generating the first
message a for the sigma protocol, sent by the prover in the second round,
with a statistically hiding commitment.

2. The first message of this commitment will be generated by the verifier. Fur-
thermore, because we want a public coin protocol, we require this message to
be pseudorandom.

3. We will require that with some small probability (say λ−ω(log λ)), all mes-
sages committed by the prover get transmitted to the verifier, that is with
probability λ−ω(log λ), the verifier can recover all the messages committed by
the prover in polynomial time given his secret state. Next, using an insight
from the simple protocol in Sect. 2.1, we will set the security of the correlation
intractable hash function, so that it is infeasible for any polynomially sized
adversary to break correlation intractability with probability λ−ω(log λ).

The protocol is then as follows:

• In the first round, the verifier samples a hash key K for the correlation
intractable hash function H, for the same function family F as Sect. 2.1.
The verifier also samples strings q = {c1,j}j∈[poly(λ)] uniformly at random,
where poly is a polynomial denoting the number of commitments made by
the prover. The verifier sends q and K over to the prover.

• In the second round, the prover computes the first message of the sigma
protocol a (where the number of parallel repetitions equals the output length
of correlation intractable hash function). This message a is generated using
the statistically hiding extractable commitment scheme com with q as the
first message. The prover computes e = H(K,x, q, a) and uses e to compute
the third message z of the sigma protocol, by opening some subset of the
commitments made by the prover. The prover outputs (a, e, z).

We now provide some intuition for the security of this protocol.

• Soundness: To argue soundness, we follow an approach that is similar to the
soundness proof for the computational ZAP argument described in Sect. 2.1
(although with some additional technical subtleties). We discuss one such
subtlety here:
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Let � = |e|. Then, the correlation-extractable hash function can be at most
2−�δ

-secure2. For this reason, we require the commitments to be jointly
extractable in polynomial time with probability at least 2−�δ

. Note that the
total number of commitments is N = � · poly(λ).
However, statistically hiding commitments, as originally constructed in [20],
are such that if a single commitment can be extracted with probability ε,
then N commitments can be extracted with probability roughly εN . Setting
N = � · poly(λ) as above implies that trivially, the probability of extraction
will be roughly O(2−�·poly(λ)), which is smaller than the required probability
2−�δ

.
However, we observe that the commitments constructed in [20] can be mod-
ified very slightly so that the probability of extraction can be 2−g(λ) for any
efficiently computable function g that is bounded by any polynomial in λ.
Thus, for example, the probability of extraction can be made to be λ− log(λ).
In other words, this extraction probability can be made to be independent
of the total number of commitments, N . We describe this modification in
additional detail in Sect. 4.2.
Using commitments that satisfy the property stated above, we observe that
we can switch to a hybrid where the challenger samples the commitment mes-
sages on behalf of the verifier, and hardwires the secret state used for extrac-
tion inside the hash key. The function is defined such that in the event that
extraction occurs (given the secret state), the verifier can use the extracted
values to compute the bad challenge ebad (just as in Sect. 2.1), by evaluating
a depth bounded function fbad on the extracted values, and otherwise ebad is
set to 0. If the adversary breaks soundness with noticeable probability ε, then
with probability roughly at least 2−g(λ) ·ε, the outputs of the adversary satisfy
H(K,x, q, a) = ebad. As already alluded to previously, we set the function g
and the (quasi-polynomial) security of the hash function such that the event
above suffices to contradict correlation intractability.

• Statistical Witness Indistinguishability: Statistical witness indistin-
guishability composes under parallel repetition, and therefore can be proven
index-by-index based on the statistical hiding property of the commitment.
Additional details about the construction and the proof can be found in
Sect. 5.

Super-Polynomial Simulation (SPS) Zero Knowledge. We show that the
protocol above has a super-polynomial simulator which provides statistical zero
knowledge. At a very high level, we do this by showing that the extractable
commitment scheme can be equivocated in exponential time, and then by using
complexity leveraging. We refer to the full version of the paper for details.

Concurrent and Independent Works. In a concurrent and indepen-
dent work, [17] also constructed a 2-message public-coin statistically witness
2 More formally, if the output of the hash function is � bits long, then even if we rely

on sub-exponential assumptions, we cannot hope to have the guessing advantage be

smaller than 2−�δ

for a small positive constant δ < 1.
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indistinguishable argument from quasipolynomial LWE. Another concurrent and
independent work is that of [22], who construct a 2-message computationally
witness indistinguishable public-coin argument from subexponential LWE.

2.5 Organization

The rest of this paper is organized as follows. In Sect. 3, we describe some of
the preliminaries such as correlation intractability, oblivious transfer and proof
systems. In Sect. 4, we define a simplified variant and present a slightly modified
construction of extractable statistically hiding commitments, first proposed by
[20]. Finally, in Sect. 5, we construct and prove the security of our statistical
ZAP argument.

3 Preliminaries

Notation. Throughout this paper, we will use λ to denote the security parame-
ter, and negl(λ) to denote any function that is asymptotically smaller than 1

poly(λ)

for any polynomial poly(·).
The statistical distance between two distributions D1,D2 is denoted by

Δ(D1,D2) and defined as:

Δ(D1,D2) =
1
2
Σv∈V |Prx←D1 [x = v] − Prx←D2 [x = v]|.

We say that two families of distributions D1 = {D1,λ},D2 = {D2,λ} are statis-
tically indistinguishable if Δ(D1,λ,D2,λ) = negl(λ). We say that two families of
distributions D1 = {D1,λ},D2 = {D2,λ} are computationally indistinguishable
if for all non-uniform probabilistic polynomial time distinguishers D,

∣∣Prr←D1,λ
[D(r) = 1] − Prr←D2,λ

[D(r) = 1]
∣∣ = negl(λ).

Let Π denote an execution of a protocol. We use ViewA(Π) denote the view,
including the randomness and state of party A in an execution Π. We also use
OutputA(Π) denote the output of party A in an execution of Π.

Remark 1. In what follows we define several 2-party protocols. We note that in
all these protocols both parties take as input the security parameter 1λ. We omit
this from the notation for the sake of brevity.

Definition 1 (Σ-protocols). Let L ∈ NP with corresponding witness relation
RL. A protocol Π = 〈P, V 〉 is a Σ-protocol for relation RL if it is a three-round
public-coin protocol which satisfies:

• Completeness: For all (x,w) ∈ RL, Pr[OutputV 〈P (x,w), V (x)〉 = 1] =
1 − negl(λ), assuming P and V follow the protocol honestly.

• Special Soundness: There exists a polynomial-time algorithm A that given
any x and a pair of accepting transcripts (a, e, z), (a, e′, z′) for x with the same
first prover message, where e �= e′, outputs w such that (x,w) ∈ RL.
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• Honest verifier zero-knowledge: There exists a probabilistic polyno-
mial time simulator SΣ such that for all (x,w) ∈ RL, the distributions
{SΣ(x, e)} and {ViewV 〈P (x,w(x)), V (x, e)〉} are statistically indistinguish-
able. Here SΣ(x, e) denotes the output of simulator S upon input x and e,
such that V ’s random tape (determining its query) is e.

3.1 Correlation Intractable Hash Functions

We adapt definitions of a correlation intractable hash function family from [7,24].

Definition 2. For any polynomials k, (·), s(·) = ω(k(·)) and any λ ∈ N, let
Fλ,s(λ) denote the class of NC1 circuits of size s(λ) that on input k(λ) bits
output λ bits. Namely, f : {0, 1}k(λ) → {0, 1}λ is in Fλ,s if it has size s(λ) and
depth bounded by O(log λ).

Definition 3. [Quasi-polynomially Correlation Intractable Hash Function Fam-
ily] A hash function family H = (Setup,Eval) is quasi-polynomially correlation
intractable (CI) with respect to F = {Fλ,s(λ)}λ∈N as defined in Definition 2, if
the following two properties hold:

• Correlation Intractability: For every f ∈ Fλ,s, every non-uniform
polynomial-size adversary A, every polynomial s, and every large enough
λ ∈ N,

PrK←H.Setup(1λ,f)

[
A(K) → x such that (x, H.Eval(K, x)) = (x, f(x))

]
≤ 1

λlog λ
.

• Statistical Indistinguishability of Hash Keys: Moreover, for every f ∈
Fλ,s, for every unbounded adversary A,and every large enough λ ∈ N,

∣∣∣PrK←H.Setup(1λ,f)[A(K) = 1] − PrK←{0,1}� [A(K) = 1]
∣∣∣ ≤ 2−λΩ(1)

,

where � denotes the size of the output of H.Setup(1λ, f).

The work of [24] gives a construction of correlation intractable hash func-
tions with respect to F = {Fλ,s(λ)}λ∈N, based on polynomial LWE with poly-
nomial approximation factors. We observe that their construction also satisfies
Definition 3, assuming quasi-polynomial LWE with polynomial approximation
factors.

3.2 Oblivious Transfer

Definition 4 (Oblivious Transfer). Oblivious transfer is a protocol between
two parties, a sender S with input messages (m0,m1) and receiver R with input
a choice bit b. The correctness requirement is that R obtains output mb at the end
of the protocol (with probability 1). We let 〈S(m0,m1), R(b)〉 denote an execution
of the OT protocol with sender input (m0,m1) and receiver input bit b. We require
OT that satisfies the following properties:
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• Computational Receiver Security. For any non-uniform PPT sender S∗

and any (b, b′) ∈ {0, 1}, the views ViewS∗(〈S∗, R(b)〉) and ViewS∗(〈S∗, R(b′)〉)
are computationally indistinguishable.
We say that the OT scheme is T -secure if all PPT malicious senders have
distinguishing advantage less than 1

T .
• Statistical Sender Security. This is defined using the real-ideal paradigm,

and requires that for any distribution on the inputs (m0,m1) and any
unbounded adversarial receiver R∗, there exists a (possibly unbounded) sim-
ulator SimR∗ that interacts with an ideal functionality Fot on behalf of R∗.
Here Fot is an oracle that obtains the inputs (m0,m1) from S and b from
SimR∗ (simulating the malicious receiver), and outputs mb to SimR∗ . Then
SimFot

R∗ outputs a receiver view that is statistically indistinguishable from the
real view of the malicious receiver ViewR∗(〈S(m0,m1), R∗〉). We say that the
OT protocol satisfies (1−δ) statistical sender security if the statistical distance
between the real and ideal distributions is at most δ.

We use the following sender security property in our protocols (which follows
from the definition of sender security in Definition 4 above).

Claim. For any two-message OT protocol satisfying Definition 4, for every mali-
cious receiver R∗ and every first message mR∗ generated by R∗, we require that
there exists an unbounded machine E which extracts b such that either of the
following statements is true:

• For all m0,m1,m2, ViewR∗〈S(m0,m1), R∗〉 and ViewR∗〈S(m0,m2), R∗〉 are
statistically indistinguishable and b = 0, or,

• For all m0,m1,m2, ViewR∗〈S(m0,m1), R∗〉 and ViewR∗〈S(m2,m1), R∗〉 are
statistically indistinguishable and b = 1.

Proof. From the (unbounded) simulation property of the two-message OT, there
exists a simulator that extracts a receiver input bit b from the first message
of R∗, sends it to the ideal functionality, obtains mb and generates an indis-
tinguishable receiver view. Then, by the definition of sender security, when
b = 0, the simulated view must be close to both ViewR∗〈S(m0,m1), R∗〉, and
ViewR∗〈S(m0,m2), R∗〉. Similarly, when b = 1, the simulated view must be sta-
tistically close to both ViewR∗〈S(m0,m1), R∗〉, and ViewR∗〈S(m2,m1), R∗〉.

Throughout the paper, we focus on two-message oblivious transfer. We now
discuss an additional specific property of two-message OT protocols.

Property 1. The message sent by the receiver is pseudorandom - in particular,
this means that the receiver can just sample and send a uniformly random string
as a valid message to the sender.

Such two-message OT protocols with this additional property have been con-
structed based on the DDH assumption [23], LWE assumption [5], and a stronger
variant of smooth-projective hashing, which can be realized from DDH as well as
the N th-residuosity and Quadratic Residuosity assumptions [16,19]. Such two-
message protocols can also be based on witness encryption or indistinguishability
obfuscation (iO) together with one-way permutations [25].
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3.3 Proof Systems

An n-message interactive protocol for deciding a language L with associated
relation RL proceeds in the following manner:

• At the beginning of the protocol, P and V receive the size of the instance
and security parameter, and execute the first n − 1 messages.

• At some point during the protocol, P receives input (x,w) ∈ RL. P sends x
to V together with the last message of the protocol. Upon receiving the last
message from P , V outputs 1 or 0.

An execution of this protocol with instance x and witness w is denoted
by 〈P (x,w), V (x)〉. One can consider both proofs – with soundness against
unbounded provers, and arguments – with soundness against computationally
bounded provers.

Definition 5 (Two-Message Interactive Arguments). A two-message
delayed-input interactive protocol (P, V ) for deciding a language L is an inter-
active argument for L if it satisfies the following properties:

• Completeness: For every (x,w) ∈ RL, Pr
[
OutputV 〈P (x,w), V (x)〉 = 1

]
=

1 − negl(λ), where the probability is over the random coins of P and V , and
where in the protocol P receives (x,w) right before computing the last message
of the protocol, and V receives x together with the last message of the protocol.

• Non-adaptive Soundness: For every (non-uniform) PPT prover P ∗

that on input 1λ (and without access to the verifier’s message) outputs a
length 1p(λ) and x ∈ {0, 1}p(λ) \ L, Pr

[
OutputV 〈P ∗, V 〉(x) = 1

]
= negl(λ),

where the probability is over the random coins of V .

Witness Indistinguishability. A proof system is witness indistinguishable if
for any statement with at least two witnesses, proofs computed using different
witnesses are indistinguishable. In this paper, we only consider statistical witness
indistinguishability, which we formally define below.

Definition 6 (Statistical Witness Indistinguishability). A delayed-input
interactive argument (P, V ) for a language L is said to be statistical witness-
indistinguishable if for every unbounded verifier V ∗, every polynomially bounded
function n = n(λ) ≤ poly(λ), and every (xn, w1,n, w2,n) such that (xn, w1,n) ∈
RL and (xn, w2,n) ∈ RL and |xn| = n, the following two ensembles are statisti-
cally indistinguishable:

{
ViewV ∗〈P (xn, w1,n), V ∗(xn)〉} and

{
ViewV ∗〈P (xn, w2,n), V ∗(xn)〉}

Definition 7 (TSim-Statistical Zero Knowledge). A delayed-input interac-
tive argument (P, V ) for a language L is said to be a TSim-super-polynomial simu-
lation (SPS) statistical zero-knowledge argument for L if there exists a (uniform)
simulator Sim that runs in time TSim, such that for every x, every unbounded
verifier V ∗, the two distributions ViewV ∗ [〈P, V ∗〉(x,w)] and SV ∗

(x, z) are sta-
tistically close.
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4 Extractable Commitments

4.1 Definitions

We take the following definition of statistically hiding extractable commitments
from [20]. As before, we use λ to denote the security parameter, and we let
p = poly(λ) be an arbitrary fixed polynomial such that the message space is
{0, 1}p(λ).

We restrict ourselves to commitments with non-interactive decommitment,
and where the (honest) receiver is not required to maintain any state at the end of
the commit phase in order to execute the decommit phase. Our construction will
satisfy this property and this will be useful in our applications to constructing
statistically private arguments.

Definition 8 (Statistically Hiding Commitment Scheme). A commit-
ment 〈C,R〉 is a two-phase protocol between a committer C and receiver R,
consisting of algorithms Commit,Decommit and Verify. At the beginning of the
protocol, C obtains as input a message M ∈ {0, 1}p. Next, C and R execute the
commit phase, and obtain a commitment transcript, denoted by τ , together with
private states for C and R, denoted by stateC,τ and stateR,τ respectively. We use
the notation

(τ, stateC,τ , stateR,τ ) ← Commit〈C(M),R〉.
Later, C and R possibly engage in a decommit phase, where the committer

C computes and sends message y = Decommit(τ, stateC,τ ) to R. At the end, R
computes Verify(τ, y) to output ⊥ or a message M̃ ∈ {0, 1}p.3

A statistically hiding commitment scheme is required to satisfy three prop-
erties: perfect completeness, statistical hiding and computational binding. We
formally define these in the full version of the paper.

We also define an extractor E that given black-box access to C∗, and then
without executing any decommitment phase with C∗, outputs message M̃ com-
mitted by C∗ with probability at least ε: we require “correctness” of this extracted
message M̃ . We also require that no PPT adversary can distinguish transcripts
where extraction is successful from those where it is unsuccessful. This is formally
described in Definition 9.

Definition 9 (ε-Extractable Statistically Hiding Commitment). We say
that a statistically hiding commitment scheme is ε-extractable if the following
holds: Denote (τ, stateC,τ , stateR,τ ) ← Commit〈C∗,R〉. We require that there
exists a deterministic polynomial time extractor E that on input (τ, stateR,τ )
outputs M̃ such that the following properties hold.

3 We note that in our definition, R does not need to use private state stateR,τ from the
commitment phase in order to execute the Verify algorithm in the decommitment
phase.
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• Frequency of Extraction. For every PPT committer C∗,

Pr[E(τ, stateR,τ ) �= ⊥] = ε

where the probability is over (τ, stateC,τ , stateR,τ ) ← Commit〈C∗,R〉.
• Correctness of Extraction. For every PPT committer C∗, every execution

(τ, stateC,τ , stateR,τ ) ∈ Supp(Commit〈C∗,R〉), and every y, denoting M̃ =
E(τ, stateR,τ ) and M = Verify(τ, y), if M̃ �= ⊥ and M �= ⊥, then M̃ = M .

• Indistinguishability of Extractable Transcripts. For every C∗,
∣∣Pr[C∗(τ) = 1 | E(τ, stateR,τ ) �= ⊥] − Pr[C∗(τ) = 1 | E(τ, stateR,τ ) = ⊥]

∣∣ = negl(λ)

where the probability is over (τ, stateR,τ ) ← Commit〈C∗,R〉.
We also consider a stronger definition, of ε-extractable statistically hiding �

multi-commitments, where we require that an entire sequence of � commitments
can be extracted with probability ε, that is independent of �. We will also modify
the Verify algorithm so that it obtains as input the transcript τ := (τ1, τ2, . . . τ�)
of all � commitments, together with an index i ∈ [�] and the decommitment
stateC,τ,i to a single commitment. We defer their formal description to the full
version of the paper.

4.2 Protocol

In this section, we construct two-message statistically hiding, extractable com-
mitments according to Definition 9 assuming the existence of two message obliv-
ious transfer (OT). Our construction is described in Fig. 1.

Primitives Used. Let OT = (OT1,OT2) denote a two-message string oblivi-
ous transfer protocol according to Definition 4, also satisfying Property 1. Let
OT1(b; r1) denote the first message of the OT protocol with receiver input b and
randomness r1, and let OT2(M0,M1; r2) denote the second message of the OT
protocol with sender input strings M0,M1 and randomness r2.4

Observe that the protocol satisfies the property mentioned in the definition
that the verify algorithm in the decommitment phase does not require the private
randomness used by the receiver in the commit phase. Further, observe that if
the oblivious transfer protocol satisfies Property 1, the receiver’s message can
alternately be generated by just sampling a uniformly random string. Thus, this
would give an extractable commitment protocol where the receiver’s algorithms
are public coin.

We will now prove the following main theorem.

Theorem 1. Assuming that the underlying OT protocol is λ− log λ-secure
against malicious senders, (1−δOT) secure against malicious receivers according
to Definition 4, and satisfies Property 1, there exists a setting of m = O(log2 λ)
4 Note that OT2 also depends on OT1. We omit this dependence in our notation for

brevity.
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Extraction parameter: m.
Committer Input: Message M ∈ {0, 1}p.
Commit Stage:
Receiver Message.

1. Pick challenge string ch
$ {0, 1}m.

2. Sample uniform randomness {r1,i}i∈[m].
3. Compute and send {OT1(chi, r1,i)}i∈[m] using m instances of two-message

OT.

Committer Message.

1. Sample a random string r
$ {0, 1}m.

For every i ∈ [m] and every b ∈ {0, 1}, sample Mb
i

$ {0, 1}p subject to⊕
i∈[m] M

ri
i = M .

2. For every i ∈ [m] compute o2,i = OT2(M0
i , M1

i ; r2,i) with uniform random-
ness r2,i.

3. Send (r, {o2,i}i∈[m]).

Reveal Stage: The committer reveals M , and all values {M0
i , M1

i }i∈[m] as well
as the randomness r2,i. The receiver accepts the decommitment to message M if
and only if:

1. For all i ∈ [m], o2,i = OT2(M0
i , M1

i ; r2,i),
2. i∈[m] M

ri
i = M .

Fig. 1. Extractable commitments

for which the scheme in Fig. 1 is a (1−2−m−δOT) statistically hiding, λ− log1/2 λ-
extractable commitment scheme according to Definition 9. Further, the receiver’s
algorithms are public coin.

We relegate the proof of Theorem 1 to the full version of the paper.

5 Our Statistical WI Protocol

5.1 Modified Blum Protocol

We begin by describing a very simple modification to the Blum Σ-protocol for
Graph Hamiltonicity. The protocol we describe will have soundness error 1

2 −
negl(λ) against adaptive PPT provers, and will satisfy statistical zero-knowledge.
Since Graph Hamiltonicity is NP-complete, this protocol can also be used to
prove any statement in NP via a Karp reduction. This protocol is described in
Fig. 2.

We give an overview of the protocol here. Note that the only modification to
the original protocol of Blum [3] is that we use two message statistically hiding,
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Modified Blum Argument

1. Verifier Message: The verifier does the following:
◦ Sample the first message extcom1,i,j for independent instances of the ex-

tractable commitment, where i, j ∈ [p(λ)]× [p(λ)], uniformly at random.
◦ Send an additional first message extcom1,P for another independent in-

stance of the extractable commitment, again sampled uniformly at ran-
dom.

2. Prover Message: The prover gets input graph G ∈ {0, 1}p(λ)×p(λ) repre-
sented as an adjacency matrix, with (i, j)th entry denoted by G[i][j]), Hamil-
tonian cycle H ⊆ G. Here p(·) is an a-priori fixed polynomial. The prover
does the following:

◦ Sample a random permutation π on p(λ) nodes, and compute cP =
extcom2,P (π) as a commitment to π using extcom.

◦ Compute π(G), which is the adjacency matrix corresponding to the
graph G when its nodes are permuted according to π. Compute ci,j =
extcom2,i,j(π(G)[i][j]) for (i, j) ∈ [p(λ)] × [p(λ)].

◦ Send G, cP , ci,j for (i, j) ∈ [p(λ)] × [p(λ)].
3. Verifier Message: Sample and send c

$← {0, 1} to the prover.
4. Prover Message: The prover does the following:

◦ If c = 0, send π and the decommitments of extcomP , extcomi,j for (i, j) ∈
[p(λ)] × [p(λ)].

◦ If c = 1, send the decommitment of extcomi,j for all (i, j) such that
π(H)[i][j] = 1.

5. Verifier Output: The verifier does the following:
◦ If c = 0, accept if and only if all extcom openings were accepted and

π(G) was computed correctly by applying π on G.
◦ If c = 1, accept if and only if all extcom openings were accepted and all

the opened commitments form a Hamiltonian cycle.

Remark: Observe that since the receiver’s algorithms in the extractable com-
mitment scheme are public coin, the above protocol is also public coin.

Fig. 2. Modified blum SZK argument

extractable commitments instead of non-interactive statistically binding commit-
ments. The proofs of soundness and statistical honest-verifier zero-knowledge are
fairly straightforward. They roughly follow the same structure as [3], replacing
statistically binding commitments with statistically hiding commitments.

Lemma 1. Assuming that extcom is computationally binding, the protocol in
Fig. 2 satisfies soundness against PPT provers that may choose x adaptively in
the second round of the protocol.

Proof. The proof of soundness follows by the computational binding property of
extcom and the soundness of the (original) Blum protocol.

Let L denote the language consisting of all graphs that have a Hamiltonian
cycle. Consider a cheating prover P ∗ that convinces a malicious verifier about a
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statement x �∈ L with probability 1
2 + h(n), where h(·) > 1

poly(·) for some poly-
nomial poly(·). By an averaging argument, this means that there exists at least
one transcript prefix τ consisting of the first two messages of the protocol, where
for G �∈ L sent by the prover in the third message, Pr[V accepts|τ,G �∈ L] > 1

2 .
This implies that there exists a cheating prover that generates a transcript prefix
τ , for which it provides an accepting opening corresponding to both b = 0 and
b = 1, with probability at least h(n). Next, we argue that such a cheating prover
must break the (computational) binding of com.

Since G �∈ L, it is information theoretically impossible for any cheating prover
to generate a commitment to a unique string π, π(G) such that there exists a
Hamiltonian cycle in π(G). Therefore, any prover that opens a transcript prefix
τ,G corresponding to both b = 0 and b = 1 for G �∈ L, must open at least one
commitment in the set {extcomP , {extcomi,j}i,j∈p×p} to two different values,
thereby giving a contradiction to the binding of the commitment scheme. ��
Lemma 2. Assuming that extcom is statistically hiding, the protocol in Fig. 2
satisfies honest-verifier statistical zero-knowledge.

Proof. The simulation strategy is identical to that of [3]. The simulator Sim first
guesses the challenge bit c′. It begins an interaction with the malicious veri-
fier. On obtaining the first message from the verifier, if c′ = 0, it samples π
uniformly at random and generates a commitment to π, π(G) following honest
prover strategy to generate the commitment. If c′ = 1, it samples π,H ′ uniformly
at random where H ′ is an arbitrary hamiltonian cycle, and generates a commit-
ment to π, π(H ′) following honest prover strategy to generate the commitment.
Next, it waits for the verifier to send c, and if c �= c′, it aborts and repeats the
experiment. If c = c′, then it decommits to the commitments according to honest
prover strategy.

Note that when c = c′ = 1, the resulting simulation is perfect zero-knowledge
since the simulated view of the verifier is identical to the view generated by an
honest prover. On the other hand when c = c′ = 0, it follows from the statistical
hiding property of the commitment extcom that the verifier cannot distinguish
the case where extcom is a commitment to π, π(G) and a hamiltonian cycle is
opened in π(G), from the case where extcom is not a commitment to π(G), but
instead to some π(H ′) for a hamiltonian cycle H ′. ��

Since honest-verifier zero-knowledge composes under parallel repetition, we
can repeat the protocol several times in parallel to get negligible soundness error.
Formally, we have the following lemma:

Lemma 3. Assuming that extcom is statistically hiding, the protocol in Fig. 2
satisfies honest verifier statistical zero-knowledge under parallel repetition.

Finally, Cramer et al. [9] showed that honest verifier zero knowledge where
the receiver’s algorithms are public coin implies witness indistinguishability even
against malicious verifiers. As a result, we get the following lemma:

Lemma 4. Assuming that extcom is statistically hiding, the protocol in Fig. 2
satisfies statistical witness indistinguishability under parallel repetition.
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5.2 Statistical ZAPs

In this section, we prove the following theorem:

Theorem 2. There exists a two message public-coin statistical witness indistin-
guishable argument system for NP in the plain model assuming that the following
primitives exist:

• Two-message oblivious transfer (OT) that is quasi-polynomially secure
against malicious senders, satisfying Definition 4 and Property 1, and,

• Quasi-polynomially correlation intractable hash functions.

Recall from previous sections that we can use the above OT to build the
extractable commitment which is then used to build a four message Σ-protocol
that is a modification to Blum’s protocol. As mentioned before, we can instan-
tiate both the OT and the correlation intractable hash function assuming the
learning with errors (LWE) assumption. Therefore, instantiating both the prim-
itives in the above theorem gives us the following:

Theorem 3. Assuming quasi-polynomially secure LWE, there exists a two mes-
sage public-coin statistical witness indistinguishable argument system for NP in
the plain model.

Notations and Primitives Used

• Let λ be the security parameter.
• Let Σ := (Σ1, . . . , Σλ) denote λ parallel repetitions of the modified Blum

Sigma protocol constructed in Sect. 5.1, where for i ∈ [�], Σi = (qi, ai, ei, zi).
Let the underlying commitment scheme be instantiated with extraction suc-
cess probability ε = λ− log1/2 λ.

• Let H be a correlation intractable hash function with respect to {Fλ,s(λ)}λ∈N

according to Definition 3 that outputs strings of length λ, where s(λ) = 2s1(λ)
where s1 is the size of the extractor E used in the commitment scheme and
F denotes the class of all NC1 circuits of size s(λ) as defined in Definition
2. Recall the correlation-intractability advantage is assumed to be at most

1
λlog λ .

Construction. Let x be any instance in {0, 1}λ and let w be the corresponding
witness for the statement x ∈ L.

1. Verifier’s message to the Prover:
• Sample q := {qi}i∈[λ].
• Sample K ← H.Setup(1λ, 0�).
• Output (q,K).

2. Prover’s message to the Verifier:
• Compute {ai}i∈[λ] as a response to {qi}i∈[λ].
• Compute e ← H.Eval(K,x, (q, a)).
• Compute {zi}i∈[λ] with respect to the challenge string e.
• Output (x, a, e, z).
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3. Verification: The verifier does the following:
• If H.Eval(K,x, a) �= e, output reject.
• Else if (x, q, a, e, z) does not verify according to the Σ protocol, output

reject.
• Else output accept.

Completeness. Completeness of the protocol can be easily observed from the
correctness of the underlying primitives: the protocol Σ and the hash function H.

Public Coin. Recall from the statistical indistinguishability of hash keys prop-
erty that an honest verifier can just sample a uniformly random string as the
hash key K. This, along with the fact that the underlying protocol Σ is public
coin results in the above protocol also being public coin.

Soundness. We now prove computational soundness of the protocol above.
Towards a contradiction, fix any adversary A that breaks soundness of the pro-
tocol with probability 1

p(λ) for some polynomial p(·).
We consider a sequence of hybrids where the first hybrid corresponds to the

real soundness experiment.

• Hybrid0 : This hybrid corresponds to the experiment where the challenger
behaves identically to the verifier in the actual protocol.

• Hybrid1: In this hybrid, instead of generating the verifier’s first message as
uniformly random string, the challenger Ch now computes the first message
of the extractable commitment scheme used in the underlying protocol Σ as
done in the protocol description in Fig. 1. In particular, the underlying OT
receiver messages are not sampled as uniformly random strings but instead
are computed by running the OT receiver algorithm. As a result, Ch now has
some internal state rstate as part of the extractable commitment scheme that
is not public.

• Hybrid2: This hybrid is the same as the previous hybrid except that the hash
key K is generated as follows. K ← H.Setup(1λ, R) where the relation R
consists of tuples of the form ((x, q, a), y) where y is computed by an efficient
function fbad described below. fbad has the verifier’s secret state rstate hard-
wired, takes as input the statement x, the verifier’s message q, the prover’s
message a and does the following.
1. Run the extractor algorithm E on input (rstate, τ = (q, a)) to compute m.

Note that E can be represented by an NC1 circuit of size s1(λ) for some
polynomial s1.

2. If m �= ⊥, this means that m is the tuple of messages committed to in the
set of λ commitment tuples (cP , {ci,j}). For each k ∈ [λ], check whether
the message committed to by the tuple {ci,j} is indeed equal to π(G)
where π is the permutation committed to in cP . If so, then set ek = 0
and else set ek = 1. Set y = (e1, . . . , eλ).5

3. If m = ⊥, set y = 0λ.
5 Essentially, since x /∈ L, if the cheating prover has to succeed, it can either generate

a successful response zk for verifier’s query bit ek = 0 or ek = 1 and this function
determines which bit it is.
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Before proving the soundness of the protocol using the hybrids, we define an
event that helps us in the proof.

Event E: Let τ denote the transcript of an execution of the above protocol and
let τC denote the transcript of the commitment scheme in the execution. Let
stateR denote the state of the verifier when it runs the receiver algorithm of
the commitment scheme. We will say that the event E occurs if for any honest
verifier V :

[V (τ) = 1 ∧ E(τC , stateR) �= ⊥].

We now continue the proof of soundness with the following claims.

Lemma 5. Assuming the pseudorandomness of receiver messages of the OT
protocol used in the underlying extractable commitment scheme (Property 1),
|Pr[V (τ) = 1|Hybrid1] − Pr[V (τ) = 1|Hybrid0]| = negl(λ)

Proof. The only difference between the two hybrids is that in Hybrid0, the OT
receiver messages in the extractable commitment scheme used in the underlying
protocol Σ are generated as uniformly random strings while in Hybrid1, they
are generated by running the algorithm OT1 on behalf of the OT receiver. It
is easy to see that if the difference in the adversary’s success probability in
breaking soundness between these two hybrids is non-negligible, we can break the
pseudorandomness of receiver messages property (Property 1) of the underlying
two message OT protocol, which is a contradiction. ��
Lemma 6. Assuming the frequency of extraction property and the indistin-
guishability of extractable transcripts property of the extractable commitment
scheme, there exists a polynomial p(·) such that Pr[E occurs in Hybrid1] ≥ ε· 1

p(λ) ,

where the probability is over the randomness of V , and where ε = λ− log1/2 λ is
the extraction probability of the underlying commitment scheme.

Proof. Fix x �∈ L. We will consider a reduction B that interacts with the adver-
sary and relies on the frequency of extraction property and the indistinguisha-
bility of extractable transcripts property of the extractable commitment scheme
to prove the lemma.

B interacts with a challenger Ch for the commitment scheme and receives
a first round message com1 for the �-extractable commitment scheme. It then
interacts with the adversary A as the verifier in the ZAP protocol, setting com1

as its message on behalf of the receiver in the underlying commitment scheme,
and sampling the hash key K ← H.Setup(1λ, 0�). After completing the protocol
execution with A, B forwards the commitments sent by A as its message com2

of the commitment scheme to the challenger Ch. Further, B outputs 1 in its
interaction with Ch if the proof provided by A verifies, and 0 otherwise.

Let τ denote the transcript of the ZAP protocol and τC the transcript of the
underlying commitment scheme. Let stater be the state of the receiver in the
commitment scheme as sampled by the challenger Ch.
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First, we observe that by Lemma 5, there exists a polynomial p(·) such that
adversary A breaks the soundness property in Hybrid1 with non-negligible prob-
ability 1

p(λ) . This implies that Pr[B(τC) = 1] ≥ 1
p(λ) over the random coins of

B,Ch. This gives us the following equation.

Pr[B(τC) = 1] = (Pr[B(τC) = 1 | E(τC , stateR) �= ⊥] · Pr[E(τC , stateR) �= ⊥]

+Pr[B(τC) = 1 | E(τC , stateR) = ⊥] · Pr[E(τC , stateR) = ⊥]) ≥ 1
p(λ)

(1)

From the indistinguishability of extractable transcripts property, we have that:
∣∣Pr[B(τC) = 1 | E(τC , stateR) �= ⊥]−Pr[B(τC) = 1 | E(τC , stateR) = ⊥]

∣∣ = negl(λ)
(2)

From the frequency of extraction property, we have that :

Pr[E(τC , stateR) �= ⊥] ≥ ε (3)

where all equations are over the random coins of the challenger Ch and reduction
B. Combining Eqs. (1) and (2) implies that there exists a polynomial q(·) such
that Pr[B(τC) = 1 | E(τC , stateR) �= ⊥] ≥ 1

q(λ) , which, by Eq. (3), implies that

Pr[B(τ) = 1 ∧E(τC , stateR) �= ⊥]

= Pr[B(τC) = 1 | E(τC , stateR) �= ⊥] · Pr[E(τC , stateR) �= ⊥]

≥ 1

q(λ)
· ε.

Thus we have Pr[E occurs in Hybrid1] ≥ ε · 1
q(λ) . This completes the proof of

the Lemma. ��
Lemma 7. Assuming the statistical indistinguishability of hash keys of the cor-
relation intractable hash function, there exists a polynomial p(·) such that

Pr[Eoccurs in Hybrid2] ≥ ε · 1
p(λ)

,

where the probability is over the randomness of V , and where ε = λ− log1/2 λ is
the extraction probability of the underlying commitment.

Proof. Assume for the sake of contradiction that the lemma is not true. We will
show that we can break the statistical indistinguishability of hash keys property
of the correlation intractable hash function.

We will design a reduction B that interacts with A, where B acts as verifier
in the above ZAP protocol. B interacts with a challenger Ch for the correlation
intractable hash function. Initially, B samples the first round message q for the
underlying Sigma protocol just as in Hybrid1, along with associated receiver state
stateR for the commitment scheme, and sends both to Ch. B obtains a hash key
K sampled either uniformly at random (as in Hybrid1) or by running the setup
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algorithm of the hash function as described in Hybrid2. B uses this key K in its
interaction with the adversary A and completes executing the ZAP protocol.
Observe that if Ch sampled a hash key uniformly at random, the interaction
between A and B is identical to Hybrid1 and if Ch sampled as hash key as
described in Hybrid2, the interaction between A and B is identical to Hybrid2.

Now, B tests if event E occurs. That is, it checks if the ZAP protocol verifies
and if so, runs the extractor E(τC , stateR) using the transcript τC for the com-
mitment scheme. If the extractor cE does not output ⊥, then event E occurs
and B guesses that the hash key was uniformly sampled in its interaction with
the challenger Ch. Otherwise, it guesses that the hash key was not uniformly
sampled. Thus, if the event E occurs with probability ≥ ε · 1

p(λ) in Hybrid1, and
occurs with probability ε ·negl(λ) in Hybrid2, B can distinguish between the hash
keys with advantage ε

q(λ) for some polynomial q. This is a contradiction, and
this completes the proof of the lemma. ��
Lemma 8. Assuming the quasi-polynomial correlation intractable property of
the hash function, the soundness of the underlying protocol Σ and the correctness
of extraction of the extractable commitment scheme,

Pr[E occurs in Hybrid2] ≤ ε · negl(λ).

Proof. Suppose the claim is not true. This implies that Pr[V (τ) = 1 ∧ E(τC ,
stateR) �= ⊥] = ε · 1

p(λ) for some polynomial p. Let us consider any transcript on
which event E occurs. Let (q,K) denote the verifier’s message and (x, a, e, z)
denote the prover’s message. Then, from the correctness of the ZAP proto-
col, it must be the case that (q, a, e, z) verifies according to protocol Σ and
e = H(K, q, x, a). Further, since the extractor E succeeds on this transcript, the
commitment scheme is statistically binding. Therefore, we can invoke the special
soundness of the underlying modified Blum Σ protocol (as in the case of the reg-
ular Blum protocol) to state that for the statement x /∈ L and prefix (q, a) there
can exist at most one pair (e∗, z∗) such that (q, a, e∗, z∗) verifies successfully.
Therefore, the adversary’s message e must be equal to this value e∗.

Now, from the description of the relation R used in defining the hash key K
in Hybrid2, we observe that, by the correctness of extraction, fbad(q, x, a) = e∗ =
H(K, q, x, a). Thus, for any transcript that satisfies the conditions in event E,
fbad(q, x, a) = e∗ = H(K, q, x, a).

Thus, we can build a reduction B that, using the adversary A, produces
(x, q, a) such that fbad(q, x, a) = e∗ = H(K, q, x, a) with probability at least
ε · 1

p(λ) = 1

λlog1/2 λ·p(λ) . Since by Definition 3 the advantage of any polynomial-

time adversary in this game must be at most 1
λlog λ , this yields a contradiction.

��
Note that Lemmas 7 and 8 contradict each other, and therefore the adversary
does not break soundness in the real experiment. This completes the proof of
soundness. ��
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Statistical Witness Indistinguishability. Let A denote the unbounded time
adversarial verifier and Ch denote the challenger. Let x be the challenge instance
of length λ and w0 and w1 be a pair of witnesses for x ∈ L. Consider a pair of
hybrids where the first hybrid Hybrid0 corresponds to Ch running the honest
prover algorithm with witness w0 being used and the second hybrid Hybrid1
corresponds to Ch running the honest prover algorithm with witness w1 being
used. We now show that these two hybrids are statistically indistinguishable to
complete the proof.

Claim. Assuming the Σ-protocol is statistically witness indistinguishable,
Hybrid0 is statistically indistinguishable from Hybrid1.

Proof. We now show that if there exists an unbounded time adversary A for
which the two hybrids are not statistically indistinguishable, we can build a
reduction B that can break the witness indistinguishability of the underlying
modified Blum’s Sigma protocol which is a contradiction to Lemma 4. B acts as
the challenger in its interaction with the adversary A that is trying to distinguish
between these two hybrids. Further, B acts as the adversary in its interaction
with a challenger C in trying to break the WI property of the modified Blum
Sigma protocol. Initially, A sends a statement x, a pair of witnesses (w0, w1)
and a first round message (q,K) for the above ZAP construction. B forwards
(x,w0, w1) to the challenger C and sends q as its first message of the underlying
protocol Σ. C responds with its round two message a on behalf of the prover. B
computes e ← H.Eval(K,x, (q, a)) and sends it to C. Finally, C responds with the
last round message z on behalf of the prover. Now, B sends the tuple (x, a, e, z)
to A as the prover message for the above ZAP protocol. Observe that if the chal-
lenger C interacted using witness w0, then the interaction between the reduction
B and the adversary A is identical to Hybrid0 and if the challenger C interacted
using witness w1, then the interaction between the reduction B and the adver-
sary A is identical to Hybrid1. Thus, if these two hybrids are not statistically
indistinguishable to A, B can use the same guess used by A to distinguish them,
to break the statistical witness indistinguishability property of the protocol Σ
which is a contradiction. ��

5.3 Statistical SPS Zero Knowledge

We achieve the following theorem:

Theorem 4. For any c > 0, there exists a two message public-coin TSim-SPS
statistical zero knowledge argument system for NP in the plain model, where
TSim = 2λc

, assuming two-message oblivious transfer (OT) that is subexpo-
nentially secure against malicious senders, and quasi-polynomially correlation
intractable hash functions.

Note that we can instantiate the CI hash function and the OT protocol
assuming subexponential LWE. We refer to the full version of the paper for the
proof of Theorem 4.
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