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Abstract. Dwork and Naor (FOCS ’00) defined ZAPs as 2-message
witness-indistinguishable proofs that are public-coin. We relax this to
ZAPs with private randomness (ZAPRs), where the verifier can use pri-
vate coins to sample the first message (independently of the statement
being proved), but the proof must remain publicly verifiable given only
the protocol transcript. In particular, ZAPRs are reusable, meaning that
the first message can be reused for multiple proofs without compromising
security.

Known constructions of ZAPs from trapdoor permutations or bilin-
ear maps are only computationally WI (and statistically sound).
Two recent results of Badrinarayanan-Fernando-Jain-Khurana-Sahai and
Goyal-Jain-Jin-Malavolta [EUROCRYPT ’20] construct the first statis-
tical ZAP arguments, which are statistically WI (and computationally
sound), from the quasi-polynomial LWE assumption. Here, we construct
statistical ZAPR arguments from the quasi-polynomial decision-linear
(DLIN) assumption on groups with a bilinear map. Our construction
relies on a combination of several tools, including the Groth-Ostrovsky-
Sahai NIZK and NIWI [EUROCRYPT ’06, CRYPTO ’06, JACM ’12],
“sometimes-binding statistically hiding commitments” [Kalai-Khurana-
Sahai, EUROCRYPT ’18] and the “MPC-in-the-head” technique [Ishai-
Kushilevitz-Ostrovsky-Sahai, STOC ’07].
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1 Introduction

Zero-Knowledge and Witness-Indistinguishability. Zero-knowledge (ZK) proofs,
introduced in the ground-breaking paper of Goldwasser, Micali, and Rackoff
[GMR85], have found countless uses in cryptography. Unfortunately, such pro-
tocols are known to require at least 3 rounds of interaction [GO94] in the plain
model without additional setup, which is the model that we consider throughout
this work. Witness indistinguishable (WI) proofs [FS90] are a natural relaxation
of zero-knowledge, which has turned out to be extremely useful. A WI proof gen-
erated using any witnesses w for an NP statement x is indistinguishable from a
proof generated with any other possible witness w′ for x. Unlike in the case of
ZK, there are no lower bounds on the round complexity of WI proofs.

ZAPs and Non-Interactive WI (NIWI). The work of Dwork and Naor [DN00,
DN07] constructed two-message public-coin WI proofs, which they called ZAPs.
By now, we have constructions of ZAPs under any of: trapdoor permuta-
tions (factoring) [FLS99,DN00]; the decision-linear assumption (DLIN) in bilin-
ear maps [GOS06a]; indistinguishability obfuscation [BP15]; or learning with
errors [BFJ+20,GJJM20,LVW19]. In fact, we can even get completely non-
interactive WI proofs (NIWI) assuming either trapdoor permutations and a mild
complexity-theoretic derandomization assumption [BOV03] or the bilinear DLIN
assumption [GOS06a].

ZAPs and ZAPRs. The original definition of ZAPs from [DN00,DN07] required
that they are public coin, meaning that the first message from the verifier to the
prover consists of uniform randomness. The main advantage of such protocols
is that they are publicly verifiable, meaning that anybody can decide whether
the proof is accepting or rejecting by only looking at the protocol transcript.
Moreover, in such publicly verifiable protocols, the first message is inherently
reusable for multiple different proofs of different statements, and security holds
even if the cheating prover learns whether the verifier accepts or rejects various
proofs with the same first message (since this decision only depends on the public
transcript). This is in contrast to secret-coin two-message WI proofs, which may
be insecure under such reuse.

In this work, we introduce an intermediate notion that we call ZAPs with
private randomness (ZAPRs). ZAPRs allow the verifier to use secret coins to
generate the first message, but we still require the proofs to be publicly verifiable,
and we require that the first message is sampled independently of the statement
being proved. Therefore, ZAPRs have essentially the same advantages as ZAPs,
and the two can be used interchangeably in most applications.1

Statistical WI. Most prior constructions of ZAPs (and 2-message WI protocols in
general) only achieve computational WI security, often with statistical soundness
[DN00,GOS06a,BP15]. However, it is arguably more important for WI security

1 One notable exception where the “public coin” nature of ZAPs is used essentially is
for derandomization of the verifier message [BOV03]; however, this seems to require
ZAPs satisfying statistical soundness, while we focus on computationally sound,
statistically WI protocols in this work.
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to hold statistically than it is for soundness. In particular, we want privacy
to be preserved long into the future after the protocols have finished executing,
despite the potential that computational assumptions may become broken in the
long term. On the other hand, soundness is only relevant during the protocol
execution itself and, even if the underlying assumptions are broken after the
protocol finished executing, it is too late for the adversary to take advantage
of this.

Interestingly, 2-message statistically WI protocols were unknown until
recently. The first progress on this problem was only made by Kalai, Khurana and
Sahai [KKS18], who constructed a secret-coin 2-message statistical WI protocol
under standard quasi-polynomial assumptions (DDH or QR or Nth residuosity).
Unfortunately, their protocol is not publicly verifiable and the first message is
not reusable (a simple attack breaks soundness under such reuse). Even more
recently, Badrinarayanan et al. [BFJ+20] along with Goyal et al. [GJJM20]2 con-
structed the first statistical ZAP arguments under the quasi-polynomial LWE
assumption. These last two results rely on recent constructions of NIZKs from
LWE [CLW18,CCH+19,PS19] via correlation-intractable hash functions, which
in turn rely on fully homomorphic encryption/commitments from LWE. This left
open the question of whether we can achieve such statistical ZAP or ZAPR argu-
ments under other assumptions, without relying on LWE or “fully homomorphic
cryptography”.

Our Results. In this work, we construct statistical ZAPR arguments from the
quasi-polynomial decision-linear (DLIN) assumption in groups with a bilin-
ear map. More generally, we construct ZAPR arguments using three generic
ingredients:

– Non-interactive statistical ZK (NISZK) arguments in the common-reference
string (CRS) model. We need the scheme to have the additional property
that every valid CRS in the support of the setup algorithm ensures that the
resulting arguments are statistically WI. This is guaranteed, for example, if
the NISZK argument system satisfies perfect zero knowledge, as in [GOS06b,
GOS12]. One can think of this property as ensuring WI security even if the
CRS is chosen “semi-maliciously” using adversarial randomness but still from
the support of the setup algorithm.

– Non-interactive WI proofs (NIWI) in the plain model, where the WI property
is computational and soundness is statistical. As mentioned above, we know
how to construct such NIWI proofs assuming either trapdoor permutations
and a mild complexity-theoretic derandomization assumption [BOV03] or the
bilinear DLIN assumption [GOS06a].

– Sometimes binding, statistically hiding (SBSH) commitments. This is a relax-
ation of a notion introduced recently by [KKS18].3 It is a 2-round commitment
protocol where the receiver chooses a random α in the first round, and the

2 The conference paper [GJJM20] subsumes the construction of statistical ZAP argu-
ments in a preprint of Jain and Jin [JJ19].

3 The main difference is that their commitment needed to be “sometimes extractable”
whereas ours only needs to be “sometimes statistically binding”.
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sender sends a random β and uses ck = (α, β) as a commitment key to cre-
ate a commitment Com(ck,m) to his message m in the second round. Even
if the receiver chooses α maliciously, the commitment key ck is statistically
hiding with overwhelming probability over a random choice of β. However,
there is some inverse quasi-polynomial probability ε such that, even if the
sender chooses β maliciously after seeing α, the commitment key ck = (α, β)
makes the commitment statistically binding. Furthermore, the sender cannot
tell whether this rare event occurs or not.

The first two primitives can be constructed under the bilinear DLIN assump-
tion using the techniques of [GOS06a]. (We will require that the primitives sat-
isfy quasi-polynomial security and therefore need to rely on quasi-polynomial
DLIN.) The last primitive can be constructed under a variety of quasi-polynomial
assumptions such as DDH or QR or N ’th residuosity [KKS18], and we show it
can also be done under quasi-polynomial DLIN.

Our construction broadens the set of assumptions from which we can build
statistical ZAPR arguments (previously only quasi-polynomial LWE was known)
and gives an alternate approach for achieving them without relying on correlation
intractability.

What About Adaptive Soundness? We show that our statistical ZAPR argu-
ments, under the quasi-polynomial bilinear DLIN assumption, satisfy non-
adaptive soundness : for any false statement x, a (quasi-poly time) cheating
prover P ∗ cannot find proof π∗ for x that the verifier would accept. One could
potentially ask for the stronger security notion of adaptive soundness : infor-
mally, a protocol is adaptively sound if a cheating prover P ∗ cannot find any
false statement x∗ �∈ L along with an accepting proof π∗ for x∗.

As is standard for adaptive security notions, if we strengthen our assumption
to the subexponential security of bilinear DLIN, we can make use of complexity
leveraging [BB04] and obtain a statistical ZAPR argument that is adaptively
sound for statements of a priori bounded length. More formally, for every length
�(λ), there is a statistical ZAPR argument Π(�) that is adaptively sound for
statements of length �(λ).

One would ideally hope for a protocol satisfying adaptive soundness for
unbounded (poly-length) statements. However, there is some evidence that such
a protocol would be difficult to obtain. In particular, in the context of NISZK
arguments, a result of Pass [Pas16] shows that there is no black-box reduction
from the adaptive soundness of a NISZK protocol to a “falsifiable assumption”
[Nao03]. There is additionally no known non-black-box construction overcoming
this impossibility result (without relying on non-falsifiable assumptions, as in
[AF07]).

Given the similarity between NISZK arguments and statistical ZAPR argu-
ments (if anything, the latter seem harder to achieve), we consider this to be a
barrier to constructing adaptively sound statistical ZAPR arguments. However,
no formal impossibility result is known; indeed, we do not even know how to
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rule out the existence of statistical ZAP proofs (ZAPs satisfying both statistical
soundness and statistical WI) for all of NP.

1.1 Technical Overview

We now describe our construction using the above primitives. We start with a
very simple construction, which already gives a 2-message (publicly verifiable)
statistical WI protocol for NP ∩ coNP and conveys some of the intuition.

Interestingly, our warm-up protocol relies on only the polynomial hardness
of bilinear DLIN (rather than quasi-polynomial hardness), yielding a 2-message
statistical WI protocol for a broad class of languages without relying on super-
polynomial assumptions.

We then describe our more complex construction, which works for all of NP.

Warm-Up: A Simple Protocol for NP∩ coNP. As a warm up, we describe
a very simple 2-message statistical WI argument for languages L ∈ NP ∩ coNP.
In this warm-up construction, the first message depends on the statement x
being proved, but we remove this in the full construction. The construction
makes use of NISZK arguments and NIWI as above (but does not require SBSH
commitments). The main ideas behind the construction are that:

1. The prover uses the [GOS12] NISZK argument system to prove that x ∈
L, where we let the verifier chooses the CRS. This already provides “semi-
malicious” WI security. To get full WI, we need to ensure that the CRS is
valid (in the support of the setup algorithm).

2. The verifier uses a NIWI to prove that the CRS is valid. The challenge is to
only rely on WI security rather than full ZK. To do so, we let the verifier
prove that either the CRS is valid or x �∈ L.

In more detail, the protocol proceeds as follows.

Verifier → Prover: The verifier samples a CRS of a NISZK argument. He then
uses a NIWI to prove that either the CRS is valid (i.e., in the support of the
setup algorithm, using the random coins of the setup algorithm as a witness)
or x �∈ L. The first message consists of the CRS along with the NIWI proof.

Prover → Verifier: The prover verifies the NIWI proof (aborting if it does not
accept) and then uses the NISZK argument with the received CRS to prove
that x ∈ L.

For x ∈ L, the statistical WI security of the ZAPR follows from the statistical
soundness of the NIWI, which ensures that the CRS is valid, together with the
statistical WI of the NISZK, which holds for all valid CRS.

For x �∈ L, the computational soundness of the ZAPR follows by first relying
on the computational WI security of the NIWI to argue that the prover cannot
notice if we modify the NIWI proof to use the witness for x �∈ L instead of
the randomness of the setup algorithm. With this change, we can then rely on
the computational soundness of the NISZK argument to argue that the prover
cannot produced a valid NISZK proof for x ∈ L.
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The Full Construction. The full construction is more involved. In addition
to the three primitives mentioned previously (NISZK, NIWI, and SBSH com-
mitments), we also rely on an additional information-theoretic tool that we now
describe.

Locally-ZK Proofs (LZK) via “MPC in the Head”. We introduce a new tool
called locally ZK proofs (LZK). An LZK proof consists of a probabilistic encod-
ing that maps a witness w for a statement x into a proof string π ∈ Σ� for
some alphabet Σ. There is also a polynomial size set {S1, . . . , SQ} of “queries”
Si ⊆ [�] and a verification algorithm Verify(x, i, π[Si]) that locally verifies that
π is consistent on the positions Si. The proof satisfies two statistical security
properties:

– Global Soundness: If there exists some proof π ∈ Σ� such that Verify(x, i,
π[Si]) = 1 for all i ∈ [Q] then x ∈ L.

– t-Local-ZK: For any t queries Sa1 , . . . , Sat
the values π[Sa1 ], . . . , π[Sat

] can be
simulated without knowing the witness.

We can think of LZK proofs as a relaxation of ZK-PCPs [KPT97] where the
verifier needs to make all the queries to be convinced of soundness but ZK holds
locally. We construct such LZK proofs for any Q and t < Q/2 using the “MPC
in the head” technique [IKOS07]. In particular, to construct the proof π, the
encoding algorithm runs a (semi-honest information-theoretic) MPC protocol
with Q parties and security against t corruptions. Each party has as input a
secret share (in an additive secret sharing) of the witness w and the MPC outputs
1 to each party iff the shares add up to a valid witness for x. The proof π is
of length � = Q + Q(Q − 1)/2 and contains the view of each party i ∈ [Q] in
the protocol, as well as the contents of the Q(Q − 1)/2 communication channels
between each pair of parties {i, j}. Each query set Si contains locations that
correspond to the view of party i and all of the communication channels that
involve party i. The verification algorithm for i checks that the view of the party
i and the communication channels involving party i correspond to an honest
execution of the protocol and that the output of the protocol is 1. It is easy to
check that this satisfies global soundness and t-local ZK.

ZAPR Construction. We now describe our ZAPR construction using NIWIs,
NISZKs, sometimes binding statistically hiding commitments, and LZK proofs.
To rely on quasi-polynomial assumptions, we choose the parameter Q of the
LZK proof to be poly(log λ).

Verifier → Prover: The verifier samples 3Q CRS’s of the NISZK. We interpret
this as Q bundles of 3 CRS’s each. The verifier then gives a NIWI proof
that, in each bundle, at least 2 out of 3 of the CRS’s are valid. He does
so by choosing a random 2 of the 3 CRS’s in each bundle and using the
corresponding randomness of the setup algorithm for them as the witness.
Lastly, the verifier also sends the first message α of the SBSH commitment
scheme.
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Prover → Verifier: The prover verifier the NIWI proofs and aborts if any
of them do not accept. The prover then samples an LZK proof π ∈ Σ� for
the statement x ∈ L. It samples the SBSH commitment component β and
uses the commitment key ck = (α, β) to commit to each of the � blocks of
π separately. Lastly, it chooses a random CRS in each bundle i ∈ [Q] and
uses it to give an NISZK argument showing that the LZK verifier outputs
Verify(x, i, π[Si]) = 1, where π[Si] is contained in the committed values. It
sends back β, all the commitments, and the NISZK arguments.

We first argue that the above construction is statistically WI. By the statisti-
cal hiding of the commitment scheme, the commitments do not reveal anything
about the committed values. By the statistical soundness of the NIWI, we know
that at least 2 of the 3 CRS’s in each bundle are valid. Since the prover chooses
a random CRS in each bundle, on expectation at least 2Q/3 of the chosen CRS’s
are valid and, by Chernoff, at least Q/2 of them are valid with overwhelmingly
probability. The NISZK arguments for the valid CRS’s are statistically WI and
hence do not reveal any information about the committed values. The remaining
t < Q/2 NISZK arguments may reveal some information about the committed
values π[Si]. But, by the locally-ZK property of the proof π, this does not reveal
anything about w.

Next, we argue that the construction is computationally sound. Assume that
the adversarial prover succeeds in proving a false statement with non-negligible
probability δ. The commitment scheme ensures that there is a ε probability that
ck = (α, β) is binding and, because the prover cannot tell whether this occurred
or not, the probability that (1) the commitment is binding and (2) the prover
succeeds in proving a false statement is ε · δ, which is inverse quasi-polynomial.
Next, we rely on the (quasi-polynomial) computational WI security of the NIWI
argument to argue that the prover cannot learn which 2 of the 3 CRS’s in each
bundle had their setup randomness used as a witness in the NIWI. Therefore,
even if we condition on (1) and (2), there is an inverse quasi-polynomial (1/3)Q

chance that (3) in each bundle, the prover chooses the one CRS whose setup
randomness was not used in the NIWI. Altogether there is an inverse quasi-poly
probability of (1), (2) and (3) occurring simultaneously. But if this happens,
then (as guaranteed by the global soundness of the LZK proof) at least one of
the statements proved via the NISZK is false and therefore the prover breaks
the (quasi-polynomial) soundness of the NISZK arguments.

In our presentation, we assume quasi-polynomial hardness of the underlying
primitives, but only ensure that the statistical WI holds with a quasi-polynomial
error. We could analogously assume sub-exponential hardness and ensure that
statistical WI holds with a sub-exponentially small error.

1.2 Organization

The rest of the paper is organized as follows. In Sect. 2, we describe basic pre-
liminaries on witness indistinguishability and ZAPRs. In Sect. 3, we introduce
and discuss some of the main tools used in our construction: NISZK arguments,
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locally zero knowledge proofs, and sometimes-binding statistically hiding com-
mitments. Finally, in Sect. 4, we present our construction of statistical ZAPR
arguments from these building blocks.

2 Preliminaries

We say that a function μ(λ) is negligible if μ(λ) = O(λ−c) for every constant
c, and that two distribution ensembles X = {Xλ} and Y = {Yλ} are computa-
tionally indistinguishable (X ≈c Y ) if for all polynomial-sized circuit ensembles
{Aλ},

∣
∣
∣ Pr [Aλ(Xλ) = 1] − Pr [Aλ(Yλ) = 1]

∣
∣
∣ = negl(λ).

More generally, for any function δ(λ), we say that X and Y are δ-computationally
indistinguishable (X ≈c,δ Y ) if for all polynomial-sized circuit ensembles {Aλ},

∣
∣
∣ Pr [Aλ(Xλ) = 1] − Pr [Aλ(Yλ) = 1]

∣
∣
∣ = O(δ(λ)).

2.1 Witness Indistinguishable Arguments

Definition 1. A witness indistinguishable arugment system Π for an NP relation
R consists of ppt interactive algorithms (P, V ) with the following syntax.

– P (x,w) is an interactive algorithm that takes as input an instance x and
witness w that (x,w) ∈ R.

– V (x) is an interactive algorithm that takes as input an instance x. At the
end of an interaction, it outputs a bit b. If b = 1, we say that V accepts, and
otherwise we say that V rejects.

The proof system Π must satisfy the following requirements for every polynomial
function n = n(λ). Recall that L(R) denotes the language {x : ∃w s.t. (x,w) ∈
R} and Rn denotes the set R ∩ ({0, 1}n × {0, 1}∗).

– Completeness. For every (x,w) ∈ R, it holds with probability 1 that V
accepts at the end of an interaction 〈P (x,w), V (x)〉.

– Soundness. For every
{

xn(λ) ∈ {0, 1}n(λ)\L(R)
}

λ
and every polynomial size

P ∗ = {P ∗
λ}, there is a negligible function ν such that V accepts with probability

ν(λ) at the end of an interaction 〈P ∗(x), V (x)〉.
– Witness Indistinguishability. For every ppt (malicious) verifier V ∗ and

every ensemble
{

(xn, (w0,n, w1,n), zn) : (xn, w0,n), (xn, w1,n) ∈ Rn

}

λ
, the dis-

tribution ensembles

viewV ∗〈P (x,w0), V ∗(x,w0, w1, z)〉
and

viewV ∗〈P (x,w1), V ∗(x,w0, w1, z)〉
are computationally indistinguishable.



628 A. Lombardi et al.

In the work, we focus on obtaining two message WI arguments for NP. A (two
message) WI argument system can also satisfy various stronger properties. We
describe the variants relevant to this work below.

– Public Verification: A WI argument system is publicly verifiable if the
verifier’s accept/reject algorithm is an efficiently computable function of the
transcript (independent of the verifier’s internal state).

– Delayed Input: A two-message WI argument system is delayed input if the
(honestly sampled) verifier message α ← V (1λ, x) = V (1λ, 1n) depends only
on the length n = |x|.

– Statistical Soundness. For every
{

xn ∈ {0, 1}n\L(R)
}

and every
(unbounded) P ∗ = {P ∗

λ}, there is a negligible function ν such that V accepts
with probability ν(λ) at the end of an interaction 〈P ∗(x), V (x)〉.

– Statistical Witness Indistinguishability. For every polynomial func-
tion n(λ), every (unbounded) (malicious) verifier V ∗, and every ensemble
{

(xn, (w0,n, w1,n), zn) : (xn, w0,n), (xn, w1,n) ∈ Rn

}

λ
, the distribution ensem-

bles
viewV ∗〈P (x,w0), V ∗(x,w0, w1, z)〉

and
viewV ∗〈P (x,w1), V ∗(x,w0, w1, z)〉

are statistically indistinguishable.

Our goal is to construct a 2-message argument system that is publicly verifiable,
delayed input, and satisfies statistical witness indistinguishability. We call such
protocols statistical ZAPR arguments.

Definition 2 (Statistical ZAPR Arguments). A 2-message argument sys-
tem (P, V ) is a statistical ZAPR argument system if it is a delayed-input, publicly
verifiable protocol satisfying statistical witness indistinguishability.

As a tool towards our construction, we make use of another variant of WI
arguments: non-interactive witness indistinguishable proofs (NIWIs).

Definition 3 (NIWI Proofs). A one-message proof system is a non-interactive
witness indistinguishable proof system if it satisfies statistical soundness and (com-
putational) witness indistinguishability.

By [GOS06a], we know that NIWIs exist based on the decision linear assump-
tion on groups with bilinear maps.

Lemma 1 ([GOS06a]). Under the DLIN assumption, there exists a NIWI proof
system for NP.
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3 Tools for the Main Construction

3.1 Non-Interactive Statistical Zero Knowledge Arguments

We make use of non-interactive statistical zero knowledge arguments in the
common reference string model, as constructed by [GOS06b] under the DLIN
assumption on bilinear groups. Moreover, we make use of the fact that the GOS
protocol satisfies statistical witness indistinguishability in the presence of semi-
malicious setup, which we describe below.

Definition 4. A non-interactive statistical zero knowledge (NISZK) argument sys-
tem Π for an NP relation R consists of three ppt algorithms (Setup, P, V ) with
the following syntax.

– Setup(1n, 1λ) takes as input a statement length n and a security parameter λ.
It outputs a common reference string crs.

– P (crs, x, w) takes as input the common reference string, as well as x and w
such that (x,w) ∈ R. It outputs a proof π.

– V (crs, x, π) takes as input the common reference string, a statement x, and a
proof π. It outputs a bit b. If b = 1, we say that V accepts, and otherwise we
say that V rejects.

The proof system Π must satisfy the following requirements for every polynomial
function n = n(λ).

– Completeness. For every (x,w) ∈ R, it holds with probability 1 that V (crs, x,
π) = 1 in the probability space defined by sampling crs ← Setup(1|x|, 1λ) and
π ← P (crs, x, w).

– (Non-adaptive) Soundness. For every
{

xn ∈ {0, 1}n\L(R)
}

and every
polynomial size P ∗ = {P ∗

λ}, there is a negligible function ν such that

Pr
crs←Setup(1n,1λ)

π←P ∗
λ (crs)

[

V (crs, xn, π) = 1
] ≤ ν(λ).

– Statistical Zero Knowledge. There is a ppt simulator Sim such that for
every ensemble

{

(xn, wn) ∈ Rn

}

, the distribution ensembles
{(

crsλ,n, P (crsλ,n, xn, wn)
)}

λ

and
{

Sim(xn, 1λ)
}

λ

are statistically indistinguishable in the probability space defined by sampling
crsλ,n ← Setup(1n, 1λ) (and evaluating P and Sim with independent and uni-
form randomness).

In this work, we consider a strengthening of statistical zero knowledge4 to a
setting where the CRS is chosen in a semi-malicious way.
4 Technically, it is only a strengthening of witness indistinguishability.
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Definition 5 (Semi-Malicious StatisticalWitness Indistinguishability).
We say that a NISZK argument system (Setup, P, V ) is statistically wit-
ness indistinguishable in the presence of semi-malicious setup if for every
polynomial function n(λ) and every ensemble

{

(crsλ,n, xn, (w0,n, w1,n), zn) :

crsλ,n ∈ Supp(Setup(1λ, 1n)) and (xn, w0,n), (xn, w1,n) ∈ Rn

}

λ
, the distribution

ensembles {(

crsλ,n, P (crsn, xn, w0,n)
)

, zn

}

λ

and {(

crsλ,n, P (crsn, xn, w1,n)
)

, zn

}

λ

are statistically indistinguishable.

In other words, witness indistinguishability is guaranteed for any CRS that
can be output by the Setup(1λ, 1n) algorithm. Moreover, we have the following:

Remark 1. Any NISZK argument system satisfying perfect zero knowledge (or
perfect WI) satisfies semi-malicious statistical (and even perfect) WI.

Therefore, we obtain the following conclusion from [GOS12]:

Lemma 2. Under the DLIN assumption on groups with a bilinear map, there
exists an NISZK argument system for NP satisfying semi-malicious statistical
WI.

3.2 Locally Zero Knowledge Proofs

In this section, we define “locally zero knowledge proofs”, which one can think
of as a weak kind of zero-knowledge PCP [KPT97] that captures the “MPC in
the head” paradigm [IKOS07].

Definition 6 (t-Local Zero Knowledge Proof). For an NP language L (with
witness relation R), a t-local zero-knowledge proof lzkp = (Prove,Verify) is a pair
of PPT algorithms with the following syntax.

– Prove(x,w) takes as input a statement x ∈ L and witness w ∈ Rx; it outputs
a proof π = (π1, . . . , π�) ∈ Σ� for some alphabet Σ.

– Queries = {S1, . . . , SQ} ⊂ {0, 1}[�] is a set of “allowable queries”; we require
that it is possible to enumerate Queries in time poly(n,Q).

– Verify(x, i, πSi
) takes as input a statement x, index i (describing some set

Si ∈ Queries), and string πSi
∈ Σ|Si|; it outputs a bit b ∈ {0, 1}.

We say that lzkp has Q = |Queries| possible queries and block length Σ.
Moreover, we require that the following properties hold.

– Completeness: for any valid pair (x,w) and any index i ∈ [Q], we have
that Verify(x, i, πSi

) = 1 with probability 1 over the randomness of π ←
Prove(x,w).
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– Soundness: for any x �∈ L and any proof π, there exists some index i ∈ Q
such that Verify(x, i, πSi

) = 0.
– Perfect Zero Knowledge for t Queries: there exists a PPT simula-

tor Sim(x, i1, . . . , it) → π̃S∗ such that for every valid pair (x,w) and every
collection of t indices i1, . . . , it ∈ [Q], the distribution on π̃S∗ is identical
to the marginal distribution of an honestly generated proof π on the subset
S∗ = Si1 ∪ . . . ∪ Sit

.

Lemma 3. For any t > 0, there exists a t-local zero knowledge proof for Circuit-
SAT with Q = 2t + 1 possible queries.

Proof (sketch). Let Π denote an MPC protocol for distributed Circuit-SAT (that
is, the functionality (w1, . . . , wT ) �→ C(

⊕
wi) for an arbitrary input circuit C) for

T = 2t+1 parties satisfying information theoretic security against a collection of
t semi-honest parties. Following [IKOS07], we define the following proof system:

– Prove(x,w): interpret x = C as a circuit; set (wi)T
i=1 to be a T -out-of-T secret

sharing of w, and let π =
(

(viewi)T
i=1, (τij)i�=j

)

denote the following informa-
tion regarding an honest execution of Π (evaluating C(

⊕
wi)): viewi denotes

the view of party i in this execution, and τij denotes the communication
transcript between party i and party j.

– Queries: for every i ∈ [T ], we define the set Si ⊂ [T +
(
T
2

)

] to be {viewi} ∪
{τi,j}T

j=1.
– Verify(x, i, πSi

) outputs 1 if and only if (for Si = {viewi} ∪ {τi,j}T
j=1):

• viewi is internally consistent and outputs 1.
• For every j, viewi is consistent with τi,j .

It was implicitly shown in [IKOS07] that this protocol satisfies the desired prop-
erties. Completeness holds assuming that Π is perfectly complete; soundness
holds because if x �∈ L, then there is no valid witness for x, and hence any
consistent collection of views and transcripts

(

(viewi)T
i=1, (τij)i�=j

)

for Π must
correspond to a global execution of Π outputting 0. Perfect zero knowledge for
t joint queries holds by the perfect security of Π against t semi-honest parties.

3.3 Sometimes-Binding Statistically Hiding (SBSH) Commitments

For simplicity, we focus on two-message commitment schemes with the following
form:

– Key Agreement: The sender and receiver execute a two-message protocol
in which they publicly agree on a commitment key ck (the transcript of the
protocol). We require that the sender message be public-coin5 (i.e., it simply
outputs a string β). In other words,

5 Equivalently, we require that the commitment scheme is hiding even given a “partial
opening”, i.e., the randomness used in this phase.



632 A. Lombardi et al.

• The receiver R(ρ) → α outputs a message α using randomness ρ.
• The (honest) sender S samples and sends a uniformly random string

β ← {0, 1}�.
• The commitment key is defined to be ck = (α, β).

– Non-Interactive Commitment: The sender commits to a message m using
a (non-interactive) PPT algorithm Com(ck,m).

We call these schemes “non-interactive commitment schemes with key agree-
ment.” We will denote a transcript of this commitment scheme (α, β, com).

We say that a commitment key ck is binding if the non-interactive commit-
ment scheme Com with hardwired key ck is perfectly binding.

Definition 7 (Sometimes-Binding Statistically Hiding (SBSH) Com-
mitments). A non-interactive commitment scheme with key agreement (R,S,
Com) is a sometimes-binding statistically hiding (SBSH) commitment scheme with
parameters (ε, δ) if the following three properties hold.

– Statistical hiding: for any malicious PPT receiver R∗ (using randomness ρ
and outputting message α), the view of R∗ in an interaction with an honest
sender statistically hides the sender’s message m; that is,

{(ρ, α, β,Com(ck, 0))} ≈s {(ρ, α, β,Com(ck, 1))}
for α = R∗(ρ), β ← {0, 1}�, and ck = (α, β).

– Sometimes statistical binding: for any malicious PPT sender S∗(α) →
(β∗, st) for the key agreement phase, and for any PPT distinguisher D(st) →
b ∈ {0, 1}, we have that

Pr[D(st) = 1 ∧ ck := (α, β∗) is binding] = ε · Pr[D(st) = 1] ± δ · negl(λ),

where the probability is taken over α ← R(1λ), (β∗, st) ← S∗(α), and the
randomness of D.

In other words, it is a statistically hiding commitment scheme such that, even
for malicious PPT senders S∗, the commitment key ck is binding with probabil-
ity roughly ε, and moreover any event that S∗ produces (with sufficiently high
probability) occurs “independently” of the event that ck is binding.

Constructions. The works [KKS18,BFJ+20,GJJM20] construct variants of
SBSH commitment schemes (for ε and δ both inverse quasi-polynomial in
the security parameter) from (quasi-polynomially secure) 2-message OT sat-
isfying IND-based security against PPT senders and statistical sender privacy
against unbounded receivers.6 This leads to instantiations based on DDH [NP05],
QR/DCR [HK12] and LWE [BD18]. In fact, the [NP05] oblivious transfer scheme
can be generalized to a variant that relies on the DLIN assumption (rather
than DDH) on (not necessarily bilinear) cryptographic groups, which then yields
SBSH commitments based on DLIN as well.
6 All three of these works use slightly different security definitions than we use here,

but the [BFJ+20,GJJM20] instantiations can easily be shown to satisfy our variant
of the security property.
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Extending Naor-Pinkas OT to DLIN

Definition 8 (DLIN [BBS04]). Let G a group of prime order q with generator
g (all parametrized by the security parameter λ), where the tuple (G, g, q) is
public. The DLIN assumption states that

(ga, gb, gc, gar1 , gar2 , gc(r1+r2)) : a, b, c, r1, r2 ← Zq

is computationally indistinguishable from a uniformly random distribution over
G

6.

It will be convenient for us to work with “matrix in the exponent” notation,
where for a matrix M ∈ Z

n×m
q we let gM denote the matrix of group elements

(gMi,j ). We define the set D of matrices

D =
{[

a 0 c
0 b c

]

: a, b, c ∈ Z
∗
q

}

Then the DLIN assumption can be equivalently written as
(

(gD, grD) : D ← D, r ← Z
2
q

) ≈c

(

(gD, gu) : D ← D,u ← Z
3
q)

)

We also define gD to be the set {gD : D ∈ D}. Membership in gD can be
checked efficiently.

OT Construction and Security. We define a 2-round oblivious transfer scheme
(OT1,OT2,Rec) where the receiver computes (ot1, st) ← OT1(b) with the choice
bit b ∈ {0, 1}, the sender computes ot2 ← OT2(ot1,m0,m1) and receiver recovers
mb = Rec(ot2, st). We define the functions as follows:

– ot1 ← OT1(b): Sample D ← D, r ← Z
2
q and define vb = rD, v1−b = (0, 0, 1)−

vb. Output ot1 = (gD, gv0 , gv1), st = (b, r).
– OT2(ot1,m0,m1): Parse ot1 = (gD, gv0 , gv1) and m0,m1 ∈ G. Check that

gD ∈ gD and that gv0+v1 = g(0,0,1); if not then abort. Sample a0 ← Z
3
q,a1 ←

Z
3
q and output ot2 = (gDaT

0 , gDaT
1 , gv0·aT

0 · m0, g
v1·aT

1 · m1).
– Rec(ot2, st): Parse ot2 = (gz0 , gz1 , h0, h1) and st = (b, r). Output hb · g−r·zT

b .

We now show that this scheme satisfies the same properties as Naor-Pinkas
OT.

– Correctness: For any b,m0,m1 it holds that if (ot1, st) ← OT1(b), ot2 ←
OT2(ot1,m0,m1),m = Rec(ot2, st) then m = mb with probability 1.
Proof. This is because, using the notation of the scheme, we have gvb = grD,
gzb = gDaT

b and hence

hb = gvb·aT
b · mb = grD·aT

b · mb = gr·z
T
b · mb.

So hb · g−r·zT
b = mb.
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– Computational Receiver Security: We have

(ot1 : (ot1, st) ← OT1(0)) ≈ (ot1 : (ot1, st) ← OT1(1)).

Proof. This follows from DLIN. In particular, we can modify the OT1 algo-
rithm to sample vb ← Z

3
q instead of vb ← rD and the distribution of

ot1 is indistinguishable. But in this case the bit b is statistically hidden
since in either case the vectors v0,v1 are just uniformly random subject to
v0 + v1 = (0, 0, 1).

– Statistical Sender Security: There exists an inefficient function Extract such
that, for any ot1, if b = Extract(ot1) then OT2(ot1,m0,m1) statistically hides
m1−b: for any m0,m1,m

′
0,m

′
1 such that mb = m′

b we have OT2(ot1,m0,m1)
is statistically close to OT2(ot1,m′

0,m
′
1).

Proof. We define Extract(ot1 = (gD, gv0 , gv1)) to output 0 if v0 is in the
row-space of D and 1 otherwise. If it does not hold that gD ∈ gD and that
gv0+v1 = g(0,0,1) then OT2(ot1, . . .) aborts and we are done. Otherwise, at
most one of v0,v1 is in the row-space of D since (0, 0, 1) is not in the row
space. Therefore v1−b is not in the row-space of D. But this means that
gDaT

1−b , gv1−b·aT
1−b are mutually random and independent over the choice of

a1−b and therefore the message m1−b is perfectly hidden.

This completes the construction of statistically sender private (2-message) OT
from DLIN. Moreover, quasi-polynomial security of the scheme is inherited from
the (quasi-polynomial) DLIN assumption, so we additionally obtain SBSH com-
mitments from quasi-polynomial DLIN.

SBSH Commitments via NIWI. In this section, we present another con-
struction of SBSH commitments from bilinear DLIN using a proof technique
similar to that of our main construction in Sect. 4.

The OT-based commitment schemes above satisfy a stronger security prop-
erty than “sometimes statistical binding”: informally, they are “sometimes
extractable”. We write down a construction that does not involve any extrac-
tion using two generic building blocks (both instantiable based on DLIN): NIWI
proofs along with a slight strengthening of dual-mode commitments in the CRS
model.

Definition 9 (Semi-Malicious Secure Dual-Mode Commitment). A
non-interactive commitment scheme Com(ck,m) in the CRS model is a semi-
malicious secure dual-mode commitment if there are two additional algorithms
(BindingSetup,HidingSetup) satisfying the following properties.

– BindingSetup(1λ) → ck and HidingSetup(1λ) → ck both output a commitment
key.

– Key Indistinguishability: Commitment keys output by BindingSetup and
HidingSetup are computationally indistinguishable.
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– Honest Binding: (BindingSetup,Com) is a statistically binding commitment
scheme in the CRS model.

– Semi-Malicious Hiding: For any commitment key ck in the support of
HidingSetup, the commitment distribution Com(ck,m) (with ck hardwired)
statistically hides the message m.

That is, a semi-malicious secure dual-mode commitment satisfies the property
that commitments using semi-maliciously chosen “hiding keys” still statistically
hide the underlying message. We say that a key ck “is a hiding key” if ck is in
the support of HidingSetup.

Remark 2. The [GOS06a] homomorphic commitment scheme based on DLIN is
a semi-malicious secure dual-mode commitment scheme. It was explicitly shown
to be a dual-mode commitment, but by inspection, we see that it is statistically
hiding for an arbitrary (hardwired) key from the “hiding” distribution.

We now show how to construct a sometimes-binding statistically hiding com-
mitment scheme using NIWI proofs and a semi-malicious secure dual-mode com-
mitment; this in particular yields such a scheme based on the DLIN assump-
tion on bilinear groups. Our construction is inspired by the construction of
[KKS18,BFJ+20,GJJM20].

Construction 1. Let (BindingSetup,HidingSetup,Com) denote a semi-malicious
secure dual-mode commitment scheme, and let (niwi.Prove, niwi.Verify) denote
a NIWI proof system. We then define the following two-message commitment
scheme:

– Receiver message: for � = log(1ε ), the receiver samples a random string
r ← {0, 1}� along with � pairs of commitment keys {cki,b}i∈[�],b∈{0,1}, such
that

• cki,ri
is sampled using BindingSetup(1λ); and

• cki,1−ri
is sampled using HidingSetup(1λ) with randomness tki,1−ri

.
The receiver then outputs {cki,b}i∈[�],b∈{0,1} along with a NIWI proof that for
every i ∈ [�], at least one out of (cki,0, cki,1) is a hiding key (using witness
tki,1−ri

)).
– Sender Key Selection: the sender first verifies the NIWI above and aborts

if the check fails. The sender then samples and outputs a uniformly random
string s ← {0, 1}�.

– Non-Interactive Commitment: to commit to a bit m, the sender sam-
ples 2� uniformly random bits {σi,b}. The sender then outputs {comi,b ←
Com(cki,b, ρi,b)} along with c := m ⊕ ⊕

i σi,si
.

It now remains to show that this commitment scheme satisfies the desired
security properties.

– Statistical hiding: without loss of generality, consider a fixed first message
({cki,b}, π) sent by a (potentially malicious) receiver R∗. In order for hiding to
be broken, this proof π must be accepted by the sender S, so by the soundness
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of our NIWI, we know that there exists a string r∗ such that cki,1−r∗
i

is in
the support of HidingSetup(1λ). Now, we note that if the sender S picks
any s �= r∗, the commitment ({comi,b}, c) statistically hides the underlying
message m; this is because for any i such that si �= r∗

i , we have that comi,si

statistically hides σi,si
and hence c = m⊕⊕

σi,si
statistically hides m. Since S

only picks s = r∗ with probability 2−� = ε, we conclude that this commitment
is statistically hiding.

– Sometimes statistical binding: we claim that (ε, δ) sometimes statistical
binding holds assuming (1) the dual-mode commitment satisfies δ ·negl(λ)-key
indistinguishability, and (2) the NIWI is δ ·negl(λ)-witness indistinguishable.
Equivalently, we want to show that the following two distributions are δ ·
negl(λ)-computationally indistinguishable for any malicious PPT sender S∗:

{(α, S∗(α), r)} ≈c,δ·negl(λ) {(α, S∗(α), r′)}

where r, r′ ← {0, 1}� are i.i.d. and α is computed using r. To prove the above
indistinguishability, consider the following sequence of hybrids.

• H0: This is the LHS, {(α, S∗(α), r)}.
• H1: Same as H0, except that the receiver samples cki,ri

using HidingSetup
(instead of BindingSetup). In other words, in H1, all keys cki,b are sampled
from HidingSetup. We have that H0 ≈c,δ·negl(λ) H1 by the key indistin-
guishability of the dual-mode commitment.

• H2: Same as H1, except that the proof π is sampled using a random
�-tuple of witnesses (as opposed to witnesses {tki,1−ri

}). We have that
H1 ≈c,δ·negl(λ) H2 by the witness indistinguishability of the NIWI.

• H3: Same as H2, except that r is replaced by r′ in the third slot. We
have that H2 ≡ H3 because r and r′ are i.i.d. conditioned on (α, S∗(α))
as computed in H2/H3.

• H4: Same as H3, except that π is sampled using witnesses {tki,1−ri
};

indistinguishability is the same as H1/H2.
• H5: Same as H4, except that the receiver samples cki,ri

using BindingSetup
(instead of HidingSetup); indistinguishability is the same as H0/H1. This
is the RHS.

This completes the proof of indistinguishability.

4 Construction of Statistical ZAPR Arguments

We now give our construction of statistical ZAPR arguments, which are proven
sound under the quasi-polynomial DLIN assumption in bilinear groups.

4.1 Description

Our construction uses the following ingredients. Let ε = ε(λ) denote a fixed
negligible function.
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– Let lzkp = (lzkp.Prove, lzkp.Queries, lzkp.Verify) denote a t-local zero knowl-
edge proof with Q = 2t + 1 = log3(

1
ε ).

– Let sbsh = (sbsh.R, sbsh.S, sbsh.Com) denote a SBSH commitment scheme
with parameters (ε, ε2).

– Let niwi = (niwi.Prove, niwi.Verify) denote a NIWI proof system for NP that
satisfies ε(λ)3 · negl(λ)-witness indistinguishability.

– Let niszk = (niszk.Setup, niszk.Prove, niszk.Verify) denote a NISZK argument
system with ε(λ)3 ·negl(λ) (computational) soundness error along with semi-
malicious statistical witness indistinguishability.

Construction 2. With niwi, niszk, lzkp, sbsh as above, we define the following
two-message argument system zapr = (zapr.V, zapr.Prove, zapr.Verify) as follows

– Verifier message: zapr.V (1n, 1λ) does the following.
• Sample a commitment first message α ← sbsh.R(1λ).
• Sample 3Q common reference strings crsi,a ← niszk.Setup(1n, 1λ; ρi,a)

(using randomness ρi,a).
• Sample a random string r ← {0, 1, 2}Q.
• Sample a proof

niwi.π ← niwi.Prove(ϕ, {crsi,a}i∈[Q],a∈[3], {ρi,ri+1, ρi,ri+2}i∈[Q]),

where sums ri + 1, ri + 2 are computed mod 3, and ϕ({crsi,a}i∈[t],a∈[3])
denotes the statement “for every i ∈ [Q], at least two out of {crsi,0, crsi,1,
crsi,2} are in the support of niszk.Setup(1n, 1λ).

• Output (α, {crsi,a}i∈[Q],a∈[3], niwi.π).
– Prover message: Given a verifier message (α, {crsi,a}i∈[Q],a∈[3], niwi.π) and

an instance-witness pair (x,w) ∈ RL, zapr.Prove does the following.
• Verify the proof niwi.π with respect to {crsi,a}i∈[Q],a∈[3] and abort if the

check fails.
• Sample a (uniformly random) sbsh second message β and set ck = (α, β).
• Sample a locally zero knowledge proof

(lzkp.π1, . . . , lzkp.π�) ← lzkp.Prove(x,w).

• For j ∈ [�], sample commitments comj ← sbsh.Com(ck, lzkp.πj);σj) to
the symbol lzkp.πj.

• Sample a random string s ← {0, 1, 2}Q.
• For every i ∈ [Q] sample a NISZK proof

niszk.πi ← niszk.Prove(crsi,si
, ψ, i, ck, comSi

, σSi
)

for the statement ψ(ck, i, comSi
) denoting “comSi

is a commitment (under
ck) to a string πSi

such that lzkp.Verify(x, i, πSi
) outputs 1.”

• Output (β, {comj}j∈[�], s, {niszk.πi}i∈[Q]).
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– Proof Verification: given a statement x and transcript

τ =
(

α, {crsi,a}i∈[Q],a∈[3], niwi.π, β, {comj}j∈[�], s, {niszk.πi}i∈[Q]

)

,

zapr.Verify does the following: for every i ∈ [Q], verify the proof niszk.πi using
crsi,si

; output 1 if all Q proofs are accepted.

We now proceed to prove the following theorem about Construction 2.

Theorem 3. If lzkp, sbsh, niwi, and niszk satisfy the hypotheses stated in
Sect. 4.1, then zapr is a ZAPR argument system with εΩ(1) (computational)
soundness error and εΩ(1)-statistical witness indistinguishability.

This has the following implication for bilinear DLIN-based statistical ZAPR
arguments.

Corollary 1. Under the bilinear DLIN assumption (ruling out inverse quasi-
polynomial advantage), there exist statistical ZAPR arguments for NP with
inverse quasi-polynomial soundness error and satisfying inverse quasi-polynomial
statistical indistinguishability.

Under the (inverse) subexponential bilinear DLIN assumption, there exist
statistical ZAPR arguments for NP with inverse subexponential soundness error
and satisfying inverse subexponential statistical indistinguishability.

4.2 Proof of Theorem 3

Completeness of our protocol follows from the completeness of niwi, niszk, lzkp,
and the correctness of sbsh. Moreover, the protocol is delayed input and publicly
verifiable by construction. In the rest of this section, we prove that the protocol
is computationally sound and statistically witness indistinguishable.

Statistical Witness Indistinguishability. Let (x,w0, w1) denote a state-
ment x along with two witnesses w0, w1 for x ∈ L. Let V ∗ denote a malicious
(unbounded) verifier, which without loss of generality we may assume to be deter-
ministic and outputs a message m1 = (α, {crsi,a}i∈[Q],a∈[3], niwi.π). We want to
show that a proof zapr.Prove(m1, x, w0) is statistically indistinguishable from a
proof zapr.Prove(m1, x, w1).

To do so, we first note that if niwi.Verify(ϕ, {crsi,a}i∈[Q],a∈[3], niwi.π) outputs
0, then the zapr prover aborts and hence indistinguishability trivially holds.
Hence, we assume that the NIWI verification passes.

In this case, the perfect soundness of niwi implies that there exists a string
r∗ ∈ {0, 1, 2}Q such that for all i ∈ [Q], crsi,r∗

i +1 and crsi,r∗
i +2 are in the sup-

port of niszk.Setup(1n, 1λ). Since the prover samples s ← {0, 1, 2}Q uniformly
at random, we know that the agreement between s and r∗ is at most t = Q−1

2

with probability ≥ 1 − 2−Ω(Q) = 1 − εΩ(1) = 1 − negl(λ) by a Chernoff bound.
Therefore, we assume that this event holds in the following analysis.
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We now consider the following sequence of hybrids; let USim denote the
unbounded simulator for niszk corresponding to the semi-malicious witness indis-
tinguishability property. For s ∈ {0, 1, 2}Q, let Good(s) ⊂ [Q] denote the set of
j ∈ [Q] such that sj �= r∗

j , and let Bad(s) denote the remaining set.

– H0,b: this is an honest proof zapr.Prove(m1, x, wb).
– H1,b: this is the same as H0,b, except that for all j ∈ Good(s), we sample

niszk.πi ← USim(crsi,si
, ψ, ck, comSi

). We have that H1,b ≈s H0,b by the semi-
malicious witness indistinguishability of niszk (and the fact that crssi

is in the
support of niszk.Setup(1n, 1λ) for all i ∈ Good(s)).

– H2,b: this is the same as H1,b, except that for all j �∈ ⋃

i∈Bad(s) Si, we sample
comj ← sbsh.Com(ck, 0) to be a commitment to an all 0s string. We have that
H1,b ≈s H2,b by the statistical hiding of sbsh (which can be invoked because
the commitment randomness used to sample comj is not used anywhere in
these hybrids).

– H3,b: this is the same as H2,b, except that for all j ∈ ⋃

i∈Bad(s), we instead
sample lzkp.πj ← lzkp.Sim(x,Bad(s)) using the lzkp simulator. We have that
H2 ≈s H3 by the perfect zero knowledge of lzkp (which can be invoked because
the symbols lzkp.πj for j �∈ ⋃

i∈Bad(s) Si do not appear in these hybrids).

Finally, we note that H3 is defined independently of the bit b; hence, statis-
tical witness indistinguishability holds.

Computational Soundness. We claim that our argument system has compu-
tational soundness error at most ε.

To see this, let x �∈ L be a false statement, and suppose that an efficient
cheating prover P ∗(α, {crsi,a}i∈[Q],a∈[3], niwiπ) successfully breaks the soundness
of zapr with probability at least ε. We then make the following sequence of claims
about P ∗.

– P ∗(α, {crsi,a}i∈[Q],a∈[3], niwiπ) breaks the soundness of zapr and outputs a
message β∗ such that ck = (α, β∗) is binding with probability ε2(1−negl(λ)).
This follows directly from the (ε, ε2 · negl(λ)) “sometimes statistical binding”
property of sbsh.

– P ∗(α, {crsi,a}i∈[Q],a∈[3], niwiπ) simultaneously:
• breaks the soundness of zapr,
• outputs β∗ such that ck is a binding key, and
• outputs s = r (the verifier’s random string)

with probability ε3(1 − negl(λ)). This holds by the ε3 · negl(λ)-witness indis-
tinguishability of niwi, using the following argument. Consider an alternative
experiment in which the verifier samples r, r′ ← {0, 1, 2}Q i.i.d. and uses the
r′-witness when computing niwi.π instead of the r-witness; in this experiment,
P ∗ indeed satisfies the above three conditions with probability ε3(1−negl(λ)),
since here, r is independent of the rest of the experiment (and so s = r with
probability ε conditioned on the rest of the experiment). Then, the same
holds true in the real soundness experiment by the ε3 · negl(λ)-witness indis-
tinguishability of niwi.



640 A. Lombardi et al.

This last claim about P ∗ contradicts the ε3 · negl(λ)-soundness of niszk. This is
because when ck is a binding key, the soundness of lzkp implies that for any col-
lection of commitments (com1, . . . , com�), there exists some index i such that the
statement ψ(ck, i, comSi

) is false. By randomly guessing which of the Q state-
ments is false, P ∗ can therefore be used to contradict the ε3 · negl(λ)-soundness
of niszk.

Acknowledgements. We thank the anonymous reviewers for their helpful comments
and suggestions.
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