
Double-Base Chains for Scalar
Multiplications on Elliptic Curves

Wei Yu1,2(B), Saud Al Musa3, and Bao Li1,4

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{yuwei,libao}@iie.ac.cn, yuwei 1 yw@163.com
2 Data Assurance and Communications Security Research Center,

Chinese Academy of Sciences, Beijing 100093, China
3 College of Computer Science and Engineering, Taibah University,

Medina, Saudi Arabia
smusa@taibahu.edu.sa

4 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

Abstract. Double-base chains (DBCs) are widely used to speed up
scalar multiplications on elliptic curves. We present three results of
DBCs. First, we display a structure of the set containing all DBCs and
propose an iterative algorithm to compute the number of DBCs for a pos-
itive integer. This is the first polynomial time algorithm to compute the
number of DBCs for positive integers. Secondly, we present an asymp-
totic lower bound on average Hamming weights of DBCs log n

8.25
for a posi-

tive integer n. This result answers an open question about the Hamming
weights of DBCs. Thirdly, we propose a new algorithm to generate an
optimal DBC for any positive integer. The time complexity of this algo-
rithm is O

(
(log n)2 log log n

)
bit operations and the space complexity is

O
(
(log n)2

)
bits of memory. This algorithm accelerates the recoding pro-

cedure by more than 6 times compared to the state-of-the-art Bernstein,
Chuengsatiansup, and Lange’s work. The Hamming weights of optimal
DBCs are over 60% smaller than those of NAFs. Scalar multiplication
using our optimal DBC is about 13% faster than that using non-adjacent
form on elliptic curves over large prime fields.

Keywords: Elliptic curve cryptography · Scalar multiplication ·
Double-base chain · Hamming weight

1 Introduction

A double-base chain (DBC), as a particular double-base number system (DBNS)
representation, represents an integer n as

∑l
i=1 ci2bi3ti where ci ∈ {±1}, bi, ti

are non-increasing sequences. It is called an unsigned DBC when ci ∈ {1}. A
DBC was first used in elliptic curve cryptography for its sparseness by Dimitrov,

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 538–565, 2020.
https://doi.org/10.1007/978-3-030-45727-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_18

Double-Base Chains for Scalar Multiplications on Elliptic Curves 539

Imbert, and Mishra [1], and Ciet, Joye, Lauter, and Montgomery [2]. Scalar mul-
tiplication is the core operation in elliptic curve cryptosystems. A DBC allows
one to represent an integer in a Horner-like fashion to calculate scalar multipli-
cation such that all partial results can be reused. In the last decade, DBCs were
widely investigated to speed up scalar multiplications [3–5] and pairings [6,7].
The generalizations of DBCs were also applied to the arithmetics of elliptic
curves. The generalizations include simultaneously representing a pair of num-
bers to accelerate multi-scalar multiplications [8–10], using double-base repre-
sentation to speed up scalar multiplication on Koblitz curves [11], and represent-
ing an integer in a multi-base number system to promote scalar multiplications
[12–14].

Dimitrov, Imbert, and Mishra pointed out that DBC is highly redundant,
and counting the exact number of DBCs is useful to generate optimal DBCs [1].
A precise estimate of the number of unsigned DBNS representation of a given
positive integer was presented in [15]. 100 has exactly 402 unsigned DBNS repre-
sentations and 1000 has 1295579 unsigned DBNS representations. For unsigned
DBC, Imbert and Philippe [4] introduced an efficient algorithm to compute the
number of unsigned DBCs for a given integer. By their algorithm, 100 has 7
unsigned DBCs and 1000 has 30 unsigned DBCs. DBCs are more redundant
than unsigned DBCs. For a given integer n, Doche [16] proposed a recursion
algorithm to calculate the number of DBCs with a leading term dividing 2b3t.
His algorithm is efficient to find the number of DBCs with a leading term dividing
2b3t for integers less than 270 and b, t < 70. But it does not work for calculating
the number of DBCs of a positive integer used in elliptic curve cryptography.
We will show how to calculate the number of DBCs of a 256-bit integer or even
a larger integer.

The Hamming weight is one of the most important factors that affect the effi-
ciency of scalar multiplications. Dimitrov, Imbert, and Mishra proved an asymp-
totic upper bound O

(
log n

log log n

)
on the Hamming weight of DBNS representation

by a greedy approach [15]. Every integer n has a DBC with Hamming weight
O (log n). The upper bounds of DBNS representations and DBCs have been well
investigated, in contrast, the precise lower bounds of DBCs can not be found in
any literature. Doche and Habsieger [3] showed that the DBCs produced by the
tree approach is shorter than those produced by greedy approach [1] for integers
with several hundreds of bits experimentally. They observed that the average
Hamming weight of the DBCs produced by the tree approach is log n

4.6419 . They
also posed an open question that the average Hamming weight of DBCs gener-
ated by the greedy approach may be not O

(
log n

log log n

)
. We will give affirmation

to this question.
Canonic DBCs are the DBCs with the lowest Hamming weight for a positive

integer and were introduced by Dimitrov, Imbert, and Mishra [1]. Several algo-
rithms were designed to produce near canonic DBCs such as greedy algorithm [1],
binary/ternary approach [2], multi-base non-adjacent form (mbNAF)[13], and
tree approach [3]. In Asiacrypt 2014, Doche proposed an algorithm to produce a
canonic DBC [16]. As Doche’s algorithm was in exponential time, Capuñay and

540 W. Yu et al.

Thériault [7] improved Doche’s algorithm to generate a canonic DBC or an opti-
mal DBC. This is the first algorithm to generate an optimal DBC in polynomial
time, explicitly O

(
(log n)4

)
bit operations and O

(
(log n)3

)
bits of memory.

Bernstein, Chuengsatiansup, and Lange [17] presented a directed acyclic graph
algorithm (DAG) to produce a canonic DBC or an optimal DBC. Their algo-
rithm takes time O

(
(log n)2.5

)
bit operations and O

(
(log n)2.5

)
bits of memory.

As scalar multiplication requires O
(
(log n)2 log log n

)
when field multiplications

use FFTs, we will focus on producing a canonic DBC or an optimal DBC in the
same order of magnitude.

In this paper, we are concerned with the theoretical aspects of DBCs arising
from their study to speed up scalar multiplication and producing a canonic DBC
or an optimal DBC efficiently. The main contributions are detailed as follows.

1. As Doche’s algorithm is in exponential time to compute the number of DBCs
with a leading term dividing 2b3t [16], we propose an iterative algorithm
in O

(
(log n)3

)
bit operations and in O

(
(log n)2

)
bits of memory. Our algo-

rithm is based on our new structure of the set containing all DBCs. It requires
10 milliseconds for 256-bit integers and 360 milliseconds for 1024-bit integers.
Using the iterative algorithm, 100 has 2590 DBCs with a leading term divid-
ing 23034 and 1000 has 28364 DBCs with a leading term dividing 23036. These
results show that DBCs are redundant. We show that the number of DBCs
with a leading term dividing 2b3t is the same when t ≥ tτ for some tτ . The
number of DBCs with a leading term dividing 2b3t minus the number of DBCs
with a leading term dividing 2bτ 3t is (b − bτ) Cτ when b ≥ bτ for some bτ and
Cτ . We also present that the number of DBCs with a leading term dividing
2b3t is O (log n)-bit when both b and t are O (log n).

2. Doche and Habsieger posed an open question to decide whether the average
Hamming weight of DBCs produced by the greedy approach is O

(
log n

log log n

)

or not [3]. We show that an asymptotic lower bound of the average Hamming
weight of the DBCs returned by any algorithm for a positive integer n is
log n
8.25 . This theoretical result answers their open question. Experimental results
show that the Hamming weight of canonic DBCs is 0.179822log n for 3000-bit
integers. It still has a distance from the theoretical bound.

3. We propose a dynamic programming algorithm to generate an optimal DBC.
We introduce an equivalent representative for large integers to improve the
efficiency of the dynamic programming algorithm. Our dynamic programming
algorithm using equivalent representatives requires O

(
(log n)2 log log n

)
bit

operations and O
(
(log n)2

)
bits of memory. It accelerates the recoding pro-

cedure by over 6 times compared to Bernstein, Chuengsatiansup, and Lange’s
algorithm. Many researches [1–3,6,7,16,17] indicate that the leading term of
an optimal DBC is greater than n

2 and less than 2n. We will prove it in this
work.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 541

4. Capuñay and Thériault’s algorithm [7], Bernstein, Chuengsatiansup, and
Lange’s DAG algorithm [17], and our algorithms (Algorithms 2–4) can gen-
erate the same optimal DBC for a given integer. Using optimal DBCs to
speed up pairing computations has been fully investigated by Capuñay and
Thériault’s algorithm in [7]. Using optimal DBCs to speed up scalar multipli-
cation on Edwards curves has been studied by Bernstein, Chuengsatiansup,
and Lange in [17]. We will study scalar multiplication on Weierstrass curves
using optimal DBCs. Over large prime fields, both theoretical analyses and
experimental results show that scalar multiplication protecting against sim-
ple side-channel attack using our optimal DBC is about 13% faster than that
using NAF.

This paper is organized as follows. In Sect. 2, we present background of ellip-
tic curves and DBCs. In Sect. 3, we show the structure of the set containing
all DBCs, and give an iterative algorithm to compute the number of DBCs. In
Sect. 4, we show an asymptotic lower bound of the average Hamming weights
of DBCs. Section 5 shows a dynamic programming algorithm. Section 6 presents
equivalent representatives for large numbers to improve our dynamic program-
ming algorithm and presents the comparisons of several algorithms. Section 7
gives some comparisons of scalar multiplications. Finally, we conclude this work
in Sect. 8.

2 Preliminaries

We give some basics about elliptic curves and DBCs.

2.1 Elliptic Curves

In what follows, point doubling (2P), tripling (3P), and mixed addition [18]
(P + Q) are denoted by D, T , and A respectively where P and Q are ratio-
nal points on an elliptic curve. Cost of scalar multiplications are expressed in
terms of field multiplications (M) and field squarings (S). To allow easy compar-
isons, we disregard field additions/subtractions and multiplications/divisions by
small constants. Moreover, we assume that S = 0.8M as customary of software
implementation (different CPU architectures usually imply different S and M
ration) and that S = M in the case of implementations on a hardware platform
or protecting scalar multiplications against some simple side channel attack by
side-channel atomicity [19].

Let EW be an elliptic curve over a large prime field Fp defined by the Weier-
strass equation in Jacobian projective coordinate: Y 2 = X3+aXZ4+bZ6, where
a = −3, b ∈ Fp, and 4a3 + 27b2 �= 0. The respective cost of a doubling, a mixed
addition, and a tripling are 3M+5S, 7M+4S, and 7M+7S on EW respectively
[20,21]. More about Weierstrass elliptic curves please refer to [22].

The cost of point operations on EW are summarized in Table 1. EW with
S= 0.8M and EW with S=M are denoted by EW 0.8 and EW 1 respectively.

542 W. Yu et al.

Table 1. Cost of elliptic curve point operations
operation EW 0.8 EW 1

A 7M+4S(10.2M) 11M
D 3M+5S(7M) 8M
T 7M+7S(12.6M) 14M

2.2 DBCs

DBNS represents an integer as
∑l

i=1 ci2bi3ti where ci ∈ {±1}, and bi, ti are non-
negative integers. It was first used in elliptic curve cryptography by Dimitrov,
Imbert, and Mishra [1]. Meloni and Hasan proposed new algorithms using DBNS
representation to speed up scalar multiplications [23,24]. The drawback of DBNS
representation to compute scalar multiplication is that it requires many pre-
computations and space to compute scalar multiplication. A DBC is a special
case of DBNS representations. It allows us to represent n in a Horner-like fashion
such that all partial results can be reused. It is defined as follows.

Definition 1 (DBC [1]). A DBC represents an integer n as
∑l

i=1 ci2bi3ti

where ci ∈ C = {±1}, bl ≥ bl−1 ≥ . . . ≥ b1 ≥ 0 and tl ≥ tl−1 ≥ . . . ≥ t1 ≥ 0.
We call 2bi3ti a term of the DBC, 2bl3tl the leading term of the DBC, and l the
Hamming weight of the DBC.

If C = {1}, the DBC is called an unsigned DBC. Since computing the negative
of a point P can be done virtually at no cost, we usually set C = {±1}. The
leading term of a DBC encapsulates the total number of point doublings and
that of point triplings necessary to compute scalar multiplication nP whose total
cost is (l − 1) · A + bl · D + tl · T .

The number 0 has only one DBC that is 0. If a DBC does not exist, we denote
it by NULL. We set the Hamming weight of 0 as 0 and that of NULL as a negative
integer. A DBC for a negative integer is the negative of the DBC of its absolute
value. Therefore, we usually investigate the DBCs of a positive integer.

Some properties of DBCs are useful. Let n =
∑l

i=1 ci2bi3ti be a DBC with
ci ∈ {±1}, bl ≥ bl−1 ≥ . . . ≥ b1 and tl ≥ tl−1 ≥ . . . ≥ t1. We have

1. 2bk3tk is a factor of
l0∑

i=k

ci2bi3ti , when k ≤ l0 ≤ l;

2.
l0∑

i=k

ci2bi3ti is not equal to 0 when 0 < k ≤ l0 ≤ l;

3. 2bk+ς 3tk+ς

2ς−1 >
k∑

i=1

ci2bi3ti > − 2bk+ς 3tk+ς

2ς−1 , when 1 ≤ ς ≤ l − k;

4. 2bl3tl > n
2 [25];

5.
∑ς

i=1 ci2bi3ti > 0 if and only if cς = 1, when 1 ≤ ς ≤ l.

Following from Dimitrov, Imbert, and Mishra’s definition of canonic DBC,

Definition 2 (Canonic DBC [15]). The canonic DBCs of a positive integer
n are the ones with minimal Hamming weight.

The canonic DBCs of a positive integer have the same Hamming weight. When
we perform scalar multiplication using a DBC, its Hamming weight is not the

Double-Base Chains for Scalar Multiplications on Elliptic Curves 543

only factor affecting the efficiency of scalar multiplication. The cost of point oper-
ations should also be considered. The works in [7,16,17] indicate the definition
of an optimal DBC as follows.

Definition 3 (Optimal DBC). Let w be a DBC of a positive integer n whose
leading term is 2bl3tl and its Hamming weight is l, and the value function of w
is defined by val(w) = (l −1) ·A+ bl ·D + tl ·T for given numbers A > 0, D ≥ 0,
and T ≥ 0. An optimal DBC of n is the DBC with the smallest value in the set
{val(w)|w ∈ X} where X is the set containing all DBCs of n.

Let minL {w1,w2, . . . ,wm} be a DBC with the smallest Hamming weight
among these DBCs. If the Hamming weight of w is the smallest in a correspond-
ing set, we say w is “minimal”. Let minV{w1,w2, . . . ,wm} be a DBC with the
smallest val(wi) in the set {val(w1), val(w2), . . . , val(wm)}. If more than one
DBC has the same Hamming weight or the same value of its value function, we
choose the one with the smallest position index i where i is the position index
of wi in the set of {w1,w2, . . . ,wm}. minL is used to generate canonic DBCs,
and minV is used to generate optimal DBCs.

An optimal DBC is associated with an elliptic curve. Let log denote binary
logarithm. If the value of T

D is log 3, then the optimal DBC is a canonic DBC.
In this case, we usually set D = T = 0. For canonic DBCs of a positive integer,
our concern is their Hamming weight.

3 The Number of DBCs

DBCs are special cases of DBNS representations. In 2008, Dimitrov, Imbert,
and Mishra showed an accurate estimate of the number of unsigned DBNS
representations for a given positive integer [15]. The number of signed DBNS
representation is still an open question.

Dimitrov, Imbert, and Mishra pointed out that counting the exact number of
DBCs is useful to show DBC is redundant [1] and to generate an optimal DBC.
Dimitrov, Imbert, and Mishra [1] and Imbert and Philippe [4] both noticed
that each positive integer has at least one DBC such as binary representation.
Imbert and Philippe [4] proposed an elegant algorithm to compute the number
of unsigned DBCs for a given integer and presented the first 400 values. These
values behave rather irregularly. To determine the precise number of DBCs for
a positive integer is usually hard, but we are convinced that this number is
infinity. The number of DBCs with a leading term dividing 2b3t for a positive
integer was first investigated by Doche [16]. His algorithm is very efficient for
less than 70-bit integers with a leading term dividing 2b3t for the most b and t.
The algorithm requires exponential time. Before we present a polynomial time
algorithm to calculate the number of DBCs of large integers, a structure of the
set containing all DBCs is introduced.

3.1 The Structure of the Set Containing All DBCs

Let Φ(b, t, n) be the set containing all DBCs of an integer n ≥ 0 with a leading
term strictly dividing 2b3t. “Strictly” indicates that the leading term of a DBC

544 W. Yu et al.

2bl3tl divides 2b3t but is not equal to 2b3t. Let Φ̄(b, t, n) be the set containing
all DBCs of an integer n ≤ 0 with a leading term strictly dividing 2b3t. Both
definitions of Φ(b, t, n) and Φ̄(b, t, n) arise from Imbert and Philippe’s structure of
unsigned DBCs [4] and Capuñay and Thériault’s definition of the set containing
all DBCs (see Definition 5 of [7]).

Let z be 2b′
3t′

or −2b′
3t′

with integers b′ ≥ 0 and t′ ≥ 0. The set {w + z|
w ∈ Φ} is denoted by zΦ (the similar is for Φ̄). zΦ is inspired by Imbert and
Philippe’s mark [4]. If 2b3t|z, zΦ(b, t, n) are the DBCs of n + z. Let z1,z2Φ =
z1 (z2Φ). Take Φ(1, 4, 100) = {34 + 33 − 32 + 1} for example, 2·34Φ(1, 4, 100) =
{2 · 34 + 34 + 33 − 32 + 1}.

Some properties of Φ and Φ̄ are given.

1. If Φ = ∅, then zΦ = ∅; if Φ̄ = ∅, then zΦ̄ = ∅.
2. If Φ = {0}, then zΦ = {z}; if Φ̄ = {0}, then zΦ̄ = {z}.
3. If n < 0 or n ≥ 2b3t or b < 0 or t < 0, then Φ(b, t, n) = Φ̄(b, t,−n) = ∅.
4. Φ(0, 0, 0) = Φ̄(0, 0, 0) = {0}.
5. A DBC 0 plus z equals to z.
6. A DBC NULL plus z equals to NULL.

Imbert and Philippe’s structure of the set containing unsigned DBCs [4] can
be used to calculate the number of unsigned DBCs. Since the terms of DBCs
of n may be larger than n, calculating the number of DBCs is usually difficult.
Following from Capuñay and Thériault’s definition [7],

nb,t ≡ n (mod 2b3t) where 0 ≤ nb,t < 2b3t.

We redefine
n̄b,t = nb,t − 2b3t.

To calculate the number of DBCs, Φ(b, t) and Φ̄(b, t) are introduced to
describe the structure of the set containing DBCs shown as Lemma 1 where
Φ(b, t) and Φ̄(b, t) represent Φ(b, t, nb,t) and Φ̄(b, t, n̄b,t) respectively.

Lemma 1. Let n be a positive integer, b ≥ 0, t ≥ 0, and b+t > 0. The structure
of Φ(b, t) and that of Φ̄(b, t) are described as follows.

1. If nb,t < 2b3t−1, i.e., nb,t = nb−1,t = nb,t−1, then

Φ(b, t) = Φ(b − 1, t)
⋃ (

2b−13t

Φ̄(b − 1, t)
) ⋃

Φ(b, t − 1)
⋃ (

2b3t−1
Φ̄(b, t − 1)

)
,

Φ̄(b, t) =
(

−2b−13t

Φ̄(b − 1, t)
)

.

2. If 2b3t−1 ≤ nb,t < 2b−13t, i.e., nb,t = nb−1,t = nb,t−1 + 2b3t−1, then

Φ(b, t) = Φ(b − 1, t)
⋃ (

2b−13t

Φ̄(b − 1, t)
) ⋃ (

2b3t−1
Φ(b, t − 1)

)
,

Φ̄(b, t) =
(

−2b−13t

Φ̄(b − 1, t)
) ⋃ (

−2b3t−1
Φ̄(b, t − 1)

)
.

3. If 2b−13t ≤ nb,t < 2 · 2b3t−1, i.e., nb,t = nb−1,t + 2b−13t = nb,t−1 + 2b3t−1,
then

Double-Base Chains for Scalar Multiplications on Elliptic Curves 545

Φ(b, t) =
(
2b−13t

Φ(b − 1, t)
) ⋃(

2b3t−1
Φ(b, t − 1)

)
,

Φ̄(b, t) =
(

−2b−13t

Φ(b − 1, t)
) ⋃

Φ̄(b − 1, t)
⋃ (

−2b3t−1
Φ̄(b, t − 1)

)
.

4. If nb,t ≥ 2 · 2b3t−1, i.e., nb,t = nb−1,t + 2b−13t = nb,t−1 + 2 × 2b3t−1, then

Φ(b, t) =
(
2b−13t

Φ(b − 1, t)
)

,

Φ̄(b, t) =
(

−2b−13t

Φ(b − 1, t)
) ⋃

Φ̄(b − 1, t)
⋃ (

−2b3t−1
Φ(b, t − 1)

) ⋃
Φ̄(b, t − 1).

The proofs, examples, and remarks can be found in the full version of this paper
[26].

The definitions of nb,t and n̄b,t indicate that both nb,t = nb−1,t = nb,t−1 +
2b+13t−1 and nb,t = nb−1,t + 2b−13t = nb,t−1 are impossible. From Lemma 1,
Φ(b, t) and Φ̄(b, t) only rely on Φ(b − 1, t), Φ̄(b − 1, t), Φ(b, t − 1) and Φ̄(b, t − 1).
By the definitions of nb,t and n̄b,t, the structure of Φ(b, t) and that of Φ̄(b, t) still
work for nb,t = 0 in Case 1, nb,t = 2b3t−1 in Case 2, nb,t = 2b−13t in Case 3, and
nb,t = 2 · 2b3t−1 in Case 4.

This is the first structure of the set containing all DBCs with a leading term
strictly dividing 2b3t in the literature. Based on this structure, we will show the
number of DBCs with a leading term dividing 2b3t for a positive integer n.

3.2 The Number of DBCs

Let |S | be the cardinality of the set S . The number of DBCs with a leading
term dividing 2b3t for representing nb,t is |Φ(b, t)| + |Φ̄(b, t)|. We will provide
some initial values of |Φ| and |Φ̄|. If n < 0 or n ≥ 2b3t or b < 0 or t < 0,
|Φ(b, t, n)| = |Φ̄(b, t,−n)| = 0. |Φ(0, 0, 0)| = |Φ̄(0, 0, 0)| = 1.

Based on Lemma 1, the cardinality of Φ(b, t) and that of Φ̄(b, t) are shown as
Theorem 1.

Theorem 1. Let n be a positive integer, b ≥ 0, t ≥ 0, and b + t > 0. We have

1. If nb,t < 2b−13t−1, then

|Φ(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t)| + |Φ(b, t − 1)| + |Φ̄(b, t − 1)|
− |Φ(b − 1, t − 1)| − |Φ̄(b − 1, t − 1)|,

|Φ̄(b, t)| = |Φ̄(b − 1, t)|.
2. If 2b−13t−1 ≤ nb,t < 2b3t−1, then

|Φ(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t)| + |Φ(b, t − 1)|
+ |Φ̄(b, t − 1)| − |Φ(b − 1, t − 1)|,

|Φ̄(b, t)| = |Φ̄(b − 1, t)|.
3. If 2b3t−1 ≤ nb,t < 2b−13t, then

|Φ(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t)| + |Φ(b, t − 1)|,
|Φ̄(b, t)| = |Φ̄(b − 1, t)| + |Φ̄(b, t − 1)|.

546 W. Yu et al.

4. If 2b−13t ≤ nb,t < 2 · 2b3t−1, then

|Φ(b, t)| = |Φ(b − 1, t)| + |Φ(b, t − 1)|,
|Φ̄(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t)| + |Φ̄(b, t − 1)|.

5. If 2 · 2b3t−1 ≤ nb,t < 5 · 2b−13t−1, then

|Φ(b, t)| = |Φ(b − 1, t)|,
|Φ̄(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t)| + |Φ(b, t − 1)|

+ |Φ̄(b, t − 1)| − |Φ̄(b − 1, t − 1)|.

6. If nb,t ≥ 5 · 2b−13t−1, then

|Φ(b, t)| = |Φ(b − 1, t)|,
|Φ̄(b, t)| = |Φ(b − 1, t)| + |Φ̄(b − 1, t) + |Φ(b, t − 1)|

+ |Φ̄(b, t − 1)| − |Φ̄(b − 1, t − 1)| − |Φ(b − 1, t − 1)|.
Based on Theorem 1, we have

Corollary 1. 1. If b ≥ 0 and t ≥ 0, then |Φ(b, t)| ≥ |Φ(b − 1, t)|, |Φ(b, t)| ≥
|Φ(b, t − 1)|, |Φ̄(b, t)| ≥ |Φ̄(b − 1, t)|, and |Φ̄(b, t)| ≥ |Φ̄(b, t − 1)|.

2. If b ≥ 0 and t ≥ 0, then |Φ(b, t)| ≤ 4b+t and |Φ̄(b, t)| ≤ 4b+t.

By Corollary 1, |Φ(b, t)| and |Φ̄(b, t)| are both O(log n)-bit integers when both
b and t are O(log n).

Based on Theorem 1, we employ an iterative algorithm to compute the num-
ber of DBCs with a leading term strictly dividing 2b3t for nb,t and n̄b,t shown
as Algorithm 1. The number of DBCs with a leading term dividing 2b3t for n is

1. |Φ(b, t)| + |Φ̄(b, t)| when 2b3t > n;
2. |Φ(b, t)| when n

2 < 2b3t ≤ n;
3. 0 when 2b3t ≤ n

2 .

Algorithm 1. Iterative algorithm to compute the number of DBCs
Input: A positive integer n, b ≥ 0, and t ≥ 0
Output: The number of DBCs with a leading term strictly dividing 2b3t for nb,t and
n̄b,t

1. |Φ(0, 0)| ← 1, |Φ̄(0, 0)| ← 0
2. For i from 0 to b, |Φ(i, −1)| = |Φ̄(i, −1)| ← 0
3. For j from 0 to t, |Φ(−1, j)| = |Φ̄(−1, j)| ← 0
4. For j from 0 to t
5. For i from 0 to b
6. If i + j > 0, using Theorem 1 to compute |Φ(i, j)| and |Φ̄(i, j)|
7. return |Φ(b, t)|, |Φ̄(b, t)|

Double-Base Chains for Scalar Multiplications on Elliptic Curves 547

Table 2. Cost of Algorithm 1
bits of n 256 512 768 1024

b, t 128, 81 256, 161 384, 242 512, 323
cost(million cpu cycles) 34 177 551 1184

Algorithm 1 terminates in O
(
(log n)3

)
bit operations and O

(
(log n)2

)
bits

of memory when b and t are both in O (log n).
Miracl lib [27] is used to implement big number arithmetic. Our experiments

in this paper are compiled and executed on Intel� CoreTM i7−6567U 3.3 GHZ
with Skylake architecture (our algorithms may have different running time on
other architectures). Algorithm 1 requires 34, 177, 551, and 1184 million cpu
cycles (10, 50, 170, and 360 ms) for 256-bit, 512-bit, 768-bit, and 1024-bit integers
respectively. The details are shown in Table 2.

By Algorithm 1, the number of DBCs of
⌊
π × 10120

⌋
with a leading term divid-

ing 22403120 is 405694512689803328570475272448020332384436179545046727328
115784 3672719846213086211542270726702592261797036105303878574879. The
number of DBCs with a leading term dividing 2b3t for 100 when b < 50 and
t < 50 is shown as Table 3. There exist 405 DBCs with a leading term dividing
2734 for representing 100. These results all show a redundance of DBCs for a
positive integer. The number of DBCs with a leading term dividing 2b3t of 100
is the same for 4 ≤ t < 50. For the same b, we guess the number is the same
when t ≥ 50. For each 8 ≤ b < 50, the number of DBCs with a leading term
dividing 2b3t of 100 minus the number of DBCs with a leading term dividing
2b−13t of 100 is 7. We guess this result is still true for b ≥ 50.

Table 3. Number of DBCs with a leading term dividing 2b3t for 100
t = 0 t = 1 t = 2 t = 3 t < 50

b = 0 0 0 0 0 1
b = 1 0 0 0 0 7
b = 2 0 0 0 11 24
b = 3 0 0 18 51 70
b = 4 0 0 57 112 137
b = 5 0 13 111 188 219
b = 6 3 35 174 273 310
b = 7 10 61 241 362 405
b < 50 10 + 7 ∗ (b − 7) 61 + 26 ∗ (b − 7) 241 + 67 ∗ (b − 7) 362 + 89 ∗ (b − 7) 405 + 95 ∗ (b − 7)

3.3 The Number of DBCs for Large b or t

If b or t is large, the number of DBCs are shown as Corollary 2.

Corollary 2. Let n be a given positive integer, tτ be a positive integer satisfying
3tτ −1 > n and 3tτ −2 ≤ n, and bτ be a positive integer satisfying 2bτ > 3n and
2bτ −1 ≤ 3n. Then

1. If t ≥ tτ and b ∈ Z, then |Φ(b, t)| = |Φ(b, tτ)|.
2. If b ≥ bτ and t ∈ Z, then |Φ(b, t)| = |Φ(bτ , t)| + (b − bτ)Cτ where Cτ =∑t

i=0 |Φ̄(bτ , i)|.

548 W. Yu et al.

3. If b ≥ bτ and t ≥ tτ , then |Φ(b, t)| = |Φ(bτ , t)| + (b − bτ)Cτ where Cτ =∑tτ

i=0 |Φ̄(bτ , i)|.
These three properties of Corollary 2 are used to compute the number of

DBCs with a leading term dividing 2b3t for some large b and t. The number of
DBCs with a leading term dividing 2b3t is a constant when t > tτ . The number
of DBCs with a leading term dividing 2b3t adds a constant

∑t
i=0 |Φ̄(bτ , i)| is

the number of DBCs with a leading term dividing 2b+13t when b > bτ . Take
100 for example, 100 has 137 DBCs with a leading term dividing 243t for each
t ≥ tτ , and has 405+95∗(b−7) DBCs with a leading term dividing 2b3t for each
b ≥ 9 and t ≥ 6. These results may be associated with that 1 = 2b − ∑b−1

i=0 2i

as b becomes larger and that 1 = 30 can not be represented as other ternary
representation with its coefficients in {±1}.

4 Hamming Weight of DBCs

For a positive integer n, Chalermsook, Imai, and Suppakitpaisarn [28] showed
that the Hamming weight of unsigned DBNS representations obtained from the
greedy approach proposed by Dimitrov, Imbert, and Mishra [1] is θ

(
log n

log log n

)
.

And they showed that the Hamming weight of unsigned DBCs produced by
greedy approach [1] is θ (log n).

For the Hamming weights of (signed) DBNS representations and DBCs, Dim-
itrov, Imbert, and Mishra [1] showed that every integer n has a DBNS repre-
sentation with Hamming weight O

(
log n

log log n

)
. Every integer n has a DBC with

Hamming weight O(log n). These are upper bounds on the Hamming weight of
DBNS representations and DBCs. The number of DBCs of a positive integer is
infinite and the leading term of its DBC may be infinite. The range of the lead-
ing term of canonic DBCs is useful to show the lower bounds of the Hamming
weight of DBCs.

4.1 The Range of the Leading Term of Optimal DBCs and Canonic
DBCs

Doche [16] proved that a DBC with leading term 2b3t belongs to the interval[
3t+1
2 , 2b+13t − 3t+1

2

]
. His result showed the range of integers for a leading term.

The leading term of a DBC 2bl3tl for a positive integer does not have an upper
bound for 1 = 2bl − 2bl−1 − . . . − 2 − 1 where bl is an arbitrary positive integer.
We will show the range of the leading term of optimal DBCs and that of canonic
DBCs for a given integer in Lemma2.

Lemma 2. Let n be a positive integer represented as w :
∑l

i=1 ci2bi3ti , cl =
1, ci ∈ {±1} for 1 ≤ i ≤ l−1. Then n

2 < 2bl3tl < 2n when w is an optimal DBC,
and 16n

21 < 2bl3tl < 9n
7 when w is a canonic DBC.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 549

The range of the leading term of optimal DBCs is useful to prove that the
DBC produced by Capuñay and Thériault’s algorithm [7] and that produced by
Bernstein, Chuengsatiansup, and Lange’s algorithm [17] both are optimal DBCs.
The leading term of canonic DBCs of n is in the interval

(
16n
21 , 9n

7

)
. It is useful

to prove that the DBCs generated by Doche’s algorithm is a canonic DBC [16],
and to prove the asymptotic lower bound on the Hamming weights of DBCs in
the following.

4.2 A Lower Bound on the Hamming Weights of DBCs

Dimitrov and Howe proved that there exist infinitely many integers n whose
shortest DBNS representations have Hamming weights Ω

(
log n

log log n log log log n

)

[29]. The minimum Hamming weight of DBCs for a positive integer n is also
called Kolmogorov complexity [30] of a DBC of n, i.e., the Hamming weight
of canonic DBCs of n. Lou, Sun, and Tartary [5] proved a similar result for
DBCs: there exists at least one 	log n
-bit integer such that any DBC represent-
ing this integer needs at least Ω (log n
) terms. We will give a stronger result
in Lemma 3.

Lemma 3. For arbitrary α ∈ (0, 1) and 0 < C < α2

8.25 , more than n−nα integers
in [1, n] satisfy that the Hamming weight of the canonic DBCs of each integer is
greater than C log n when n > N (N is some constant shown as Claim 1).

For convenience, we first give some conventions and definitions. s(m) denotes
the Hamming weight of canonic DBCs of m, and e is the base of the natural
logarithm. Let ϕl be the number of DBCs

∑l
i=1 ci2bi3ti with 2bl3tl < 9n

7 , ci ∈
{±1}, and cl = 1.

Definition 4 (ϕ(L)). For a given positive integer n and a constant L, ϕ(L) =
∑L

l=1 ϕl, i.e., ϕ(L) is the number of DBCs
∑l

i=1 ci2bi3ti with 2bl3tl < 9n
7 , 1 ≤

l ≤ L.

By Lemma 2, in a canonic DBC, 16n
21 < 2bl3tl < 9n

7 . Then, the number of
integers of m in [1, n] represented as a canonic DBC with Hamming weight no
greater than L is not more than the number of integers of m in [1, n] represented
as a DBC with a leading term dividing 2bl3tl < 9n

7 , l ≤ L. Since every DBC
corresponds to only one integer and each integer has at least one DBC, the
number of integers in [1, n] represented as a canonic DBC with Hamming weight
no greater than L is no greater than ϕ(L).

An outline of the proof of Lemma3 is as follows. The number of integers of
m in [1, n] can not be represented as a DBC of Hamming weight j, 0 < j ≤ L is
equal to n minus the number of integers of m in [1, n] represented in that way.
There are at least n − ϕ(L) integers of m in [1, n] can not be represented as a
DBC of Hamming weight j with 2bj 3tj ≤ 9n

7 , 0 < j ≤ L. Thus there are at least
n − ϕ(L) integers of m in [1, n] satisfying s(m) > L. Hence, ϕ(C log n) < nα is
enough to prove Lemma 3.

550 W. Yu et al.

Since ϕj where 0 < j ≤ C log n is the number of DBCs of Hamming weight
j with 2bl3tl < 9n

7 , we have

ϕj ≤ 2j−1
∑

α+γ log 3<log 9n
7

(
α + j
j − 1

)(
γ + j
j − 1

)

.

Then

ϕ(C log n) =
C log n∑

j=1

ϕj ≤
C log n∑

j=1

⎛

⎝2j−1
∑

α+γ log 3<log 9n
7

(
α + j
j − 1

)(
γ + j
j − 1

)
⎞

⎠ . (1)

For this estimate of ϕ(C log n) is too complex to be dealt with, we simplify its
estimate by Claim 1 and its proof requires the tools of Pascal’s triangle and
Stirling’s formula.

Claim 1. For any 0 < C < 1, when n > N where N satisfies that N >
210000·(3−0.5 log3 7) and log N < 1.0001C log N ,

C log n∑

j=1

⎛

⎝2j−1
∑

α+γ log2 3<log 9n
7

(
α + j
j − 1

) (
γ + j
j − 1

)
⎞

⎠ < n
C log

(
2.0002e2(0.5001 log3 2+C)2

C2

)
.

According to Eq. (1) and Claim 1, we have

ϕ(C log n) < n
C log

(
2.0002e2 log 3·(0.5001 log3 2+C)2

C2

)
.

For some larger N , the coefficients of log3 2 and e2 will be smaller than 0.50001
and 2.0002 respectively in this inequation, and for some smaller N , the coef-
ficients of log3 2 and e2 will be larger than 0.50001 and 2.0002. The proof of
Lemma 3 is as follows.

Proof. To prove Lemma 3, it is sufficient to show that the number of integers of
m in [1, n], represented as a DBC of Hamming weight j with j ≤ C log n and
2bj 3tj < 9n

7 , is no greater than nα.
The number of integers of m in [1, n] can be represented as DBCs of Hamming

weight j with 2bj 3tj < 9n
7 , 0 < j ≤ C log n is no greater than ϕ(C log n). This

result is sufficient to show that ϕ(C log n) < nα, i.e., the number of DBCs of
Hamming weight j with j ≤ C log n is less than nα.

Since ϕ(C log n) < n
C log

(
2.0002e2 log 3·(0.5001 log3 2+C)2

C2

)
, then

n
C log

(
2.0002e2 log 3·(0.5001 log3 2+C)2

C2

)
< nα. We have

2.0002e2 log 3 · (0.5001 log3 2 + C)2

C2
< 2

α
C .

When 0 < C < α2

8.25 , this inequality holds.
Thus, for any real numbers α and C with 0 < α < 1 and 0 < C < α2

8.25 , when
n > N , at least n − nα integers of m in [1, n] satisfy s(m) > C log n.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 551

As a corollary of Lemma 3, for any given positive number α < 1, there exist
two efficiently computable constants C and N , such that when n > N , there are
at least n − nα integers m in [1, n] satisfying s(m) > C log n > C log m. This
result is easy to understand and more advanced than Lou, Sun, and Tartary’s
result [5].

Doche and Habsieger [3] showed that the DBC produced by the tree approach
is shorter than that produced by greedy approach experimentally. The average
Hamming weight of the DBCs produced by the tree approach is log n

4.6419 . Then they
posed an open question that the average Hamming weight of DBCs generated
by the greedy approach may be not O

(
log n

log log n

)
. Lemma 3 is sufficient to solve

this question.
The average Hamming weight of DBCs of (log n)-bit integers is the average

value of the Hamming weights of the DBCs of all (log n)-bit integers where we
choose one DBC for each integer. An asymptotic lower bound of the Hamming
weights of DBCs is shown in Theorem 2.

Theorem 2. An asymptotic lower bound of the average Hamming weights of
canonic DBCs for (log n)-bit integers is log n

8.25 .

All existing algorithms confirm the asymptotic lower bound of Theorem2.
The average Hamming weight of binary representation is 0.5 log n, that of NAF
is log n

3 , that of the DBC produced by binary/ternary approach is 0.2284 log n
[2], and that of the DBC produced by tree approach is 0.2154 log n [3]. The
Hamming weights of the DBCs produced by these algorithms are still a long
way from the lower bound log n

8.25 in Theorem 2.

0 100 200 300 400 500 600 700 800 9001,000
0.18

0.19

0.2

bits of integers (logn)

H
am

m
in
g
w
ei
gh

td
iv
id
ed

b
y
lo
g
n

Fig. 1. The Hamming weight of canonic DBCs of integers

552 W. Yu et al.

The average Hamming weight of canonic DBCs of integers is shown as Fig. 1.
The data is gained by Algorithm 3 which will be given in Section 6 for 1000 ran-
dom integers for each size. It is 0.19713 log n for 100-bit integers, 0.190165 log n
for 200-bit integers, 0.18773 log n for 300-bit integers, 0.186158 log n for 400-
bit integers, 0.185124 log n for 500-bit integers, 0.184568 log n for 600-bit
integers, 0.183913 log n for 700-bit integers, 0.183579 log n for 800-bit inte-
gers, 0.183153 log n for 900-bit integers, 0.182887 log n for 1000-bit inte-
gers, 0.181867 log n for 1500-bit integers, 0.181101 log n for 2000-bit integers,
0.180495 log n for 2500-bit integers, and 0.179822 log n for 3000-bit integers. This
value of the Hamming weight given for 3000-bit integers still has a distance from
the lower bound given in Theorem 2. The Hamming weight divided by log n is
decreased as the integers become larger.

Our method of calculating the asymptotic lower bound of the average Ham-
ming weight of DBCs may be useful to calculate the asymptotic lower bound of
the average Hamming weight of extended DBCs [31] where C = {±1,±3, . . .}.

We will propose an efficient algorithm to generate optimal DBCs.

5 Dynamic Programming Algorithm to Produce Optimal
DBCs

Several algorithms were designed to produce near optimal DBCs such as greedy
approach [1], binary/ternary approach [2], tree approach [3], and mbNAF [13].
Doche [16] generalized Erdös and Loxton’s recursive equation of the number of
unsigned chain partition [32] and presented an algorithm to produce a canonic
DBC. As Doche’s algorithm requires exponential time, in 2015, Capuñay and
Thériault [7] generalized tree approach and improved Doche’s algorithm to
produce a canonic DBC or an optimal DBC in polynomial time, explicitly
in O

(
(log n)4

)
bit operations and O

(
(log n)3

)
bits of memory. This is the

first polynomial algorithm to compute an optimal DBC. In 2017, Bernstein,
Chuengsatiansup, and Lange [17] presented a DAG algorithm to produce an
optimal DBC in O

(
(log n)2.5

)
bit operations and O

(
(log n)2.5

)
bits of mem-

ory. Bernstein, Chuengsatiansup, and Lange’s algorithm was the state-of-the-art.
We will employ dynamic programming [33] to produce an optimal DBC.

5.1 Basics for Dynamic Programming Algorithm

Dynamic programming [33] solves problems by combining the solutions of sub-
problems. Optimal substructure and overlapping subproblems are two key char-
acteristics that a problem must have for dynamic programming to be a viable
solution technique.

Optimal Substructure. We will show our problem has optimal substructure,
i.e., an optimal solution to a problem contains optimal solutions to subproblems.
First, we define sub-chain.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 553

Definition 5 (Sub-chain). A DBC
l∑

i=1

ci2bi3ti is a sub-chain of a DBC

l0∑

j=1

aj2dj 3ej , if it satisfies both of the following conditions:

1. bl ≤ dl0 , tl ≤ el0 , and l ≤ l0;
2. For each i satisfies 1 ≤ i ≤ l, there exists one j satisfying ci = aj , bi = dj,

and ti = ej.

Let w(b, t) (resp. w̄(b, t)) be one of the DBCs in Φ(b, t) (resp. Φ̄(b, t)) with the
smallest Hamming weight. The optimal substructure of the problem of finding
w(b, t) (resp. w̄(b, t)) is shown in Lemma 4.

Lemma 4. Let w(b, t) be a minimal chain for nb,t in Φ(b, t) and w̄(b, t) be a
minimal chain for n̄b,t in Φ̄(b, t). If w(b, t) or w̄(b, t) contains a sub-chain w(i, j)
for ni,j, then w(i, j) is minimal for ni,j in Φ(i, j); If w(b, t) or w̄(b, t) contains
a sub-chain w̄(i, j) for n̄i,j, then w̄(i, j) is minimal for n̄i,j in Φ̄(i, j).

Lemma 4 shows that the problem of finding a minimal chain has optimal sub-
structure. We can partition this problem into subproblems. These subproblems
may share the same new problems. For example, subproblems for nb,t−1 and
subproblems for nb−1,t share the same problems for nb−1,t−1 and for n̄b−1,t−1.

Overlapping Subproblems. When a recursive algorithm revisits the same
problem over and over again rather than always generating new problems, we
say that the optimization problem has overlapping subproblems. Dynamic pro-
gramming algorithms typically take advantage of overlapping subproblems by
solving each subproblem once and then storing the solution in a table where it
can be looked up when needed.

Based on Lemma 1, using the range of the leading term of a canonic DBC
in Lemma 2, we simplify the possible sources of w(b, t) and w̄(b, t) shown as
Lemma 5.

Lemma 5. Let n be a positive integer, b ≥ 0, t ≥ 0, and b + t > 0.

1. If nb,t

2b−13t−1 < 2, then

w(b, t) = minL
{
w(b − 1, t),w(b, t − 1), 2b3t−1 + w̄(b, t − 1)

}
,

w̄(b, t) = −2b−13t + w̄(b − 1, t).

2. If 2 ≤ nb,t

2b−13t−1 < 3, then

w(b, t) = minL
{
w(b − 1, t), 2b−13t + w̄(b − 1, t), 2b3t−1 + w(b, t − 1)

}
,

w̄(b, t) = −2b−13t + w̄(b − 1, t).

3. If 3 ≤ nb,t

2b−13t−1 < 4, then

w(b, t) = 2b−13t + w(b − 1, t),

w̄(b, t) = minL
{−2b−13t + w(b − 1, t), w̄(b − 1, t),−2b3t−1 + w̄(b, t − 1)

}
.

554 W. Yu et al.

4. If nb,t

2b−13t−1 ≥ 4, then

w(b, t) = 2b−13t + w(b − 1, t),

w̄(b, t) = minL
{
w̄(b − 1, t),−2b3t−1 + w(b, t − 1), w̄(b, t − 1)

}
.

We give some conventions for initial values of w(b, t) and w̄(b, t). If b < 0 or
t < 0, w(b, t) = w̄(b, t) = NULL. If b ≥ 0, t ≥ 0, and nb,t = 0, then w(b, t) = {0}
and w̄(b, t) = NULL.

Lemma 5 reveals the relationship between problems of finding w(b, t) and
w̄(b, t) and problems of finding their subproblems. Dynamic programming is
efficient when a given subproblem may arise from more than one partial set of
choices. Each problem of finding w(b, t) and w̄(b, t) has at most 4 partial sets
of choices. The key technique in the overlapping subproblems is to store the
solution of each such subproblem in case it should reappear.

5.2 Dynamic Programming to Compute an Optimal DBC

The main blueprint of our dynamic programming algorithm to produce an opti-
mal DBC contains four steps.

1. Characterize the structure of an optimal solution whose two key ingredients
are optimal substructure and overlapping subproblems.

2. Recursively define the value of an optimal solution by minL.
3. Compute a DBC with the smallest Hamming weight and its leading term

dividing 2b3t for each nb,t and n̄b,t in a bottom-up fashion.
4. Construct an optimal DBC from computed information.

The dynamic programming algorithm to compute an optimal DBC is shown
as Algorithm 2. In Algorithm 2, set B = 2n in general cases, and set B = 9n

7 in
the case D = T = 0 by Lemma 2.

Algorithm 2. Dynamic programming to compute an optimal DBC
Input: a positive integer n, its binary representation nbinary, three non-negative
constants A > 0, D ≥ 0, T ≥ 0
Output: an optimal DBC for n
1. If D = 0 and T = 0, B ← 9n

7
, else B ← 2n. w(0, 0) ← 0, w̄(0, 0) ← NULL,

wmin ← nbinary

2. For b from 0 to �log B�, w(b, −1) ← NULL, w̄(b, −1) ← NULL
3. For t from 0 to �log3 B�, w(−1, t) ← NULL, w̄(−1, t) ← NULL,
bBound[t] ← ⌊

log B
3t

⌋

4. For t from 0 to �log3 B�
5. For b from 0 to bBound[t]
6. If b + t > 0, compute w(b, t) and w̄(b, t) using Lemma 5
7. If n > nb,t, wmin ← minV

{
2b3t + w(b, t), wmin

}

8. else if n = nb,t, wmin ← minV
{
w(b, t), 2b3t + w̄(b, t), wmin

}

9. return wmin

Double-Base Chains for Scalar Multiplications on Elliptic Curves 555

In Lines 1 − 3 of Algorithm 2, the initial values of w(0, 0), w̄(0, 0), wmin,
w(b,−1), w̄(b,−1), w(−1, t) and w̄(−1, t) are given. wmin stores the resulting
DBC for n whose initial value is nbinary, i.e., the binary representation of n.

In the Lines 4 − 8 of Algorithm 2, a two-layer cycle computes a DBC wmin.
Line 6 shows that the problem of computing w(b, t) and w̄(b, t) are partitioned
into subproblems of computing w(b− 1, t), w̄(b− 1, t), w(b, t− 1), and w̄(b, t− 1)
using Lemma 5. This is a bottom-up fashion. For the same t, we compute w(0, t)
(the same for w̄(0, t)); next, compute w(1, t), . . ., w

(⌊
log B

3t

⌋
, t

)
. Since w(b, t−1)

and w̄(b, t − 1) have been computed by Lines 4 and 6 in the last loop of t and
w(b − 1, t) and w̄(b − 1, t) have been computed by Lines 5 and 6 in the last loop
of b, we compute w(b, t) and w̄(b, t) successfully. Using these results to solve the
subproblems recursively, we can avoid calculating a problem twice or more.

By Lemma 4 and the bottom-up fashion, w(b, t) and w̄(b, t) have been com-
puted by Algorithm2 for all b and t satisfying 2b3t < B. We will show that the
DBC returned by Algorithm 2 is an optimal DBC in Theorem 3.

Theorem 3. Algorithm2 produces a canonic DBC when D = T = 0, and an
optimal DBC when D + T > 0.

If one wants to generate a different optimal DBC or canonic DBC, one pos-
sibility is to adjust the function minL and minV when two or more DBCs have
the same value. Doing this, we can favor doubling or tripling. In our algorithm,
we favor tripling.

Optimal DBCs are usually varied with Hamming weight by different costs
of point operations. Canonic DBCs returned by Algorithm2 are with the same
Hamming weight and are not affected by the cost of point operations. Take a
positive integer

⌊
π × 1020

⌋
= 314159265358979323846 for example. Its optimal

DBC returned by Algorithm 2 is 23033 + 22832 + 22032 − 21731 − 21630 − 2830 +
2330 − 2030 with Hamming weight 8 for EW 0.8. The value of the cost of this
DBC is 319.2. Its optimal DBC returned by Algorithm 2 is 219310 + 213310 −
21238 + 2936 + 2635 + 2332 − 2030 with Hamming weight 7 for EW 1. The value
of the cost of this DBC is 358. This DBC with Hamming weight 7 is one of the
canonic DBCs of

⌊
π × 1020

⌋
.

5.3 The Time Complexity and Space Complexity of Algorithm2

The running time of a dynamic programming algorithm depends on the product
of two factors: the number of subproblems overall and how many choices we
look at for each subproblem. Our dynamic programming algorithm has (log n +
1)(log3 n + 1) subproblems. If we store the value of nb,t and n/(2b3t) for the use
of next cycle, each subproblems requires O (log n) bit operations. Algorithm2
terminates in O

(
(log n)3

)
bit operations. The details are illustrated by Fig. 2.

Each node (b, t) of computing
⌊ nb,t

2b−13t−1

⌋
, w(b, t), and w̄(b, t) requires O (log n)

bit operations.

556 W. Yu et al.

b

t

1

2

3

...

log3 n 1

log3 n

log3 n 1

0 1 2 3 4 5 6 7 8 . . .
logn

b log3 t logB

requires logn bit operations

+ =

Fig. 2. The procedure of our dynamic programming algorithm

If the powers of 2 and 3 are recorded by their differences as Remark 5 of
Capuñay and Thériault’s work [7], our algorithm terminates in O

(
(log n)2

)

bits of memory. The details are shown as follows. The term ci2bi3ti in the chain
is stored as the pair (ci, bi, ti). For example, 1000 = 210 − 25 + 23 is recorded
as (1, 3, 0), (−1, 2, 0), and (1, 5, 0). If DBCs are recorded as their difference with
the previous term, then the memory requirement per chain is O (log n). Thus,
Algorithm 2 requires O

(
(log n)2

)
bits of memory.

We will focus on improving the time complexity of Algorithm2.

6 Equivalent Representatives for Large Numbers

The most time-consuming part of Lemma 5 is to compute nb,t

2b−13t−1 . It can
be improved by reduced representatives for large numbers [17]. Bernstein,
Chuengsatiansup, and Lange [17] noticed that arbitrary divisions of O (log n)-
bit numbers take time (log n)1+o(1) shown in pages 81 − 86 of “on the minimum
computation time of functions” by Cook [34]. Based on this novel representative,
the time complexity of dynamic programming algorithm is shown as Fig. 3. In
Fig. 3, α′ = (log B)0.5 and β′ = (log3 B)0.5. Each node (b, t) satisfying α′|b or
β′|t is named a boundary node in Fig. 3. Each boundary node requires log n bit
operations and each of the other nodes requires (log n)0.5 bit operations. Then
Algorithm 2 terminates in O

(
(log n)2.5

)
bit operations using reduced represen-

tatives.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 557

b

t

0

1

...

1

1

...

2 1

2

2 1

...

log3 n

log3 n 1

1 2 . . . 2 1 1 2 . . . 2 1 2 2 1 . . . logn

b log3 t logB

requires logn bit operations requires logn 0.5 bit operations

Fig. 3. The procedure of our dynamic programming algorithm using the trick in [17]

Motivated by their reduced representatives for large numbers, we will give a
new representative named equivalent representative.

Definition 6 (Equivalent representative). If one expression of an integer
n′ is equal to the value of

⌊ nb,t

2b−13t−1

⌋
in Lemma 5, then n′ is an equivalent rep-

resentative of n.

Our equivalent representative is a generalization of Bernstein, Chuengsa-
tiansup, and Lange’s reduced representative. Reduced representatives for large
numbers do not work for log n + log3 n boundary nodes. Our equivalent repre-
sentatives will solve this problem.

6.1 Use Equivalent Representatives in Algorithm2

We employ equivalent representatives to improve the recode procedure of Algo-
rithm2 shown as Algorithm 3. n1 is an equivalent representative in Algorithm 3
shown by Claim 2.

Claim 2. Let n1
′ =

⌊
6·n

2ii1·α2
13jj1·β2

1

⌋
%

(
2α2

1+13β2
1+1

)
, n1 =

⌊
n1

′

2i1·α13j1·β1

⌋
%

(
2α1+13β1+1

)
, α1 =

⌊
(log B)

1
3

⌋
, β1 =

⌊
(log B)

1
3

⌋
, b = ii1 · α2

1 + i1 · α1 + i,

t = jj1 · β2
1 + j1 · β1 + j, i1 ≥ 0, j1 ≥ 0, 0 ≤ i < α, 0 ≤ j < β shown as

Algorithm3. Then
(⌊

n1
2i3j

⌋
%6

)
=

⌊ nb,t

2b−13t−1

⌋
.

558 W. Yu et al.

Algorithm 3. Dynamic programming to compute an optimal DBC using equiv-
alent representatives once
Input: a positive integer n and its binary representation nbinary, three non-negative
constants A > 0, D ≥ 0, T ≥ 0
Output: an optimal DBC for n
1. Lines 1 − 3 of Algorithm 2

2. α0 ← �log B�, β0 ← �log3 B�, α1 ←
⌊
(log B)

1
3

⌋
, β1 ←

⌊
(log B)

1
3

⌋

3. For jj1 from 0 to
⌊

log3 B

β2
1

⌋
+ 1

4. For ii1 from 0 to
⌊

bBound[j·β2
1]

α2
1

⌋
+ 1

5. n1
′ ←

⌊
6·n

2
ii1·α2

13
jj1·β2

1

⌋
%

(
2α2

1+13β2
1+1

)

6. For j1 from 0 to β1 − 1
7. For i1 from 0 to α1 − 1

8. n1 ←
⌊

n1
′

2i1·α13j1·β1

⌋
%

(
2α1+13β1+1

)

9. For j from 0 to β1 − 1
10. For i from 0 to α1 − 1
11. t ← jj1 · β2

1 + j1 · β1 + j,b ← ii1 · α2
1 + i1 · α1 + i

12. If b + t > 0& b <bBound[t]& t ≤ �log3 B�
13. compute w(b, t), w̄(b, t) using Lemma 5

�
⌊ nb,t

2b−13t−1

⌋
is calculated by

(⌊
n1
2i3j

⌋
%6

)

14. else if b = bBound[t] & t ≤ �log3 B�, Lines 7, 8 of Algorithm 2
15. return wmin

Notice that t = jj1 · β2
1 + j1 · β1 + j, b = ii1 · α2

1 + i1 · α1 + i in Line 11 of
Algorithm 3. Algorithm 3 is similar as Algorithm 2 whose total cycles are at most
log B log3 B.

Algorithm 3 uses a trick of an equivalence representative n1. The mid-
dle variable n′

1 is used to calculate the equivalent representative n1. Each
n′
1 is a O

(
α2
1

)
-bit integers shown as Algorithm 3. There are at most(⌊

log3 B
β2
1

⌋
+ 1

) (⌊
log B
α2

1

⌋
+ 1

)
such numbers n′

1, i.e., O
(
α2
1

)
. Calculating each

n′
1 requires O (log n) bit operations. Calculating all n′

1 requires O
(
(log n)

5
3

)
bit

operations. Calculating each representative n1 requires O
(
α2
1

)
bit operations.

Then calculating equivalent representatives requires O
(
(log n)2

)
bit operations.

Based on equivalent representatives, each node (b, t) requires O (α1) bit oper-
ations. (log B) · (log3 B) nodes requiring O

(
(log n)

7
3

)
bit operations. The time

complexity of Algorithm3 is shown in Lemma 6.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 559

Lemma 6. Algorithm3 terminates in O
(
(log n)2+

1
3

)
bit operations.

The details of the time cost of Algorithm 3 are shown as Fig. 4.

t

0

1

...

1 1

1

1 1

...

2
1 1

2
1

2
1 1

...

log3 n

log3 n 1

...
...

. . .

. . .

1 2 . . .
1 2 1 1 1 1 1 1 2 . . . 2

1 2 2
1 1 2

1
2
1 1 2

1 2
. . .

logn

b log3 t logB

b

requires bit operations requires logn 2/3 bit operations requires logn 1/3 bit operations

Fig. 4. The procedure of Algorithm 3 using equivalent representatives

Based on Algorithm 3, we will use equivalent representatives repeatedly.

6.2 Dynamic Programming Using Equivalent Representatives k-th

We generate Algorithm 3 and use equivalent representatives k-th in Algorithm 2
shown as Algorithm 4.

⌊ nb,t

2b−13t−1

⌋
in Lemma 5 is calculated by

(⌊
nk

2i3j

⌋
%6

)
. Algo-

rithm3 is a special case of Algorithm 4 with k = 1.
The time complexity of Algorithm 4 is shown in Theorem 4.

Theorem 4. Algorithm4 terminates in O
(
(log n)2

(
(log n)

1
3k + k + log log n

))

bit operations. It requires O
(
(log n)2 log log n

)
bit operations when k = log3 log n.

Notice that α2 ≤ 7 when n < 2134217728. Then k in Algorithm 4 is usually
1 or 2. Algorithms 2, 3, and 4 generate the same DBC with the same A, D, T ,
and n.

560 W. Yu et al.

Algorithm 4. Dynamic programming to compute an optimal DBC using equiv-
alent representatives k-th
Input: a positive integer n, a positive integer k, and its binary representation nbinary,
three non-negative constants A > 0, D ≥ 0, T ≥ 0
Output: an optimal DBC for n
1. Lines 1 − 3 of Algorithm 2, n0 ← 6 · n

2. For y from 0 to k, αy ←
⌊
(log B)

1
3y

⌋
,βy ←

⌊
(log3 B)

1
3y

⌋

3. For jjy from 0 to
⌊

βy−1
β2

y

⌋
+ 1

4. For iiy from 0 to
⌊

αy−1
α2

y

⌋
+ 1

5. ny
′ ←

⌊
ny−1

2
iiy·α2

y 3
jjy·β2

y

⌋
%

(
2α2

y+13β2
y+1

)

6. For jy from 0 to βy − 1
7. For iy from 0 to αy − 1

8. ny ←
⌊

ny
′

2iy·αy 3jy·βy

⌋
%

(
2αy+13βy+1

)

� For each y from 1 to k, Lines 3-8 are repeatedly as y is outer loop and y + 1 is
inner loop
9. For j from 0 to βk − 1
10. For i from 0 to αk − 1
11. t ← ∑k

y=1

(
jjy · β2

y + jy · βy

)
+j,b ← ∑k

y=1

(
iiy · α2

y + iy · αy

)
+i

12. If b + t > 0& b < bBound[t]& t ≤ �log3 B�
13. compute w(b, t), w̄(b, t) using Lemma 5

�
⌊ nb,t

2b−13t−1

⌋
is calculated by

(⌊
nk
2i3j

⌋
%6

)

14. else if b = bBound[t] & t ≤ �log3 B�, Lines 7, 8 of Algorithm2

15. return wmin

6.3 Comparison of These Algorithms

The time complexity, space complexity, and method of Doche’s algorithm
[16], Capuñay and Thériault’s algorithm [7], Bernstein , Chuengsatiansup, and
Lange’s algorithm [17], and Algorithms 2–4 are summarized in Table 4. Table 4
shows the advantage of our dynamic programming algorithms.

Table 4. Comparison of algorithms to generate optimal DBCs
algorithm time complexity (O)space complexity (O) method

Doche [16] exponential (log n)2 enumeration

CT [7] (log n)4 (log n)3 two cycles

BCL [17] (log n)2.5 (log n)2.5 DAG

Algorithm 2 (new) (log n)3 (log n)2 dynamic programming

Algorithm 3 (new) (log n)
2+ 1

3 (log n)2 using equivalent representatives

Algorithm 4 (new) (log n)2 log log n (log n)2 using equivalent representatives (log3 log n)−th

From the time costs of different algorithms to generate optimal DBCs in
Table 5, Algorithm 4 is about 20, 25, 28, 32, and 40 times faster than Capuñay and
Thériault’s algorithm and 6.1, 6.6, 7.7, 8.7, and 9.3 times faster than Bernstein,

Double-Base Chains for Scalar Multiplications on Elliptic Curves 561

Chuengsatiansup and Lange’s algorithm for each size ranges in 256, 384, 512, 640,
and 768 respectively. As the integer becomes larger, Algorithm4 will gain more
compared to Bernstein, Chuengsatiansup and Lange’s algorithm.

Table 5. Time Costs of different algorithms to generate optimal DBCs in million cpu
cycles for integers with different size

256-bit 384-bit 512-bit 640-bit 768-bit
CT [7] 41.9 106 217 386 645

BCL [17] 12.1 28.9 60.1 108 164
Algorithm 4 (new) 1.98 4.32 7.72 11.8 18.0

6.4 The Hamming Weights and Leading Terms of Canonic DBCs
and Optimal DBCs

The Hamming weights and leading terms of the DBC produced by greedy app-
roach [1] (greedy-DBC), canonic DBCs, and optimal DBCs are shown in Table 6
for the same 1000 integers by Algorithm 3. The Hamming weight of NAF is log n

3 .
The Hamming weight of mbNAF, that of the DBC produced by binary/ternary
approach(bt-DBC), and that of the DBC produced by tree approach (tree-
DBC) are 0.2637 log n, 0.2284 log n, and 0.2154 log n respectively and the leading
terms are 20.791 log n30.1318 log n, 20.4569 log n30.3427 log n, and 20.5569 log n30.2796 log n

respectively. The Hamming weights of canonic DBCs are usually smaller than
those of optimal DBCs. By Table 6, the Hamming weights of optimal DBCs are
over 60% smaller than those of NAFs. As the integer becomes larger, the Ham-
ming weight dividing log n will be smaller with a limitation 1

8.25 by Theorem 2.
Please refer to Fig. 1 to get more details of the Hamming weight of canonic
DBCs.

Table 6. Hamming weights and leading terms of optimal DBCs on elliptic curves with
different size

256-bit 384-bit 512-bit 640-bit 768-bit
Hamming weight 62.784 94.175 125.48 155.307 188.764

greedy-DBC[1]
leading term(bl, tl)124.282, 82.168183.256, 125.779258.908, 159.309314.954, 204.158384.604, 240.957
Hamming weight 48.319 71.572 94.75 118.108 141.097

canonic DBC
leading term(bl, tl)128.275, 80.316197.183, 117.582261.227, 157.903328.541, 196.231396.162, 234.330

optimal DBC Hamming weight 50.027 74.163 98.234 122.544 146.493
E W 0.8 leading term(bl, tl)176.675, 49.750 265.369, 74.549 353.175, 99.895 444.538, 123.015532.690, 148.162

optimal DBC Hamming weight 49.393 73.210 96.993 121.134 144.684
E W 1 leading term(bl, tl)169.026, 54.578 253.989, 81.731 338.509, 109.154426.218, 134.577509.540, 162.764

We will discuss scalar multiplications using our optimal DBCs.

7 Comparison of Scalar Multiplications

The scalar multiplication algorithm using a DBC is a Horner-like scheme for the
evaluation of nP utilizing the DBC of n =

∑l
i=1 ci2bi3ti as nP =

∑l
i=1 ci2bi3tiP .

Theoretical cost of scalar multiplications on elliptic curves using NAF, greedy-
DBC, bt-DBC, mbNAF, tree-DBC, canonic DBC, and optimal DBC on EW 0.8
and EW 1 are shown in Table 7.

562 W. Yu et al.

Table 7 shows that scalar multiplication using an optimal DBC is more effi-
cient than that using a canonic DBC. Scalar multiplication using an optimal
DBC on EW 0.8 and EW 1 is about 13% and 13% faster than that using NAF,
7.5% and 7.1% faster than that using greedy-DBC, 6.5% and 6% faster than that
using bt-DBC, 7% and 7% faster than that using mbNAF, 4% and 4% faster
than that using a tree-DBC, and 0.9% and 0.7% faster than that using a canonic
DBC respectively. Scalar multiplication using an optimal DBC is usually faster
than that using a canonic DBC. Take

⌊
π × 10240

⌋
on EW 1 for example, scalar

multiplication using our optimal DBC is 14% faster and 3.8% faster than that
using NAF and tree-DBC respectively.

Table 7. Theoretical costs of scalar multiplications on elliptic curves using optimal
DBC, canonic DBC, tree-DBC, and NAF in M
bits of n representation 256-bit 384-bit 512-bit 640-bit 768-bit

NAF 2652 3983 5315 6646 7977
greedy-DBC [1] 2535 3818 5089 6351 7643

bt-DBC [2] 2510 3771 5031 6291 7552
EW 0.8 mbNAF [13] 2521 3787 5052 6318 7583

tree-DBC [3] 2452 3683 4914 6146 7377
canonic DBC(this work) 2393 3582 4774 5967 7155
optimal DBC(this work) 2364 3543 4722 5902 7080

NAF 2976 4469 5962 7456 8949
greedy-DBC [1] 2824 4252 5671 7075 8516

bt-DBC [2] 2796 4200 5603 7007 8410
EW 1 mbNAF [13] 2824 4241 5659 7076 8494

tree-DBC [3] 2738 4113 5488 6862 8237
canonic DBC(this work) 2671 4000 5332 6664 7991
optimal DBC(this work) 2649 3970 5292 6615 7936

In Table 7, the value of T
D on EW 0.8 is greater than that on EW 1. The ratio

of the cost of scalar multiplication using an optimal DBC to that using NAF on
EW 0.8 is greater than that on EW 1 for integers of each size in Table 7. The ratio
of the improvement of scalar multiplication using an optimal DBC compared to
NAF is increasing as the value of T

D becomes larger.
A constant-time software implementation is used to protect the scalar mul-

tiplication algorithms for avoiding some side-channel attacks by side channel
atomicity. Multiplication and squaring are both executed by one multiplication
and two additions. For each size ranges in 256, 384, 512, 640, and 768, we gen-
erate a prime number p with the same size and create a random curve for EW
over a finite field Fp. Scalar multiplications using NAF, greedy-DBC, bt-DBC,
mbNAF, tree-DBC, canonic DBC, and optimal DBC are shown in Table 8.

Experimental results show that scalar multiplication using an optimal DBC
is 13% faster than that using NAF, 7% faster than that using greedy-DBC, 6%
faster than that using bt-DBC, 7% faster than that using mbNAF, and 4.1%
faster than that using a tree-DBC on EW respectively. Within the bounds of the
errors, the practical implementations are consistent with these theoretical anal-
yses. The theoretical analyses and practical implementations both show that the
Hamming weight is not the only factor affecting the efficiency of scalar multipli-
cations and that scalar multiplications using optimal DBCs are the fastest.

Those computations do not take the time of producing the expansions into
account. The recoding of our optimal DBC takes up a small amount of time to

Double-Base Chains for Scalar Multiplications on Elliptic Curves 563

Table 8. Experimental cost of scalar multiplications on elliptic curves using optimal
DBC, canonic DBC, tree-DBC, and NAF on EW in million cpu cycles

representation 256-bit 384-bit 512-bit 640-bit 768-bit
NAF 4.038 8.151 13.94 22.34 34.05

greedy-DBC [1] 3.836 7.751 13.27 21.23 32.43
bt-DBC [2] 3.798 7.656 13.12 21.02 32.03
mbNAF[13] 3.837 7.731 13.25 21.23 32.35
tree-DB [3] 3.734 7.575 12.92 20.68 31.54

canonic DBC(this work) 3.624 7.279 12.44 19.95 30.35
optimal DBC(this work) 3.594 7.168 12.37 19.83 30.17

compute scalar multiplication where both take time O
(
(log n)2 log log n

)
when

field multiplications use FFTs. It can’t be ignored. Optimal DBCs are suitable
for computing scalar multiplications when the multiplier n is fixed.

8 Conclusion

We first proposed a polynomial time algorithm to compute the number of DBCs
for a positive integer with a leading term dividing 2b3t. We showed theoretical
results of the number of DBCs for large b and t and gave an estimate of this
number. The asymptotic lower bound of the Hamming weights of DBCs produced
by any algorithm for n is linear log n

8.25 . This result changed the traditional idea
that the asymptotic lower bound of the Hamming weight of a DBC produced
by any algorithm may be sub-linear log n

log log n . The time complexity and the space
complexity of our dynamic programming algorithm to produce an optimal DBC
were both the state-of-the-art. The recoding procedure of our algorithm was
more than 20 times faster than Capuñay and Thériault’s algorithm and more
than 6 times faster than Bernstein, Chuengsatiansup, and Lange’s algorithm.

Let S(i) denote the smallest positive integer whose Hamming weight of its
canonic DBCs is i. Our dynamic programming algorithm allowed us to find S(i)
for i ≤ 12 immediately where S(1) = 1, S(2) = 5, S(3) = 29, S(4) = 173,
S(5) = 2093, S(6) = 14515, S(7) = 87091, S(8) = 597197, S(9) = 3583181,
S(10) = 34936013, S(11) = 263363789, and S(12) = 1580182733. This numerical
fact provides a good impression about the sparseness of DBCs.

The cost function in this study was associated with P + Q, 2P , and 3P
for scalar multiplications. A direct promotion of the cost function is defined by
P + Q, P − Q, 2P , 2P + Q, 3P , and 3P + Q. As the cost function is defined
more precisely, an optimal DBC will improve scalar multiplications more. The
optimal DBC can be directly generalized to a DBC with a large coefficient set
of integers. Algorithm 1 can be generated to calculate the number of triple-base
chains, and Algorithms 2–4 can be extended to produce optimal extended DBCs
and optimal triple-base chains.

Acknowledgments. The authors would like to thank the anonymous reviewers for
many helpful comments and thank Guangwu Xu, Kunpeng Wang, Song Tian and Bei
Liang for their helpful suggestions, especially for Guangwu Xu’s suggestions on the
parts of “Abstract” and “Introduction”. This work is supported by the National Nat-
ural Science Foundation of China (Grants 61872442, 61502487, and 61772515) and the

564 W. Yu et al.

National Cryptography Development Fund (No. MMJJ20180216). W. Yu is supported
by China Scholarship Council (No. 201804910201) and Study of Practical Cryptanalytic
Approaches based on Combining Information Leakages and Mathematical and Struc-
tural Properties of Real-World Cryptosystems (No.U1936209).

References

1. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005). https://doi.org/10.1007/
11593447 4

2. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading inversions for multipli-
cations in elliptic curve cryptography. Designs, Codes Crypt. 39(6), 189–206 (2006)

3. Doche, C., Habsieger, L.: A tree-based approach for computing double-base chains.
In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 433–446.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70500-0 32

4. Imbert, L., Philippe, F.: Strictly chained (p, q)-ary partitions. Contrib. Discrete
Math. 2010, 119–136 (2010)

5. Lou, T., Sun, X., Tartary, C.: Bounds and trade-offs for double-base number sys-
tems. Inf. Process. Lett. 111(10), 488–493 (2011)

6. Zhao, C.A., Zhang, F.G., Huang, J.W.: Efficient Tate pairing computation using
double-base chains. Sci. China Ser. F 51(8), 1096–1105 (2008)

7. Capuñay, A., Thériault, N.: Computing optimal 2-3 chains for pairings. In: Lauter,
K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 225–
244. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 13

8. Doche, C., Kohel, D.R., Sica, F.: Double-base number system for multi-scalar mul-
tiplications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 502–517.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 29

9. Adikari, J., Dimitrov, V.S., Imbert, L.: Hybrid binary ternary number system for
elliptic curve cryptosystems. IEEE Trans. Comput. 60, 254–265 (2011)

10. Doche, C., Sutantyo, D.: New and improved methods to analyze and compute
double-scalar multiplications. IEEE Trans. Comput. 63(1), 230–242 (2014)

11. Avanzi, R., Dimitrov, V., Doche, C., Sica, F.: Extending scalar multiplication using
double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp.
130–144. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 9

12. Mishra, P.K., Dimitrov, V.: Efficient quintuple formulas for elliptic curves and effi-
cient scalar multiplication using multibase number representation. In: Garay, J.A.,
Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 390–
406. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1 26

13. Longa, P., Gebotys, C.: Fast multibase methods and other several optimizations
for elliptic curve scalar multiplication. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 443–462. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00468-1 25

14. Yu, W., Wang, K., Li, B., Tian, S.: Triple-base number system for scalar multipli-
cation. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013.
LNCS, vol. 7918, pp. 433–451. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38553-7 26

15. Dimitrov, V.S., Imbert, L., Mishra, P.K.: The double-base number system and
its application to elliptic curve cryptography. Math. Comput. 77(262), 1075–1104
(2008)

https://doi.org/10.1007/11593447_4
https://doi.org/10.1007/11593447_4
https://doi.org/10.1007/978-3-540-70500-0_32
https://doi.org/10.1007/978-3-319-22174-8_13
https://doi.org/10.1007/978-3-642-01001-9_29
https://doi.org/10.1007/11935230_9
https://doi.org/10.1007/978-3-540-75496-1_26
https://doi.org/10.1007/978-3-642-00468-1_25
https://doi.org/10.1007/978-3-642-00468-1_25
https://doi.org/10.1007/978-3-642-38553-7_26
https://doi.org/10.1007/978-3-642-38553-7_26

Double-Base Chains for Scalar Multiplications on Elliptic Curves 565

16. Doche, C.: On the enumeration of double-base chains with applications to ellip-
tic curve cryptography. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8873, pp. 297–316. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45611-8 16

17. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Double-base scalar multiplication
revisited. http://eprint.iacr.org/2017/037

18. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 6

19. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768
(2004)

20. Longa, P., Miri, A.: Fast and flexible elliptic curve point arithmetic over prime fields.
IEEE Trans. Comput. 57(3), 289–302 (2008)

21. Bernstein, D.J., Lange, T.: Explicit-formulas database. http://www.hyperelliptic.
org/EFD/

22. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 403–428. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 16

23. Méloni, N., Hasan, M.A.: Elliptic curve scalar multiplication combining Yao’s algo-
rithm and double bases. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol.
5747, pp. 304–316. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04138-9 22

24. Meloni, N., Hasan, M.: Efficient double bases for scalar multiplication. IEEE Trans.
Comput. 64(8), 2204–2212 (2015)

25. Disanto, F., Imbert, L., Philippe, F.: On the maximal weight of (p, q)-ary chain
partitions with bounded parts. https://www.emis.de/journals/INTEGERS/vol14.
html

26. Yu, W., Musa, S., Li, B.: Double-base chains for scalar multiplications on elliptic
curves. http://eprint.iacr.org/2020/144

27. Scott, M.: MIRACL-multiprecision integer and rational arithmetic cryptographic
library, C/C++ Library. ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip

28. Chalermsook, P., Imai, H., Suppakitpaisarn, V.: Two lower bounds for shortest
double-base number system. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 98–A(6), 1310–1312 (2015)

29. Dimitrov, V.S., Howe, E.W.: Lower bounds on the lengths of double-base represen-
tations. Proc. Am. Math. Soc. 139(10), 3423–3430 (2011)

30. Kolmogorov, A.N.: On tables of random numbers. Theor. Comput. Sci. 207, 387–
395 (1998)

31. Doche, C., Imbert, L.: Extended double-base number system with applications to
elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006). https://doi.org/10.
1007/11941378 24

32. Erdös, P., Loxton, J.H.: Some problems in partitio numerorum. J. Aust. Math. Soc.
Ser. A 27(3), 319–331 (1979)

33. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

34. Cook, S.A.: On the minimum computation time of functions. Harvard University,
Department of Mathematics (1966). https://cr.yp.to/bib/1966/cook.html

https://doi.org/10.1007/978-3-662-45611-8_16
https://doi.org/10.1007/978-3-662-45611-8_16
http://eprint.iacr.org/2017/037
https://doi.org/10.1007/3-540-49649-1_6
http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-642-04138-9_22
https://doi.org/10.1007/978-3-642-04138-9_22
https://www.emis.de/journals/INTEGERS/vol14.html
https://www.emis.de/journals/INTEGERS/vol14.html
http://eprint.iacr.org/2020/144
ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip
https://doi.org/10.1007/11941378_24
https://doi.org/10.1007/11941378_24
https://cr.yp.to/bib/1966/cook.html

	Double-Base Chains for Scalar Multiplications on Elliptic Curves
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curves
	2.2 DBCs

	3 The Number of DBCs
	3.1 The Structure of the Set Containing All DBCs
	3.2 The Number of DBCs
	3.3 The Number of DBCs for Large b or t

	4 Hamming Weight of DBCs
	4.1 The Range of the Leading Term of Optimal DBCs and Canonic DBCs
	4.2 A Lower Bound on the Hamming Weights of DBCs

	5 Dynamic Programming Algorithm to Produce Optimal DBCs
	5.1 Basics for Dynamic Programming Algorithm
	5.2 Dynamic Programming to Compute an Optimal DBC
	5.3 The Time Complexity and Space Complexity of Algorithm2

	6 Equivalent Representatives for Large Numbers
	6.1 Use Equivalent Representatives in Algorithm2
	6.2 Dynamic Programming Using Equivalent Representatives k-th
	6.3 Comparison of These Algorithms
	6.4 The Hamming Weights and Leading Terms of Canonic DBCs and Optimal DBCs

	7 Comparison of Scalar Multiplications
	8 Conclusion
	References

