
Security Under Message-Derived Keys:
Signcryption in iMessage

Mihir Bellare1(B) and Igors Stepanovs2(B)

1 Department of Computer Science and Engineering, University of California
San Diego, San Diego, USA

mihir@eng.ucsd.edu
2 Department of Computer Science, ETH Zürich, Zürich, Switzerland

istepanovs@inf.ethz.ch

Abstract. At the core of Apple’s iMessage is a signcryption scheme that
involves symmetric encryption of a message under a key that is derived
from the message itself. This motivates us to formalize a primitive we call
Encryption under Message-Derived Keys (EMDK). We prove security of
the EMDK scheme underlying iMessage. We use this to prove security of
the signcryption scheme itself, with respect to definitions of signcryption
we give that enhance prior ones to cover issues peculiar to messaging
protocols. Our provable-security results are quantitative, and we discuss
the practical implications for iMessage.

1 Introduction

Apple’s iMessage app works across iOS (iPhone, iPad) and OS X (MacBook)
devices. Laudably, it aims to provide end-to-end security. At its heart is a sign-
cryption scheme.

The current scheme—we refer to the version in iOS 9.3 onwards, revised
after the attacks of GGKMR [26] on the iOS 9.0 version—is of interest on two
fronts. (1) Applied : iMessage encrypts (according to an Internet estimate) 63
quadrillion messages per year. It is important to determine whether or not the
scheme provides the security expected by its users. (2) Theoretical : The scheme
involves (symmetric) encryption of a message under a key that is derived from
the message itself, an uncommon and intriguing technique inviting formalization
and a foundational treatment.

Contributions in brief. Signcryption theory : We extend the prior Signcryp-
tion definitions of ADR [3] to capture elements particular to messaging systems,
and give general results that simplify the analysis of the candidate schemes.
EMDK : We introduce, and give definitions (syntax and security) for, Encryption
under Message Derived Keys. iMessage EMDK scheme: We extract from iMes-
sage an EMDK scheme and prove its security in the random-oracle model. Com-
position and iMessage Signcryption: We give a way to compose EMDK, PKE and
signatures to get signcryption, prove it works, and thereby validate the iMessage
signcryption scheme for appropriate parameter choices.
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12107, pp. 507–537, 2020.
https://doi.org/10.1007/978-3-030-45727-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45727-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-45727-3_17

508 M. Bellare and I. Stepanovs

iMsg1.Enc(pkr , sks, M)

1. K ←$ {0, 1}128

2. C1 ← AES-CTR.Enc(K, M)
3. C2 ← RSA-OAEP.Enc(pkr , K)
4. H ← SHA1(C1‖C2)
5. S ← EC-DSA.Sign(sks, H)
6. Return ((C1, C2), S)

iMsg2.Enc(pkr , sks, M)

1. L ←$ {0, 1}88

2. h ← HMAC(L, pks‖pkr‖M)[1..40]
3. K ← L‖h

4. C1 ← AES-CTR.Enc(K, M)
5. C2 ← RSA-OAEP.Enc(pkr , K)
6. H ← SHA1(C1‖C2)
7. S ← EC-DSA.Sign(sks, H)
8. Return ((C1, C2), S)

Fig. 1. Encryption in iMsg1 (left) and iMsg2 (right). Here pkr is the recipient’s pub-
lic RSA encryption key, sks is the sender’s ECDSA secret signing key and pks is
the sender’s ECDSA public verification key. Our analysis and proofs consider gen-
eral schemes of which the above emerge as instantiations corresponding to particular
choices of primitives and parameters.

Background. By default, the iMessage chatting app encrypts communications
between any two iMessage users. The encryption is end-to-end, under keys stored
on the devices, meaning Apple itself cannot decrypt. In this way, iMessage joins
Signal, WhatsApp and other secure messaging apps as a means to counter mass
surveillance, but the cryptography used is quite different, and while the cryp-
tography underlying Signal and WhatsApp, namely ratcheting, has received an
extensive theoretical treatment [2,12,19,22,28,29,33], that underlying iMessage
has not.

In 2016, Garman, Green, Kaptchuk, Miers and Rushanan (GGKMR) [26]
gave chosen-ciphertext attacks on the then current, iOS 9 version, of iMessage
that we will denote iMsg1. Its encryption algorithm is shown on the left in
Fig. 1. In response Apple acknowledged the attack as CVE-2016-1788 [20], and
revised the protocol for iOS 9.3. We’ll denote this version iMsg2, its encryption
algorithm is shown on the right in Fig. 1. It has been stable since iOS 9.3. It was
this revision that, for the specific purpose of countering the GGMKR attack,
introduced (symmetric) encryption with message-derived keys: message M at
line 4 is encrypted under a key K derived, via lines 1–3, from M itself. The
question we ask is, does the fix work?

Identifying the goal. To meaningfully answer the above question we must
first, of course, identify the formal primitive and security goal being targeted.
Neither Apple’s iOS Security Guide [4], nor GGKMR [26], explicitly do so. We
suggest that it is signcryption. Introduced by Zheng [36], signcryption aims
to simultaneously provide privacy of the message (under the receiver’s public
encryption key) and authenticity (under the sender’s secret signing key), and
can be seen as the asymmetric analogue of symmetric authenticated encryption.
A formalization was given by An, Dodis and Rabin (ADR) [3]. They distinguish
between outsider security (the adversary is not one of the users) and the stronger
insider security (the adversary could be a sender or receiver).

Signcryption in iMessage 509

Identifying the iMessage goal as signcryption gives some perspective on, and
understanding of, the schemes and history. The iMessage schemes can be seen as
using some form of ADR’s Encrypt-then-Sign (EtS) method. The iMsg1 scheme
turns out to be a simple scheme from ADR [3]. It may be outsider-secure, but
ADR give an attack that shows it is not insider secure. (The adversary queries
the sender encryption oracle to get a ciphertext ((C1, C2), S), substitutes S with
a signature S′ of H = SHA1(C1‖C2) under its own signing key, which it can do
as an insider, and then queries this modified ciphertext to the recipient decryp-
tion oracle to get back the message underlying the original ciphertext.) The
GGKMR [26] attack on iMsg1 is a clever improvement and real-world rendition
of the ADR attack. That Apple acknowledged the GGKMR attack, and modified
the scheme to protect against it, indicates that they want insider security, not
just outsider security, for their modified iMsg2 scheme. So the question becomes
whether this goal is achieved.

Signcryption theory extended. We could answer the above question rel-
ative to ADR’s (existing) definitions of insider-secure signcryption, but we do
more, affirming the iMsg2 signcryption scheme under stronger definitions that
capture elements particular to messaging systems, making our results of more
applied value.

When you send an iMessage communication to Alice, it is encrypted to all her
devices (her iPhone, MacBook, iPad, ...), so that she can chat seamlessly across
them. To capture this, we enhance signcryption syntax, making the encryption
algorithm multi-recipient. (It takes not one, but a list of receiver public encryp-
tion keys.) We also allow associated data as in symmetric authenticated encryp-
tion [35].

We give, like in prior work [3], a privacy definition (priv) and an authenticity
definition (auth); but, unlike prior work, we also give a strong, unified defini-
tion (sec) that implies auth+priv. We show that (under certain conditions) sec
is implied by auth+priv, mirroring analogous results for symmetric authenti-
cated encryption [9,15]. Proving that a scheme satisfies sec (the definition more
intuitively capturing the practical setting) now reduces to the simpler tasks of
separately showing it satisfies auth and priv. These definitions and results are
for both insider and outsider security, and parameterized by choices of relaxing
relations that allow us to easily capture variants reflecting issues like plaintext
or ciphertext integrity [8], gCCA2 [3] and RCCA [18].

EMDK definitions. Recall that a scheme for conventional symmetric encryp-
tion specifies a key-generation algorithm that is run once, a priori, to return a key
k; the encryption algorithm then takes k and message m to return a ciphertext.
In our definition of a scheme for (symmetric) Encryption under Message-Derived
Keys (EMDK), there is no dedicated key-generation algorithm. Encryption algo-
rithm EMDK.Enc takes only a message m, returning both a key k and a cipher-
text c, so that k may depend on m. Decryption algorithm EMDK.Dec takes
k—in the overlying signcryption scheme, this is communicated to the receiver
via asymmetric encryption—and c to return either m or ⊥.

510 M. Bellare and I. Stepanovs

We impose two security requirements on an EMDK scheme. (1) The first,
called ae, adapts the authenticated encryption requirement of symmetric encryp-
tion [35]. (Our game formalizing ae is in Fig. 8.) (2) The second, called rob, is a
form of robustness or wrong-key detection [1,17,23,24]. (Our game formalizing
rob is also in Fig. 8.) Of course one may define many other and alternative secu-
rity goals for EMDK, so why these? We have focused on these simply because
they suffice for our results.

EMDK is different from both (Symmetric) Encryption of Key-Dependent
Messages (EKDM) [14,16] and (Symmetric) Encryption secure against Related-
Key Attack (ERKA) [7]. To begin with, these definitions apply to syntactically
different objects. Namely, both EKDM and ERKA are security metrics for the
standard symmetric encryption syntax where the encryption algorithm takes a
key and message as input and returns a ciphertext, while in EMDK the encryp-
tion algorithm takes only a message and itself produces a key along with the
ciphertext. (Note that the latter is also different from the syntax of a Key-
Encapsulation mechanism, where encryption does produce a key and ciphertext,
but takes no input message.) These syntactic differences make comparison moot,
but one can still discuss intuitively how the security requirements relate. In the
security games for EKDM there is an honestly and randomly chosen target key
k, and challenge messages to be encrypted may depend on k, but in our security
games for EMDK, the key is not chosen honestly and could depend on the mes-
sage being encrypted. In ERKA also, like EKDM but unlike EMDK, a target
key k is chosen honestly and at random. One can now have the game apply the
encryption algorithm under a key k′ derived from k, but this does not capture
the encryption algorithm not taking a key as input but itself producing it as a
function of the message, as in EKDM.

Deconstructing iMessage. Equipped with the above, we show how to cast
the iMsg2 signcryption scheme as the result of a general transform (that we
specify and call IMSG-SC) on a particular EMDK scheme (that we specify) and
some standard auxiliary primitives (that we also specify). In Sect. 5, we prove
that IMSG-SC works, reducing insider security (priv, auth, sec) of the signcryp-
tion scheme to the security of the constituents, leaving us with what is the main
technical task, namely showing security of the EMDK scheme.

In more detail, IMSG-SC takes a scheme EMDK for encryption under message-
derived keys, a public-key encryption scheme PKE and a digital signature scheme
DS to return a signcryption scheme SC = IMSG-SC[EMDK,PKE,DS]. (In the
body of the paper, this is done in two steps, with a multi-recipient public-key
encryption scheme [6] as an intermediate point, but for simplicity we elide this
here.) Both iMessage signcryption schemes (i.e. iMsg1 and iMsg2) can be seen as
results of this transform. The two make the same choices of PKE and DS, namely
RSA-OAEP and EC-DSA respectively, differing only in their choice of EMDK,
which for iMsg1 is a trivial scheme that we call the basic scheme, and for iMsg2
a more interesting scheme that we denote IMSG-EMDK[F,SE] and discuss below.
Our Sect. 5 result is that signcryption scheme SC = IMSG-SC[EMDK,PKE,DS]

Signcryption in iMessage 511

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248
0

10
20
30
40
50
60
70
80

(40, 39)

(48, 45)

(72, 66)

(96, 79)

Length of HMAC authentication tag

B
it
-s
ec
ur
it
y
of

pr
iv
ac
y 256-bit AES key

192-bit AES key
128-bit AES key

Fig. 2. Lower bounds for the bit-security of privacy achieved by iMessage, depending
on the key size of AES-CTR and the length of the authentication tag returned by
HMAC. iMessage 10 uses 128-bit AES key and 40-bit long HMAC authentication tag,
and hence guarantees at least 39 bits of security for privacy. (Any choice of parameters
guarantees 71 bits of security for authenticity.)

provides insider security (priv, auth, sec) assuming ae- and rob-security of EMDK
and under standard assumptions on PKE and DS.

EMDK results. In Fig. 10 we specify an EMDK scheme IMSG-EMDK[F,SE]
constructed from a given function family F and a given, ordinary one-time
(assumed deterministic) symmetric encryption scheme SE. Setting F to HMAC
and SE to AES-CTR recovers the EMDK scheme underlying iMsg2 signcryption.
This EMDK scheme captures the heart of iMsg2 signcryption, namely lines 1–4
of the right side of Fig. 1.

The security analysis of IMSG-EMDK[F,SE] is somewhat complex. We prove
ae-security of this EMDK scheme assuming F is a random oracle and SE has
the following properties: one-time IND-CPA privacy, a property we define called
uniqueness, and partial key recovery security. The latter strengthens key recovery
security to say that, not only is it hard to recover the key, but it is hard to recover
even a prefix, of a certain prescribed length, of this key. We prove rob-security
of the EMDK scheme assuming F is a random oracle and SE satisfies uniqueness
and weak robustness. The properties assumed of SE appear to be true for the
AES-CTR used in iMessage, and could be shown in idealized models.

Practical implications for iMessage. What we have proved is that iMsg2
signcryption is secure in principle, in the sense that the underlying template is
sound. (That is, the signcryption scheme given by our IMSG-SC transform is
secure assuming the underlying primitives are secure.) For the practical impli-
cations, we must consider the quantitative security guaranteed by our theorems
based on the particular choices of parameters and primitives made in iMsg2 sign-
cryption scheme. Here, things seem a bit borderline, because iMsg2 signcryption
has made some specific parameter choices that seem dangerous. Considering
again the right side of Fig. 1, the 128-bit AES key K at line 3 has only 88 bits

512 M. Bellare and I. Stepanovs

of entropy—all the entropy is from the choice of L at line 1—which is not only
considered small in practice but also is less than for iMsg1. (On the left side
of the Figure we see that line 1 selects an AES key K with the full 128 bits of
entropy.) Also the tag h produced at line 2 of the right-hand-side of the Figure
is only 40 bits, shorter than recommended lengths for authentication tags. To
estimate the impact of these choices, we give concrete attacks on the scheme.
They show that the bounds in our theorems are tight, but do not contradict our
provable-security results.

Numerical estimates based on our provable-security results say that iMessage
10 guarantees at least 39 bits of security for privacy, and 71 bits of security for
authenticity, if HMAC and AES are modeled as ideal primitives. Figure 2 shows
the guaranteed bit-security of privacy for different choices of AES key length and
HMAC tag length. For the small parameter choices made in iMsg2 signcryption,
the attacks do approach feasibility in terms of computational effort, but we
wouldn’t claim they are practical, for two reasons. First, they only violate the
very stringent security goals that are the target of our proofs. Second, following
the GGKMR [26] attacks, Apple has implemented decryption-oracle throttling
that will also curtail our attacks.

Still, ideally, a practical scheme would implement cryptography that meets
even our stringent security goals without recourse to extraneous measures like
throttling. We suggest that parameter and primitive choices in iMessage sign-
cryption be revisited, for if they are chosen properly, our results do guarantee
that the scheme provides strong security properties.

Discussion. When a new primitive (like EMDK) is defined, the first question
of a theoretical cryptographer is often, does it exist, meaning, can it be built,
and under what assumptions? At least in the random-oracle model [10] in which
our results are shown, it is quite easy to build, under standard assumptions, an
EMDK scheme that provides the ae+rob-security we define, and we show such
a scheme in Fig. 9. The issue of interest for us is less existence (to build some
secure EMDK scheme) and more the security of the particular IMSG-EMDK[F,
SE] scheme underlying iMsg2 signcryption. The motivation is mainly applied,
stemming from this scheme running in security software (iMessage) that is used
by millions.

But, one may then ask, WHY did Apple use their (strange) EMDK scheme
instead of one like that in Fig. 9, which is simpler and provable under weaker
assumptions? We do not know. In that vein, one may even ask, why did Apple use
EMDK at all? The literature gives Signcryption schemes that are efficient and
based on standard assumptions. Why did they not just take one of them? Again,
we do not know for sure, but we can speculate. The EMDK-based template that
we capture in our IMSG-SC transform provides backwards decryption compati-
bility ; an iMsg1 implementation can decrypt an iMsg2 ciphertext. (Of course,
security guarantees revert to those of the iMsg1 scheme under such usage, but
this could be offset by operational gains.) Moving to an entirely new signcryption
scheme would not provide this backwards compatibility. But we stress again that
this is mere speculation; we did not find any Apple documents giving reasons
for their choices.

Signcryption in iMessage 513

Related work. We have discussed some related work above. However, sign-
cryption is a big research area with a lot of work. We overview this in [13].

2 Preliminaries

In [13] we provide the following standard definitions. We state syntax, correct-
ness and security definitions for function families, symmetric encryption, digital
signatures, public-key encryption, and multi-recipient public-key encryption. We
define the random oracle model, the ideal cipher model, and provide the birthday
attack bounds. In this section we introduce the basic notation and conventions
we use throughout the paper.

Basic notation and conventions. Let N = {1, 2, . . .} be the set of positive
integers. For i ∈ N we let [i] denote the set {1, . . . , i}. If X is a finite set, we
let x ←$ X denote picking an element of X uniformly at random and assigning
it to x. Let ε denote the empty string. By x ‖ y we denote the concatenation of
strings x and y. If x ∈ {0, 1}∗ is a string then |x| denotes its length, x[i] denotes
its i-th bit, and x[i..j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If mem is a table, we
use mem[i] to denote the element of the table that is indexed by i. We use a
special symbol ⊥ to denote an empty table position; we also return it as an error
code indicating an invalid input to an algorithm or an oracle, including invalid
decryption. We assume that adversaries never pass ⊥ as input to their oracles.

Uniquely decodable encoding. We write 〈a, b, . . .〉 to denote a string that
is a uniquely decodable encoding of a, b, . . ., where each of the encoded ele-
ments can have an arbitrary type (e.g. string or set). For any n ∈ N let
x1, . . . , xn and y1, . . . , yn be two sequences of elements such that for each
i ∈ [n] the following holds: either xi = yi, or both xi and yi are strings of
the same length. Then we require that |〈x1, . . . , xn〉| = |〈y1, . . . , yn〉|, and that
〈x1, . . . , xi−1, xi, xi+1, . . . , xn〉 ⊕ 〈x1, . . . , xi−1, yi, xi+1, . . . , xn〉 = 〈x1, . . . , xi−1,
(xi ⊕ yi), xi+1, . . . , xn〉 for all i ∈ [n].

Algorithms and adversaries. Algorithms may be randomized unless oth-
erwise indicated. Running time is worst case. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . .
and assigning the output to y. We let y ←$ A(x1, . . .) be the result of pick-
ing r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set
of all possible outputs of A when invoked with inputs x1, Adversaries are
algorithms.

Security games and reductions. We use the code based game playing
framework of [11]. (See Fig. 5 for an example.) We let Pr[G] denote the probabil-
ity that game G returns true. In the security reductions, we omit specifying the
running times of the constructed adversaries when they are roughly the same as
the running time of the initial adversary.

Implicit initialization values. In algorithms and games, uninitialized inte-
gers are assumed to be initialized to 0, Booleans to false, strings to the empty
string, sets to the empty set, and tables are initially empty.

514 M. Bellare and I. Stepanovs

Bit-security of cryptographic primitives. Let prim be any cryptographic
primitive, and let sec be any security notion defined for this primitive. We say
that prim has n bits of security with respect to sec (or n bits of sec-security) if for
every adversary A that has advantage εA and runtime TA against sec-security
of prim it is true that εA/TA < 2−n. In other words, if there exists an adversary
A with advantage εA and runtime TA against sec-security of prim, then prim has
at most − log2(εA/TA) bits of security with respect to sec. This is the folklore
definition of bit-security for cryptographic primitives. Micciancio and Walter [31]
recently proposed an alternative definition for bit-security.

Bit-security lower bounds. Let BS(prim, sec) denote the bit-security of
cryptographic primitive prim with respect to security notion sec. Consider any
security reduction showing Advsecprim(A) ≤ ∑

i Adv
seci
primi

(BA
i) by constructing for

any adversary A and for each i a new adversary BA
i with runtime roughly TA.

Then we can lower bound the bit-security of prim with respect to sec as

BS(prim, sec) = min
∀A

− log2

(
εA
TA

)

≥ min
∀A

− log2

(∑
i Adv

seci
primi

(BA
i)

TA

)

≥ − log2

(
∑

i

2−BS(primi,seci)

)

.

3 Signcryption

In this section we define syntax, correctness and security notions for multi-
recipient signcryption schemes. We assume that upon generating any signcryp-
tion key pair (pk, sk), it gets associated to some identity id. This captures a
system where users can independently generate their cryptographic keys prior
to registering them with a public-key infrastructure. We require that all iden-
tities are distinct values in {0, 1}∗. Depending on the system, each identity id
serves as a label that uniquely identifies a device or a user. Note that pk cannot
be used in place of the identity, because different devices can happen to use the
same public keys (either due to generating the same key pairs by chance, or
due to maliciously claiming someone’s else public key). We emphasize that our
syntax is not meant to capture identity-based signcryption, where a public key
would have to depend on the identity. In [13] we provide an extensive summary
of prior work on signcryption.

We focus on authenticity and privacy of signcryption in the insider setting,
meaning that the adversary is allowed to adaptively compromise secret keys of
any identities as long as that does not enable the adversary to trivially win the
security games. Our definitions can also capture the outsider setting by consider-
ing limited classes of adversaries. We define our security notions with respect to
relaxing relations. This allows us to capture a number of weaker security notions
in a fine-grained way, by choosing an appropriate relaxing relation in each case.

Signcryption in iMessage 515

π ←$ SC.Setup
(pk, sk) ←$ SC.Kg(π)
C ←$ SC.SigEnc(π, ids,pks, sks,R, m, ad)
m ← SC.VerDec(π, ids,pks, idr ,pkr , skr , c, ad)

Fig. 3. Syntax of the constituent algorithms of signcryption scheme SC.

Rm.Vf(z0, z1)

(x0, y0) ← z0 ; (x1, y1) ← z1
Return x0 = x1

Rid.Vf(z0, z1)

Return z0 = z1

Fig. 4. Relaxing relations Rm and Rid.

In [13] we define a combined security notion for signcryption that simultane-
ously encompasses authenticity and privacy, and prove that it is equivalent to
the separate notions under certain conditions.

Multi-recipient signcryption schemes. A multi-recipient signcryption
scheme SC specifies algorithms SC.Setup, SC.Kg, SC.SigEnc, SC.VerDec, where
SC.VerDec is deterministic. Associated to SC is an identity space SC.ID. The
setup algorithm SC.Setup returns public parameters π. The key generation algo-
rithm SC.Kg takes π to return a key pair (pk, sk), where pk is a public key
and sk is a secret key. The signcryption algorithm SC.SigEnc takes π, sender’s
identity ids ∈ SC.ID, sender’s public key pks, sender’s secret key sks, a set R
of pairs (idr ,pkr) containing recipient identities and public keys, a plaintext
m ∈ {0, 1}∗, and associated data ad ∈ {0, 1}∗ to return a set C of pairs (idr , c),
each denoting that signcryption ciphertext c should be sent to the recipient with
identity idr . The unsigncryption algorithm SC.VerDec takes π, sender’s identity
ids, sender’s public key pks, recipient’s identity idr , recipient’s public key pkr ,
recipient’s secret key skr , signcryption ciphertext c, and associated data ad to
return m ∈ {0, 1}∗ ∪ {⊥}, where ⊥ indicates a failure to recover plaintext. The
syntax used for the constituent algorithms of SC is summarized in Fig. 3.

Correctness of signcryption. The correctness of a signcryption scheme SC
requires that for all π ∈ [SC.Setup], all n ∈ N, all (pk0, sk0), . . . , (pkn, skn)
∈ [SC.Kg(π)] all id0 ∈ SC.ID, all distinct id1, . . . , idn ∈ SC.ID, all m ∈ {0, 1}∗,
and all ad ∈ {0, 1}∗ the following conditions hold. Let R = {(idi,pki)}1≤i≤n. We
require that for all C ∈ [SC.SigEnc(π, id0,pk0, sk0,R,m, ad)]: (i) |C| = |R|; (ii)
for each i ∈ {1, . . . , n} there exists a unique c ∈ {0, 1}∗ such that (idi, c) ∈ C;
(iii) for each i ∈ {1, . . . , n} and each c such that (idi, c) ∈ C we have m =
SC.VerDec(π, id0,pk0, idi,pki, ski, c, ad).

Relaxing relations. A relaxing relation R ⊆ {0, 1}∗ ×{0, 1}∗ is a set contain-
ing pairs of arbitrary strings. Associated to a relaxing relation R is a membership

516 M. Bellare and I. Stepanovs

Games Gauth
SC,R,

π ←$ SC.Setup ; NewH,NewC,Exp,SigEnc,VerDec(π) ; Return win

NewH(id)
If initialized[id] then return ⊥
initialized[id] ← true ; (pk, sk) ←$ SC.Kg(π) ; pk[id] ← pk ; sk[id] ← sk ; Return pk

NewC(id, pk , sk)
If initialized[id] then return ⊥
initialized[id] ← true ; exp[id] ← true ; pk[id] ← pk ; sk[id] ← sk ; Return true

Exp(id)
If not initialized[id] then return ⊥
exp[id] ← true ; Return sk[id]

SigEnc(ids, I, m, ad)
If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) then return ⊥
R ← ∅ ; For each id ∈ I do R ← R ∪ {(id, pk[id])}
C ←$ SC.SigEnc(π, ids, pk[ids], sk[ids], R, m, ad)
For each (idr , c) ∈ C do Q ← Q ∪ {((ids, idr , m, ad), c)}
Return C
VerDec(ids, idr , c, ad)
If (not initialized[ids]) or (not initialized[idr]) then return ⊥
m ← SC.VerDec(π, ids, pk[ids], idr , pk[idr], sk[idr], c, ad) ; If m =⊥ then return ⊥
z0 ← ((ids, idr , m, ad), c) ; If ∃z1 ∈ Q : R.Vf(z0, z1) then return m

cheated ← exp[ids] ; If not cheated then win ← true
Return m

Fig. 5. Game defining authenticity of signcryption scheme SC with respect to relaxing
relation R.

verification algorithm R.Vf that takes inputs z0, z1 ∈ {0, 1}∗ to return a decision
in {true, false} such that ∀z0, z1 ∈ {0, 1}∗ : R.Vf(z0, z1) = true iff (z0, z1) ∈ R. We
will normally define relaxing relations by specifying their membership verifica-
tion algorithms. Two relaxing relations that will be used throughout the paper
are defined in Fig. 4.

We define our security notions for signcryption with respect to relaxing rela-
tions. Relaxing relations are used to restrict the queries that an adversary is
allowed to make to its unsigncryption oracle. The choice of different relaxing rela-
tions can be used to capture a variety of different security notions for signcryp-
tion in a fine-grained way. We will use relaxing relations Rid and Rm to capture
strong vs. standard authenticity (or unforgeability) of signcryption, and IND-
CCA vs. RCCA [18,27] style indistinguishability of signcryption. In Sect. 5.3
we will also define unforgeability of digital signatures with respect to relaxing
relations, allowing to capture standard and strong unforgeability notions in a
unified way.

Signcryption in iMessage 517

Authenticity of signcryption. Consider game Gauth of Fig. 5 associated to
a signcryption scheme SC, a relaxing relation R and an adversary F . The advan-
tage of adversary F in breaking the AUTH-security of SC with respect to R is
defined as AdvauthSC,R(F) = Pr[Gauth

SC,R,F]. Adversary F has access to oracles NewH,
NewC, Exp, SigEnc, and VerDec. The oracles can be called in any order.
Oracle NewH generates a key pair for a new honest identity id. Oracle NewC
associates a key pair (pk, sk) of adversary’s choice to a new corrupted identity id;
it permits malformed keys, meaning sk should not necessarily be a valid secret
key that matches with pk. Oracle Exp can be called to expose the secret key
of any identity. The game maintains a table exp to mark which identities are
exposed; all corrupted identities that were created by calling oracle NewC are
marked as exposed right away. The signcryption oracle SigEnc returns cipher-
texts produced by sender identity ids to each of the recipient identities contained
in set I, encrypting message m with associated data ad. Oracle VerDec returns
the plaintext obtained as the result of unsigncrypting the ciphertext c sent from
sender ids to recipient idr , with associated data ad. The goal of adversary F is
to forge a valid signcryption ciphertext, and query it to oracle VerDec. The
game does not let adversary win by querying oracle VerDec with a forgery that
was produced for an exposed sender identity ids, since the adversary could have
trivially produced a valid ciphertext due to its knowledge of the sender’s secret
key. Certain choices of relaxing relation R can lead to another trivial attack.

A choice of relaxing relation for authenticity. When adversary F in
game Gauth

SC,R,F calls oracle SigEnc on inputs ids, I,m, ad, then for each ciphertext
c produced for a recipient idr ∈ I the game adds a tuple ((ids, idr ,m, ad), c) to
set Q. This set is then used inside oracle VerDec. Oracle VerDec constructs
z0 = ((ids, idr ,m, ad), c) and prevents the adversary from winning the game if
R.Vf(z0, z1) is true for any z1 ∈ Q. If the relaxing relation is empty (meaning
R = ∅ and hence R.Vf(z0, z1) = false for all z0, z1 ∈ {0, 1}∗) then an adversary is
allowed to trivially win the game by calling oracle SigEnc and claiming any of
the resulting ciphertexts as a forgery (without changing the sender and recipient
identities). Let us call this a “ciphertext replay” attack.

In order to capture a meaningful security notion, the AUTH-security of SC
should be considered with respect to a relaxing relation that prohibits the above
trivial attack. The strongest such security notion is achieved by considering
AUTH-security of SC with respect to the relaxing relation Rid that is defined in
Fig. 4; this relaxing relation prevents only the ciphertext replay attack. The
resulting security notion captures the strong authenticity (or unforgeability)
of signcryption. Alternatively, one could think of this notion as capturing the
ciphertext integrity of signcryption.

Note that a relaxing relation R prohibits the ciphertext replay attack iff
Rid ⊆ R. Now consider the relaxing relation Rm as defined in Fig. 4; it is a
proper superset of Rid. The AUTH-security of SC with respect to Rm captures the
standard authenticity (or unforgeability, or plaintext integrity) of signcryption.
The resulting security notion does not let adversary win by merely replaying an

518 M. Bellare and I. Stepanovs

encryption of (m, ad) from ids to idr for any fixed (ids, idr ,m, ad), even if the
adversary can produce a new ciphertext that was not seen before.

Capturing outsider authenticity. Game Gauth
SC,R,F captures the authentic-

ity of SC in the insider setting, because it allows adversary to win by produc-
ing a forgery from an honest sender identity to an exposed recipient identity.
This, in particular, implies that SC assures non-repudiation, meaning that the
sender cannot deny the validity of a ciphertext it sent to a recipient (since the
knowledge of the recipient’s secret key does not help to produce a forgery). In
contrast, the outsider authenticity only requires SC to be secure when both the
sender and the recipient are honest. Our definition can capture the notion of
outsider authenticity by considering a class of outsider adversaries that never
query VerDec(ids, idr , c, ad) when exp[idr] = true.

Privacy of signcryption. Consider game Gpriv of Fig. 6 associated to a sign-
cryption scheme SC, a relaxing relation R and an adversary D. The advantage
of adversary D in breaking the PRIV-security of SC with respect to R is defined
as AdvprivSC,R(D) = 2Pr[Gpriv

SC,R,D] − 1. The game samples a challenge bit b ∈ {0, 1},
and the adversary is required to guess it. Adversary D has access to oracles
NewH, NewC, Exp, LR, and VerDec. The oracles can be called in any order.
Oracles NewH, NewC, and Exp are the same as in the authenticity game (with
the exception of oracle Exp also checking table ch, which is explained below).
Oracle LR encrypts challenge message mb with associated data ad, produced by
sender identity ids to each of the recipient identities contained in set I. Oracle
LR aborts if m0 �= m1 and if the recipient set I contains an identity idr that
is exposed. Otherwise, the adversary would be able to trivially win the game by
using the exposed recipient’s secret key to decrypt a challenge ciphertext pro-
duced by this oracle. If m0 �= m1 and none of the recipient identities is exposed,
then oracle LR uses table ch to mark each of the recipient identities; the game
will no longer allow to expose any of these identities by calling oracle Exp. Ora-
cle VerDec returns the plaintext obtained as the result of unsigncrypting the
ciphertext c sent from ids to idr with associated data ad. We discuss the choice
of a relaxing relation R below. However, note that oracle LR updates the set Q
(used by relaxing relation) only when m0 �= m1. This is because the output of
LR does not depend on the challenge bit when m0 = m1, and hence such queries
should not affect the set of prohibited queries to oracle VerDec.

Outputs of oracle VerDec. The output of oracle VerDec in game Gpriv

is a pair containing the plaintext (or the incorrect decryption symbol ⊥) as its
first element, and the status message as its second element. This ensures that
the adversary can distinguish whether VerDec returned ⊥ because it failed to
decrypt the ciphertext (yields error message “dec”), or because the relaxing rela-
tion prohibits the query (yields error message “priv”). Giving more information
to the adversary results in a stronger security definition, and will help us prove
equivalence between the joint and separate security notions of signcryption in
[13]. Note that an adversary can distinguish between different output branches
of all other oracles used in our authenticity and privacy games.

Signcryption in iMessage 519

Fig. 6. Games defining privacy of signcryption scheme SC with respect to relaxing
relation R.

A choice of relaxing relation for privacy. Consider relaxing relations
Rid and Rm that are defined in Fig. 4. We recover IND-CCA security of SC as
the PRIV-security of SC with respect to Rid. And we capture the RCCA security
of SC as the PRIV-security of SC with respect to Rm. Recall that the intuition
behind the RCCA security [18,27] is to prohibit the adversary from querying its
decryption oracle with ciphertexts that encrypt a previously queried challenge
message. In particular, this is the reason that two elements are added to set Q
during each call to oracle LR, one for each of m0 and m1. Our definition of RCCA
security for SC is very similar to that of IND-gCCA2 security as proposed by An,
Dodis and Rabin [3]. The difference is that our definition passes the decrypted

520 M. Bellare and I. Stepanovs

Fig. 7. Constituent algorithms of encryption scheme under message derived keys
EMDK.

message as input to the relation, whereas IND-gCCA2 instead allows relations
that take public keys of sender and recipient as input. It is not clear that having
the relation take the public key would make our definition meaningfully stronger.

Capturing outsider privacy. Game Gpriv
SC,R,D captures the privacy of SC in

the insider setting, meaning that the adversary is allowed to request challenge
encryptions from ids to idr even when ids is exposed. This implies some form of
forward security because exposing the sender’s key does not help the adversary
win the indistinguishability game. To recover the notion of outsider privacy,
consider a class of outsider adversaries that never query LR(ids, I,m0,m1, ad)
when exp[ids] = true.

4 Encryption Under Message Derived Keys

We now define Encryption under Message Derived Keys (EMDK). It can be
thought of as a special type of symmetric encryption allowing to use keys that
depend on the messages to be encrypted. This type of primitive will be at the
core of analyzing the security of iMessage-based signcryption scheme. In Sect. 4.1
we define syntax, correctness and basic security notions for EMDK schemes. In
Sect. 4.2 we define the iMessage-based EMDK scheme and analyse its security.

4.1 Syntax, Correctness and Security of EMDK

We start by defining the syntax and correctness of encryption schemes under
message derived keys. The interaction between constituent algorithms of EMDK
is shown in Fig. 7. The main security notions for EMDK schemes are AE (authen-
ticated encryption) and ROB (robustness). We also define the IND (indistin-
guishability) notion that will be used in Sect. 4.2 for an intermediate result
towards showing the AE-security of the iMessage-based EMDK scheme.

Encryption schemes under message derived keys. An encryption sch-
eme under message derived keys EMDK specifies algorithms EMDK.Enc and
EMDK.Dec, where EMDK.Dec is deterministic. Associated to EMDK is a key
length EMDK.kl ∈ N. The encryption algorithm EMDK.Enc takes a message
m ∈ {0, 1}∗ to return a key k ∈ {0, 1}EMDK.kl and a ciphertext c ∈ {0, 1}∗. The
decryption algorithm EMDK.Dec takes k, c to return message m ∈ {0, 1}∗ ∪{⊥},
where ⊥ denotes incorrect decryption. Decryption correctness requires that
EMDK.Dec(k, c) = m for all m ∈ {0, 1}∗, and all (k, c) ∈ [EMDK.Enc(m)].

Signcryption in iMessage 521

Game Gind
EMDK,D

b ←$ {0, 1} ; b′ ←$ DLR

Return b = b′

LR(m0, m1)
If |m0| 	= |m1| then

return ⊥
(k, c) ←$ EMDK.Enc(mb)
Return c

Game Gae
EMDK,D

b ←$ {0, 1} ; b′ ←$ DLR,Dec

Return b = b′

LR(m0, m1)
If |m0| 	= |m1| then return ⊥
n ← n + 1
(k[n], c[n]) ←$ EMDK.Enc(mb)
Return (n, c[n])

Dec(i, c)
If i 	∈ [n] or c[i] = c then

return ⊥
m ← EMDK.Dec(k[i], c)
If b = 1 then return m

Else return ⊥

Game Grob
EMDK,G

(i, k) ←$ GEnc

If i 	∈ [n] then return false
m ← EMDK.Dec(k, c[i])
win1 ← (m 	=⊥)
win2 ← (m 	= m[i])
Return win1 and win2

Enc(m)
(k, c) ←$ EMDK.Enc(m)
n ← n + 1 ; m[n] ← m ;
c[n] ← c

Return (k, c)

Fig. 8. Games defining indistinguishability, authenticated encryption security, and
robustness of encryption scheme under message derived keys EMDK.

Indistinguishability of EMDK. Consider game Gind of Fig. 8, associated to
an encryption scheme under message derived keys EMDK, and to an adversary
D. The advantage of D in breaking the IND security of EMDK is defined as
AdvindEMDK(D) = 2 · Pr[Gind

EMDK,D] − 1. The game samples a random challenge bit b
and requires the adversary to guess it. The adversary has access to an encryp-
tion oracle LR that takes two challenge messages m0,m1 to return an EMDK
encryption of mb.

Authenticated encryption security of EMDK. Consider game Gae of
Fig. 8, associated to an encryption scheme under message derived keys EMDK,
and to an adversary D. The advantage of D in breaking the AE security of EMDK
is defined as AdvaeEMDK(D) = 2 ·Pr[Gae

EMDK,D]−1. Compared to the indistinguisha-
bility game from above, game Gae saves the keys and ciphertexts produced by
oracle LR, and also provides a decryption oracle Dec to adversary D. The
decryption oracle allows to decrypt a ciphertext with any key that was saved by
oracle Enc, returning either the actual decryption m (if b = 1) or the incorrect
decryption symbol ⊥ (if b = 0). To prevent trivial wins, the adversary is not
allowed to query oracle Dec with a key-ciphertext pair that were produced by
the same LR query.

Robustness of EMDK. Consider game Grob of Fig. 8, associated to an encryp-
tion scheme under message derived keys EMDK, and to an adversary G.
The advantage of G in breaking the ROB security of EMDK is defined as
AdvrobEMDK(G) = Pr[Grob

EMDK,G]. To win the game, adversary G is required to find
(c, k0, k1,m0,m1) such that c decrypts to m0 under key k0, and c decrypts to
m1 under key k1, but m0 �= m1. Furthermore, the game requires that the cipher-
text (along with one of the keys) was produced during a call to oracle Enc that
takes a message m as input to return the output (k, c) of running EMDK.Enc(m)

522 M. Bellare and I. Stepanovs

EMDK.EncRO(m)

k ←$ {0, 1}EMDK.kl ; � ← |m|
x ← m ⊕ RO(k, �)
h ← RO(k ‖ m, �)
c ← (x, h)
Return (k, c)

EMDK.DecRO(k, c)

(x, h) ← c ; � ← |x|
m ← x ⊕ RO(k, �)
h′ ← RO(k ‖ m, �)
If h 	= h′ then return ⊥
Else return m

RO(z, �)

If T [z, �] = ⊥ then
T [z, �] ←$ {0, 1}�

Return T [z, �]

Fig. 9. Sample EMDK scheme EMDK = SIMPLE-EMDK in the ROM.

EMDK.Enc(m)

r0 ←$ {0, 1}F.kl ; r1 ← F.Ev(r0, m)
k ← r0 ‖ r1 ; cse ←$ SE.Enc(k, m)
Return (k, cse)

EMDK.Dec(k, cse)

m ← SE.Dec(k, cse) ; If m =⊥ then return ⊥
r0 ← k[1 . . .F.kl] ; r1 ← k[F.kl+ 1 . . . SE.kl]
If r1 	= F.Ev(r0, m) then return ⊥
Return m

Fig. 10. iMessage-based EMDK scheme EMDK = IMSG-EMDK[F, SE].

with honestly generated random coins. The other key can be arbitrarily chosen
by the adversary. In the symmetric encryption setting, a similar notion called
wrong-key detection was previously defined by Canetti et al. [17]. The notion of
robustness for public-key encryption was formalized by Abdalla et al. [1] and
further extended by Farshim et al. [23].

Sample EMDK scheme SIMPLE-EMDK. It is easy to build an EMDK scheme
that is both AE-secure and ROB-secure. One example of such scheme is the
construction SIMPLE-EMDK in the random oracle model (ROM) that is defined
in Fig. 9. In the next section we will define the EMDK scheme used iMessage;
it looks convoluted, and its security is hard to prove even in the ideal models.
In [13] we define the EMDK scheme that was initially used in iMessage; it was
replaced with the current EMDK scheme in order to fix a security flaw in the
iMessage design. We believe that the design of the currently used EMDK scheme
was chosen based on a requirement to maintain backward-compatibility across
the initial and the current versions of iMessage protocol.

4.2 iMessage-Based EMDK Scheme

In this section we define the EMDK scheme IMSG-EMDK that is used as the core
building block in the construction of iMessage (we use it to specify the iMessage-
based signcryption scheme in Sect. 5). We will provide reductions showing the
AE-security and the ROB-security of IMSG-EMDK. These security reductions
will first require us to introduce two new security notions for symmetric encryp-
tion schemes: partial key recovery and weak robustness.

EMDK scheme IMSG-EMDK. Let SE be a symmetric encryption scheme. Let
F be a function family with F.In = {0, 1}∗ such that F.kl + F.ol = SE.kl. Then

Signcryption in iMessage 523

Game Gpkr
SE,�,P

PEnc,GuessKey ; Return win

Enc(m)

k ←$ {0, 1}SE.kl ; c ←$ SE.Enc(k, m)
n ← n + 1 ; k[n] ← k[1 . . . �] ; Return c

GuessKey(p)
If ∃i ∈ [n] : k[i] = p then win ← true

Game Gwrob
SE,�,G

GEnc ; Return win

Enc(r0, m)

r1 ←$ {0, 1}� ; k ← r0 ‖ r1
c ← SE.Enc(k, m)
If ∃(m′, c) ∈ W : m′ 	= m then

win ← true
W ← W ∪ {(m, c)} ; Return r1

Fig. 11. Games defining partial key recovery security of symmetric encryption scheme
SE with respect to prefix length �, and weak robustness of deterministic symmetric
encryption scheme SE with respect to randomized key-suffix length �.

EMDK = IMSG-EMDK[F,SE] is the EMDK scheme as defined in Fig. 10, with
key length EMDK.kl = SE.kl.

Informally, the encryption algorithm EMDK.Enc(m) samples a hash func-
tion key r0 and computes hash r1 ←$ F.Ev(r0,m). It then encrypts m by run-
ning SE.Enc(k,m), where k = r0 ‖ r1 is a message-derived key. The decryp-
tion algorithm splits k into r0 and r1 and – upon recovering m – checks that
r1 = F.Ev(r0,m). In the iMessage construction, SE is instantiated with AES-CTR
using 128-bit keys and a fixed IV=1, whereas F is instantiated with HMAC-
SHA256 using F.kl = 88 and F.ol = 40.

Partial key recovery security of SE. Consider game Gpkr of Fig. 11,
associated to a symmetric encryption scheme SE, a prefix length � ∈ N and
an adversary P. The advantage of P in breaking the PKR-security of SE with
respect to � is defined as AdvpkrSE,�(P) = Pr[Gpkr

SE,�,P]. The adversary P has access
to oracle Enc that takes a message m and encrypts it under a uniformly random
key k (independently sampled for each oracle call). The goal of the adversary is
to recover the first � bits of any secret key that was used in prior Enc queries.

Weak robustness of deterministic SE. Consider game Gwrob of Fig. 11,
associated to a deterministic symmetric encryption scheme SE, a randomized
key-suffix length � ∈ N, and an adversary G. The advantage of G in breaking the
WROB-security of SE with respect to � is defined as AdvwrobSE,� (G) = Pr[Gwrob

SE,�,G].
The adversary has access to oracle Enc. The oracle takes a prefix of an encryp-
tion key r0 ∈ {0, 1}SE.kl−� and message m as input. It then randomly samples
the suffix of the key r1 ∈ {0, 1}� and returns it to the adversary. The adver-
sary wins if it succeeds to query Enc on some inputs (r0,m) and (r′

0,m
′) such

that m �= m′ yet the oracle mapped both queries to the same ciphertext c.
In other words, the goal of the adversary is to find k0,m0, k1,m1 such that
SE.Enc(k0,m0) = SE.Enc(k1,m1) and m0 �= m1 (which also implies k0 �= k1),
and the adversary has only a partial control over the choice of k0 and k1. Note
that this assumption can be validated in the ideal cipher model.

524 M. Bellare and I. Stepanovs

Security reductions for IMSG-EMDK. We now provide the reductions for
AE-security and ROB-security of IMSG-EMDK. The former is split into Theo-
rems 1 and 2, whereas the latter is provided in Theorem 3. Note that in [13]
we provide the standard definitions for the random oracle model, the UNIQUE-
security and the OTIND-security of symmetric encryption, and the TCR-security
of function families. The proofs of Theorems 1, 2 and 3 are in the full version [13].

Theorem 1. Let SE be a symmetric encryption scheme. Let F be a func-
tion family with F.In = {0, 1}∗, such that F.kl + F.ol = SE.kl. Let EMDK =
IMSG-EMDK[F,SE]. Let DAE be an adversary against the AE-security of EMDK.
Then we build an adversary U against the UNIQUE-security of SE, an adver-
sary H against the TCR-security of F, and an adversary DIND against the IND-
security of EMDK such that

AdvaeEMDK(DAE) ≤ 2 · AdvuniqueSE (U) + 2 · AdvtcrF (H) + AdvindEMDK(DIND).

Theorem 2. Let SE be a symmetric encryption scheme. Let F be a function
family with F.In = {0, 1}∗ and F.kl + F.ol = SE.kl, defined by F.EvRO(r,m) =
RO(〈r,m〉,F.ol) in the random oracle model. Let EMDK = IMSG-EMDK[F,SE].
Let DEMDK be an adversary against the IND-security of EMDK that makes qLR
queries to its LR oracle and qRO queries to random oracle RO. Then we build
an adversary P against the PKR-security of SE with respect to F.kl, and an
adversary DSE against the OTIND-security of SE, such that

AdvindEMDK(DEMDK) ≤ 2 · γ + 2 · AdvpkrSE,F.kl(P) + AdvotindSE (DSE),

where

γ =
(2 · qRO + qLR − 1) · qLR

2F.kl+1
.

Theorem 3. Let SE be a deterministic symmetric encryption scheme. Let F
be a function family with F.In = {0, 1}∗ and F.kl + F.ol = SE.kl, defined by
F.EvRO(r,m) = RO(〈r,m〉,F.ol) in the random oracle model. Let EMDK =
IMSG-EMDK[F,SE]. Let GEMDK be an adversary against the ROB-security of
EMDK. Then we build an adversary U against the UNIQUE-security of SE, and
an adversary GSE against the WROB-security of SE with respect to F.ol such that

AdvrobEMDK(GEMDK) ≤ AdvuniqueSE (U) + AdvwrobSE,F.ol(GSE).

5 Design and Security of iMessage

In this section we define a signcryption scheme that models the current design
of iMessage protocol for end-to-end encrypted messaging, and we analyze its
security. All publicly available information about the iMessage protocol is pro-
vided by Apple in iOS Security Guide [4] that is regularly updated but is very
limited and vague. So in addition to the iOS Security Guide, we also reference
work that attempted to reverse-engineer [32,34] and attack [26] the prior ver-
sions of iMessage. A message-recovery attack against iMessage was previously

Signcryption in iMessage 525

Scheme Construction Figure
EMDK IMSG-EMDK[F, SE] 10
MRPKE IMSG-MRPKE[EMDK,PKE] 14
SC IMSG-SC[MRPKE,DS] 13

Scheme Instantiation
F HMAC-SHA256 (F.kl = 88, F.ol = 40)
SE AES-CTR with 128-bit key and IV=1
PKE RSA-OAEP with 1280-bit key
DS ECDSA with NIST P-256 curve

Fig. 12. Modular design of iMessage-based signcryption scheme. The boxed nodes in
the diagram denote transforms that build a new cryptographic scheme from two under-
lying primitives.

found and implemented by Garman et al. [26] in 2016, and subsequently fixed
by Apple starting from version 9.3 of iOS, and version 10.11.4 of Mac OS X.
The implemented changes to the protocol prevented the attack, but also made
the protocol design less intuitive. It appears that one of the goals of the updated
protocol design was to preserve backward-compatibility, and that could be the
reason why the current design is a lot more more sophisticated than otherwise
necessary. Apple has not formalized any claims about the security achieved by
the initial or the current iMessage protocol, or the assumptions that are required
from the cryptographic primitives that serve as the building blocks. We fill in
the gap by providing precise claims about the security of iMessage design when
modeled by our signcryption scheme. In this section we focus only on the current
protocol design of iMessage. In [13] we provide the design of the initial iMessage
protocol, we explain the attack proposed by Garman et al. [26], and we introduce
the goal of backward-compatibility for signcryption schemes.

5.1 iMessage-Based Signcryption Scheme IMSG-SC

Identifying signcryption as the goal. The design of iMessage combines
multiple cryptographic primitives to build an end-to-end encrypted messaging
protocol. It uses HMAC-SHA256, AES-CTR, RSA-OAEP and ECDSA as the
underlying primitives. Apple’s iOS Security Guide [4] and prior work on reverse-
engineering and analysis of iMessage [26,32,34] does not explicitly indicate what
type of cryptographic scheme is built as the result of combining these primitives.
We identify it as a signcryption scheme. We define the iMessage-based signcryp-
tion scheme IMSG-SC in a modular way that facilitates its security analysis.
Figure 12 shows the order in which the underlying primitives are combined to
build IMSG-SC, while also providing intermediate constructions along the way.
We now explain this step by step.

526 M. Bellare and I. Stepanovs

SC.Setup
π ← MRPKE.Setup ; Return π

SC.SigEnc(π, ids, pks, sks, R, m, ad)

I ← ∅ ; Rpke ← ∅ ; C ← ∅
For each (idr , pkr) ∈ R do

(vkr , ekr) ← pkr
I ← I ∪ {idr}
Rpke ← Rpke ∪ {(idr , ekr)}

mpke ← 〈m, ids, I〉
Cpke ←$ MRPKE.Enc(π, Rpke , mpke)
(tks, dks) ← sks

For each (idr , cpke) ∈ Cpke do
σ ←$ DS.Sig(tks, 〈cpke , ad〉)
c ← (cpke , σ) ; C ← C ∪ {(idr , c)}

Return C

SC.Kg(π)

(vk, tk) ←$ DS.Kg
(ek, dk) ←$ MRPKE.Kg(π)
pk ← (vk, ek) ; sk ← (tk, dk)
Return (pk, sk)

SC.VerDec(π, ids, pks, idr , pkr , skr , c, ad)

(cpke , σ) ← c ; (vks, eks) ← pks
(vkr , ekr) ← pkr ; (tkr , dkr) ← skr

d ← DS.Ver(vks, 〈cpke , ad〉, σ)
If not d then return ⊥
mpke ← MRPKE.Dec(π, ekr , dkr , cpke)
If mpke =⊥ then return ⊥
〈m, id∗

s , I〉 ← mpke

If ids 	= id∗
s or idr I∈	 then return ⊥

Return m

Fig. 13. Signcryption scheme SC = IMSG-SC[MRPKE,DS].

Modular design of IMSG-SC. Our construction starts from choosing a func-
tion family F and a symmetric encryption scheme SE (instantiated with HMAC-
SHA256 and AES-CTR in iMessage). It combines them to build an encryp-
tion scheme under message derived keys EMDK = IMSG-EMDK[F,SE]. The
resulting EMDK scheme is combined with public-key encryption scheme PKE
(instantiated with RSA-OAEP in iMessage) to build a multi-recipient public-
key encryption scheme MRPKE = IMSG-MRPKE[EMDK,PKE] (syntax and cor-
rectness of MRPKE schemes is defined in [13]). Finally, MRPKE and digital
signature scheme DS (instantiated with ECDSA in iMessage) are combined to
build the iMessage-based signcryption scheme SC = IMSG-SC[MRPKE,DS]. The
definition of IMSG-EMDK was provided in Sect. 4.2. We now define IMSG-SC and
IMSG-MRPKE.

Signcryption scheme IMSG-SC. Let MRPKE be a multi-recipient public-
key encryption scheme. Let DS be a digital signature scheme. Then SC =
IMSG-SC[MRPKE,DS] is the signcryption scheme as defined in Fig. 13, with
SC.ID = {0, 1}∗. In order to produce a signcryption of message m with asso-
ciated data ad, algorithm SC.SigEnc performs the following steps. It builds a
new message mpke = 〈m, ids, I〉 as the unique encoding of m, ids, I, where I
is the set of recipients. It then calls MRPKE.Enc to encrypt the same message
mpke for every recipient. Algorithm MRPKE.Enc returns a set Cpke containing
pairs (idr , cpke), each indicating that an MRPKE ciphertext cpke was produced
for recipient idr . For each recipient, the corresponding ciphertext cpke is then
encoded with the associated data ad into 〈cpke , ad〉 and signed using the signing

Signcryption in iMessage 527

MRPKE.Setup
π ← ε ; Return π

MRPKE.Enc(π, R, m)

C ← ∅ ; (k, cse) ←$ EMDK.Enc(m)
For each (idr , ekr) ∈ R do

cpke ←$ PKE.Enc(ekr , k)
c ← (cse , cpke) ; C ← C ∪ {(idr , c)}

Return C

MRPKE.Kg(π)

(ek, dk) ←$ PKE.Kg ; Return (ek, dk)

MRPKE.Dec(π, ek, dk, c)

(cse , cpke) ← c
k ← PKE.Dec(ek, dk, cpke)
If k =⊥ then return ⊥
m ← EMDK.Dec(k, cse)
Return m

Fig. 14. Multi-recipient public-key encryption scheme MRPKE = IMSG-MRPKE
[EMDK,PKE].

key tks of sender identity ids, producing a signature σ. The pair (idr , (cpke , σ)) is
then added to the output set of algorithm SC.SigEnc. When running the unsign-
cryption of ciphertext c sent from ids to idr , algorithm SC.VerDec ensures that
the recovered MRPKE plaintext mpke = 〈m, id∗

s , I〉 is consistent with ids = id∗
s

and idr ∈ I.

Multi-recipient public-key encryption scheme IMSG-MRPKE.LetEMDK
be an encryption scheme under message derived keys. Let PKE be a public-
key encryption scheme with PKE.In = {0, 1}EMDK.kl. Then MRPKE =
IMSG-MRPKE[EMDK,PKE] is the multi-recipient public-key encryption scheme
as defined in Fig. 14. Algorithm MRPKE.Enc first runs (k, cse) ←$ EMDK.Enc(m)
to produce an EMDK ciphertext cse that encrypts m under key k. The obtained
key k is then independently encrypted for each recipient identity idr using its
PKE encryption key ekr , and the corresponding tuple (idr , (cse , cpke)) is added
to the output set of algorithm MRPKE.Enc.

Combining everything together. Let SC be the iMessage-based signcryp-
tion scheme that is produced by combining all of the underlying primitives
described above. Then the data flow within the fully expanded algorithms
SC.SigEnc and SC.VerDec is schematically displayed in Fig. 15. For simplicity,
the diagrams show the case when a message m is sent to a single recipient idr .

5.2 Parameter-Choice Induced Attacks on Privacy of iMessage

The iMessage-based signcryption scheme SC uses the EMDK scheme EMDK =
IMSG-EMDK[F,SE] as one of its underlying primitives. Recall that in order to
encrypt a payload m′ = 〈m, ids, I〉, the EMDK scheme samples a function key
r0 ←$ {0, 1}F.kl, computes a hash of m′ as r1 ← F.Ev(r0,m′), sets the encryption
key k ← r0 ‖ r1, and produces a ciphertext as cse ←$ SE.Enc(k,m′). The imple-
mentation of iMessage uses parameters F.kl = 88 and F.ol = 40. In this section
we provide three adversaries against the privacy of SC whose success depends on
the choice of F.kl and F.ol. In next sections we will provide security proofs for SC.

528 M. Bellare and I. Stepanovs

Fig. 15. Algorithms SC.SigEnc (left panel) and SC.VerDec (right panel) for SC =
IMSG-SC[MRPKE,DS], where MRPKE = IMSG-MRPKE[EMDK,PKE] and EMDK =
IMSG-EMDK[F, SE]. For simplicity, we let idr be the only recipient, and we do not
show how to parse inputs and combine outputs for the displayed algorithms. The
dotted lines inside SC.VerDec denote equality check, and the dotted arrow denotes
membership check.

We will show that each adversary in this section arises from an attack against a
different step in our security proofs. We will be able to conclude that these are
roughly the best attacks that arise from the choice of EMDK parameters. We will
also explain why it is hard to construct any adversaries against the authenticity
of SC. Now consider the adversaries of Fig. 16. The full version of this paper [13]
provides a detailed explanation for each adversary.

Formal claims and analysis. We provide the number of queries, the runtime
complexity and the advantage of each adversary in Fig. 17. The assumptions
necessary to prove the advantage are stated in Lemma 4 below. Note that Dbirthday

represents a purely theoretical attack, but both Dexhaustive and DADR02 can lead
to practical message-recovery attacks (the latter used by Garman et al. [26]).

Let EMDK = IMSG-EMDK[F,SE]. Adversary DADR02 shows that EMDK can
have at most F.ol bits of security with respect to PRIV, and adversary Dbirthday

shows that EMDK can have at most ≈ F.kl/2 + log2 F.kl bits of security with
respect to PRIV. It follows that setting F.ol ≈ F.kl/2 is a good initial guideline,
and roughly corresponds to the parameter choices made in iMessage. We will
provide a more detailed analysis in Sect. 5.5. The proof of Lemma 4 is in the full
version [13].

Signcryption in iMessage 529

DNewH,NewC,Exp,LR,VerDec
exhaustive,n (π)

ids ← “send” ; pks ←$ NewH(ids)
idr ← “recv” ; pkr ←$ NewH(idr)
I ← {idr} ; ad ← ε
m0 ← 0n ; m1 ←$ {0, 1}n

C ←$ LR(ids, I, m0, m1, ad)
{(idr , c)} ← C ; ((cse , cpke), σ) ← c
m′

1 ← 〈m1, ids, I〉
For each r0 ∈ {0, 1}F.kl do

r1 ← F.Ev(r0, m′
1) ; k ← r0 ‖ r1

If SE.Dec(k, cse) = m′
1 then return 1

Return 0

DNewH,NewC,Exp,LR,VerDec
birthday (π)

ids ← “send” ; pks ←$ NewH(ids)
idr ← “recv” ; pkr ←$ NewH(idr)
I ← {idr} ; ad ← ε
S ← ∅ ; p ← F.kl/2� ; m1 ← 0p

For each m0 ∈ {0, 1}p do
C ←$ LR(ids, I, m0, m1, ad)
{(idr , c)} ← C ; ((cse , cpke), σ) ← c
If cse ∈ S then return 1
S ← S ∪ {cse}

Return 0

DNewH,NewC,Exp,LR,VerDec
ADR02 (π)

ids ← 0128 ; pks ←$ NewH(ids) ; idr ← 1128 ; pkr ←$ NewH(idr)
I ← {idr} ; m0 ← 0128 ; m1 ← 1128 ; ad ← ε
C ←$ LR(ids, I, m0, m1, ad) ; {(idr , c)} ← C ; ((cse , cpke), σ) ← c
idc ← 064164 ; (pkc , skc) ←$ SC.Kg(π) ; NewC(idc , pkc , skc) ; (tkc , dkc) ← skc

m′
1 ← 〈m1, ids, {idr}〉 ; m′′

1 ← 〈m1, idc , {idr}〉 ; c′
se ← cse ⊕ (m′

1 ⊕ m′′
1)

σ′ ←$ DS.Sig(tkc , 〈(c′
se , cpke), ad〉) ; c′ ← ((c′

se , cpke), σ′)
(m, err) ← VerDec(idc , idr , c

′, ad) ; If m = m1 then return 1 else return 0

Fig. 16. The resources used by adversaries Dexhaustive,n, Dbirthday and DADR02, and the
advantage achieved by each of them. Columns labeled qO denote the number of queries
an adversary makes to oracle O. All adversaries make 2 queries to oracle NewH, and
0 queries to oracle Exp. See Lemma 4 for necessary assumptions.

Adversary qLR qNewC qVerDec Runtime complexity Advantage
Dexhaustive,n 1 0 0 2F.kl evaluations of F.Ev, SE.Enc ≥ 1 − 2SE.kl−n

Dbirthday 2�F.kl/2� 0 0 2p · p for p = F.kl/2� > 1/8 − 2F.kl−128

DADR02 1 1 1 1 evaluation of SC.Kg, DS.Sig = 2−F.ol

Fig. 17. Adversaries Dexhaustive,n, Dbirthday and DADR02 against the PRIV-security of SC =
IMSG-SC[MRPKE,DS], where MRPKE = IMSG-MRPKE[EMDK,PKE] and EMDK =
IMSG-EMDK[F, SE]. Adversary DADR02 requires that SE is AES-CTR with a fixed IV.

Lemma 4. Let SE be a symmetric encryption scheme. Let F be a function
family with F.In = {0, 1}∗ such that F.kl + F.ol = SE.kl. Let EMDK =
IMSG-EMDK[F,SE]. Let PKE be a public-key encryption scheme with PKE.In =
{0, 1}SE.kl. Let MRPKE = IMSG-MRPKE[EMDK,PKE]. Let DS be a digital signa-
ture scheme. Let SC = IMSG-SC[MRPKE,DS]. Let R ⊆ {0, 1}∗ × {0, 1}∗ be any
relaxing relation. Then for any n > SE.kl,

AdvprivSC,R(Dexhaustive,n) ≥ 1 − 2SE.kl−n.

530 M. Bellare and I. Stepanovs

Furthermore, for any 1 ≤ F.kl ≤ 124, if SE is AES-CTR with a fixed IV, and if
AES is modeled as the ideal cipher, then

AdvprivSC,R(Dbirthday) > 1/8 − 2F.kl−128.

Let Rm be the relaxing relation defined in Fig. 4. If SE is AES-CTR with a fixed
IV, and if F is defined as F.EvRO(r,m) = RO(〈r,m〉,F.ol) in the random oracle
model, then

AdvprivSC,Rm
(DADR02) = 2−F.ol.

5.3 Authenticity of iMessage

In this section we reduce the authenticity of the iMessage-based signcryption
scheme SC to the security of its underlying primitives. First we reduce the
authenticity of SC = IMSG-SC[MRPKE,DS] to the unforgeability of DS and
to the robustness of MRPKE. And then we reduce the robustness of MRPKE =
IMSG-MRPKE[EMDK,PKE] to the robustness of either PKE or EMDK; it is suf-
ficient that only one of the two is robust.

Reduction showing authenticity of IMSG-SC. Recall that an SC cipher-
text is a pair (cpke , σ) that consists of an MRPKE ciphertext cpke (encrypting
some 〈m, ids, I〉) and a DS signature σ of 〈cpke , ad〉. Intuitively, the authentic-
ity of SC requires some type of unforgeability from DS in order to prevent the
adversary from producing a valid signature on arbitrary cpke and ad of its own
choice. However, the unforgeability of DS is not a sufficient condition, because
the adversary is allowed to win the game Gauth by forging an SC ciphertext
for a corrupted recipient identity that uses maliciously chosen SC keys. So an
additional requirement is that the adversary should not be able to find an SC
key pair (pk, sk) that successfully decrypts an honestly produced SC ciphertext
(cpke , σ) to an unintended message. To ensure this, we require that MRPKE is
robust (as defined in the full version of this paper [13]). Note that finding a new
key pair that decrypts the ciphertext to the original message will not help the
adversary to win the game because then the decryption will fail by not finding
the corrupted recipient’s identity in recipient set I.

We define unforgeability UF of a digital signature scheme with respect
to a relaxing relation R, such that the standard unforgeability is captured
with respect to Rm and the strong unforgeability is captured with respect
to Rid. The formal definition is in the full version [13]. We show that if
DS is UF-secure with respect to a relaxing relation R∗ ∈ {Rm,Rid} then
SC is AUTH-secure with respect to the corresponding parameterized relax-
ing relation IMSG-AUTH-REL[R∗], which we define below. ECDSA signatures
are not strongly unforgeable [25], so iMessage is AUTH-secure with respect to
IMSG-AUTH-REL[Rm].

Relaxing relation IMSG-AUTH-REL. Let Rm and Rid be the relaxing rela-
tions defined in Sect. 3. Let R∗ ∈ {Rm,Rid}. Then IMSG-AUTH-REL[R∗] is the
relaxing relation as defined in Fig. 18. Note that

Rid = IMSG-AUTH-REL[Rid] ⊂ IMSG-AUTH-REL[Rm] ⊂ Rm,

Signcryption in iMessage 531

IMSG-AUTH-REL[R∗].Vf(z, z∗)

((ids, idr , m, ad), (cpke , σ)) ← z ; z0 ← ((ids, idr , m, ad, cpke), σ)
((id∗

s , id∗
r , m

∗, ad∗), (c∗
pke , σ

∗)) ← z∗ ; z1 ← ((id∗
s , id∗

r , m
∗, ad∗, c∗

pke), σ
∗)

Return R∗.Vf(z0, z1)

Fig. 18. Relaxing relation IMSG-AUTH-REL[R∗].

where AUTH-security with respect to Rid captures the stronger security defini-
tion due to imposing the least number of restrictions regarding which queries
are permitted to oracle VerDec. Relaxing relation IMSG-AUTH-REL[Rm] does
not allow adversary to win the authenticity game by only mauling the signature
σ and not changing anything else.

Theorem 5. Let MRPKE be a multi-recipient public-key encryption scheme. Let
DS be a digital signature scheme. Let SC = IMSG-SC[MRPKE,DS]. Let R∗ ∈
{Rm,Rid}. Let FSC be an adversary against the AUTH-security of SC with respect
to relaxing relation R = IMSG-AUTH-REL[R∗]. Then we build an adversary FDS

against the UF-security of DS with respect to R∗, and an adversary G against
the ROB-security of MRPKE such that

AdvauthSC,R(FSC) ≤ AdvufDS,R∗(FDS) + AdvrobMRPKE(G).

The proof of Theorem 5 is in the full version [13].

Reduction showing robustness of MRPKE. The ciphertext of MRPKE =
IMSG-MRPKE[EMDK,PKE] is a pair (cse , cpke), where cse is an EMDK ciphertext
encrypting some m∗ = 〈m, ids, I〉, and cpke is a PKE ciphertext encrypting the
corresponding EMDK key k. The decryption algorithm of MRPKE first uses the
PKE key pair (ek,dk) to decrypt cpke , and then uses the recovered EMDK key k to
decrypt cse . We show that just one of PKE and EMDK being robust implies that
MRPKE is also robust. Our definition of robustness for public-key encryption
requires that it is hard to find a key pair (ek,dk) that decrypts an honestly
produced ciphertext to a plaintext that is different from the originally encrypted
message. If this condition holds for PKE, then clearly MRPKE is robust regardless
of whether EMDK is robust. On the other hand, if PKE is not robust, then the
robustness of EMDK (as defined in Sect. 4) would guarantee that the adversary
is unlikely to decrypt cse to a message other than m∗ even if it has full control
over the choice of EMDK key k. It is not known whether RSA-OAEP is robust,
so our concrete security analysis of iMessage in Sect. 5.5 will rely entirely on
the robustness of EMDK = IMSG-EMDK. The formal definition of robustness for
PKE and the proof of Theorem 6 are in the full version [13].

Theorem 6. Let EMDK be an encryption scheme under message derived keys.
Let PKE be a public-key encryption scheme with PKE.In = {0, 1}EMDK.kl. Let

532 M. Bellare and I. Stepanovs

IMSG-PRIV-REL.Vf(z, z∗)

((ids, idr , m, ad), (cpke , σ)) ← z ; ((id∗
s , id∗

r , m
∗, ad∗), (c∗

pke , σ
∗)) ← z∗

Return (ids, idr , m, cpke) = (id∗
s , id∗

r , m
∗, c∗

pke)

Fig. 19. Relaxing relation IMSG-PRIV-REL.

MRPKE = IMSG-MRPKE[EMDK,PKE]. Let GMRPKE be an adversary against the
ROB-security of MRPKE. Then we build an adversary GEMDK against the ROB-
security of EMDK such that

AdvrobMRPKE(GMRPKE) ≤ AdvrobEMDK(GEMDK),

and an adversary GPKE against the ROB-security of PKE such that

AdvrobMRPKE(GMRPKE) ≤ AdvrobPKE(GPKE).

5.4 Privacy of iMessage

In this section we reduce the PRIV-security of SC = IMSG-SC[MRPKE,DS]
to the INDCCA-security of MRPKE, then reduce the INDCCA-security of
MRPKE = IMSG-MRPKE[EMDK,PKE] to the AE-security of EMDK and the
INDCCA-security of PKE. The reductions are straightforward.

An adversary attacking the PRIV-security of SC is allowed to query oracle
LR and get a challenge ciphertext from an exposed sender as long as the recipient
is honest. This means that the adversary can use the sender’s DS signing key to
arbitrarily change associated data ad and signature σ of any challenge ciphertext
prior to querying it to oracle VerDec. Our security reduction for PRIV-security
of SC will be with respect to a relation that prohibits the adversary from trivially
winning this way. Note that if IMSG-SC was defined to instead put ad inside
〈m, ids, I〉, then our security reduction would be able to show the PRIV-security
of SC with respect to Rid assuming DS had unique signatures. However, ECDSA
does not have this property (for the same reason it is not strongly unforgeable,
as explained in [25]).

Relaxing relation IMSG-PRIV-REL. Let IMSG-PRIV-REL be the relaxing
relation defined in Fig. 19. It first discards the associated data ad and the signa-
ture σ, and then compares the resulting tuples against each other. This reflects
the intuition that an adversary can trivially change the values of ad and σ in
any challenge ciphertext when attacking the PRIV-security of IMSG-SC.

Theorem 7. Let MRPKE be a multi-recipient public-key encryption scheme. Let
DS be a digital signature scheme. Let SC = IMSG-SC[MRPKE,DS]. Let DSC be an
adversary against the PRIV-security of SC with respect to the relaxing relation
R = IMSG-PRIV-REL. Then we build an adversary DMRPKE against the INDCCA-
security of MRPKE such that

AdvprivSC,R(DSC) ≤ AdvindccaMRPKE(DMRPKE).

Signcryption in iMessage 533

Theorem 8. Let EMDK be an encryption scheme under message derived keys.
Let PKE be a public-key encryption scheme with input set PKE.In = {0, 1}EMDK.kl.
Let MRPKE = IMSG-MRPKE[EMDK,PKE]. Let DMRPKE be an adversary against
the INDCCA-security of MRPKE. Then we build an adversary DPKE against the
INDCCA-security of PKE, and an adversary DEMDK against the AE-security of
EMDK such that

AdvindccaMRPKE(DMRPKE) ≤ 2 · AdvindccaPKE (DPKE) + AdvaeEMDK(DEMDK).

The proofs of Theorems 7 and 8 are in the full version [13].

5.5 Concrete Security of iMessage

In this section we summarize the results concerning the security of our iMes-
sage-based signcryption scheme. For simplicity, we use the constructions and
primitives from all across our work without formally redefining each of them.

Corollary for abstract schemes. Let SC be the iMessage-based signcryp-
tion scheme, defined based on the appropriate underlying primitives. Let Rauth =
IMSG-AUTH-REL[R∗] and Rpriv = IMSG-PRIV-REL. Then for any adversary FSC

attacking the AUTH-security of SC we can build new adversaries such that:

AdvauthSC,Rauth
(FSC) ≤ AdvufDS,R∗(FDS) + min(AdvrobPKE(GPKE), α),

where
α = AdvuniqueSE (U0) + AdvwrobSE,F.ol(GSE).

For any adversary DSC attacking the PRIV-security of SC, making qLR queries
to LR oracle and qRO queries to RO oracle, we build new adversaries such that:

AdvprivSC,Rpriv
(DSC) ≤ 2 · (β + γ) + AdvotindSE (DSE),

where

β = AdvindccaPKE (DPKE) + AdvuniqueSE (U1) + AdvtcrF (H) + AdvpkrSE,F.kl(P),

γ =
(2 · qRO + qLR − 1) · qLR

2F.kl+1
.

Bit-security of iMessage. We now assess the concrete security of iMessage
when the abstract schemes that constitute SC are instantiated with real-world
primitives. First, note that AdvuniqueSE (U) = 0 for any U when SE is AES-CTR.
We will approximate the bit-security of SC based on the other terms above.

We assume that ECDSA with 256-bit keys (on the NIST P-256 curve) has
128 bits of UF-security with respect to Rm [5,21]. We assume that RSA-OAEP
with 1280-bit keys has 80 bits of INDCCA-security [21,30]. SE is AES-CTR with
key length SE.kl; we assume that SE has SE.kl bits of OTIND-security.

For every other term used above, we approximate the corresponding bit-
security based on the advantage ε and the runtime T of the best adversary we

534 M. Bellare and I. Stepanovs

SE.kl F.kl F.ol PRIV bit-security AUTH bit-security

128
88 40 39

71

80 48 45
72 56 41

192
128 64 63
120 72 66
112 80 62

256
168 88 79
160 96 79

Fig. 20. Lower bounds for bit-security of SC across different parameter choices.

can come up with. For simplicity, we model F as the random oracle and we model
SE as the ideal cipher. This simplifies the task of finding the “best possible”
adversary against each security notion and then calculating its advantage. In each
case we consider either a constant-time adversary making a single guess in its
security game (achieving some advantage ε in time T ≈ 1), or an adversary that
runs a birthday attack (achieving advantage ε ≥ 0.3 · q·(q−1)

N in time T ≈ q · log2 q

for q =
√

2N). We use the following adversaries:

(i) Assume SE is AES-CTR where AES modeled as the ideal cipher with block
length 128. In game Gwrob

SE,F.ol,G consider an adversary G that repeatedly
queries its oracle Enc on inputs (r0,m) where all r0 ∈ {0, 1}F.kl are dis-
tinct and all m ∈ {0, 1}128 are distinct. The adversary wins if a collision
occurs across the 128-bit outputs of SE.Enc. Then ε = AdvwrobSE,F.ol(GSE) ≥
0.3 · qEnc∗(qEnc−1)

2128 and T = qEnc · log2 qEnc for qEnc =
√

2128+1.
(ii) In game Gtcr

F,H consider an adversary H that queries its oracle NewKey(x0)
for any x0 ∈ {0, 1}∗ and then makes a guess (1, x1) for any x0 �= x1. Then
ε = AdvtcrF (H) = 2−F.ol and T ≈ 1 in the random oracle model.

(iii) In game Gpkr
SE,F.kl,P consider an adversary P that makes a single call to

Enc and then randomly guesses any key prefix p ∈ {0, 1}F.kl. Then ε =
AdvpkrSE,F.kl(P) = 2−F.kl and T ≈ 1 in the ideal cipher model.

(iv) The term γ upper bounds the probability of an adversary finding a col-
lision when running the birthday attack (in the random oracle model).
The corresponding lower bound (for qRO = 0) is ε ≥ 0.3 · qLR·(qLR−1)

2F.kl
with

T = qLR · log2 qLR and qLR =
√

2F.kl+1.

We wrote a script that combines all of the above to find the lower bound for
the bit-security of SC (with respect to PRIV and AUTH security notions) for
different choices of SE.kl, F.kl and F.ol. This assumes that the above adversaries
are optimal, and computes the lower bound according to Sect. 2. Figure 2 (in
Sect. 1) shows the bit-security lower bounds with respect to privacy, depending
on the choice of symmetric key length SE.kl and authentication tag length F.ol.
Figure 20 shows the choices of F.kl and F.ol that yield the best lower bounds
for the bit-security of PRIV for each SE.kl ∈ {128, 192, 256}. According to our

Signcryption in iMessage 535

results, the security of the iMessage-based signcryption scheme would slightly
improve if the value of F.ol was chosen to be 48 instead of 40. The bit-security
of SC with respect to AUTH is constant because it does not depend on the
values of SE.kl, F.kl, F.ol. The assumption that RSA-OAEP with 1280-bit long
keys has 80 bits of INDCCA-security limits the bit-security that can be achieved
when SE.kl = 256; otherwise, the PRIV bit-security for SE.kl = 256 would allow
a lower bound of 86 bits. But note that using SE.kl ∈ {192, 256} is likely not
possible while maintaining the backward-compatibility of iMessage.

Acknowledgments. The authors were supported in part by NSF grant CNS-1717640
and a gift from Microsoft. Igors Stepanovs’s work was done while at UCSD. We thank
Adina Wollner, Wei Dai and Joseph Jaeger for discussions and insights.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 28

2. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2 5

3. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 6

4. Apple. iOS security: iOS 12.3. Technical whitepaper, May 2019. https://www.
apple.com/business/docs/site/iOS Security Guide.pdf

5. Barker, E.: Recommendation for key management part 1: general (revision 5).
NIST special publication, 800(57), 1–174 (2019)

6. Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multirecipient encryption
schemes: how to save on bandwidth and computation without sacrificing security.
IEEE Trans. Inf. Theory 53(11), 3927–3943 (2007)

7. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 31

8. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

9. Bellare, M., Ng, R., Tackmann, B.: Nonces are noticed: AEAD revisited. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 235–
265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 9

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS (1993)

11. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/3-540-46035-7_6
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25

536 M. Bellare and I. Stepanovs

12. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 21

13. Bellare, M., Stepanovs, I.: Security under message-derived keys: signcryption in
imessage. Cryptology ePrint Archive, Report 2020/224 (2020)

14. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

15. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user secu-
rity, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 18

16. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

17. Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On symmetric encryption
and point obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
52–71. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 4

18. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

19. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the Signal messaging protocol. In: Proceedings of the IEEE
European Symposium on Security and Privacy (EuroS&P) (2017)

20. Common Vulnerabilities and Exposures system. Cve-2016-1788. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2016-1788

21. Damien, G.: Cryptographic key length recommendation. https://www.keylength.
com

22. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS,
vol. 11689, pp. 343–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26834-3 20

23. Farshim, P., Libert, B., Paterson, K.G., Quaglia, E.A.: Robust encryption, Revis-
ited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 352–
368. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 22

24. Farshim, P., Orlandi, C., Roşie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symm. Cryptol. 2017(1), 449–473 (2017)

25. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA signa-
tures. In: ACM CCS (2016)

26. Garman, C., Green, M., Kaptchuk, G., Miers, I., Rushanan, M.: Dancing on the
lip of the volcano: chosen ciphertext attacks on Apple iMessage. USENIX Security
(2016)

27. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 9

https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/978-3-319-78381-9_18
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-642-11799-2_4
https://doi.org/10.1007/978-3-540-45146-4_33
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1788
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1788
https://www.keylength.com
https://www.keylength.com
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-642-36362-7_22
https://doi.org/10.1007/978-3-540-24638-1_9

Signcryption in iMessage 537

28. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 2

29. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2 6

30. Lenstra, A.K.: Key length. Contribution to the handbook of information security
(2004)

31. Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 1

32. OpenIM wiki. iMessage. https://wiki.imfreedom.org/wiki/IMessage
33. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:

Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 1

34. Quarkslab. iMessage privacy, October 2013. https://blog.quarkslab.com/imessage-
privacy.html

35. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS (2002)
36. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)

� cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0052234

https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-319-78381-9_1
https://wiki.imfreedom.org/wiki/IMessage
https://doi.org/10.1007/978-3-319-96884-1_1
https://blog.quarkslab.com/imessage-privacy.html
https://blog.quarkslab.com/imessage-privacy.html
https://doi.org/10.1007/BFb0052234
https://doi.org/10.1007/BFb0052234

	Security Under Message-Derived Keys: Signcryption in iMessage
	1 Introduction
	2 Preliminaries
	3 Signcryption
	4 Encryption Under Message Derived Keys
	4.1 Syntax, Correctness and Security of EMDK
	4.2 iMessage-Based EMDK Scheme

	5 Design and Security of iMessage
	5.1 iMessage-Based Signcryption Scheme IMSG-SC
	5.2 Parameter-Choice Induced Attacks on Privacy of iMessage
	5.3 Authenticity of iMessage
	5.4 Privacy of iMessage
	5.5 Concrete Security of iMessage

	References

