
Side-Channel Masking
with Pseudo-Random Generator
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Abstract. High-order masking countermeasures against side-channel
attacks usually require plenty of randomness during their execution.
For security against t probes, the classical ISW countermeasure requires
O(t2s) random bits, where s is the circuit size. However running
a True Random Number Generator (TRNG) can be costly in prac-
tice and become a bottleneck on embedded devices. In [IKL+13] the
authors introduced the notion of robust pseudo-random number gener-
ator (PRG), which must remain secure even against an adversary who
can probe at most t wires. They showed that when embedding a robust
PRG within a private circuit, the number of random bits can be reduced
to Õ(t4), that is independent of the circuit size s (up to a logarithmic
factor). Using bipartite expander graphs, this can be further reduced to
Õ(t3+ε); however the resulting construction is impractical.

In this paper we describe a construction where the number of random
bits is only Õ(t2) for security against t probes, without expander graphs;
moreover the running time of each pseudo-random generation goes down
from Õ(t4) to Õ(t). Our technique consists in using multiple indepen-
dent PRGs instead of a single one. We show that for ISW circuits, the
robustness property of the PRG is not required anymore, which leads to
simple and efficient constructions. For example, for AES we only need 48
bytes of randomness to get second-order security (t = 2), instead of 2880
in the original Rivain-Prouff countermeasure. As a first feasibility result,
we have implemented our countermeasure on an ARM-based embedded
device with a relatively slow TRNG, and obtained a 50% speed-up com-
pared to Rivain-Prouff.

1 Introduction

High-Order Masking. Side-channel analysis is a class of attacks which exploits
the physical environment of a cryptosystem during its execution, to reveal the
secrets being manipulated. The masking countermeasure is an efficient technique
to protect sensitive data against this threat. To protect a sensitive data x, the
masking technique consists in generating a random variable r and manipulating
the masked variable x′ = x⊕ r and the random r separately, instead of x
directly. In that case, every intermediate variable has the uniform distribution
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and any first-order attack is thwarted. However by combining information from
both leakage points x′ and r, a second-order attack can still be feasible (see for
example [OMHT06]).

A natural countermeasure against high-order attacks is to use a high-
order masking, where each variable x is split into n Boolean shares
x = x1 ⊕ x2 ⊕ · · · ⊕ xn, with n > t for security against t probes. Initially the
shares are generated uniformly at random under this condition; for example
one can generate x1, . . . , xn−1 randomly and let xn = x ⊕ x1 ⊕ · · · ⊕ xn−1. The
shares are then processed separately in masked operations (also called gadgets)
that enable to compute the underlying secret variables in a secure way.

The study of circuits resistant against probing attacks was initiated by Ishai,
Sahai and Wagner in [ISW03]. They showed how to transform any circuit of size
s into a circuit of size O(t2s) secure against any adversary who can probe at
most t wires. The ISW construction is based on secret sharing every variable
x into x = x1 ⊕ x2 ⊕ · · · ⊕ xn as above, with n = 2t + 1 shares to guarantee
security against t probes. Processing a XOR gate is straightforward as the shares
can be xored separately. For processing an AND gate z = xy, one computes all
cross-products xiyj in Eq. (1) below, and then uses a randomized algorithm to
recombine the n2 cross-products into an n-sharing of the output z.

z = xy =
(

n⊕
i=1

xi

)
·
(

n⊕
i=1

yi

)
= ⊕

1≤i,j≤n
xiyj (1)

Every AND gate is then expanded into a gadget of size O(t2) and the resulting
circuit has size O(t2s).

The ISW construction was adapted to AES by Rivain and Prouff in [RP10],
by working in F28 instead of F2. The authors observed that the non-linear part
S(x) = x254 of the AES SBox can be efficiently evaluated with only 4 non-linear
multiplications over F28 , and a few linear squarings. Each of those 4 multiplica-
tions can in turn be evaluated with the previous ISW gadget based on Eq. (1),
by working over F28 instead of F2.

Proving Security. The approach initiated in [ISW03] for proving security
against a t-probing adversary is based on simulation; one must show that the
view of an adversary probing at most t wires can be perfectly simulated without
knowing the secret variables from the original circuit. To this aim, one shows
that any set of t probed variables can be perfectly simulated from the knowledge
of at most n−1 input shares. Since any subset of n−1 input shares is uniformly
and independently distributed, this ensures that the adversary learns nothing
from the t probes, since he could simulate them by himself. It was shown in
[DDF14] that security against t probes implies security against noisy leakage,
under the assumption that every variable leaks independently.

Recently, the notions of (Strong) Non-Interference (NI/SNI) were introduced
by Barthe et al. in [BBD+16], to allow easy composition of gadgets. The authors
showed that the ISW multiplication gadget does satisfy the stronger t-SNI secu-
rity definition. They also showed that with some additional mask refreshing, the
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Rivain-Prouff countermeasure for the full AES can be made secure with n = t+1
shares only, instead of n = 2t + 1 shares in [ISW03].

More recently, a new security notion was introduced by Cassiers and Stan-
daert in [CS18], called PINI, that allows even simpler composition of gadgets.
Namely it suffices to ensure that all gadgets are PINI, and the composite gadget
is then also PINI, which also implies security against t probes. With its power
and simplicity, the PINI definition appears to be the “right” notion for gad-
get security and composition; therefore we will use this definition in this paper,
either by proving the PINI property of a gadget directly, or by first proving the
t-SNI property and then PINI.

Minimizing Randomness Complexity. High-order masking countermea-
sures against side-channel attacks usually require plenty of randomness dur-
ing their execution. The secure AND operation from [ISW03] with t + 1 shares
requires t(t + 1)/2 random bits, and therefore the randomness complexity of the
ISW countermeasure is O(t2s), where s is the circuit size. More concretely, the
evaluation of the AES SBox in Rivain-Prouff [RP10] requires the execution of
4 secure multiplications and 2 mask refreshing; each of those 6 gadgets requires
t(t+1)/2 fresh random bytes. For the 16 SBoxes and the 10 rounds of the AES,
this amounts to generating 6 × 16 × 10 × t(t + 1)/2 = 480t(t + 1) random bytes,
which gives 2880 bytes for second-order security (t = 2).

However running a True Random Number Generator (TRNG) can be costly
in practice and become a major bottleneck on embedded devices such as smart-
cards. Thus, high-order resistant algorithms can rapidly become impractical
when the number of shares grows. The main question is therefore how to mini-
mize the number of TRNG calls while still guaranteeing t-probing security as in
[ISW03].

Several attempts have been made to reduce the randomness complexity of
private circuits. In [BBP+16], the authors showed a variant of the ISW multipli-
cation with roughly t2/4 randoms instead of t2/2 in ISW. In [FPS17], the authors
showed how to re-use randomness within several gadgets, thereby reducing the
total amount of randomness needed, for small values of t (t ≤ 7). However the
two above approaches only reduce the randomness complexity by a constant
factor; that is, their asymptotic complexity is still O(t2s) for circuit size s, as in
the original ISW countermeasure.

A natural idea to reduce the number of calls to the TRNG is to use a
pseudo-random generator (PRG) to generate all randoms in the circuit, while
only a small seed will be generated by the TRNG. Obviously the PRG circuit
should also be secure against probing attacks. We recall below that such app-
roach, initiated by Ishai et al. in [IKL+13] with the concept of robust PRG,
enables to reduce the randomness complexity of t-private circuits from O(t2s)
to O(t4(log s + log t)); with respect to the circuit size s, this is therefore an
exponential improvement. Our main contribution is this paper will be to reduce
this complexity further down to O(t2(log s + log t)), and to describe a concrete
implementation of AES based on this approach. We refer to Table 2 below for the
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number of bytes required to protect AES against t-th order attacks; we see that
for small values of t, we obtain almost two orders of magnitude improvement
compared to previous methods.

Robust PRGs and Private Circuits. In [IKL+13], the authors introduced
the notion of robust pseudo-random number generator (PRG). A robust PRG
must remain secure even if an adversary can probe at most t intermediate vari-
ables in the PRG circuit. The authors showed that such robust PRG can be used
in the ISW countermeasure to minimize the randomness complexity. Namely the
resulting circuit uses a short random seed only, and remains secure against t-th
order attacks.

Recall that the original ISW countermeasure requires O(t2s) bits of random-
ness, where s is the circuit size. Following [IKL+13], we first recall how this can
be reduced to O(t4(log t + log s)), using a trivial construction of robust PRG.
More precisely, the construction is based on r-wise independent PRG. A PRG is
said to be r-wise independent if any subset of at most r output bits of the PRG is
uniformly and independently distributed. The authors show that the ISW coun-
termeasure can be adapted so that any wire in the ISW circuit depends on at
most � = O(t2) bits of randomness; such parameter � is called the locality of the
randomness and will play a crucial role in this paper. Since the adversary can
probe at most t wires, the adversary’s side-channel observation can then depend
on at most t ·� = O(t3) bits of randomness. Therefore, instead of using a TRNG,
it is sufficient to use an r-wise independent PRG with parameter r = t·� = O(t3);
if the r-wise PRG is secure against t probes, as shown in [IKL+13] the resulting
circuit will remain secure against t probes.

It is easy to obtain an r-wise independent PRG by evaluating a degree r − 1
polynomial on distinct inputs in a finite field F; the r coefficients of the polyno-
mials are initially generated at random in F; this is the seed of the PRG. From r
fresh randoms in F, one can then obtain m pseudo-randoms with the r-wise inde-
pendence property, as long as m ≤ |F|. To obtain an r-wise independent PRG
with robustness against t probes, as observed in [IKL+13] a trivial construc-
tion consists in xoring the output of t + 1 PRGs, so that at least one PRG has
not been probed. One can therefore obtain an r-wise independent PRG robust
against t probes by using r · (t + 1) = O(t4) fresh randoms in F as input, and
such PRG can then generate m ≤ |F| pseudo-randoms in F. Since the original
ISW countermeasure requires m = O(t2s) randoms (where s is the circuit size),
using F = F2k one can take k = O(log m) = O(log t+log s). One therefore needs
O(t4(log t + log s)) = Õ(t4) bits of randomness1, instead of O(t2s). The number
of input random bits is then independent of the circuit size s (up to some log-
arithmic factor). In summary, any t-private circuit in which each wire depends
on at most � bits of randomness can be converted into a t-private circuit using
roughly t2� bits of randomness via the use of robust r-wise PRGs. As written
by the authors: “Improving the randomness locality � of private circuits would

1 We use the notation f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) logk λ) for some k ∈ N.
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immediately yield a corresponding improvement [in the number of input random
bits].”.

In [IKL+13], the authors describe an improved construction of robust PRG,
based on unbalanced bipartite expander graphs. Using the Guruswami-Umans-
Vadhan construction of expander graphs [GUV09], they obtain r-wise indepen-
dence and resistance against t = r probes with r1+η bits of true randomness as
input, for any η > 0. In the context of the ISW countermeasure, this enables to
use Õ(t3+ε) random bits as input for any ε > 0, instead Õ(t4).

Our Contribution. Our main contribution is a countermeasure against side-
channel attacks where the number of random bits is only Õ(t2) for security
against t probes, independently of the circuit size (up to a logarithmic fac-
tor), and without using expander graphs. Moreover the running time of pseudo-
random generation goes down from Õ(t4) to Õ(t). We summarize in Table 1
below the asymptotic complexities of existing techniques and our new techniques.
We proceed in two steps.

In the first step, we show how to improve the locality � of private circuits
from � = O(t2) down to � = O(t). As illustrated in the third line of Table 1
below, reducing � from O(t2) to O(t) enables to reduce the r-wise independence
parameter from r = O(t3) down to r = O(t2); the number of input random
bits is then now decreased from Õ(t4) to Õ(t3) with the trivial construction
(and from Õ(t3+ε) to Õ(t2+ε) with expander graphs). Our technique is as fol-
lows. The authors of [IKL+13] obtain � = O(t2) by performing a mask locality
refreshing at the end of each ISW multiplication gadget. Instead we modify the
ISW multiplication by performing a series of internal locality refreshing. For this
we consider successive i×i ISW submatrices and perform a mask refreshing after
the processing of each submatrix; these internal mask refreshing enable to bring
the locality down to � = O(t). We have also performed a formal verification of
our new algorithms, using the CheckMasks tool [Cor18], for both the locality and
the security properties; we provide the source code in [Cor19a]. This first step
is described in Sect. 3.

In the second step, our technique consists in using multiple independent
PRGs instead of a single one. This has two main advantages. The first advantage
is that for ISW circuits, one can show that the robustness property of the PRG is
not required anymore; this implies that we can use a very simple PRG based on
polynomial evaluation as above. The second advantage is that the locality with
respect to each subset of randoms generated by each PRG becomes � = O(1).
Therefore each independent PRG can be r-wise independent with a much smaller
parameter r = O(t) instead of r = O(t3), and therefore requires only r = O(t)
randoms in the finite field (since robustness is not needed). In that case, we need
O(t2) independent PRGs and therefore the size of the input randomness is Õ(t3);
see Line 4 of Table 1. Finally, when using internal locality refreshing as in the first
step above, we only need O(t) independent PRGs, and eventually the number of
input random bits is reduced to Õ(t2), instead of Õ(t3+ε) with expander graphs
in [IKL+13] (see Line 5 of Table 1). We stress that this asymptotic improvement
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over [IKL+13] is obtained without using expander graphs, that is we can use a
simple PRG based on polynomial evaluation in a finite field (see Sect. 4).2

As mentioned previously, we found that expander graphs PRG are impracti-
cal for minimizing the amount of input randomness. However expander graphs
can still be useful for optimizing the time generation of each pseudo-random;
namely the output locality of an expander graph PRG (i.e., the number of
inputs on which each output depends) can be at most polylogarithmic in the
seed length (as opposed to linear for a PRG based on polynomial evaluation);
hence in Table 1 the pseudo-random time generation is always Õ(1). In Sect. 2.3
we give an example of a simple construction based on expander graph that
achieves very fast pseudo-random generation, at the cost of significantly more
input randomness.

Table 1. Asymptotic efficiency of various constructions. The Locality Refreshing (LR)
is performed either at the end of each gadget (Line 2 and Line 4), or sequentially within
each gadget (Line 3 and Line 5). The trivial construction of PRG is based on xoring
t + 1 linear PRGs to get robustness against t probes.

#PRG loc. � r-wise PRG TRNG Time PRG

− − − − O(t2s) −ISW without PRG [ISW03]

1 O(t2) O(t3)
Trivial Õ(t4) Õ(t4)

ISW with Final LR, single PRG [IKL+13]
EG Õ(t3+ε) Õ(1)

ISW with Internal LR, single PRG (Sect. 3) 1 O(t) O(t2)
Trivial Õ(t3) Õ(t3)

EG Õ(t2+ε) Õ(1)

ISW with Final LR, multiple PRGs (Sect. 4) O(t2) O(1) O(t)
Linear Õ(t3) Õ(t)

EG Õ(t3+ε) Õ(1)

ISW with Internal LR, multiple PRGs (Sect. 4) O(t) O(1) O(t)
Linear Õ(t2) Õ(t)

EG Õ(t2+ε) Õ(1)

Finally, we describe in Sect. 5 an application of our countermeasure to AES.
We show that for AES we only need 48 bytes of randomness to get second-order
security (t = 2), instead of 2880 in the original Rivain-Prouff countermeasure. We
see in Table 2 below that for small values of t, our construction reduces the ran-
domness complexity of masking AES by almost 2 orders of magnitude. In Sect. 5,
we also provide the results of a concrete implementation. When implemented on
an ARM-based embedded device with a relatively slow TRNG, we obtain a 50%
speed-up compared to Rivain-Prouff for t = 2. We provide the source code in C
in [Cor19b]. Needless to say, we do not claim that in practice our implementation
would be secure against a t-th order attack. Namely the implementation is only
provided for illustrative purpose, and timing comparisons. Obtaining a secure
implementation would require to (at least) carefully examine the assembly code,
and perform a leakage test with concrete acquisitions from an oscilloscope.

2 An earlier version of [AIS18] claimed to achieve randomness complexity O(t1+ε), but
the claim was later retracted in the final version.
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Table 2. Number of bytes of randomness to get t-th order security for AES.

t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Rivain-Prouff [RP10] 2880 5760 9600 14400 20160 26880

Beläıd et al. [BBP+16] 2560 5120 8000 13120 18240 24000

Faust et al. [FPS17] 1415 2530 6082 6699 20712 20726

This paper 48 108 192 300 432 588

2 Definitions and Previous Work

2.1 Private Circuits

In 2003, Ishai, Sahai and Wagner [ISW03] initiated the study of securing circuits
against an attacker who can probe a fraction of its wires. They showed how to
transform any circuit of size |C| into a larger circuit of size O(|C| · t2) with the
same functionality but secure against a t-probing adversary, based on splitting
each variable x into n = 2t + 1 shares with x = x1 ⊕ x2 ⊕ · · · ⊕ xn.

Definition 1 (Private circuit). A private circuit for f : {0, 1}ni → {0, 1}no

is a triple (I, C,O) where I : {0, 1}ni → {0, 1}n̂i is a randomized input encoder,
C is a randomized boolean circuit with input ω̂ ∈ {0, 1}n̂i , output ŷ ∈ {0, 1}n̂o ,
and randomness ρ ∈ {0, 1}m, and O : {0, 1}n̂o → {0, 1}no is an output decoder,
such that for any input ω ∈ {0, 1}ni we have Pr[O(C(I(ω), ρ)) = f(ω)] = 1,
where the probability is over the randomness of I and ρ.

For I and O we consider the canonical encoder and decoder: I encodes each
input bit ωi by a vector of 2t + 1 random bits with parity ωi, and O takes the
parity of each block of 2t + 1 bits.

Definition 2 (t-privacy). We say that C is a t-private implementation of
f with encoder I and decoder O is t-private (or t-probing secure) if for any
ω, ω′ ∈ {0, 1}ni and any set P of t wires in C, the distributions CP (I(ω), ρ)
and CP (I(ω′), ρ) are identical, where CP denotes the set of t values on the wires
from P .

2.2 PINI and t-SNI Security

The Probe Isolating Non-Interference (PINI) security notion was introduced in
[CS18] to enable easy composition of gadgets. Let n be the number of shares.
We let x� = (xi)i=1,...n be an n-sharing of x if x =

⊕n
i=1 xi. Given a subset

I ⊂ [1, n] of share indices, we denote by x|I := {xi : i ∈ I} the corresponding
subset of shares. A gadget with m inputs and � outputs is a circuit with mn
input shares grouped into m n-sharings denoted (x�,1, . . . x�,m), and similarly
�n output shares denoted (y�,1, . . . y�,�). For a given share index i, we also use
the notation xi,� = {xi,j : 1 ≤ j ≤ m} to denote all shares with index 1 ≤
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i ≤ n; similarly, we also write x|I,� = {xi,� : i ∈ I}. Below we recall the
Probe Isolating Non-Interference (PINI) definition from [CS18]; we actually use
a slightly simplified (and equivalent) definition compared to [CS18]; we explain
the difference in the full version of our paper [CGZ19].

Definition 3 (PINI [CS18] (adapted)). Let G be a gadget with input shares
xi,� and output shares yi,� for 1 ≤ i ≤ n. The gadget G is PINI if for any
t1 ∈ N, any set of t1 intermediate variables and any subset O of output indices,
there exists a subset I ⊂ [1, n] of input indices with |I| ≤ t1 such that the
t1 intermediate variables and the output shares y|O,� can be perfectly simulated
from the input shares x|I∪O,�.

It is straightforward to show that a PINI gadget with n shares is secure
against t = n − 1 probes. We recall the proof of PINI composition (under our
slightly modified definition) in the full version of our paper [CGZ19].

Proposition 1 (PINI security [CS18]). Any PINI gadget with n shares is
(n − 1)-probing secure.

Proposition 2 (PINI composition [CS18]). Any composite gadget made of
PINI composing gadgets is PINI.

Below we recall the SNI security notion introduced in [BBD+15]. We consider
a gadget taking as input two n-tuples (xi)1≤i≤n and (yi)1≤i≤n of shares, and
outputting a single n-tuple (zi)1≤i≤n. As previously, given a subset I ⊂ [1, n],
we denote by x|I all elements xi such that i ∈ I.

Definition 4 (t-SNI security). Let G be a gadget taking as input n shares
(xi)1≤i≤n and n shares (yi)1≤i≤n, and outputting n shares (zi)1≤i≤n. The gadget
G is said to be t-SNI secure if for any set of t1 probed intermediate variables and
any subset O of output indices, such that t1 + |O| ≤ t, there exist two subsets
I and J of input indices which satisfy |I| ≤ t1 and |J | ≤ t1, such that the t1
intermediate variables and the output variables z|O can be perfectly simulated
from x|I and y|J .

Intuitively, the t-SNI security definition provides an “isolation” between the
output shares and the input shares, so that the number of input variables
required for the simulation is upper-bounded by the number of internal probes
t1, and does not depend on the number of output variables that must be simu-
lated, as long as t1 + |O| ≤ t. There is an analogous definition for a gadget with
a single input (xi)1≤i≤n; in that case, the simulation is performed from x|I with
|I| ≤ t1.

It is easy to see that for a single input gadget, (n − 1)-SNI security implies
PINI security. Moreover, for a 2-input (n − 1)-SNI gadget as considered in Defi-
nition 4, as shown in [CS18] we can obtain a PINI gadget by pre-refreshing one of
the inputs with a (n − 1)-SNI mask refreshing algorithm; this is the double-SNI
approach (see Fig. 1). A mask refreshing gadget takes as input the n-sharing of
a value x and outputs a randomized n-sharing of the same value x. Therefore, in
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this paper, our strategy for proving gadget security is either to directly prove the
PINI property, or to first prove the t-SNI property and then apply the “double-
SNI” strategy. Note that for specific circuits such as the AES SBox, one can use
some optimization; for example the full SBox computation can be proven t-SNI
and therefore PINI with 4 multiplications and 2 mask refreshing only (instead
of 4 mask refreshing as in the naive “double-SNI” strategy).

Proposition 3 (Double-SNI [CS18]). Let G be a (n − 1)-SNI gadget taking
as input (ai)1≤i≤n and (bi)1≤i≤n, and outputting (ci)1≤i≤n. Let R be a (n − 1)-
SNI gadget taking as input (xi)1≤i≤n and outputting (yi)1≤i≤n. The composite
gadget G′ taking as input (xi)1≤i≤n and (bi)1≤i≤n, and outputting (ci)1≤i≤n,
with G′((xi), (bi)) = G(R((xi)), (bi)) is PINI.

G

Rxi

bi
ci

G

Fig. 1. The double-SNI approach: when both gadgets G and R are (n − 1)-SNI, the
composite gadget G′ is PINI.

Finally, we recall in AppendixB the SecMult gadget used in [RP10] for pro-
tecting AES against t-th order attacks. It is an extension to F2k of the original
ISW countermeasure [ISW03] described in F2. The SecMult gadget was proven
t-SNI in [BBD+16]. We also recall in the full version of our paper [CGZ19] the
mask refreshing gadget FullRefresh introduced by Duc et al. in [DDF14], based
on SecMult; it was also proven t-SNI in [BBD+16]. We can therefore use the
FullRefresh gadget to apply the above “double-SNI” strategy. Moreover, in this
paper, when we describe a variant of SecMult, we apply the same modifications
to the FullRefresh gadget; this is straightforward, since the FullRefresh gadget
can be seen as a SecMult with one input equal to (1, 0, . . . , 0).

2.3 r-wise Independent PRG: Definition and Construction

We recall the definition of an r-wise independent pseudo-random generator
(PRG). We denote by Un the uniform distribution in {0, 1}n.

Definition 5 (r-wise independent PRG). A function G : {0, 1}n → {0, 1}m

is an r-wise independent pseudo-random generator if any subset of r bits of G(x)
is uniformly and independently distributed when x ← Un.

We can construct an r-wise independent PRG via polynomial evaluation in
a finite field F. Letting a = (a0, . . . , ar−1) ∈ F

r, we consider the polynomial:

ha(x) =
r−1∑
i=0

aix
i
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For any m ≤ |F|, we can define the function G : Fr → F
m by letting:

G(a) = (ha(0), . . . , ha(m − 1))

where we assume that we have some indexing of the field elements in F. The
function G is an r-wise independent PRG because there is a bijection between
the r coefficients of a polynomial of degree at most r − 1 and its evaluation at r
distinct points xi.

For F = F2k , this gives an r-wise independent PRG taking as input rk bits
and outputting at most k ·2k bits. Namely when working over F2k and generating
k-bit pseudo-randoms, we can use each individual bit of the k-bit pseudo-random,
and the PRG function remains r-wise independent. The parameter k determines
the expansion factor of the PRG. For our application to AES in Sect. 5, for
simplicity we will work over F216 , using F28 as a subfield. For a block-cipher using
single bits, one would work in F2k and use each of the k bits of F2k separately.

A Simple 3-wise Independent PRG. We also consider a very simple PRG
that achieves 3-wise independence only. We consider a set of 2d random bits xi

and yi for 1 ≤ i ≤ d. We define the following function G : {0, 1}2d → {0, 1}d2
:

G(x1, . . . , xd, y1, . . . , yd) = (xi ⊕ yj)1≤i,j≤d

The function G can be seen as a PRG based on expander graph; see the full
version of our paper [CGZ19].

Lemma 1. The function G is a 3-wise independent PRG.

Proof. We must show that any 3 variables (xi1 ⊕ yj1), (xi2 ⊕ yj2) and (xi3 ⊕ yj3)
are uniformly and independently distributed.

We distinguish 3 cases. If #{i1, i2, i3} = 3, then the three values are inde-
pendent thanks to randoms xi1 , xi2 and xi3 . If i1 = i2 = i3, then we must have
#{j1, j2, j3} = 3 and the three values are independent thanks to randoms yj1 ,
yj2 and yj3 . Eventually, if exactly two indices among i1, i2 and i3 are equal, say
wlog i1 = i2 �= i3, then we must have j1 �= j2 and the randoms yj1 , yj2 and xi3

ensure the independence of the three values. 	


2.4 Robust PRG: Definition and Trivial Construction

In [IKL+13], the authors introduced the notion of robust pseudo-random number
generator (PRG), which should remain secure even if an adversary can probe
at most k intermediate variables in the PRG circuit. We recall the definition of
(strongly) robust PRG from [IKL+13] below. Under this definition, the output
bits of the PRG must remain r-wise independent outside some set T of bounded
size, conditioned on the values of any set S of at most k probes in the PRG
circuit and the outputs in T .
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In this paper we actually use a slightly weaker definition of strong robustness
compared to [IKL+13], in which we allow the output bits outside the set T to be
only (r − q|S|)-wise independent, instead of r-wise independent, where |S| ≤ k
is the number of probes and q a parameter. In other words, we allow the r-wise
independence of the PRG to degrade gracefully with the number of probes. This
will give slightly more efficient constructions; in particular, the trivial construc-
tion of xoring k + 1 PRGs will only require the r-wise independence of each
PRG, instead of the (r + k)-wise independence in [IKL+13]. Obviously we need
to ensure that a robust PRG under our definition can still be embedded in a
private circuit with the same parameters as in [IKL+13]; see Theorem 1 below.

Definition 6 (Strong robust PRG [IKL+13] (adapted)). A circuit imple-
mentation C of a PRG G : {0, 1}n → {0, 1}m is strong (r, k, q)-robust if given
Y = G(X) where X ← {0, 1}n, for any set S of at most k probes in C, there
is a set T of at most q|S| output bits such that conditioned on any fixing of the
values CS of the wires in S and of YT , the values YT̄ of the output bits not in T
are (r − q|S|)-wise independent and uniformly distributed.

Trivial Construction. As noted in [IKL+13], we can obtain a strong (r, k, 1)-
robust PRG by taking the xor of k+1 PRGs, each with the r-wise independence
property. More precisely, letting g : {0, 1}n → {0, 1}m, we let G : {0, 1}n·(k+1) →
{0, 1}m:

G(x1, . . . , xk+1) = g(x1) ⊕ g(x2) ⊕ · · · ⊕ g(xk+1)

where the xors are performed from left to right.

Lemma 2 (Strong robustness of G). If g is an r-wise independent PRG,
then G is a strong (r, k, 1)-robust PRG.

Proof. Since there are at most k probes and k + 1 PRGs, there exists an index
i� such that g(xi�) has not been probed. In the following, we fix all inputs xi

except xi� .
Let t ≤ k be the number of probes. We consider the set T of indices j ∈ [1,m]

such that the j-th bit of any partial sum g(x1) ⊕ · · · ⊕ g(xi) is probed. We must
have |T | ≤ t. Since g is an r-wise independent PRG, by definition any set of
r output bits of g(x�

i ) is uniformly and independently distributed; this implies
that any set of r − t output bits of g(x�

i ) with indices outside T are uniformly
and independently distributed, even conditioned on the output bits in T and the
other probes. Since we have fixed the inputs of all other PRGs, this also applies
for the output of G. Therefore G is a strong (r, k, 1)-robust PRG. 	


Expander Graph Construction. Using an explicit construction of a bipartite
expander graph [GUV09], the authors of [IKL+13] obtain a construction of a
strong (r, k, q)-robust PRG with r, k = n1−η where n is the number of random
input bits, for any η > 0. In the full version of our paper [CGZ19] we provide
a simplified proof of strong robustness for expander graph based PRG, based
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on the proof of weak robustness from [IKL+13]. We also argue that for mini-
mizing the amount of input randomness, while asymptotically better than the
trivial construction, expander graph based constructions are actually imprac-
tical. Namely in our analysis the expander graph PRG construction based on
[GUV09] becomes better than the trivial construction only for r ≥ 218 and at
least 236 random input bits.

2.5 Application to Private Circuits

We recall below the main theorem from [IKL+13], showing that we can plug a
robust PRG in a private circuit to generate all randomness from a small random
seed, and the resulting construction remains secure against probing attacks.
Firstly an important parameter is the locality � of the randomness in the circuit.

Definition 7 (Randomness locality [IKL+13]). A circuit C is said to make
an �-local use of its randomness if the value of each of its wires is determined by
its (original, unmasked) input and at most � bits of the randomness used in the
circuit.

Theorem 1 (Private circuit with PRG [IKL+13] (adapted)). Suppose
C(ω̂, ρ) is a qk-private implementation of f with encoder I and decoder O,
where C makes an �-local use of its randomness, and uses at most m bits of
randomness. Let G : {0, 1}n → {0, 1}m be a strong (r, k, q)-robust linear PRG
with r ≥ k · max(�, q). Then, the circuit C ′ defined by C ′(ω̂, ρ′) = C(ω̂, G(ρ′))
is a k-private implementation of f with encoder I and decoder O which uses n
random bits.

The proof of Theorem 1 is based on showing that the view of any adversary
who attacks with t probes an implementation in which the randomness is gen-
erated by a PRG, can be simulated given the view of an adversary with at most
qt probes who attacks an implementation with a true source of randomness; see
Fig. 3 for an illustration.

In the full version of our paper [CGZ19] we provide a proof that is essentially
the same as in [IKL+13, Theorem 30], except that we use our slightly weaker
definition of robustness. We recall the main steps of the proof below. We start
with the following Lemma, which is similar to [IKL+13, Lemma 29]. As illus-
trated in Fig. 2, any output of at most r − q|S| bits of the robust PRG can be
replaced by a TRNG and any set S of at most k probes in the PRG can be per-
fectly simulated using a subset T of the output with |T | ≤ q|S|. This means that
probing |S| probes within the PRG is not better for the adversary than probing
q|S| outputs of the TRNG. To simplify notation, we will use G to denote both
the function computed by a robust PRG and its circuit implementation. For a
set S of k wires in G, we denote by GS the value of these wires; similarly, for a
subset T of output bits of G, we denote by GT the values of these output bits.
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PRG

X

Y

k ⇐⇒ SIM TRNG

Y

T

k

Fig. 2. With a strong (r, k, q)-robust PRG, any output of at most r − q|S| bits of the
PRG can be replaced by a TRNG and any set S of at most k probes can be perfectly
simulated using a subset T of the output with |T | ≤ q|S|.

Lemma 3 (Robust PRG). Let G : {0, 1}n → {0, 1}m be a strong (r, k, q)-
robust linear PRG with r ≥ kq. Let S be any set of at most k wires in G. Let
L ⊂ [m] be any subset of r − q|S| bits. There exists a subset T with |T | ≤ q|S|
such that the distribution of Y = GL∪T (X) is uniform in {0, 1}|L∪T | when X ←
{0, 1}n and moreover GS(X) can be efficiently simulated given YT only.

Thanks to Lemma 3 we can now prove Theorem 1. As illustrated in Fig. 3,
we can simulate any t probes within the PRG with a simulator SIM that uses
qt random bits from the TRNG (see Fig. 2); these qt random bits can actually
be queried by probing the original circuit C. This shows that when probing the
PRG in C ′ the adversary does not learn more than by probing the circuit C with
true randomness, as required; see the full version of our paper [CGZ19] for the
details.

PRG

C

t

k − t

� (k − t)

C′
SIM TRNG

C

|T |≤qt

t

k − t

SIM TRNG

C

t

k − t

qt

Fig. 3. Security proof when plugging a PRG into a private circuit.

2.6 Locality Refreshing

As recalled in Theorem 1, the r-wise independence parameter r of the PRG
depends on the randomness locality � of the circuit (see Definition 7). The goal
is therefore to minimize the parameter �. In the original ISW construction, the
parameter � would grow linearly with the circuit size; namely some wires can
depend on almost all the randoms used in the circuit. To keep a small � =
O(t2), the authors of [IKL+13] use a mask refreshing at the end of each ISW
gadget. Such locality refreshing, that we denote by LR, proceeds as described in
Algorithm 1; see Fig. 4 for an illustration.
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Algorithm 1. Locality refreshing LR
Input: shares x1, . . . , xn,
Output: shares y1, . . . , yn such that

⊕n
i=1 yi =

⊕n
i=1 xi

1: yn ← xn

2: for i = 1 to n − 1 do
3: s ← F2k # referred by si

4: yi ← s
5: yn ← yn ⊕ (xi ⊕ s) # referred by y

(i)
n

6: end for
7: return (y1, . . . , yn)

At the end of the algorithm, we have yi = si for all 1 ≤ i ≤ n − 1, and
yn = x⊕ s1 ⊕· · ·⊕ sn−1 for the secret x = x1 ⊕· · ·⊕xn. Therefore one can show
recursively over the circuit that the internal variables of the ISW multiplication
depend on at most � = O(t2) randoms, and this actually holds for any variable
in the circuit. The following Lemma shows that the LR gadget is PINI, so that
it can be included in a circuit without degrading its security.

x1 x2 xn−1 xn

⊕
⊕

⊕

ynyn−1y2y1

⊕
⊕

⊕

s1

s2

sn−1

Fig. 4. Locality refreshing algorithm.

Lemma 4 (PINI security of LR). Let (xi)1≤i≤n be the input shares of the
mask refreshing Algorithm LR. For any t ∈ N, any set of t intermediate variables
and any subset O of output indices, there exists a subset I ⊂ [1, n] of indices such
the t intermediate variables and the output shares y|O can be perfectly simulated
from the input shares x|I∪O , with |I| ≤ t.

Proof. We consider the following simple gadget G: (x1, xn) → (s1, xn⊕(x1⊕s1)),
where s1 is a random value. We start by showing that in Gadget G, we can always
simulate t probes and |O| output variables from the input shares x|I∪O , with
|I| ≤ t.

If t + |O| ≥ 2, we can let I = {1, n} \ O which gives I ∪ O = {1, n} and
all variables can be simulated from the input shares x|I∪O . Moreover we have
|I| = |{1, n}\O| ≤ 2−|O| ≤ t. If t+ |O| = 1, we distinguish two cases. If |O| = 1
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and t = 0, then we can simulate either s1 or xn⊕(x1⊕s1) by generating a random
value. If t = 1 and |O| = 0, we can simulate x1 or xn with I = {1} or I = {n};
the other variables can be simulated by a random value.

We now consider the following gadget Gi for 1 ≤ i ≤ n − 1:

Gi : (x1, . . . , xi, . . . , xn) → (x1, . . . , xi−1, si, xi+1, . . . , xn ⊕ (xi ⊕ si))

which is similar to Gadget G, but with n input shares instead of 2, and n − 2
unmodified input shares. As previously, we can always simulate t probes and |O|
output variables from the input shares x|I∪O , with |I| ≤ t. This implies that
the gadget Gi is PINI. Since the LR gadget is the composition of G1, . . . , Gn−1,
from Proposition 2 the LR gadget is also PINI. 	


In [IKL+13] the LR algorithm is then applied after each ISW gadget. In
particular, for the SecMult gadget recalled in AppendixB, we obtain the following
SecMultFLR gadget. Since the original SecMult is t-SNI, the SecMultFLR gadget
is also t-SNI. The same LR algorithm is applied after the Xor gadget and the
FullRefresh gadgets (see the full version of our paper [CGZ19]).

Algorithm 2. SecMultFLR

Input: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Output: shares di satisfying

⊕n
i=1 di = a · b

1: c1, . . . , cn ← SecMult((ai)1≤i≤n, (bi)1≤i≤n)
2: d1, . . . , dn ← LR(c1, . . . , cn)
3: return (d1, . . . , dn)

Application to Private Circuits. We recall Claim 31 and Corollary 32 from
[IKL+13]; we also recall the proof in the full version of our paper [CGZ19].
We use the notation f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) logk λ) for some k ∈ N.
We assume that the circuit size s(λ) and the number of probes t(λ) are both
polynomial in the security parameter λ.

Lemma 5 (Private circuit with PRG [IKL+13]). Any function f with cir-
cuit size s admits a t-private implementation (I, C,O) with the canonical encoder
I and decoder O, where C uses O(t2s) random bits and makes an � = O(t2)-
local use of its randomness. Consequently, f admits a t-private implementation
(I, C ′, O), where C ′ uses Õ(t4) bits of randomness, and runs in time Õ(t6s),
using the trivial construction. Using the expander graph construction, for any
ε > 0, it uses Õ(t3+ε) random bits and runs in time Õ(t2s).

2.7 Composing �-local Gadgets

In this section we provide an explicit definition of locality for a gadget, so that the
locality property can be composed over a full circuit (as for the PINI definition
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for security against probing). As in [IKL+13], the basic technique is to perform
a locality refresh (such as Algorithm 1) of the output of each gadget. We say
that a set of wires (yi)1≤i≤n is locality refreshed if yi = si for all 1 ≤ i ≤ n − 1,
for randoms si, and yn = y ⊕ s1 ⊕ · · · ⊕ sn−1, where y is the original unmasked
variable. In the definition below of gadget locality, we take into account the
randomness of the (locality refreshed) inputs.

Definition 8 (�-local gadget). Let G be a gadget whose output is locality
refreshed. Consider the circuit C where G is given locality refreshed inputs x�,�.
Let ρ be the randomness used by C, including the randomness from the inputs.
The gadget G is said to make an �-local use of its randomness if C makes an
�-local use of its randomness ρ.

Theorem 2 (Composition of �-local gadgets). Any composite gadget made
of �-local gadgets is �-local.

Proof. We consider m gadgets G1, · · · , Gm that we order as a direct acyclic
graph from output to input in a reverse topological sort order. We assume that
each gadget Gi makes an �-local use of its randomness, with locality refreshed
outputs. We prove by recurrence on n that the composition of �-local gadgets is
�-local.

If n = 1, then there is only one gadget and this is straightforward since
by assumption the gadget is �-local. Now we assume that the composition of
gadgets G1, · · · , Gn is �-local and we prove that the composition of gadgets
G1, · · · , Gn+1 is still �-local. Since the composition of gadgets G1, · · · , Gn is �-
local, and since by definition the inputs of the gadget Gn are locality refreshed
because they correspond to outputs of Gadget Gn+1 which are locality refreshed,
we get that the composition of both parts Gn+1 and G1, · · · , Gn does not increase
the global locality. Namely, the global locality corresponds to the maximum
locality between both parts. Since the composition of gadgets G1, · · · , Gn is �-
local and since Gadget Gn+1 is also �-local, the maximum locality is � and the
composition of gadgets G1, · · · , Gn+1 is �-local. 	


In the above definition, in order to determine the locality � of a gadget,
we must therefore assume that it receives locality refreshed inputs, and the
randomness from this locality refreshed inputs must be taken into account when
computing �. Below we provide an example with the Xor gadget; the Xor gadget
takes as input ai and bi for 1 ≤ i ≤ n, and returns ci = ai ⊕ bi for all 1 ≤ i ≤ n.

Lemma 6 (Locality of Xor). The Xor gadget followed by a locality refresh
makes an �-local use of its randomness, with � = 2(n − 1).

Proof. The gadget takes as input ai and bi for 1 ≤ i ≤ n, and then computes
ci = ai ⊕ bi for all 1 ≤ i ≤ n, and finally dn,j = cn ⊕ (⊕j

i=1ai ⊕ bi ⊕ si) for
1 ≤ j ≤ n − 1, with outputs di = si for 1 ≤ i ≤ n − 1 and dn = dn,n−1. We
must consider ai = s

(a)
i for 1 ≤ i ≤ n − 1 and an = a ⊕ s

(a)
1 ⊕ · · · ⊕ s

(a)
n−1, and

similarly for bi. Therefore cn depends on 2(n − 1) randoms, while dn,j depends
on 2(n − 1) − j randoms, which proves the lemma. 	
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We also compute the concrete locality � of the SecMultFLR algorithm intro-
duced above; in [IKL+13] only the asymptotic bound � = O(n2) was proved.
Such concrete locality computations will be important when implementing the
countermeasure for AES in Sect. 5; namely for a locality �, from Theorem 1 the
r-wise independence parameter of the PRG must be set to r = �t for security
against t probes. We refer to the full version of our paper [CGZ19] for the proof.

Lemma 7 (Locality of SecMultFLR). The SecMult algorithm followed by a
final locality refresh (SecMultFLR) is an �-local gadget with � = n2/4 + 5n/2 − c,
where c = 3 for even n, and c = 11/4 for odd n.

3 Improving the Locality of the Multiplication Gadget

In this section we describe two variants of the SecMult algorithm that improve
the randomness locality of t-private circuits from � = O(t2) to � = O(t). We show
that this decreases the randomness complexity of private circuits from Õ(t4) to
Õ(t3) using the trivial robust PRG construction. For our two new algorithms
SecMultILR and SecMultILR2, we summarize in Table 3 below the number of
required randoms and their locality �. Since these randoms are eventually gener-
ated by a PRG, one should minimize their locality �. We introduce SecMultILR
first because the t-SNI proof of SecMultILR2 is significantly more complex.

Table 3. Summary of the multiplication gadgets, their locality and security. We have
c = 3 for even n, and c = 11/4 for odd n.

SecMult [ISW03] SecMultFLR [IKL+13] SecMultILR SecMultILR2

Number of randoms n(n − 1)/2 n(n − 1)/2 + n − 1 n(n − 1) n(n − 1)/2 + n − 1

Locality � − n2/4 + 5n/2 − c 4n − 5 4n − 6

Security t-SNI t-SNI t-SNI t-SNI

3.1 First Construction with Internal Locality Refreshing
(SecMultILR)

We describe below a variant of the SecMultFLR algorithm with locality � = O(t)
instead of � = O(t2). Our new SecMultILR is described below. The idea is to
process the ISW matrix differently. In the original SecMult the final encoding is
obtained by summing over all rows of the n×n ISW matrix. Instead we compute
the partial sums over the rows of the successive j × j submatrices for 2 ≤ j ≤ n.
At each step we perform a locality refreshing of the j shares of the partial sum.
In particular, the output of the algorithm is locality refreshed, so there is no
need to apply the LR algorithm again.
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Algorithm 3. SecMultILR

Input: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Output: shares ci satisfying

⊕n
i=1 ci = a · b

1: for i = 1 to n do
2: ci ← ai · bi

3: end for
4: for j = 2 to n do
5: for i = 1 to j − 1 do
6: r ← F2k # referred by ri,j

7: ci ← ci ⊕ r # referred by ci,j

8: r ← (ai · bj ⊕ r) ⊕ aj · bi # referred by rj,i

9: cj ← cj ⊕ r # referred by cj,i

10: end for
11: for i = 1 to j − 1 do
12: s ← F2k # referred by si,j

13: cj ← cj ⊕ (ci ⊕ s) # referred by cj,i

14: ci ← s
15: end for
16: end for
17: return (c1, . . . , cn)

We see that lines 6 to 9 are the same as in the original SecMult (see
AppendixB), except that they are processed in a different order, since the loop
starts with j instead of i. This implies that at Step 10 we have processed the
j×j submatrix of the ISW matrix, and therefore the first j shares ci must satisfy
the equality:

c1 ⊕ · · · ⊕ cj = (a1 ⊕ · · · ⊕ aj) · (b1 ⊕ · · · ⊕ bj) (2)

From lines 11 to 15 we then perform a locality refresh of these j shares (ci)
j
i=1

using new randoms sij ; therefore after the locality refresh the new shares ci

satisfy the same equality (2), but now they only depend on the j − 1 randoms
sij for 1 ≤ i ≤ j − 1, and not on the rij ’s. This implies that at the next
step of the loop (for index j + 1), the shares ci will only depend on a linear
number of randoms rij , instead of quadratic in the original SecMult. Thanks to
these internal locality refreshings, the new locality parameter becomes � = O(t)
instead of � = O(t2).

Lemma 8 (Locality of SecMultILR). The SecMultILR algorithm is an �-local
gadget with � = 4n − 5 for n ≥ 3.

Theorem 3 (Completeness of SecMultILR). The SecMultILR algorithm, when
taking a1, . . . , an and b1, . . . , bn as inputs, outputs c1, . . . , cn such that c1 ⊕ · · ·⊕
cn = (a1 ⊕ . . . ⊕ an) · (b1 ⊕ . . . ⊕ bn).

Theorem 4 (t-SNI of SecMultILR). The SecMultILR algorithm is t-SNI for
any 1 ≤ t ≤ n − 1.
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One can therefore use a robust PRG with r-wise independence parameter
r = � · t = O(t2) instead of r = O(t3) in [IKL+13]. With the trivial construction
of xoring t + 1 PRGs, the number of input randoms in the finite field becomes
r · (t + 1) = O(t3) instead of O(t4). This gives the following lemma, which
improves over Lemma 5 from [IKL+13].

Lemma 9 (Efficiency properties of SecMultILR). Any function of circuit
size s admits a t-private implementation (I, C,O) with the canonic encoder I and
decoder O, where C uses Õ(t3) bits of randomness using the trivial construction,
and runs in time Õ(s · t5).

3.2 Second Construction with Less Randomness (SecMultILR2)

We describe in the full version of our paper [CGZ19] a variant called SecMultILR2
of the previous algorithm, that achieves the same locality � as SecMultILR but
with roughly half as many randoms. It uses the same number of randoms as
SecMultFLR from [IKL+13], but with locality O(t) instead of O(t2). Therefore
it is strictly better than both SecMultFLR and SecMultILR; see Table 3.

Lemma 10 (Locality of SecMultILR2). The SecMultILR2 gadget uses �-local
randomness, with � = 4n − 6 for n ≥ 3.

Theorem 5 (Completeness of SecMultILR2). The SecMultILR2 algorithm,
when taking a1, . . . , an and b1, . . . , bn as inputs, outputs c1, . . . , cn such that
c1 ⊕ · · · ⊕ cn = (a1 ⊕ . . . ⊕ an) · (b1 ⊕ . . . ⊕ bn).

Theorem 6 (t-SNI of SecMultILR2). The SecMultILR2 is t-SNI for any 1 ≤
t ≤ n − 1.

3.3 Formal Verification of Locality and Security

We have performed a formal verification of the above locality and security lem-
mas, using the CheckMasks tool [Cor18]. We refer to the full version of this paper
[CGZ19] for the details.

4 Private Circuits with Multiple PRGs Without
Robustness

In the previous section we have described two variants of SecMult where following
the [IKL+13] paradigm a single robust PRG is used to generate all the randoms
from the circuit; by improving the locality parameter from � = O(t2) to � =
O(t), we have decreased the number of input random bits from Õ(t4) to Õ(t3),
that is independent of the circuit size s (up to logarithmic factors). In this
section, we show that by using multiple independent PRGs instead of a single
one, the robustness property of the PRG is not required anymore, and therefore
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much more efficient PRG constructions can be used; this allows to decrease the
randomness complexity of private circuits down to Õ(t2).

We start with a simple observation. In the security proof of ISW, if the
attacker probes a given random rij in some SecMult gadget, then it is easy to
see that we could give away to the attacker not only the probed rij , but actually
all randoms r

(k)
ij for the same i, j in all other SecMult gadgets k; namely in the

ISW security proof with global index I, one would have i ∈ I, and therefore each
r
(k)
ij would then be simulated by letting r

(k)
ij ← F as in the original circuit, so it

could be given to the attacker without requiring the knowledge of more input
shares.

Now assume that for every pair (i, j) we use an independent PRG to generate
the randoms r

(k)
ij for all gadgets k. In that case the attacker has no advantage

in probing the intermediate variables of the PRG circuit, since in our extended
probing model he could get all corresponding randoms r

(k)
ij with a single probe

anyway. Therefore when each rij has a dedicated PRG (see Fig. 5 for an illus-
tration), the robustness property of the PRG is not required anymore, and we
can use a simple PRG with r-wise independence only, as for example the PRG
based on polynomial evaluation from Sect. 2.3.

r
(1)
ij r

(2)
ij r

(s)
ij

Gij

ρ′
ij

Fig. 5. In Construction 1, each rij has its dedicated PRG across all gadgets, from a
random seed ρ′

ij .

Moreover, if a mask locality refreshing is performed at the end of each multi-
plication gadget, it is easy to see that any intermediate variable of the circuit can
depend on at most a single random r

(k)
ij for a fixed i, j, and therefore the locality

with respect to each randomness subset ρij = {r
(k)
ij : 1 ≤ k ≤ s} is � = 1; this

is because the locality refresh at the end of each multiplication gadget cancels
the dependence on the internal r

(k)
ij . In that case, with t probes on intermediate

variables the adversary can get information on at most t randoms within such
set. Therefore these randoms can be generated by a PRG with r-wise indepen-
dence parameter r = t. Since the robustness property is not required, we can
use a PRG based on polynomial evaluation that requires only r = t coefficients
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in a finite field, and therefore Õ(t) random bits per PRG. Since there are O(t2)
randoms rij , we need O(t2) independent PRGs to generate all of them, and the
total number of input random bits is therefore Õ(t3), as in our single PRG con-
structions from Sect. 3. Note that the time to generate a pseudo-random is now
Õ(t), instead of Õ(t3) in Sect. 3.

We can improve the above randomness complexity as follows. Firstly, we
observe as previously that in the security proof of ISW, whenever the attacker
probes a random rij , we can actually give to the attacker the complete row of
rij ’s, that is for a given i, all rij with i < j ≤ n; and more generally, for a
fixed i, all randoms r

(k)
ij with i < j ≤ n in all SecMult gadgets k. Therefore as

previously we can use for each 1 ≤ i < n a dedicated PRG to generate all r
(k)
ij for

all i < j ≤ n in all gadgets k, without needing the robustness property. Since we
generate the complete row of rij ’s (see Fig. 8 for an illustration), we only need
O(t) independent PRGs, instead of O(t2).

Moreover, if we perform internal mask refreshing as in the SecMultILR
algorithm from Sect. 3 (instead of only at the end of the SecMult gadget),
then no intermediate variable can depend on two distinct rij ’s in the same
row i. This implies that the locality with respect to the randomness subset
ρi = {r

(k)
ij : i < j ≤ n, 1 ≤ k ≤ s} is still equal to 1. Therefore a PRG can be

used to generate all r
(k)
ij from a given row i in all gadgets k, still with r-wise inde-

pendence parameter r = t. Since we need only O(t) independent PRGs instead
of O(t2) previously, the number of input random bits goes down to Õ(t2), while
the time to generate a pseudo-random is still Õ(t). Asymptotically this is the
most efficient technique (see Table 1), and also the most efficient in practice (see
Sect. 5 for our implementation results on AES).

4.1 Security with Multiple PRGs

The following lemma shows that the PRG robustness is not needed when the
PRG generates only a subset ρ of the randomness, and the adversary can get
ρ with a single probe; the lemma is analogous to Theorem1 for a single robust
PRG. We first consider a circuit C where we split the randomness in two parts
ρ and ρ̄, where only the randomness ρ will be replaced by pseudo-randoms. We
consider an extended security model in which the attacker can get ρ with a single
probe. Intuitively probing the PRG that generates ρ does not help the attacker,
since in the extended security model he can get ρ with a single probe.

Lemma 11 (Security from r-wise independent PRG). Suppose C is a t-
private implementation of f with encoder I and decoder O, where C(ω̂, ρ, ρ̄) uses
m random bits ρ and makes an �-local use of its randomness ρ, and the adversary
can obtain ρ with a single probe. Let G : {0, 1}nr → {0, 1}m be a linear �t-wise
independent PRG. Then, the circuit C ′ defined by C ′(ω̂, ρ′, ρ̄) = C(ω̂, G(ρ′), ρ̄)
is a t-private implementation of f with encoder I and decoder O which uses nr

random bits ρ′ and random ρ̄.
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Proof. We show that the view of an adversary A′ who attacks C ′(ω̂, ρ′, ρ̄) by
probing a set S of t′ ≤ t wires in G and a set of P of t − t′ wires in C is
independent of the secret input ω. Since C is t-private, it suffices to show that
the view of A′ can be simulated given the view of an adversary A who probes at
most t wires in C(ω̂, ρ, ρ̄), and who can obtain the randomness ρ with a single
probe.

Since C makes an �-local use of its randomness ρ, the t − t′ probes from
the set P in the circuit C can depend on at most �(t − t′) ≤ �t bits of ρ.
More precisely, for any ω̂ and ρ̄, let Qω̂,ρ̄(ρ) = CP (ω̂, ρ, ρ̄) be the value of these
probes; the function Qω̂,ρ̄ depends on at most �t bits of ρ. Let T ⊂ [1,m] be the
corresponding subset of bits of ρ on which Qω̂,ρ̄ depends, with |T | ≤ �t; we can
write Qω̂,ρ̄(ρ) = Q′(ρT ), where ρT is the corresponding subset of ρ.

We now proceed as follows. Instead of generating the PRG seed X ← {0, 1}nr

and then the PRG output GT (X) corresponding to T , we can first generate
the PRG output ρT ← {0, 1}|T | and then sample the PRG seed; this is pos-
sible because G is a linear �t-wise independent PRG, and moreover |T | ≤ �t.
More precisely, since G is a linear �t-wise PRG, there exists a randomized sim-
ulator Sim that can perfectly sample the PRG input and therefore the probes
within the PRG, given at most �t bits of PRG output; formally this means
(GS(X), GT (X)) ≡ (Sim(ρT ), ρT ) where X ← {0, 1}nr and ρ ← {0, 1}m. We
obtain:

(GS(X), Q′(GT (X))) ≡ (Sim(ρT ), Q′(ρT ))

We now distinguish two cases. If the number of probes within the PRG is
such that t′ ≥ 1, we let Sim′(ρT , v) = (Sim(ρT ), v) and we obtain:

(GS(X), Q′(GT (X))) ≡ (Sim(ρT ), Q′(ρT )) ≡ Sim′(ρT , Q′(ρT ))

which gives (GS(X), QI(ω),ρ̄(G(X))) ≡ Sim′(ρT , QI(ω),ρ̄(ρ)). In this case, the
distribution to which Sim’ is applied captures the view of an adversary A who
corrupts a set T ∪ P of wires in C, where |P | ≤ t − t′ and by definition ρT can
be obtained with a single probe, which gives a total of at most t − t′ + 1 ≤ t
probes in C. Since by assumption C is t-private, this view is independent of the
secret ω. Since the distribution on the left hand side captures the view of A′, it
follows that the view of A′ is also independent of ω, as required.

In the second case, G is not probed by the adversary A′. Since G is �t-wise
independent and the view of A′ depends on at most �t bits of ρ, the view of A′

is the same as the view of an adversary A probing the same wires in C. More
precisely, we have from GT (X) ≡ ρT :

QI(ω),ρ̄(G(X)) ≡ QI(ω),ρ̄(ρ)

As previously, the right hand side corresponds to the view of an adversary A
who corrupts a set P of at most t wires in C and the distribution of the left
hand side captures the view of A′; therefore the view of A′ is independent of ω
also in the second case. 	
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We now consider the main theorem where the circuit randomness ρ can be
split into (ρi)k

i=1, and when considering each ρi separately, the circuit C makes
an �-local use of ρi; moreover we assume that C remains t-private even if the
adversary can obtain each ρi with a single probe. The proof follows from a
recursive application of Lemma 11.

Theorem 7 (Security with multiple PRGs). Suppose C is a t-private
implementation of f with encoder I and decoder O, where the circuit
C(ω̂, ρ1, . . . , ρk) uses for each 1 ≤ i ≤ k, m random bits ρi, and makes an
�-local use of ρi, and the adversary can obtain each ρi with a single probe. Let
G : {0, 1}nr → {0, 1}m be a linear �t-wise independent PRG. Then, the circuit
C ′ defined by C ′(ω̂, ρ′

1, . . . , ρ
′
k) = C(ω̂, G(ρ′

1), . . . , G(ρ′
k)) is a t-private imple-

mentation of f with encoder I and decoder O which uses k · nr random bits.

4.2 Extended Security Model: PINI-R

In Theorem 7 above we have considered an extended model of security, where the
adversary can get any randomness subset ρi in the circuit with a single probe.
Therefore, we define a variant of the PINI notion from [CS18], called PINI-R, in
which the adversary can also get access to a subset of the randoms in a gadget,
using a single probe.

Definition 9 (PINI-R). Let G be a gadget with input shares xi,� and output
shares yi,�. Let (ρi)1≤i≤n be a partition of the randoms used by G. The gadget
G is PINI-R if for any t1 ∈ N, any set of t1 intermediate variables, any subset
O of output indices and any subset R ⊂ [1, n], there exists a subset I ⊂ [1, n]
of input indices with |I| ≤ t1 such that the t1 intermediate variables, the output
shares y|O∪R,� and the randoms ρi for i ∈ R can be perfectly simulated from the
input shares x|I∪O∪R,�.

The following proposition is analogous to Proposition 1. It shows that if a
gadget with n = t+1 shares is PINI-R, then a t-probing adversary learns nothing
about the underlying secrets, even in an extended model of security where the
adversary can get each randomness subset ρi with a single probe. We provide
the proof in the full version of our paper [CGZ19].

Proposition 4 (PINI-R security). Let G be a gadget with input shares xi,�

and output shares yi,� for 1 ≤ i ≤ n. Let (ρi)1≤i≤n be a partition of the random-
ness used by G. If G is PINI-R, then G is (n − 1)-probing secure in an extended
model of security where the adversary can get each ρi with a single probe.

In the composition theorem below, the attacker can get the union of all
corresponding subsets of randoms from all gadgets, still with a single probe; see
the full version of our paper [CGZ19] for the proof.

Theorem 8 (Composition of PINI-R). Any composite gadget made of
PINI-R composing gadgets Gi for i ∈ K is PINI-R, where for the composite
gadget we take the randomness partition ρi =

⋃
k∈K ρ

(k)
i for 1 ≤ i ≤ n.
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It is straightforward to prove the PINI-R property of the locality refresh-
ing algorithm from Sect. 2.6, with the randomness partition ρi = {si} for
1 ≤ i ≤ n−1. In the full version of our paper [CGZ19] we consider an analogous
extension of the t-SNI property, called t-SNI-R, which we prove for the SecMult
and SecMultILR constructions, and the corresponding FullRefresh. More precisely,
we show that those gadgets remain secure in an extended model of security where
the adversary can get all randoms rij (and all randoms sij for SecMultILR) for a
given i with a single probe. Moreover the “double-SNI” approach still works for
the t-SNI-R and PINI-R notions. This implies that we can base our construction
on t-SNI-R and PINI-R gadgets, and the resulting construction will be PINI-R.
Note that the t-SNI security proof of SecMultILR2 is already complex, so we will
not try to prove the t-SNI-R property of SecMultILR2; therefore we will use the
multiple PRGs approach for SecMultFLR and SecMultILR only.

4.3 Constant Locality with Respect to a Randomness Subset

In this section we show that we can achieve constant locality, even � = 1, when we
consider different subsets of randomness. Therefore we first provide a definition
of gadget locality with respect to a subset of the gadget randomness only (and
excluding the randomness of the inputs, as opposed to Sect. 2.7), and then a
locality composition theorem as in Sect. 2.7.

Definition 10 (�-local gadget with randomness subset). Let G be a gadget
and let ρ be a subset of the randomness used by G. The gadget G is said to make
an �-local use of its randomness ρ if any intermediate variable of G depends on
at most � bits of ρ.

For example, the SecMult gadget makes a 1-local use of its randomness ρ =
{rij} for any 1 ≤ i < j ≤ n; this is obvious, since ρ contains a single random
bit. We can now state our composition theorem for locality with respect to a
randomness subset. It shows that the gadget locality � is kept the same in the
composite gadget, while the locality of the randoms used for output refreshing
is equal to 3 with respect to each subset {s

(k)
i , k ∈ K} for 1 ≤ i ≤ n − 1. We

refer to the full version of our paper [CGZ19] for the proof.

Theorem 9 (Locality composition with randomness subset). Let Gk for
k ∈ K be a set of fan-in 2 gadgets which all make an �-local use of a subset
ρk of their randomness. Consider the gadgets G′

k for k ∈ K where the output
of Gk is locality refreshed with randoms s

(k)
i for 1 ≤ i ≤ n − 1. Any composite

gadget made of G′
k makes an �-local use of the randomness

⋃
k∈K ρk, and for

any 1 ≤ i ≤ n − 1, it makes a 3-local use of the randoms in {s
(k)
i : k ∈ K}.

For example if we compose a number of SecMultFLR gadgets, in the composite
gadget the locality with respect to the randoms r

(k)
ij for fixed i, j is � = 1, while

the locality with respect to the randoms s
(k)
i for fixed i from the output locality

refreshing is � = 3. We stress that in the final implementation all the randomness
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(including the randomness from the locality refreshing) will be generated by the
PRGs. Finally, we show in the full version of our paper [CGZ19] that the latter
locality can be brought down to 1; for this it suffices to additionally perform
a locality refreshing of the two inputs of each gadget, with independent sets of
PRGs for the two inputs.

4.4 First Construction: Multiple PRGs with SecMultFLR

Our first construction is described in Fig. 6. It consists in using the SecMult
algorithm and perform a locality refresh after each gadget; this includes the
SecMult gadget, the Xor gadget and the FullRefresh gadget. For every 1 ≤ i <

j ≤ n, an independent PRG generates all randoms r
(k)
ij in the SecMult and

FullRefresh gadgets. Similarly, for each 1 ≤ i ≤ n − 1, an independent PRG
generates all randoms s

(k)
i in all locality refreshing gadgets.

Construction 1: multiple PRGs with SecMultFLR

1. Given a circuit C, generate a private circuit (I, C′, O) with
n = t + 1 shares as follows:
- replace every AND gate by the “double-SNI” gadget with
SecMult and FullRefresh. Perform a locality refreshing LR after
SecMult and FullRefresh.
- replace every XOR gate by the Xor gadget. Perform a locality
refreshing LR after each Xor gadget.

2. Initialize n(n − 1)/2 PRG functions Gij for 1 ≤ i < j ≤ n, each
with r-wise independence parameter r = t.

3. Generate all randoms r
(k)
ij in SecMult or FullRefresh gadget k with

the PRG function Gij .
4. Initialize n − 1 PRG functions G′

i for 1 ≤ i < n, each with r-wise
independence parameter r = 3t.

5. Generate all randoms s
(k)
i in the LR algorithm from gadget k

using the PRG function G′
i.

Fig. 6. Private circuit construction with multiple PRGs with SecMultFLR.

From the locality composition theorem (Theorem 9), in the global construc-
tion the locality with respect to the randoms {r

(k)
ij : k ∈ K} is �r = 1, while

the locality with respect to the randoms {s
(k)
i : k ∈ K} is �s = 3. From

the PINI-R property of the gadgets and Theorem8, the full circuit is PINI-
R. Therefore, from Proposition 4, it is secure in an extended model of security
in which the adversary can get the previous randomness subsets with a sin-
gle probe. From Lemma 11, the PRGs for the rij ’s must be t-wise independent,
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while the PRGs for the si’s must be 3t-wise independent. Since one requires
n(n− 1)/2 independent PRGs for the rij ’s, and n− 1 independent PRGs for the
si’s, the number of input randoms in the finite field is therefore, with n = t + 1,
nr = n(n − 1) / 2 · t + (n − 1) · 3t = O(t3). Thus we have shown the following
lemma. Compared to Lemma 9 for a single robust PRG with our SecMultILR
algorithm, the randomness complexity is the same but the total running time
goes down from Õ(st5) to Õ(st3).

Lemma 12 (multiple PRGs with SecMultFLR). Any function of circuit size
s admits a t-private implementation (I, C,O) with the canonic encoder I and
decoder O, where C uses O(t3 · log(st)) bits of randomness, and runs in time
O(s · t3 · log2(st)).

4.5 Second Construction: Multiple PRGs with SecMultILR

Our second construction is described in Fig. 7, based on the SecMultILR algo-
rithm. As illustrated in Fig. 8, a dedicated PRG generates the rij ’s for a given
row i, in all gadgets. We first show that the SecMultILR algorithm makes a 1-
local use of each row of randoms rij and a 2-local use of each row of randoms
sij ; see the full version of our paper [CGZ19] for the proof.

Lemma 13 (Locality of SecMultILR). The SecMultILR algorithm makes a 1-
local use of each randomness set ρi = {rij : i < j ≤ n} and a 2-local use of each
randomness set ρ′

i = {sij : i < j ≤ n}.
From Lemma 13 and Theorem 9, in the global construction the locality with

respect to the subsets of randoms ρi = {r
(k)
ij : i < j ≤ n, k ∈ K} is equal

to 1, the locality with respect to the subsets of randoms ρ′
i = {s

(k)
ij : i < j ≤

n, k ∈ K} is equal to 2, and the locality with respect to the subsets of randoms
ρ′′

i = {s
(k)
i : k ∈ K} is still equal to 3, for each 1 ≤ i < n. As previously,

from the PINI-R property of the gadgets and Proposition 8, the full circuit is
PINI-R. Therefore, it is secure in an extended model of security in which the
adversary can get the previous randomness subsets with a single probe. From
Lemma 11, the corresponding PRGs must therefore have r-wise independence
parameter r = t, r = 2t and r = 3t respectively. The main difference is that
now there are only n − 1 independent PRGs to generate the r

(k)
ij (instead of

n(n − 1)/2 previously), because a given PRG generates those randoms for all
indices j. The total number of input randoms in the finite field is therefore
nr = (n − 1) · t + (n − 1) · 2t + (n − 1) · 3t = O(t2). Thus we have shown the
following lemma. Asymptotically this is the most efficient technique (see Table 1
for a comparison), and also the most efficient in practice (see the next section
for our implementation results on AES).
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Construction 2: multiple PRGs with SecMultILR

1. Given a circuit C, generate a private circuit (I, C′, O) with
n = t + 1 shares as follows:
- replace every AND gate by the “double-SNI” gadget with
SecMultILR and the corresponding FullRefreshILR. Perform a lo-
cality refreshing LR after each SecMultILR and FullRefreshILR.
- replace every XOR gate by the Xor gadget. Perform a locality
refreshing LR after each Xor gadget.

2. Initialize n − 1 PRG functions Gi for 1 ≤ i < n, each with r-wise
independence parameter r = t.

3. Generate all randoms r
(k)
ij in SecMultILR or FullRefreshILR gadget

k with the PRG function Gi.
4. Initialize n − 1 PRG functions G′

i for 1 ≤ i < n, each with r-wise
independence parameter r = 2t.

5. Generate all randoms s
(k)
ij in SecMultILR or FullRefreshILR gadget

k using the PRG function G′
i.

6. Initialize n−1 PRG functions G′′
i for 1 ≤ i < n, each with r-wise

independence parameter r = 3t.
7. Generate all randoms s

(k)
i in the LR algorithm using the PRG

function G′′
i .

Fig. 7. Private circuit construction with multiple PRGs with SecMultILR.

Lemma 14 (multiple PRGs with SecMultILR). Any function of circuit size
s admits a t-private implementation (I, C,O) with the canonic encoder I and
decoder O, where C uses O(t2 · log(st)) bits of randomness, and runs in time
O(s · t3 · log2(st)).

5 Application to AES

In this section we describe a concrete implementation of our techniques for AES;
the goal is to minimize the total amount of randomness used to protect AES
against t-th order attack. We provide the source code in C in [Cor19b].

5.1 The AES Circuit and the Rivain-Prouff Countermeasure

To implement the AES SBox, we need to perform 4 multiplications, and 2 mask
refreshing per byte; see [RP10] for the sequence of operations. For the mask
refreshing, we use the multiplication based refreshing FullRefresh recalled in the
full version of our paper [CGZ19]. We refer to [BBD+16] for the proof that
the x254 gadget is (n − 1)-SNI; this implies that the gadget is PINI. Thus, this
amounts to performing 6 multiplications per byte. Since there are 16 bytes to
process per round, the number of required multiplications is 6 × 16 = 96 per
round. Thus for the 10 rounds of the AES, one will perform 96 × 10 = 960
multiplications.
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Fig. 8. In Construction 2, a dedicated PRG generates the rij ’s for a given row i in all
gadgets, from a random seed ρ′

i.

5.2 Implementation with Single Robust PRG

We first consider an implementation with a single robust PRG as in Sect. 3,
with 3 possible algorithms: the original [IKL+13] construction with a locality
refresh after each multiplication gadget (SecMultFLR), and our new SecMultILR
and SecMultILR2 algorithms. For those three algorithms, we provide in Table 4
the total number of pseudo-randoms to be generated for the AES circuit, the
corresponding locality parameter �, and the number of 8-bit randoms from the
TRNG to generate the seed of the PRG, as a function of the number of shares
n, for security against t probes with n = t + 1.

Table 4. For AES, total number of pseudo-randoms and number of 8-bit TRNG calls,
for a single robust PRG, as a function of the number of shares n. We have c = 3 for
even n, and c = 11/4 for odd n. We assume that n ≤ 12.

SecMult [RP10] SecMultFLR [IKL+13] SecMultILR SecMultILR2

Mult 480n(n − 1) (480n + 960)(n − 1) 960n(n − 1) (480n + 960)(n − 1)

Xor − 160(n − 1)

Pseudo-rand − (480n + 1120)(n − 1) (960n + 160)(n − 1) (480n + 1120)(n − 1)

Locality � − max(4(n − 1),

n2/4 + 5n/2 − c)

4(n − 1) 4(n − 1)

True-rand 480n(n − 1) 2n(n−1)·max(4(n−1),

n2/4 + 5n/2 − c)

8n(n − 1)2 8n(n − 1)2

We now explain the content of Table 4. For each of the 3 algorithms, the
number of pseudo-randoms is the number of randoms from Table 3 in Sect. 3,
multiplied by 960, since one must perform 960 multiplications. Furthermore, the
MixColumns operation requires 48 xors. Normally we should perform a locality
refresh after each xor, but in the particular case of the AES, we can do the
locality refresh only after the 3 xors of the MixColumns for each byte. In that
case, the locality parameter with respect to MixColumns is then 4(n−1), instead
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of 2(n − 1) for a single xor. The locality of the global circuit is then the max
of locality parameter � from Table 3 and 4(n − 1). Equivalently, we can perform
such locality refresh as input of the SubByte operation, which enables to keep
the MixColumns unmodified. For the MixColumns, one therefore needs to perform
16 locality refresh per round, which gives a total of 160 locality refresh for the
10 rounds of the AES, which requires 160(n − 1) pseudo-randoms. Finally, we
assume that the round keys are already masked without PRG, and so we don’t
need to perform a locality refreshing after the AddRoundKey.

Let m the total number of pseudo-randoms over F28 that must be generated.
To determine the finite field F = F28k used by the PRG, we must ensure m ≤
k · |F28k | = k · 28k. Namely a single polynomial evaluation over F28k generates k
bytes of pseudo-random. One must then use a PRG with r-wise independence
parameter r = � · (n−1). Using the trivial construction with the xor of n = t+1
polynomial evaluations (to provide resistance against t probes), the total number
of fresh random values over F28 is then nr = k · n · r = k · n(n − 1) · �.

For the three algorithms one can work over F216 for n ≤ 12; therefore for
simplicity we take k = 2 in Table 4. For SecMultILR and SecMultILR2, the total
number of TRNG calls over F28 is then nr = k ·n(n−1) ·4(n−1) = 4k ·n(n−1)2

with k = 2 for n ≤ 12, and k = 3 for 13 ≤ n ≤ 229, instead of 480n(n − 1)
for the original Rivain-Prouff countermeasure; therefore one needs fewer TRNG
calls than Rivain-Prouff for n ≤ 40. We summarize in Table 6 below the number
of input random bytes required for AES for small values of n, compared with
the original Rivain-Prouff countermeasure.

5.3 Implementation with Multiple PRGs

We now consider an implementation of AES with multiple PRGs, as in Sect. 4.
We consider the SecMultFLR algorithm corresponding to Construction 1, and
the SecMultILR algorithm corresponding to Construction 2. As previously, we
provide in Table 5 the total number of pseudo-randoms to be generated for the
AES circuit, and the number of 8-bit randoms from the TRNG.

As previously, we only perform a locality refresh after the 3 xors of the Mix-
Columns (equivalently, before each SubByte). Moreover we don’t perform the LR
algorithm after SecMultILR as in Construction 2, since the output of SecMultILR
is already locality refreshed. Therefore the number of pseudo-randoms is the
same as in the previous section. We use two classes of independent PRGs. The
first class of independent PRGs is used to generate the rij ’s from SecMultFLR
and SecMultILR algorithms, with locality �r = 1; therefore the PRGs must be
�rt-wise independent. We need n(n − 1)/2 such PRGs for SecMultFLR, and only
n − 1 for SecMultILR. Working over F216 , each PRG requires 2�rt = 2(n − 1)
random bytes. Similarly, the second class of PRGs is used to generate randoms
si from the locality refresh, and also the randoms sij for the internal locality
refresh in SecMultILR, with locality �s = 5. Namely we only perform the locality
refresh after the 3 xors of the MixColumns, and therefore the locality is �s = 5
(instead of �s = 3). Note that for SecMultILR we can use the same class of PRGs
to generate the randoms sij ’s from SecMultILR and the randoms si’s from LR,
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Table 5. For AES, total number of Pseudo-random and True-random values to gener-
ate with the multiple PRGs approach, as a function of the number of shares n. Values
for the Rivain-Prouff countermeasure are also recalled for comparison.

SecMult [RP10] SecMultFLR SecMultILR

Pseudo-rand − (480n + 1120)(n − 1) (960n + 160)(n − 1)

Locality �r of rij − 1 1

Number of PRGs (rij) − n(n − 1)/2 n − 1

True-rand per PRG (rij) − 2(n − 1) 2(n − 1)

Locality �s of sij and si − 5 5

Number of PRGs (si and sij) − n − 1 n − 1

True-rand per PRG (sij and si) − 10(n − 1) 10(n − 1)

Total True-Rand 480n(n − 1) (n + 10)(n − 1)2 12(n − 1)2

instead of two classes in Construction 2 from Sect. 4; namely it is easy to see that
the locality with respect to the corresponding randomness subsets is still equal
to 5. Therefore the PRGs must be �st-wise independent; working over F216 , each
PRG requires 10(n − 1) bytes of TRNG.

In summary, for SecMultFLR, the total number of 8-bit TRNG calls is there-
fore nr = n(n − 1)/2 · 2(n − 1) + (n − 1) · 10(n − 1) = (n + 10)(n − 1)2 and for
SecMultILR, we get nr = (n − 1) · 2(n − 1) + (n − 1) · 10(n − 1) = 12(n − 1)2

instead of 480n(n − 1) in the original Rivain-Prouff countermeasure.

A Simple 3-wise Independent PRG. Finally, we consider the simple 3-wise
independent PRG from Sect. 2.3:

G(x1, . . . , xd, y1, . . . , yd) = (xi ⊕ yj)1≤i,j≤d

Since the PRG function G expands from 2d to d2 bits (or bytes), the number of
input randoms becomes O(

√
s) instead of O(s), where s is the circuit size. Note

that this is worse than the polynomial-based PRG used previously that requires
only O(log s) randoms, but the above function G is very fast since generating a
pseudo-random only takes a single xor.

Since the above PRG only achieves 3-wise independence, we want to minimize
the locality. Therefore, we perform a locality refresh of the 2 inputs of each gadget
(with two distinct sets of independent PRGs), and we perform a locality refresh of
the outputs of each gadget (SecMult, Xor and FullRefresh), using another distinct
set of independent PRGs. As shown in the full version of our paper [CGZ19], the
locality with respect to each subset of randoms is then always � = 1; therefore,
we can use a PRG with r-wise independence r = t = n − 1. This implies that
this specific PRG only works for n = 3 and n = 4 shares. We argue in the full
version of our paper [CGZ19] that the total number of input bytes for AES is
642 for n = 3 and 1056 for n = 4, instead of 2880 and 5760 respectively for the
original Rivain-Prouff countermeasure.
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Table 6. For AES, total number of TRNG bytes to generate for single and multiple
PRGs methods, depending of the number of shares n. We also provide the number of
TRNG bytes for the original Rivain-Prouff countermeasure.

Single robust PRG Multiple PRGs

[RP10] SecMultFLR SecMultILR SecMultILR2 SecMultFLR SecMultILR 3-wise SecMultFLR

n = 3 2880 96 96 96 52 48 642

n = 4 5760 288 288 288 126 108 1056

n = 5 9600 640 640 640 240 192 −
n = 6 14400 1260 1200 1200 400 300 −
n = 7 20160 2268 2016 2016 612 432 −
n = 8 26880 3696 3136 3136 882 588 −
n = 9 34560 5760 4608 4608 1216 768 −
n = 10 43200 8460 6480 6480 1620 972 −

Summary. We summarize in Table 6 the number of input random bytes required
for AES for all previous methods, as a function of the number of shares n, in
order to achieve t-th order security, with t = n−1. We see that the most efficient
method (in terms of minimizing the number of TRNG calls) is the SecMultILR
algorithm with multiple PRGs. Namely for small values of t we obtain almost
two orders of magnitude improvement compared to the original Rivain-Prouff
countermeasure. We provide in AppendixA the results of an implementation of
our countermeasure on an ARM-based embedded device. We provide the source
code in [Cor19b].

A Concrete Implementation

We have implemented our constructions for AES in C, on a 44 MHz ARM-
Cortex M3 processor. The processor is used in a wide variety of products such
as passports, bank cards, SIM cards, secure elements, etc. The embedded TRNG
module can run in parallel of the CPU, but it is relatively slow: according to
our measurements on emulator, it outputs 32 bits of random in approximately
6000 cycles. Our results, obtained by running the code on emulator, are given
in Table 7, and are compared with the classical Rivain-Prouff countermeasure.

We see that the most efficient countermeasure is the SecMultFLR algorithm
with multiple PRGs, using the 3-wise independent PRG. For n = 3 and n = 4
we obtain a 52% and 61% speedup respectively, compared to Rivain-Prouff. We
provide the source code in [Cor19b].
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Table 7. Smart-card implementation results, on a 44 MHz ARM-Cortex M3 processor,
with an embedded TRNG module. We provide the timings in millions of clock cycles,
and the ratio with respect to the Rivain-Prouff countermeasure.

Single robust PRG Multiple PRGs

[RP10] SecMultFLR SecMultILR SecMultILR2 SecMultFLR SecMultILR 3-wise SecMultFLR

n = 3 Mcycles 20.6 65.6 76.8 65.4 12 14.1 9.8

ratio 1 3.18 3.73 3.17 0.58 0.68 0.48

n = 4 Mcycles 40.2 235.1 425.1 324.9 24.6 34.7 15.5

ratio 1 5.85 10.57 8.08 0.61 0.86 0.39

n = 5 Mcycles 65.8 1100 1541.5 1097.1 42.8 70 −
ratio 1 16.72 23.43 16.67 0.65 1.06 −

n = 6 Mcycles 97.5 3042.1 4278.3 2898.5 67.2 124.1 −
ratio 1 31.20 43.88 29.73 0.69 1.27 −

B The SecMult Gadget

We recall in Algorithm 4 the SecMult gadget used in [RP10] for protecting AES
against t-th order attacks. It is an extension to F2k of the original ISW coun-
termeasure [ISW03] described in F2. The SecMult gadget was proven t-SNI in
[BBD+16].

Algorithm 4. SecMult

Input: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Output: shares ci satisfying

⊕n
i=1 ci = a · b

1: for i = 1 to n do
2: ci ← ai · bi

3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do
6: r ← F2k # referred by ri,j

7: ci ← ci ⊕ r # referred by ci,j

8: r ← (ai · bj ⊕ r) ⊕ aj · bi # referred by rj,i

9: cj ← cj ⊕ r # referred by cj,i

10: end for
11: end for
12: return (c1, . . . , cn)
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