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Abstract. In an early version of CRYPTO’17, Mennink and Neves pro-
posed EWCDMD, a dual of EWCDM, and showed n-bit security, where
n is the block size of the underlying block cipher. In CRYPTO’19, Chen
et al. proposed permutation based design SoKAC21 and showed 2n/3-
bit security, where n is the input size of the underlying permutation. In
this paper we show birthday bound attacks on EWCDMD and SoKAC21,
invalidating their security claims. Both attacks exploit an inherent com-
position nature present in the constructions. Motivated by the above
two attacks exploiting the composition nature, we consider some generic
relevant composition based constructions of ideal primitives (possibly in
the ideal permutation and random oracle model) and present birthday
bound distinguishers for them. In particular, we demonstrate a birthday
bound distinguisher against (1) a secret random permutation followed
by a public random function and (2) composition of two secret random
functions. Our distinguishers for SoKAC21 and EWCDMD are direct con-
sequences of (1) and (2) respectively.
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1 Introduction

Motivated from DES block cipher design, Luby and Rackoff [LR88] formally
analyzed a paradigm of constructing a pseudorandom permutation (PRP) from
a pseudorandom function (PRF). However, the opposite trend is more popular
due to wide availability of block ciphers (modeled to be pseudorandom permu-
tations). So pseudorandom functions are traditionally built upon block ciphers.
A straightforward application of the classical PRP-PRF switch [Sho04] gives
security up to the birthday bound. However, in view of lightweight block ciphers
[BPP+17,BKL+07] this bound may not be suitable. For example, a birthday
bound secure PRF construction based on DES (64-bit block cipher) may be bro-
ken in approximately 232 bits of data. In fact, Bhargavan and Leurent [BL16]
performed practical attacks on TLS and OpenVPN when a 64-bit block cipher
is used. To resist such attacks, several beyond birthday bound secure construc-
tions have been proposed. This includes popular constructions such as sum of
permutations (or SoP in short) [HWKS98,Pat08,DHT17,BN18b], truncation of
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permutation [HWKS98,BN18a], EDM type constructions [CS16,CS18], Sum-
ECBC [Yas10], Pmac Plus [Yas11], 3Kf9 [ZWSW12], DbHtS [DDNP18] and
1kPmac Plus [DDN+17a].

Apart from block cipher, the recent trend of using ideal (unkeyed) permuta-
tion has also motivated several pseudorandom functions from ideal permutation.
Sponge-based PRF [BDPVA11b,CDH+12,BDPVA11a,ADMVA15] and Farfalle
[BDH+17] are two such examples of PRF from ideal permutations. Recently,
Chen et al. in Crypto 2019 [CLM19] considered permutation versions of SoP and
EDM-dual. Depending on the choice of the keys and the permutation, some of
the constructions provide birthday bound security, while some achieve beyond
the birthday bound. They have also claimed tight security by showing some
matching attacks.

1.1 Some Beyond Birthday Bound Constructions

Most of the constructions mentioned above are sequential in nature. Some of
these constructions can be viewed as composition of two simpler constructions.
For a permutation π, we denote π(x) ⊕ x as π⊕(x) (this is known as Davies-
Meyer function which has been used to define hash functions in case of public
permutation). Let π1 and π2 be two independent keyed random permutations
over {0, 1}n.

EDM and Its Dual. For a message m ∈ {0, 1}n, we define

EDM(m) = π2(π⊕
1 (m)) (1)

In other words, EDM (encrypted Davies-Meyer) is a composition function π2◦π⊕
1 .

Here π1 and π2 are two independently keyed block ciphers (or random permuta-
tions). Dual version of EDM (denoted as EDMD) is defined as the composition
in the other direction:

EDMD(m) = π⊕
1

(
π2(m)

)
.

In [CS16,CS18] it has been proved that EDM is PRF secure up to 22n/3

queries (i.e. 2n/3-bit secure). Later in Crypto 2017 [DHT17], security of EDM
is shown to be at least 3n/4-bit using χ2-method. Independently, Mennink and
Neves in [MN17] proved that EDM and EDMD have n-bit PRF security using
the generalized version of Patarin’s mirror theory [Pat08]. However, the proofs
of mirror theory are extremely sketchy and contain several unverified gaps.

EWCDM and Its Dual. The previous constructions can only process n-bit mes-
sage. With the help of universal hash H, one can extend the message space,
using the Wegman Carter paradigm [WC81]. We now recall the construction
EWCDM [CS16] and its dual version EWCDMD [MN17] (see Fig. 1). For a nonce
(which should be fresh for every execution of MAC) ν ∈ {0, 1}n and a message
m ∈ M, we define

EWCDM(ν,m) = π2(π⊕
1 (ν) ⊕H(m)) (2)

EWCDMD(ν,m) = π⊕
2 (π1(ν) ⊕H(m)) (3)
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ν π1
v

(M)

⊕ π2
x y

c⊕

Fig. 1. EWCDMD: Wegman-Carter followed by Davies-Meyer.

In [CS16], Cogliati and Seurin proved 2n/3-bit PRF (pseudorandom function)
and MAC (message authentication) security for EWCDM in a nonce respecting
model.

SoKAC21. So far we have considered constructions based on secret keyed prim-
itives. Very recently, Chen et al. in CRYPTO 2019 [CLM19] proposed a pseu-
dorandom function, called SoKAC21 (see Fig. 2), based on ideal public permuta-
tions. It is designed for small message space and claimed to be achieving beyond
birthday bound security. For an n-bit message m, and two ideal permutations
πpub
1 , πpub

2 , and an n-bit secret key K, we define

SoKAC21(K,m) = πpub
2

(
πpub
1 (m ⊕ K) ⊕ K

) ⊕ πpub
1 (m ⊕ K) ⊕ K (4)

m

K

⊕ π1
u v

K

⊕ π2
x y

c⊕

Fig. 2. SoKAC21 - Sum of Key Alternating Cipher with a single key.

This construction can be viewed as a composition of Even Mansour followed
by Davies-Meyer. We note that an equivalent view (due to which it is named sum
of key alternating cipher) of the above construction is π2(v⊕K)⊕π1(m⊕K)⊕K
where v = π1(m ⊕ K).

1.2 Composition Constructions and Our Contribution

All the constructions mentioned in the previous subsection can be viewed as
composition of ideal primitives or some functions derived from ideal primitives.

Public and Secret Ideal Primitives. Let γ ←$Func(n) and π ←$Perm(n)
denote n-bit random function and random permutation respectively. A random
function or permutation is called public if adversary has direct access to these
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primitives or their inverses whenever exist, in addition with concerned construc-
tions based on these primitives. In this case we call the adversarial model ideal
function or ideal permutation model. We denote the public random function and
permutation as γpub and πpub respectively.

When the ideal primitives are secret (i.e. cannot accessed directly by an
adversary), we denote them as γsec and πsec. Note that secret primitives appears
when a keyed function (e.g. a keyed compression function) or a keyed permuta-
tion (e.g., a block cipher) is replaced by the ideal counterpart through hybrid
argument.

We use subscript notation to denote independent copies of the primitives.
For example, π1, π2 are two independent random permutations (either secret or
public which would be understood from the superscript notation).

Our Contribution. In this paper, we first analyze the PRF or PRP construc-
tions g ◦ f where

f, g ∈ {γpub, γsec, πsec}.

Due to a trivial reason1 we exclude πpub. Moreover, we must assume that at
least one of the functions is secret. In this paper, we show birthday bound PRF
attack on (1) γsec

2 ◦ γsec
1 and (2) γpub ◦ πsec. The idea behind the attacks for

these constructions are simple. For γsec
2 ◦ γsec

1 we expect more collisions than
perfect random function. In other words, we have higher probability of realizing
collision on γsec

2 ◦ γsec
1 than that of γsec. For the second construction, we observe

the outputs of public function γpub and outputs of γpub ◦ πsec (or γsec in case of
ideal oracle). We show that the probability of collision between these two lists
is higher in case of the real world than the ideal world. In the real construction,
collision can happen in two ways – (1) an output of πsec collides with an input
of public function call γpub, (2) accidental collision (which happens in the final
outputs without having collision among inputs).

Birthday Attack on EWCDMD. We exploit the attack idea of γsec
2 ◦ γsec

1 to
describe a PRF attack against EWCDMD in query complexity 2n/2. In an early
version of CRYPTO 20172, Mennink and Neves [MN17] showed almost n-bit
PRF security for EWCDMD. So our result invalidates the initial claim of the
construction.

The main idea of the attack is simple. EWCDMD can be viewed as a compo-
sition of two keyed non-injective functions (and so it follows birthday paradox),
namely π⊕

2 and a function f mapping (ν,m) to π1(ν) ⊕H(m). Thus, we expect
that the collision probability of the composition π⊕

2 ◦ f is almost double of the
collision probability for the random function. So, by observing a collision we can

1 Note that if the outer function g is πpub or the inner function f is πpub then the
composition is essentially reduced to a single primitive. An adversary can always
uncover πpub by making calls to πpub and (πpub)−1.

2 The early version can be accessed on ePrint 2017/473 posted on 28-May-2017. This
paper was initially accepted in CRYPTO 2017. Later, after finding the flaw in the
analysis, authors removed this analysis from the final proceeding.
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distinguish EWCDMD from a random function. Note that EWCDM is a composi-
tion of a permutation and a non-injective keyed function. Hence our observation
is not applicable to it.

Birthday Attack on SoKAC21. Similarly, we exploit the attack idea of γpub ◦
πsec to have birthday bound PRF attack on SoKAC21. In this construction we
have π⊕

2 instead of public random function. However, with a careful analysis (and
using the recent result on sum of permutation) we can have birthday attack on
SoKAC21. This again violates the beyond birthday security claimed in [CLM19].

2 Preliminaries

Notation. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. For n, k ∈ N, such that
n ≥ k, we define the falling factorial (n)k := n!/(n−k)! = n(n−1) · · · (n−k+1).
For a ∈ N, an a-tuple (x1, x2, . . . , xa) and also a multi-set {x1, . . . , xa} is simply
denoted as xa (this should be clear from the context). For any set X, (X)a

denotes the set of all xa so that x1, . . . , xa are distinct. We call all those xa

element-wise distinct. Note, |(X)q| = (|X|)q.
The set of all functions from X to Y is denoted as Func(X,Y) and the

set of all permutations over X is denoted as Perm(X). We use shorthand nota-
tions Perm(n) (or Func(n)) to denote the set of all permutations (or functions
respectively) from {0, 1}n to itself.

For a finite set X, X ←$X denotes the uniform and random sampling of X
from X. We write X1, . . . ,Xa ←$D when Xi’s are chosen uniformly and inde-
pendently from the set D. In other words, X1, . . . ,Xa is a random with replace-
ment sample. We write X1, . . . ,Xa ←worD when Xi’s are chosen randomly from
D in without replacement manner. More precisely, for all element-wise distinct
xa ∈ (D)a,

Pr(X1 = x1, . . . ,Xa = xa) =
1

(|D|)a
.

2.1 Statistical Distance

Let X,Y be two random variables over a sample space S. Then the statistical
distance between X and Y is defined as

D(X,Y) :=
1
2

∑

a∈S

|Pr(X = a) − Pr(Y = a)|.

An equivalent definition of statistical distance is the following:

D(X,Y) = max
E⊆S

|Pr(X ∈ E) − Pr(Y ∈ E)|.

To see why it is an equivalent definition, we first note that the maximization
holds for E1 = {a ∈ S : Pr(X = a) > Pr(Y = a)}. From the definition of E1,
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we can write the sum
∑

a∈S |Pr(X = a)−Pr(Y = a)| (after splitting over E1 and
Ec

1) as
∑

a∈E1

(Pr(X = a) − Pr(Y = a)) +
∑

a∈Ec
1

Pr(Y = a) − Pr(X = a)

= Pr(X ∈ E1) − Pr(Y ∈ E1) + Pr(Y ∈ Ec
1) − Pr(X ∈ Ec

1)

= 2
(
Pr(X ∈ E1) − Pr(Y ∈ E1)

)
.

Thus we have established the equivalence.

Lemma 1 (replacement lemma). Let X,Y be two random variables over a
sample space S and Z be independent with X and Y sampled from T. Let E ⊆
S × T then

|Pr((X,Z) ∈ E) − Pr((Y,Z) ∈ E)| ≤ D(X,Y). (5)

Proof. For every z, let Ez = {s ∈ S : (s, z) ∈ E}. Then by independence, we
have

1. p1 := Pr((X,Z) ∈ E) =
∑

z Pr(Z = z) · Pr(X ∈ Ez) and similarly,
2. p2 := Pr((Y,Z) ∈ E) =

∑
z Pr(Z = z) · Pr(Y ∈ Ez).

Hence,

|p1 − p2| = |
∑

z

Pr(Z = z) · Pr(X ∈ Ez) −
∑

z

Pr(Z = z) · Pr(Y ∈ Ez)|

≤
∑

z

Pr(Z = z) · |Pr(X ∈ Ez) − Pr(Y ∈ Ez)|

≤
∑

z

Pr(Z = z) · D(X,Y)

= D(X,Y)

2.2 Sum of Without Replacement Samples

Let D be a set of size N . In [DHT17] it has been proved that sum of two indepen-
dent without replacement sample almost behaves like one with replacement sam-
ple. More precisely, let X1, . . . ,Xa ←worD, Y1, . . . ,Ya ←worD, Z1, . . . ,Za ←$D

and Xa, Ya are independent. Define Wi = Xi ⊕ Yi for all i ∈ [a]. Then, in
[DHT17] it is shown3 that

D(Za,Wa) ≤ 4a

N
. (6)

Due to Lemma 1, we can simply replace sum of random without replacement
sample involved in an event by the random sample at the cost of probability
4a/N . We use this idea of replacement while we analyze SoKAC21 construction.

3 The original bound is 1.5a
N

+ 3
√
a

N
which is less than the bound we consider here for

all a ≥ 3. For a = 2, one can easily establish the bound.
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2.3 Security Definitions

Random Function and Random Permutation. γ ←$Func(X,Y) is said to
be the random function from the set X to Y. Similarly, π ←$Perm(Y) is said
to be the random permutation over the set Y. In this paper we mostly use the
set X = Y = {0, 1}n.

Keyed Function and Permutation. A keyed function with key space K,
domain X and range Y is a function F : K × X → Y and we denote F(K,X)
by FK(X). Similarly, a keyed permutation with key space K and domain X is
a mapping E : K × X → X such that for all key K ∈ K, X 
→ E(K,X) is a
permutation over X and we denote EK(X) for E(K,X).

PRF. Given an oracle algorithm A with oracle access to a function from X to
Y, making at most q queries, running time at most t and outputting a single
bit, we define the prf-advantage of A against the family of keyed functions F as

AdvPRF
F (A) := |Pr(K ←$K : AFK = 1) − Pr(γ ←$Func(X,Y) : Aγ = 1)|.

PRP. Given an oracle algorithm A with oracle access to a permutation of X,
making at most q queries, running time at most t and outputting a single bit,
we define the prp-advantage of A against the family of keyed permutations E as

AdvPRP
E (A) := |Pr(K ←$K : AEK = 1) − Pr(π ←$Perm(X) : Aπ = 1)|.

PRF and PRP in Ideal Model. Some keyed constructions uses ideal public
primitive such as a random function and a random permutation. Let P1, . . . , Pr

be such all primitives used for a keyed construction FK := FP1,...,Pr

K . Let P±
i

denotes both Pi and its inverse P−1
i . We define PRF and PRP-advantage in the

public primitive model as follows.

AdvPRF
F (A) := |Pr(AFK ,P±

1 ,...,P±
r = 1) − Pr(Aγ,P±

1 ,...,P±
r = 1)|.

In the above two probabilities, K, γ, P1, . . . , Pr are all independently drawn.
Similarly, we define PRP-advantage in public model as

AdvPRP
F (A) := |Pr(AFK ,P±

1 ,...,P±
r = 1) − Pr(Aπ,P±

1 ,...,P±
r = 1)|.

Almost XOR Universal Hash Function. A keyed hash function HK : D →
R is called ε-AXU (almost xor universal) if Pr(HK(m) ⊕ HK(m′) = δ) ≤ ε for
all m �= m′ and for all δ. Here the probability is computed under randomness of
the key chosen uniformly from the key space.
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3 Collision Probability

Let D be a set of size N . We quickly recall collision probability for a uniform
random sample X1, . . . ,Xa ←$D. For any positive integers a ≤ N , we write
dpN (a) := (N)a

Na and cpN (a) := 1−dpN (a). When N is understood from the con-
text, we skip the notation N . If a is very small compared to N (i.e. a/N ≈ 0), a
precise estimation of dpN (a) is e−a(a−1)/2N . This follows from the approximation
1 − ε ≈ e−ε for very small positive ε. In fact the error term |e−ε − (1 − ε)| is in
the order O(ε2).

Given a list L of elements x1, . . . , xa, we write Dist(L) if xi’s are distinct.
Otherwise, we write Coll(L).

Lemma 2 (collision probability). Let D be a set of size N . Let
X1, . . . ,Xa ←$D and let L denote the list containing Xi’s, 1 ≤ i ≤ a. Then,

1. Pr(Dist(L)) = dpN (a).
2. Pr(Coll(L)) = cpN (a) ≤ a2/2N .

We skip the proof as it is straightforward conclusion from the definition. The
second statement follows from the union bound.

Now we compute probability for having a collision between two lists. We say
that there is a collision between two lists, denoted as LColl(L1,L2) if the lists
are not disjoint.

Lemma 3 (list-collision probability for without replacement sample).
Let X1, . . . ,Xp ←worD and Y1, . . . ,Yq ←worD such that Xp and Yq are indepen-
dent. Then,

Pr(LColl(Xp,Yq)) = 1 − (N − p)q

(N)q

Proof. We compute the complement event, i.e., Xp and Yq are disjoint. The
conditional probability of the complement event conditioning on Xp = xp is
(N−p)q
(N)q

. This can be easily seen as the number of choices of Yq is exactly (N−p)q.
As the conditional probability is independent of choice of xp, the unconditional
probability is also same as (N−p)q

(N)q
. This completes the proof. 
�

We denote the probability 1 − (N−p)q
(N)q

as lcpwor
N (p, q) (or simply lcpwor(p, q)

whenever N is understood from the context).
When L1 := Xp and L2 := Yq, where X1, . . . ,Xp,Y1, . . . ,Yq ←$D, we denote

the list-collision probability Pr(LColl(L1,L2)) as lcp$N (p, q) (or simply lcp$(p, q)
whenever N is understood from the context). Here D is a set of size N .

Lemma 4 (list-collision probability for random samples). For all positive
integers p, q, we have

|lcp$N (p, q) − 1 +
(
1 − q

N

)p| ≤ 2cpN (p). (7)

(When p is small compared to
√

N , the collision probability cpN (p) is almost
zero and in that case, the above result says that 1 − (

1 − p
N

)q is a very good
approximation of lcp$N (p, q).)
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Proof. Let X1, . . . ,Xp,Y1, . . . ,Yq ←$D and E denote the event Dist(Xp). So
Pr(E) = dpN (p). Fix any distinct xp. Then, the list collision LColl(xp,Yq) holds
with probability 1 − (1 − p

N )q. Now,

Pr(LColl(Xp,Yq)) = Pr(LColl(Xp,Yq) ∧ E) + Pr(LColl(Xp,Yq) ∧ Ec)

=
∑

xp∈(D)p

Pr(LColl(xp,Yq) ∧ Xp = xp) + Pr(LColl(Xp,Yq) ∧ Ec)

= (1 − (1 − p

N
)q) ×

∑

xp∈(D)p

Pr(Xp = xp) + Pr(LColl(Xp,Yq) ∧ Ec)

= (1 − (1 − p

N
)q) × Pr(E) + Pr(LColl(Xp,Yq) ∧ Ec)

= (1 − (1 − p

N
)q) × (1 − Pr(Ec)) + Pr(LColl(Xp,Yq) ∧ Ec)

Note that in our notation, Pr(LColl(Xp,Yq)) = lcp$N (p, q). Hence,

|lcp$N (p, q) − 1 +
(
1 − q

N

)p| = |(1 − (1 − p

N
)q) × Pr(Ec) + Pr(LColl(Xp,Yq) ∧ Ec)|

≤ 2 · Pr(Ec).

The lemma follows from the definition that Pr(Ec) = cpN (p). 
�

4 Birthday Attack on Composition of Ideal Primitives

In this section, we analyze compositions of ideal primitives. We recall that
γ ←$Func(n) and π ←$Perm(n) denote n-bit random function and random per-
mutation respectively. We follow the notations described in Sect. 1.2. Here ≡ is
used to mean two systems equivalent (i.e. the probabilistic behavior of interac-
tion for any adversary would be same for both).

1. It is easy to verify that πsec ◦ γsec ≡ γsec ◦ πsec ≡ γ and πsec
1 ◦ πsec

2 ≡ π. In
[MS15] πsec ◦ πsec (iterated random permutation) has been analyzed and it
almost behaves as πsec with a maximum distinguishing advantage O(q/2n)
where q is the number of queries. Authors of [MS15,Nan15] have actually
analyzed a more general construction πsec ◦ · · · ◦ πsec (applied r times).

2. In [BDD+17], γsec ◦ γsec (iterated random function) has also been analyzed.
This is equivalent to γsec with a maximum distinguishing advantage O(q2/2n).
Authors of [BDD+17] actually analyzed more general construction γsec ◦ · · · ◦
γsec (applied r times). The main idea behind the distinguishing attack is that
the collision probability of an iterated random function is more probable than
that of a random function.
Using a similar argument, we can show that γsec

2 ◦ γsec
1 can be distinguished

from γsec by making 2n/2 queries. Let x1, . . . , xq be q queries and let y1, . . . , yq

be the responses. In case of the real world, yi = γsec
2 (zi) where zi = γsec

1 (xi).
Let μ := cp2n(q). Now,

Pr(Coll(yq)) = Pr(Coll(zq)) + Pr(Coll(yq) | Dist(zq)) × Pr(Dist(zq))
= μ + μ(1 − μ)
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Let A return 1 if it observes a collision among outputs. Thus, the distin-
guishing advantage of the adversary is at least μ(1 − μ). When q = 2n/2,
cp(q) ≈ 1 − 1√

e
and hence advantage is 1√

e
× (1 − 1√

e
) which is at least 0.2.

One can also choose q (which should be again O(2n/2)) such that μ ≈ 1/2
and hence the advantage would be about 0.25.
Same attack can be applied to γsec ◦ γpub and γpub ◦ γsec as if the adversary
does not take an advantage of accessing the public random function γpub.

3. Let us consider the construction πsec ◦γpub. An adversary A first finds a colli-
sion pair (m,m′) of γpub by making 2n/2 queries to it. Then, πsec ◦ γpub(m) =
πsec ◦ γpub(m′). Clearly, in the ideal world, γ(m) = γ(m′) holds with prob-
ability 2−n. So A is a PRF-distinguisher against πsec ◦ γpub making about
2n/2 queries to the public random function. The same attack is also applied
to γsec ◦ γpub.

4. Although γsec ◦πsec is equivalent to a random function, we have the following
birthday bound complexity PRF-attack on γpub ◦ πsec (replacing the outer
layer of secret random function by public random function). Here we exploit
the public access of γpub (since otherwise it is equivalent to a random function)
(Fig. 3).

PRF Distinguisher ,γpub

1 : x1, . . . , xp wor {0, 1}n

2 : queries x1, . . . , xp to γpub

3 : yi = γpub(xi), i ∈ [p] be the responses

4 : for i ∈ [q], i is queried to

5 : let ci = (i), i ∈ [q] be the responses

6 : if ∃i, j, yi = cj

7 : return 1

8 : else

9 : return 0

Fig. 3. Distinguisher for composition construction γpub ◦ πsec.

Let E denote the event that there are i, j such that yi = cj .
Ideal World: In the ideal world we have c1, . . . , cq, y1, . . . , yp ←$ {0, 1}n. So

Pr(E) = lcp$(p, q) = μ (say).

Real World: In the real world, let zi = πsec(i). So ci = γpub(zi). Thus,
z1, . . . , zq ←wor {0, 1}n independent of xp. Now, we write the event E as the
disjoint union (denoted as �)

LColl(zq, xp) � (¬LColl(zq, xp) ∧ LColl(cq, yp)
)
.
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Given that zq is distinct from xp, we have c1, . . . , cq, y1, . . . , yp ←$ {0, 1}n.
Now, Pr(LColl(zq, xp)) = lcpwor(p, q) := μ1 (say). Then,

Pr(E) = μ1 + (1 − μ1)μ.

So, the distinguishing advantage of our adversary is μ1(1 − μ). By Lemma 3
and Lemma 4, the distinguishing advantage is at least

(1 − (2n − p)q

(2n)q
) × (

(1 − p

2n
)q − 2cp2n(q)

)
. (8)

Further, we have

(2n − p)q

(2n)q
=

q−1∏

i=0

(1 − p

2n − i
)

≤ (1 − p

2n
)q

≤ 1 − pq

2n
+

pq2

22n+1
.

The last inequality follows from the following fact:

(1 − x)q ≤ 1 −
(

q

1

)
x +

(
q

2

)
x2, 0 ≤ x ≤ 1.

We also have (1 − p
2n )q ≥ 1 − pq

2n . By substituting the above inequalities in
Eq. 8, the distinguishing advantage is at least

(1 − pq

2n
− q2

2n
) × pq

2n
× (1 − q

2n+1
).

Now if we choose p = q =
√

2n/3 then the advantage is at least 1
9 (1− 1

3×2n/2 ).
This value is almost 1/9 for a reasonably large n.

5 Birthday Attack on SoKAC21

In the previous section we have shown the basic attacks on composition of ideal
primitives. A similar idea can be used for composition of constructions which
are not ideal. However, a more dedicated analysis of advantage computation
is required. In this section we show a birthday attack on a recent proposal
SoKAC21. In the following section we show birthday attack of Dual EWCDM.

We first recall the definition of SoKAC21 (see Fig. 2 and Eq. 4 for details). It
uses two public n-bit random permutations πpub

1 and πpub
2 . Given an n-bit key

K, an n-bit input m, we define SoKAC21 output as

FK(m) := πpub
2 (x) ⊕ x, where x = πpub

1 (m ⊕ K) ⊕ K.
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Our attack does not exploit public queries to πpub
1 and hence πpub

1 (m ⊕ K) ⊕
K behaves identically to a secret random permutation πsec(m). Let DM(x) :=
πpub
2 (x)⊕x (Davies-Meyer construction based on a public random permutation).

So SoKAC21 is actually the composition DM ◦ πsec. However, DM is not perfect
random function. But if we choose the inputs of DM in a without replacement
manner, the output of DM can be viewed as the sum of two WOR samples
and hence it is very close to uniform distribution. We use this principle along
with the attack strategy as described in the previous section for the composition
construction γpub ◦ πsec. We simply write πpub instead of πpub

2 and πsec instead of
the Even-Mansour construction on πpub

1 (Fig. 4).

PRF Distinguisher ,πpub

1 : x1, . . . , xp wor {0, 1}n

2 : queries x1, . . . , xp to πpub

3 : x′
i = πpub(xi), i ∈ [p] be the responses

4 : let yi = x′
i ⊕ xi

5 : for i ∈ [q], i is queried to

6 : let ci = (i), i ∈ [q] be the responses

7 : if ∃i, j, yi = cj return 1

8 : else return 0

Fig. 4. Distinguisher for SoKAC21 which can be viewed as the composition construction
DM ◦ πsec.

We define the event E := LColl(cq, yp) (i.e. there exists i, j such that yi = cj).

Ideal World: In the ideal world c1, . . . , cq ←$ {0, 1}n. Moreover, yi is defined
as sum of two without replacement sample. By Eq. 6, yi’s are close to a with
replacement sample y′

1, . . . , y
′
p with the statistical distance at most 4p/2n. More-

over y′
i’s are independent of cq. Let μ := Pr(LColl(cq, (y′)p)) = lcp$(p, q). So by

using Lemma 1,

Pr(E) = Pr(LColl(cq, yp)) ≤ lcp$(p, q) + 4p/2n.

Real World: In the real world, let zi = πsec(i). So ci = πpub(zi) ⊕ zi for all i
and z1, . . . , zq ←wor {0, 1}n independent of xp. Now, the event E can be written
as a disjoint union E1 � E2 where

1. E1 is LColl(zq, xp) and
2. E2 is ¬LColl(zq, xp) ∧ LColl(cq, yp).

Let Pr(E1) = lcpwor(p, q) = μ1 (say).



Mind the Composition 215

Now, we compute the probability of the event E2 which is same as Ec
1 ∧

LColl(cq, yp). Given that zq is distinct from xp (i.e. Ec
1 holds) we have

z1, . . . , zq, x1, . . . , xp ←wor {0, 1}n.

As ci = DM(zi) and yi = DM(xi), ci’s and yi’s are almost uniformly distributed.
More precisely, for c′

1, . . . , c
′
q, y

′
1, . . . , y

′
p ←$ {0, 1}n,

D((cq, yp); ((c′)q, (y′)p)) ≤ 4(p + q)/2n.

So by Lemma 1, Pr(E2) ≥ (1 − μ1) × (μ − 4(p + q)/2n) where μ = lcp$(p, q).
Now,

Pr(E) = Pr(E1) + Pr(E2)

≥ μ1 + (1 − μ1)(μ − 4(p + q)
2n

).

So, subtracting the probability Pr(E) of the real world from that of the ideal
world, the distinguishing advantage is at least

μ1(1 − μ) − 8p + 4q

2n
.

We have already shown that μ1(1−μ) is at least 1
9 − 1

27·2n/2 when p = q =
√

2n/3
(see the last paragraph of our analysis on γpub ◦ πsec). Hence the advantage is at
least 1

9 − 1
2n/2−1 .

6 Birthday Attack on Dual-EWCDM

In this section we provide details of a nonce respecting distinguishing attack
on EWCDMD. For better understanding we consider a specific hash function
H(m) = K · m where K is a nonzero random key chosen uniformly from
{0, 1}n \ {0} and m ∈ M := {0, 1}n. Here K · m means the field multiplica-
tion with respect to a fixed primitive polynomial. Clearly, H is 1

2n−1 AXU hash.
Moreover it is injective hash. In other words, for distinct messages m1, . . . ,mq,
H(m1), . . . ,H(mq) are distinct.

Distinguishing Attack. A choses (ν1,m1), . . . , (νq,mq) ∈ {0, 1}n × M where
all νi’s are distinct and all mi’s are distinct. Suppose T1, . . . , Tq are all responses.
A returns 1 if there is a collision among Ti values, otherwise returns zero.

When A is interacting with a random function, Pr[A → 1] ≤ q(q − 1)/2n+1

(by using the union bound). Now we provide lower bound of Pr[A → 1] while A

is interacting with EWCDMD in which π1, π2 are two independent random per-
mutations and H is the above hash function whose key is chosen independently.
To obtain a lower bound we first prove the following lemma. Let N = 2n.
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Lemma 5. Let x1, . . . , xq ∈ {0, 1}n be q distinct values. Let π be a random
permutation. Then, for all distinct ν1, . . . , νq, let C denote the event that there
is a collision among values of π(νi) ⊕ xi, 1 ≤ i ≤ q. Then,

α(1 − β) ≤ Pr[C] ≤ α

where α = q(q−1)
2(N−1) and β = (q−2)(q+1)

4(N−3) . In particular, for distinct xi’s, there is a
collision among π(xi) ⊕ xi values has probability at least α(1 − β).

Proof . Let Ei,j denote the event that π(νi) ⊕ π(νj) = xi ⊕ xj . So for all i �= j,
Pr[Ei,j ] = 1/(N − 1). Let C = ∪i�=jEi,j denote the collision event. By using
union bound we can easily upper bound

Pr[C] ≤ α :=
q(q − 1)
2(N − 1)

.

Now, we show the lower bound. For this, we apply Boole’s inequality and we
obtain lower bound of collision probability as

Pr[C] ≥ α −
∑

Pr[Ei,j ∩ Ek,l]

where the sum is taken over all possible choices of {{i, j}, {k, l}}, and the number
of such choices is at most

(
q(q−1)/2

2

)
= q(q − 1)(q + 1)(q − 2)/8. Note that for

each such choice i, j, k, l,

Pr[Ei,j ∩ Ek,l] ≤ 1
(N − 1)(N − 3)

.

Hence,

Pr[C] ≥ α − q(q − 1)(q + 1)(q − 2)
8(N − 1)(N − 3)

(9)

= α(1 − (q − 2)(q + 1)
4(N − 3)

) = α(1 − β). (10)

This completes the proof. 
�
Advantage Computation. Using the above Lemma we now show that the
probability that A returns 1 while interacting with EWCDMD is significant when
q = O(2n/2).

Let C1 denote the event that there is a collision among the values zi :=
π1(νi) ⊕ H(mi). We can apply our lemma as H(mi)’s are distinct due to our
choice of the hash function. Thus, Pr[C1] ≥ α(1−β). Moreover, Pr[¬C1] ≥ (1−α).
Given ¬C1, T values are outputs of Davies-Meyer based on random permutation
π2 for distinct inputs. So by using previous lemma,

Pr(collision in T values | ¬C1) ≥ α(1 − β).
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Hence,

Pr(A → 1) ≥ Pr(C1) + Pr(collision in Tvalues | ¬C1) × Pr[¬C1]
≥ α(1 − β) + (1 − α) × Pr(collision in Tvalues | ¬C1)
≥ α(1 − β) + α(1 − α)(1 − β)

= (2α − α2)(1 − β) ≥ 2α − 2αβ − α2.

Thus, the advantage of the adversary is at least α − 2αβ − α2. It is easy to see
that when 2q2 ≥ N , we have 1 − 2β − α ≤ 1/2 and hence the advantage is at
least α/2 = q(q − 1)/4(N − 1).

Remark 1. We would like to note that the distinguishing advantages of both
constructions can be made closer to one if we repeat the whole process indepen-
dently O(n) times.

6.1 Issues in the Previous Proofs

Now we briefly describe what were the issues in the proofs of [CLM19,MN17].
Both proofs used H-technique and hence it is broadly divided into two parts:
bounding probability of bad events and finding good lower bound for realizing
any fixed good transcript in the real world. The flaws in their proof lie on the
good transcript analysis.

Suppose π1 and π2 are two random permutations. In the both proofs, good
transcript analysis deals to compute the probability distribution of sum of the
two random permutations. More precisely, for fixed λ1, x1, y1, . . . xq, yq, λq ∈
{0, 1}n, we want to provide a lower bound of the event π1(xi) ⊕ π2(yi) = λi

for all i. This is also known as mirror theory and have been studied in several
papers [Pat10,Pat13,DDN+17a,DDNY19,DDNY18]. A desired lower bounds
are known if the equality patterns of xi and yi’s satisfy certain conditions. In
the proofs of [CLM19,MN17], equality pattern of yi’s depend on the values of
π1(xi) for all i. So, clearly, we cannot use the mirror theory based lower bound.
This is the main flaw of the proofs.

7 Concluding Discussion

We have demonstrated a distinguishing attack on EWCDMD. We would like to
note that this attack does not work for EDM, EWCDM and EDMD as we can not
write them as a composition of two non-injective functions. We also demonstrate
a birthday attack on SoKAC21. Our attack also does not work if we mask the
final output by a key (which is another variant of sum of key alternating ciphers).
However, at the same time, we do not know how to prove its beyond birthday
security.
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7.1 Some Open Problems

Followings are some of open problems on which cryptography community could
have interest.

1. We would like to note that our attack against EWCDMD is a PRF attack and
it is not easy to extend to a forging attack in a nonce respecting situation.
Thus, proving MAC security would be an interesting research problem.

2. One can consider the following dual variant:

π2(π1(ν) ⊕H(m)) ⊕ π1(ν). (11)

This is very close to the sum of permutations. However, the presence of H(m)
makes it very difficult to prove (without using Patarin’s claim or conjecture
on the interpolation probability of sum of random permutations). Moreover,
it can not be expressed as a composition function with n-bit outputs. Hence
it is a potential dual candidate of EWCDM.

3. Another possibility is to use three independent random permutations. As
mentioned in [CS16], we can consider

π3

(
π1(ν) ⊕ π2(ν) ⊕H(m)

)
.

This will give 2n security in nonce respecting model assuming that the sum
of permutations would give n-bit PRF security. However, we don’t know the
trade-off between the number of allowed repetition of nonce and the security
bound.

4. Proving beyond birthday security (or demonstrating birthday attacks) of
some other variants of SoKAC21 would be an interesting open problem.
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Security, Indian Statistical Institute, Kolkata.
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