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Abstract. Functional encryption (FE) combiners allow one to combine
many candidates for a functional encryption scheme, possibly based on
different computational assumptions, into another functional encryption
candidate with the guarantee that the resulting candidate is secure as
long as at least one of the original candidates is secure. The fundamental
question in this area is whether FE combiners exist. There have been a
series of works Ananth et al. (CRYPTO ’16), Ananth-Jain-Sahai (EURO-
CRYPT ’17), Ananth et al. (TCC ’19) on constructing FE combiners
from various assumptions.

We give the first unconditional construction of combiners for func-
tional encryption, resolving this question completely. Our construction
immediately implies an unconditional universal functional encryption
scheme, an FE scheme that is secure if such an FE scheme exists. Pre-
viously such results either relied on algebraic assumptions or required
subexponential security assumptions.

1 Introduction

In cryptography, many interesting cryptographic primitives rely on computa-
tional assumptions. Over the years, many assumptions have been proposed
such as factoring, quadratic residuosity, decisional Diffie-Hellman, learning with
errors, and many more. However, despite years of research, the security of these
assumptions is still not firmly established. Indeed, we do not even know how
to prove P �=NP; our understanding of algebraic hardness is even more specu-
lative. Moreover, we also do not have a strong understanding of how different
cryptographic assumptions compare against each other. For instance, it is not
known whether decisional Diffie-Hellman is a weaker or a stronger assumption
than learning with errors. This inability to adequately compare different cryp-
tographic assumptions induces the following problematic situation: suppose we
have a cryptographic primitive (say, public key encryption) with many candi-
date constructions based on a variety of assumptions, and we want to pick the
most secure candidate to use. Unfortunately, due to our limited knowledge of
how these assumptions compare against each other, we cannot determine which
candidate is the most secure one.
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Unconditional Cryptographic Combiners. Cryptographic combiners were intro-
duced to handle the above issue. Given many candidates of a cryptographic
primitive, possibly based on different assumptions, a cryptographic combiner
takes these candidates and produces another candidate for the same primitive
with the guarantee that this new candidate is secure as long as at least one of the
original candidates is secure. For example, a combiner for public key encryption
can be used to transform two candidates, one based on decisional Diffie-Hellman
and the other on learning with errors, into a new public-key encryption candidate
that is secure provided either decisional Diffie-Hellman or learning with errors
is secure. Thus, this new public-key encryption candidate relies on a strictly
weaker assumption than the original two candidate constructions and allows us
to hedge our bets on the security of the two original assumptions.

Furthermore, even if an underlying primitive, such as public-key encryp-
tion, requires an unproven hardness assumption, the security of a combiner for
that primitive can be unconditional. Therefore, cryptographic combiners stand
out in the world of cryptography in the sense that they are one of the few
useful cryptographic objects that do not inherently require reliance on hard-
ness assumptions. And indeed, combiners for fundamental primitives like one-
way functions, public-key encryption, and oblivious transfer are known to exist
unconditionally [28,38,39,42].

Obtaining unconditional combiners is particularly important because the
entire purpose of constructing combiners is to make cryptographic constructions
future-proof in case assumptions break down. In this work, we study combin-
ers for functional encryption, an area where studying combiners is particularly
important and where, prior to our work, only conditional constructions were
known [2,5,6] (and in fact, these previous results required either algebraic or
sub-exponentially strong assumptions). We obtain the first unconditional com-
biner for functional encryption. Furthermore, we do so by providing a general
compiler, significantly simplifying previous work in this area. Along the way,
we define and provide constructions of input-local MPC protocols, input-local
garbling schemes, and combiner-friendly homomorphic secret sharing schemes,
primitives that may be of independent interest.

Combiners for Functional Encryption. Functional encryption (FE), introduced
by [52] and first formalized by [19,51], is one of the core primitives in the area
of computing on encrypted data. This notion allows an authority to generate
and distribute constrained keys associated with functions f1, . . . , fq, called func-
tional keys, which can be used to learn the values f1(x), . . . , fq(x) given an
encryption of x. Intuitively, the security notion states that the functional keys
associated with f1, . . . , fq and an encryption of x reveal nothing beyond the
values f1(x), . . . , fq(x).

Function encryption has opened the floodgates to important cryptographic
applications that have long remained elusive. These applications include, but are
not limited to, multi-party non-interactive key exchange [34], universal samplers
[34], reusable garbled circuits [36], verifiable random functions [10,13,37], and
adaptive garbling [40]. FE has also helped improve our understanding of impor-
tant theoretical questions, such as the hardness of Nash equilibrium [33,34].
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One of the most important applications of FE is its implication to indistin-
guishability obfuscation (iO for short), which is considered the holy grail of
cryptography [8,15]. In fact, if we are willing to tolerate subexponential security
loss, then even secret-key FE is enough to imply iO [14,43,44].

Over the past few years, many constructions of functional encryption have
been proposed [1,4,7,9,29,30,45–49] and studying what assumptions suffice for
constructing general-purpose FE remains a very important and active area of
investigation. Recent cryptanalytic attacks [11,12,23–26,41,49] on FE schemes
further highlight the importance of careful study. Given these results, we should
hope to minimize the trust we place on any individual FE candidate.

The notion of a functional encryption combiner achieves this purpose. Infor-
mally speaking, a functional encryption combiner allows for combining many
functional encryption candidates in such a way that the resulting FE candidate
is secure as long as at least one of the initial FE candidates is secure. In other
words, a functional encryption combiner says that it suffices to place trust col-
lectively on multiple FE candidates, instead of placing trust on any specific FE
candidate. Furthermore, FE combiners are an important area of study for the
following reasons:

– Most importantly, it gives a mechanism to hedge our bets and distribute our
trust over multiple constructions. This has been highlighted above.

– Often, constructions of FE combiners give rise to constructions of robust FE
combiners generically [2,6]. Any robust FE combiner gives us a universal
construction of FE, which is an explicit FE scheme that is secure as long as
there exists a secure functional encryption scheme.

– Studying FE combiners helps improve our understanding of the nature of
assumptions we need to build FE.

– They give rise to theoretically important results in other branches of cryp-
tography, such as round-optimal low-communication MPC [2].

– Constructions of robust FE combiners have encouraged research on under-
standing correctness amplification for FE, iO [6,16], and other fundamental
cryptographic primitives [17].

– Finally, due to connections to security amplification, techniques used to build
FE combiners are useful to give better constructions of FE. In particular,
the work of [7] used techniques developed from the study of FE combiners to
provide a generic security amplification of FE, which proved pivotal in giving
the first construction of FE that does not rely on multilinear maps and makes
use of simply stated, instance-independent assumptions.

There have been a series of works in this area. The starting point was the
work of two concurrent papers [5,27], both appearing at CRYPTO, that studied
the related question of obfuscation combiners. This was followed up by the work
of [6], which gave a construction of FE combiners (and universal FE) assuming
the existence of a subexponentially secure FE algorithm. They also gave a con-
struction of a robust FE combiner assuming LWE. Then [2] gave construction
of a robust FE combiner (and universal obfuscation) relying on the algebraic
assumption of the existence of constant degree randomizing polynomials (which
are known to exist assuming number-theoretic assumptions such as LWE, DDH,
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and quadratic residuosity). However, until now, the ultimate question in this
area, of whether FE combiners exist without making any additional assump-
tions, has remained open.

1.1 Our Contributions

In this paper, we consider the following questions.

What is theminimal assumptionnecessary to construct FE combiners and
universal FE?

In particular,

Is it possible to construct FE combiners and universal FE unconditionally?

We resolve the above question in the affirmative and prove the following.

Theorem 1 (Informal). There exists an unconditionally secure FE combiner
for P/poly.

It turns out that our construction of an FE combiner also gives rise to a
robust FE combiner using the results of [2,6].

Corollary 1 (Informal). There exists an unconditionally secure robust FE
combiner for P/poly.

As any robust FE combiner gives a universal FE scheme [5,6], we obtain the
following additional result.

Corollary 2 (Informal). There exists an unconditional construction of a uni-
versal FE scheme for P/poly.

We note that, as was the case in previous constructions, our construction of a
universal FE scheme is parameterized by the maximum run-time of any of the
algorithms of the secure FE scheme.

1.2 Technical Overview

Our starting point is the observation that FE combiners are related to the notion
of secure multi-party computation and function secret sharing (also known as
homomorphic secret sharing [18,20–22,50]). Suppose for a function f , it was
possible to give out function shares f1, . . . , fn such that for any input x, we
can n-out-of-n secret share x into shares x1, . . . , xn and recover f(x) given
f1(x1), . . . , fn(xn). Then, we would be able to build an FE combiner in the fol-
lowing manner. Given an input x, the encryptor would n-out-of-n secret share
x and encrypt the ith share xi under the ith FE candidate FEi (depicted in
Fig. 1). To generate a function key for a function f , FEi would generate a func-
tion key for function share fi. Using these ciphertexts and function keys, it would
be possible to recover fi(xi), from which it would be possible to recover f(x).



Combiners for Functional Encryption, Unconditionally 145

Security would follow from the fact that since at least one FE candidate is
secure, one of the input shares remains hidden, hiding the input. This overall
approach was used in [2,6] to construct FE combiners from LWE. In this work,
we would like to minimize the assumptions needed to construct an FE combiner,
and, unfortunately, we do not know how to construct such a function sharing
scheme for polynomial-sized circuits from one-way functions. Note that since FE
implies one-way functions, any FE combiner can assume the existence of one-
way functions since the individual one-way function candidates arising from each
FE candidate can be trivially combined by independent concatenation (direct
product) of the candidate one-way functions.

FE1 FE2 FEn

Share(x)

Fig. 1. A pictorial overview of splitting x amongst n FE candidates.

Our first step towards constructing an FE combiner unconditionally is that
we observe that it is easy to build an FE combiner for a constant number of
FE candidates by simply nesting the candidates. For example, if we had 2 FE
candidates, FE1 and FE2, we could combine these two candidates by simply hav-
ing encryption encrypt first under FE1 and then encrypt the resulting ciphertext
under FE2. To generate a secret key for a function f , we would generate a func-
tion key SKf,1 for f under FE1 and then generate a function key SKf,2 for the
function that runs FE1.Dec(SKf,1, ·) under FE2. The function key SKf,2 would
then be the function key for f under the combined FE scheme. Using nest-
ings of candidates, we can replace our original FE candidates with these new
nested candidates. For example, if we use 2-nestings, we can consider all possible
2-nestings FEi,j for i, j ∈ [n] as our new set of FE candidates. Observe now that
we have replaced our original n FE candidates with n2 “new” FE candidates.
At first glance, this appears to not have helped much. However, note that previ-
ously, we needed to consider function sharing schemes that were secure against
up to n−1 corruptions. When using nested candidates, it follows that if FEi∗ was
originally secure, then FEi,j with at least one of i, j = i∗ is also secure. We show
how to leverage this new corruption pattern of the candidates in the following
manner (Fig. 2).

Suppose we had a “special” MPC protocol Φ where every bit in the transcript
of an execution of Φ can be computed by a function on the inputs (and random
coins) of a constant number of parties (say 2). Furthermore, the output of Φ can
be determined solely from the transcript and Φ is secure against a semi-honest
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FE1

FE3 FE4

FE1

FE5 FE7

FE5

FE6 FE8

Share(x)

Fig. 2. A pictorial overview of 3-nested FE candidates (the required level of nesting in
our construction). If FE5 is secure, then FE1,5,7 and FE5,6,8 are secure.

adversary that corrupts up to n−1 parties. If Φ has the above properties, then the
transcript of an execution of Φ can be determined via an alternate computation.
Instead of running Φ normally to obtain the transcript, we can instead compute
jointly on all pairs of parties’ inputs (and randomness) to obtain the transcript.
That is, if a bit τα in the transcript τ can be computed given only the inputs (and
randomness) of parties Pi and Pj (we say it “depends” on parties Pi and Pj),
then we can determine the value of τα in an execution of Φ by computing this
function on (xi, ri) and (xj , rj) (the inputs and randomness of these two parties)
rather than executing the protocol in the normal fashion. Proceeding in the same
manner for every bit in the transcript, we can obtain the same exact transcript
that we would have by executing the protocol normally, but we are able to do
so by only evaluating functions on two parties’ inputs (and randomness).

This observation leads us to the following approach for constructing an
FE combiner. To encrypt an input x, additively secret share x into n shares
(x1, . . . , xn) and encrypt each pair of shares (xi, xj) under FEi,j . To generate
a function key for a function f , consider the MPC protocol that computes
f(x1 ⊕ . . . ⊕ xn). Then, for every bit τα in the transcript of such a protocol,
if τα “depends” on parties Pi, Pj , we would generate a function key under FEi,j

for the circuit Cτα
that computes τα given xi, xj .

This approach immediately runs into the following problem. The MPC proto-
col is randomized, whereas the function keys in an FE scheme are for determin-
istic functions. Moreover, an FE ciphertext needs to be compatible with many
function keys. Fortunately, these problems can easily be solved by having the
encryptor also generate a PRF key Ki for each party Pi. The encryptor now
encrypts (xi, xj ,Ki,Kj) under FE candidate FEi,j and uses Ki and some fixed
tag tagf embedded in the function key for f to generate the randomness of Pi

in the evaluation of the MPC protocol. Now, by using the function keys for the
Cτα

’s, it is possible for the decryptor to recover all the bits in the transcript of
an execution of the protocol and, therefore, recover f(x). Security would follow
from the fact that if candidate FEi∗ is secure, then xi∗ and Ki∗ remain hid-
den, and we can use the security of the MPC protocol to simulate the view of
party Pi∗ .

If such an MPC protocol as described above could be found, the above would
suffice for constructing an FE combiner. However, the goal of this work is to
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construct an FE combiner unconditionally and so we would like to only assume
the existence of one-way functions. However, semi-honest MPC secure against
up to n − 1 corruptions requires oblivious transfer (OT), which we do not want
to assume. To deal with this, we adapt our MPC idea to settings with correlated
randomness, such as the OT-hybrid model.

A first attempt at adapting this idea to protocols in the OT-hybrid model
is the following. Suppose that we have a “special” MPC protocol Φ where every
bit in the transcript of an execution of Φ can be computed by a function on
the inputs (and random coins/correlated randomness) of a constant number of
parties (say 2). Furthermore, the output of Φ can be determined solely from the
transcript and Φ is secure against a semi-honest adversary that corrupts up to
n − 1 parties in the OT-hybrid model.

The first challenge is to instantiate the OT oracle. This can be done by having
shared PRF keys Ki,j between all pairs of parties Pi and Pj . Then Ki,j will be
used to generate correlated randomness between Pi and Pj . We can generate all
the correlated randomness prior to the protocol execution and include it as part
of the input to a party Pi. This allows us to generate correlated randomness,
but we still run into a second issue. Since a party Pi has correlated randomness
between itself and all other parties, its input now depends on all other parties!
So, it appears that constant nestings of FE candidates will no longer suffice.

Fortunately, this second issue can be mitigated by a more refined condition on
the “special” MPC protocol Φ. Let (ri,j , rj,i) denote the correlated randomness
pair between parties Pi and Pj , where ri,j and rj,i are given to Pi and Pj ,
respectively. Instead of having the functions that compute bits of the transcript
of Φ take as input the entire correlated randomness string {ri,j}j �=i∈[n] held by
a party Pi, we instead allow it to take single components ri,j as input. If the
function takes as input ri,j , then both parties Pi and Pj are counted in the
number of parties that the function depends on. More formally, the condition
on the “special” MPC protocol Φ becomes the following. Let (xi, ri) denote the
input and randomness of a party Pi and let ri,j denote the correlated randomness
between parties Pi and Pj held by Pi. Every bit τα in the transcript τ of an
execution of Φ can be computed by some deterministic function fα on input

((xi)i∈Sα
, (ri)i∈Sα

, (ri,j)i,j∈Sα
),

where |Sα| ≤ t for some constant t. We call such an MPC protocol a t-input-local
MPC protocol and define this formally in Sect. 4.

To summarize, if we had a t-input-local MPC protocol for some constant t,
then we would be able to construct an FE combiner unconditionally using the
ideas detailed above. However, it is unclear how to construct such an MPC pro-
tocol, and, unfortunately, no protocol in the literature for all polynomial-sized
circuits in the OT-hybrid model satisfies all our required properties. However,
the 2-round semi-honest MPC protocol of Garg-Srinivasan [35] transformed to
operate in the OT-hybrid model [31] comes close. At a high level, this is because
they compile an MPC protocol into a series of garbled circuits, where each gar-
bled circuit is computed by a single party. However, there are several bottlenecks
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that make their protocol initially incompatible with our schema. One observa-
tion is that the protocol of [31,35] contains a pre-processing phase that causes
the initial state (effectively input) of each party to be dependent on all other
parties. This might seem like a major issue since messages dependent only on a
single parties’ state can now depend on all parties. Yet, a careful analysis shows
that while individual messages sent by a party might “depend” on all parties in
the protocol, each bit sent by a party still depends on only a constant number
of parties.

The real issue is that in the protocol of [31,35], parties send garbled circuits
of circuits whose descriptions depend on all parties. Thus, the resulting garbled
circuit may depend on all parties. However, we observe that the way these circuits
depend on all parties is very specific. The circuits garbled are keyed circuits of
the form C[v], where v is some hardcoded value. C itself is public and does
not depend on any party. And while v depends on all parties, each bit of v
only depends on a constant number of parties! To obtain an input-local MPC
protocol, we construct a garbling scheme that has the property that garbling
circuits of the form C[v] described above results in a garbled circuit where each
bit of the garbled circuit only depends on a constant number of parties. We
call such a garbling scheme an input-local garbling scheme. By instantiating the
protocol of [31,35] with this input-local garbling scheme, we are able to arrive
at an input-local MPC protocol.

Combiner-Friendly Homomorphic Secret Sharing (CFHSS). In the sketch of our
plan for constructing an FE combiner provided above, we wanted to generate
function keys for various circuits with respect to nested FE candidates. As an
intermediate tool, we introduce the notion of a combiner-friendly homomorphic
secret sharing (CFHSS) scheme. Such an abstraction almost immediately gives
rise to an FE combiner, but will be useful in simplifying the presentation of the
construction.

Informally, a CFHSS scheme consists of input encoding and function encoding
algorithms. The input encoding algorithm runs on an input x and outputs input
shares si,j,k for i, j, k ∈ [n] (we define CFHSS schemes for triples of indices, since
we will require 3-nestings of FE candidates in our construction). The function
encoding algorithm runs on a circuit C and outputs function shares Ci,j,k for
i, j, k ∈ [n]. Then, the decoding algorithm takes as input the evaluation of all
shares Ci,j,k(si,j,k) and recovers C(x). Informally, the security notion of a CFHSS
scheme says that if the shares corresponding to some index i∗ remain hidden,
then the input is hidden to a computationally bounded adversary and only the
evaluation C(x) is revealed.

In order to build an FE combiner from a CFHSS scheme, we will encrypt
the share si,j,k using the nested FE candidate corresponding to indices i, j, k. To
provide a function key for a circuit C, we will issue function keys for the circuit
Ci,j,k with respect to the nested candidate corresponding to indices i, j, k. This
allows the decryptor to compute Ci,j,k(si,j,k) for all i, j, k ∈ [n], which by the
properties of our CFHSS scheme, is sufficient to determine C(x). Note that in
order to argue security, we will have to rely on the Trojan method [3].
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Organization. We begin by defining functional encryption, secure multi-party
computation, and garbling schemes in Sect. 2. Then, in Sect. 3, we define the
notion of a functional encryption combiner. In Sect. 4, we define the notion of
an input-local MPC protocol and then show how to construct such a proto-
col. This is done by constructing a specific garbling scheme that, when used
to instantiate the garbling scheme used in the protocol of [31,35], results in an
input-local MPC protocol. In Sect. 5, we introduce and define the notion of a
combiner-friendly homomorphic secret sharing (CFHSS) scheme and construct
such a scheme using an input-local MPC protocol. In Sect. 6, we construct an
FE combiner from a CFHSS scheme. Finally, in Sect. 7, we observe that our
unconditional FE combiner implies a universal FE scheme.

2 Preliminaries

We denote the security parameter by λ. For an integer n ∈ N, we use [n] to
denote the set {1, 2, . . . , n}. We use D0

∼=c D1 to denote that two distributions
D0,D1 are computationally indistinguishable. We use negl(λ) to denote a func-
tion that is negligible in λ. We use y ← A to denote that y is the output of
a randomized algorithm A, where the randomness of A is sampled from the
uniform distribution. We write A(x; r) to denote the output of A when ran on
input x with randomness r. We use PPT as an abbreviation for probabilistic
polynomial time.

2.1 Functional Encryption

We define the notion of a (secret key) functional encryption candidate and a
(secret key) functional encryption scheme. A functional encryption candidate is
associated with the correctness requirement, while a secure functional encryption
scheme is associated with both correctness and security.

Syntax of a Functional Encryption Candidate/Scheme. A functional encryption
(FE) candidate/scheme FE for a class of circuits C = {Cλ}λ∈N consists of four
polynomial time algorithms (Setup,Enc,KeyGen,Dec) defined as follows. Let Xλ

be the input space of the circuit class Cλ and let Yλ be the output space of Cλ.
We refer to Xλ and Yλ as the input and output space of the candidate/scheme,
respectively.

– Setup, MSK ← FE.Setup(1λ): It takes as input the security parameter λ and
outputs the master secret key MSK.

– Encryption, CT ← FE.Enc(MSK,m): It takes as input the master secret key
MSK and a message m ∈ Xλ and outputs CT, an encryption of m.

– Key Generation, SKC ← FE.KeyGen (MSK, C): It takes as input the master
secret key MSK and a circuit C ∈ Cλ and outputs a function key SKC .

– Decryption, y ← FE.Dec (SKC ,CT): It takes as input a function secret key
SKC , a ciphertext CT and outputs a value y ∈ Yλ.
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Throughout this work, we will only be concerned with uniform algorithms.
That is, (Setup,Enc,KeyGen,Dec) can be represented as Turing machines (or
equivalently uniform circuits).

We describe the properties associated with the above candidate.

Correctness

Definition 1 (Correctness). A functional encryption candidate FE =
(Setup,KeyGen,Enc,Dec) is said to be correct if it satisfies the following property:
for every C : Xλ → Yλ ∈ Cλ,m ∈ Xλ it holds that:

Pr

⎡
⎢⎢⎣

MSK ← FE.Setup(1λ)
CT ← FE.Enc(MSK,m)

SKC ← FE.KeyGen(MSK, C)
C(m) ← FE.Dec(SKC ,CT)

⎤
⎥⎥⎦ ≥ 1 − negl(λ),

where the probability is taken over the coins of the algorithms.

IND-Security. We recall indistinguishability-based selective security for FE. This
security notion is modeled as a game between a challenger Chal and an adversary
A where the adversary can request functional keys and ciphertexts from Chal.
Specifically, A can submit function queries C and Chal responds with the corre-
sponding functional keys. A can also submit message queries of the form (x0, x1)
and receives an encryption of messages xb for some bit b ∈ {0, 1}. The adversary
A wins the game if she can guess b with probability significantly more than 1/2
and if for all function queries C and message queries (x0, x1), C(x0) = C(x1).
That is to say, any function evaluation that is computable by A gives the same
value regardless of b. It is required that the adversary must declare the challenge
messages at the beginning of the game.

Definition 2 (IND-secure FE). A secret-key FE scheme FE for a class of
circuits C = {Cλ}λ∈[N] and message space X = {Xλ}λ∈[N] is selectively secure if
for any PPT adversary A, there exists a negligible function μ(·) such that for all
sufficiently large λ ∈ N, the advantage of A is

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1] − Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptFEA (1λ, b) is defined
below:

1. Challenge message queries: A submits message queries,
{

(xi
0, x

i
1)

}

with xi
0, x

i
1 ∈ Xλ to the challenger Chal.

2. Chal computes MSK ← FE.Setup(1λ) and then computes CTi ← FE.Enc(MSK,
xi

b) for all i. The challenger Chal then sends {CTi} to the adversary A.
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3. Function queries: The following is repeated an at most polynomial number
of times: A submits a function query C ∈ Cλ to Chal. The challenger Chal
computes SKC ← FE.KeyGen(MSK, C) and sends it to A.

4. If there exists a function query C and challenge message queries (xi
0, x

i
1) such

that C(xi
0) �= C(xi

1), then the output of the experiment is set to ⊥. Otherwise,
the output of the experiment is set to b′, where b′ is the output of A.

Adaptive Security. The above security notion is referred to as selective security
in the literature. One can consider a stronger notion of security, called adaptive
security, where the adversary can interleave the challenge messages and the
function queries in any arbitrary order. Analogous to Definition 2, we can define
an adaptively secure FE scheme. In this paper, we only deal with selectively
secure FE schemes. However, the security of these schemes can be upgraded to
adaptive with no additional cost [3].

Collusions. We can parameterize the FE candidate by the number of function
secret key queries that the adversary can make in the security experiment. If the
adversary can only submit an a priori upper bounded q secret key queries, we say
that the scheme is q-key secure. We say that the functional encryption scheme
is unbounded-key secure if the adversary can make an unbounded (polynomial)
number of function secret key queries. In this work, we will allow the adversary
to make an arbitrary polynomial number of function secret key queries.

FE Candidates vs. FE Schemes. As defined above, an FE scheme must satisfy
both correctness and security, while an FE candidate is simply the set of algo-
rithms. Unless otherwise specified, we will be dealing with FE candidates that
satisfy correctness. We will only refer to FE constructions as FE schemes if it is
known that the construction satisfies both correctness and security.

2.2 Secure Multi-party Computation

The syntax and security definitions for secure multi-party computation can be
found in the full version. In this work, we will deal with protocols that follow
a certain structure, introduced in [31,35], called conforming protocols. The full
syntactic definition of conforming protocols can be found in the full version.

2.3 Garbling Schemes

The definition of garbling schemes can be found in the full version.

2.4 Correlated Randomness Model

In the correlated randomness model, two parties Pi and Pj are given correlated
strings ri,j and rj,i, respectively. If we set ri,j = (k0, k1) for two strings k0, k1
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and rj,i = (b, kb) for a random bit b and the string kb, then these two parties
can now perform a 2-round information-theoretically secure OT, where Pi is the
sender and Pj is the receiver. In the first round, the receiver sends v = b ⊕ c,
where c is the receiver’s choice bit. Then, the sender responds with (y0, y1) =
(m0 ⊕kv,m1 ⊕k1⊕v). The receiver can then determine mc by computing yc ⊕kb.

In this work, we will often say that parties generate correlated randomness
necessary to perform a certain number of OTs. By this, we simply mean that
the parties repeat the above procedure once for each necessary OT (with the
appropriate party as sender/receiver) and use the above 2-round information-
theoretically secure OT protocol for each necessary OT.

3 FE Combiners: Definition

In this section, we give a formal definition of an FE combiner. Intuitively, an
FE combiner FEComb takes n FE candidates, FE1, . . . ,FEn and compiles them
into a new FE candidate with the property that FEComb is a secure FE scheme
provided that at least one of the n FE candidates is a secure FE scheme.

Syntax of a Functional Encryption Combiner. A functional encryption combiner
FEComb for a class of circuits C = {Cλ}λ∈N consists of four polynomial time algo-
rithms (Setup,Enc,KeyGen,Dec) defined as follows. Let Xλ be the input space
of the circuit class Cλ and let Yλ be the output space of Cλ. We refer to Xλ and
Yλ as the input and output space of the combiner, respectively. Furthermore, let
FE1, . . . ,FEn denote the descriptions of n FE candidates.

– Setup, FEComb.Setup(1λ, {FEi}i∈[n]): It takes as input the security param-
eter λ and the descriptions of n FE candidates {FEi}i∈[n] and outputs the
master secret key MSK.

– Encryption, FEComb.Enc(MSK, {FEi}i∈[n],m): It takes as input the master
secret key MSK, the descriptions of n FE candidates {FEi}i∈[n], and a message
m ∈ Xλ and outputs CT, an encryption of m.

– Key Generation, FEComb.Keygen
(
MSK, {FEi}i∈[n], C

)
: It takes as input

the master secret key MSK, the descriptions of n FE candidates {FEi}i∈[n],
and a circuit C ∈ Cλ and outputs a function key SKC .

– Decryption, FEComb.Dec
({FEi}i∈[n],SKC ,CT

)
: It is a deterministic algo-

rithm that takes as input the descriptions of n FE candidates {FEi}i∈[n], a
function secret key SKC , and a ciphertext CT and outputs a value y ∈ Yλ.

Remark 1. In the formal definition above, we have included {FEi}i∈[n], the
descriptions of the FE candidates, as input to all the algorithms of FEComb.
For notational simplicity, we will often forgo these inputs and assume that they
are implicit.

We now define the properties associated with an FE combiner. The three
properties are correctness, polynomial slowdown, and security. Correctness is
analogous to that of an FE candidate, provided that the n input FE candidates
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are all valid FE candidates. Polynomial slowdown says that the running times
of all the algorithms of FEComb are polynomial in λ and n. Finally, security
intuitively says that if at least one of the FE candidates is also secure, then
FEComb is a secure FE scheme. We provide the formal definitions below.

Correctness

Definition 3 (Correctness). Suppose {FEi}i∈[n] are correct FE candidates.
We say that an FE combiner is correct if for every circuit C : Xλ → Yλ ∈ Cλ,
and message m ∈ Xλ it holds that:

Pr

⎡
⎢⎢⎣

MSK ← FEComb.Setup(1λ, {FEi}i∈[n])
CT ← FEComb.Enc(MSK, {FEi}i∈[n],m)

SKC ← FEComb.Keygen(MSK, {FEi}i∈[n], C)
C(m) ← FEComb.Dec({FEi}i∈[n],SKC ,CT)

⎤
⎥⎥⎦ ≥ 1 − negl(λ),

where the probability is taken over the coins of the algorithms and negl(λ) is a
negligible function in λ.

Polynomial Slowdown

Definition 4 (Polynomial Slowdown) An FE combiner FEComb satisfies
polynomial slowdown if on all inputs, the running times of FEComb.Setup,
FEComb.Enc,FEComb.Keygen, and FEComb.Dec are at most poly(λ, n), where
n is the number of FE candidates that are being combined.

IND-Security

Definition 5 (IND-Secure FE Combiner). An FE combiner FEComb is
selectively secure if for any set {FEi}i∈[n] of correct FE candidates, it satis-
fies Definition 2, where the descriptions of {FEi}i∈[n] are public and implicit in
all invocations of the algorithms of FEComb, if at least one of the FE candidates
FE1, . . . ,FEn also satisfies Definition 2.

Note that Definition 2 is the IND-security definition for FE.

Robust FE Combiners and Universal FE

Remark 2. We also define the notion of a robust FE combiner. An FE combiner
FEComb is robust if it is an FE combiner that satisfies the three properties (cor-
rectness, polynomial slowdown, and security) associated with an FE combiner
when given any set of FE candidates {FEi}i∈[n], provided that one is a correct
and secure FE candidate. No restriction is placed on the other FE candidates.
In particular, they need not satisfy correctness at all.

Robust FE combiners can be used to build a universal functional encryption
scheme defined below.
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Definition 6 (T -Universal Functional Encryption). We say that an
explicit Turing machine Πuniv = (Πuniv.Setup,Πuniv.Enc,Πuniv.KeyGen,Πuniv.Dec)
is a universal functional encryption scheme parametrized by T if Πuniv is a correct
and secure FE scheme assuming the existence a correct and secure FE scheme
with runtime < T .

4 Input-Local MPC Protocols

As discussed in Sect. 1.2, if we had a “special” MPC protocol, where every bit of
the transcript is computable by a deterministic function on a constant number of
parties’ inputs and randomness, and the output of the protocol can be computed
solely from the transcript, we could use such a protocol to construct an FE
combiner. Here, we formally define such a protocol and call it an input-local
MPC protocol. Since our goal is to construct FE combiners unconditionally, we
do not want to assume the existence of OT, so we will define our input-local
MPC protocol in the correlated-randomness model.

4.1 Input-Local Protocol Specification

Let Φ be an MPC protocol for n parties P1, . . . , Pn with inputs x1, . . . , xn in the
correlated randomness model. We can view Φ as a deterministic MPC protocol,
where the input of a party Pi is (xi, ri, (ri,j)j �=i), where ri is the randomness used
by Pi and (ri,j , rj,i) for i �= j is the correlated randomness tuple used between
parties Pi and Pj . Φ is called t-input-local if the following holds:

– Input-Local Transcript: Let τ be a transcript of an execution of Φ. Every
bit τα of τ can be written as a deterministic function of the inputs, random-
ness, and correlated randomness dependent on at most t parties. That is,
there exists a deterministic function fα such that

τα = fα ((xi)i∈Sα
, (ri)i∈Sα

, (ri,j)i,j∈Sα
) ,

where |Sα| ≤ t. If i ∈ Sα, then τα depends on party Pi.

– Publicly Recoverable Output: Given a transcript τ of an execution of Φ,
there exists a function Eval such that the output of the protocol Φ for all
parties is given by

y = Eval(τ).

– Security: Φ is simulation secure against n−1 semi-honest corruptions, assum-
ing the existence of one-way functions.

No MPC protocol in the literature for all polynomial-sized circuits in the
correlated randomness model satisfies the specification of a t-input-local MPC
protocol for a constant t. However, the protocols of [31,35] come “close”, and
we show that with a simple transformation, the protocol of [31,35] can be made
t-input-local.

[31,35] show the following.
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Theorem 2 ([31,32,35]). Assuming one-way functions, for any circuit C, there
exists a 2-round MPC protocol in the correlated randomness model that is secure
against semi-honest adversaries that can corrupt up to n − 1 parties.

The MPC protocol satisfying Theorem 2 is the MPC protocol of [35] mod-
ified to operate in the correlated randomness model. In [31], they additionally
modify the protocol of [35] in other ways, since the focus of [31] is on achieving
information-theoretic security for smaller circuit classes and better efficiency.
However, one can simply modify the protocol of [35] to operate in the correlated
randomness model without making the additional modifications present in [31],
a fact which we confirmed with the authors [32].

The MPC protocol of Theorem 2 is not input-local, but can be made input-
local via a simple modification. At a high level, the reason that the above protocol
is not input-local is because parties Pi, as part of the protocol, send garbled
circuits of circuits C[v] that have values v hardcoded in them that depend on
(ri,j)j �=i, the correlated randomness between Pi and all other parties. As a result,
these garbled circuits depend on all parties, and thus, the protocol is not input-
local for a constant t. Fortunately, this issue is easily fixable by instantiating
the garbling scheme used by the protocol in a specific manner. We consider the
garbling scheme for keyed circuits that garbles C[v] by applying Yao’s garbling
scheme to the universal circuit U , where U(C, v, x) = C[v](x). The garbled
circuit of this new scheme consists of Û , the Yao garbling of U , along with input
labels corresponding to C and v. The input labels of this new scheme are the
input labels corresponding to x. Observe now that Û and the input labels for C
are clearly input-local, since they only depend on the party Pi that is garbling.
Furthermore, since every bit of v only depends on a constant number of parties,
each input label for each bit of v also depends on a constant number of parties,
giving us an input-local protocol.

Formally, consider the following garbling scheme.

Definition 7 (Input-Local Garbling Scheme). Let GC = (GrbC,EvalGC)
denote the standard Yao garbling scheme [53] for poly-sized circuits. Let C be a
class of keyed circuits with keyspace V. Let the description length of any C ∈ C
be �1 and of any v ∈ V be �2. Let the input length of any circuit C ∈ C be �3.
Let � = �1 + �2 + �3. Let Ci, vi denote the ith bit of the description of C, v,
respectively. Let GC′ = (GrbC′,EvalGC′) be a garbling scheme for the class of
keyed circuits C defined as follows:

– Garbled Circuit Generation, GrbC′(1λ, C[v]): Let U be the universal cir-
cuit that, on input (C, v, x) with |C| = �1, |v| = �2, and |x| = �3, computes
C[v](x). Compute (Û , (k1, . . . ,k�)) ← GrbC(1λ, U). Output

((Û , kC1
1 , . . . , k

C�1
�1

, kv1
�1+1, . . . , k

v�2
�1+�2

), (k�1+�2+1, . . . ,k�)).

– Evaluation, EvalGC′(Ĉ[v], (kx1
1 , . . . , k

x�3
�3

)): Parse Ĉ[v] as (Û , (k1, k2, . . . ,
k�1+�2)). Run

EvalGC(Û , (k1, . . . , k�1+�2 , k
x1
1 , . . . , k

x�3
�3

))

and output the result.
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Correctness of the above garbling scheme follows immediately from the cor-
rectness of Yao’s garbling scheme and the definition of U . In particular, for every
keyed circuit C[v], for any x ∈ {0, 1}�3 , EvalGC′ runs EvalGC on Û with input
labels corresponding to (C, v, x), giving U(C, v, x) = C[v](x) as desired.

Theorem 3. The garbling scheme of Definition 7 is secure.

Proof. Let SimGC be the simulator for Yao’s garbling scheme. The simulator
SimGC′ operates as follows. Run

(Û , (k1, . . . , k�)) ← SimGC(1λ, φ(U), C[v](x))

and output
((Û , k1, . . . , k�1+�2), (k�1+�2+1, . . . , k�)).

Suppose there exists an adversary A that can distinguish the output of SimGC′

from the real execution. Then, consider the adversary A′ that breaks the secu-
rity of Yao’s garbling scheme by simply querying its challenger on the pair
(U, (C, v, x)), rearranging the components of its received challenge to match the
output of SimGC′, and running A. A′ outputs the result of A. A′ simulates
the role of A’s challenger exactly and, therefore, must win with nonnegligible
advantage, a contradiction. ��

Armed with the above garbling scheme, we are able to obtain an input-local
MPC protocol. By taking the MPC protocol of Theorem 2 and instantiating
the underlying garbling scheme with the one from Definition 7, we arrive at the
following result.

Theorem 4. Assuming one-way functions, there exists a 3-input-local MPC
protocol for any poly-sized circuit C.

Proof. The proof is included in the full version.

5 Combiner-Friendly Homomorphic Secret Sharing
Schemes

As an intermediate step in our construction of an FE combiner, we define and
construct what we call a combiner-friendly homomorphic secret sharing scheme
(CFHSS). Informally, a CFHSS scheme consists of input encoding and function
encoding algorithms. The input encoding algorithm runs on an input x and
outputs input shares si,j,k for i, j, k ∈ [n]. The function encoding algorithm
runs on a circuit C and outputs function shares Ci,j,k for i, j, k ∈ [n]. Then,
the decoding algorithm takes as input the evaluation of all shares Ci,j,k(si,j,k)
and recovers C(x). Looking ahead, our CFHSS scheme has several properties
that will be useful in constructing an FE combiner. Recall that the high-level
idea of our construction was to view each FE candidate as a party Pi in an
MPC protocol. In our construction of a CFHSS scheme, each input and function
share depends on only the state of a constant number of parties. In particular,
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share si,j,k will depend only on the state of parties Pi, Pj , and Pk. Informally,
the security notion of a CFHSS scheme says that if the shares corresponding
to some index i∗ remain hidden, then the input is hidden to a computationally
bounded adversary and only the evaluation C(x) is revealed.

5.1 Definition

Definition 8. A combiner-friendly homomorphic secret sharing scheme,
CFHSS = (InpEncode,FuncEncode,Decode), for a class of circuits C = {Cλ}λ∈N

with input space Xλ and output space Yλ supporting n ∈ N candidates consists
of the following polynomial time algorithms:

– Input Encoding, InpEncode(1λ, 1n, x): It takes as input the security param-
eter λ, the number of candidates n, and an input x ∈ Xλ and outputs a set
of input shares {si,j,k}i,j,k∈[n].

– Function Encoding, FuncEncode(1λ, 1n, C): It is an algorithm that takes
as input the security parameter λ, the number of candidates n, and a circuit
C ∈ C and outputs a set of function shares {Ci,j,k}i,j,k∈[n].

– Decoding, Decode({Ci,j,k(si,j,k)}i,j,k∈[n]): It takes as input a set of evalua-
tions of function shares on their respective input shares and outputs a value
y ∈ Yλ ∪ {⊥}.
A combiner-friendly homomorphic secret sharing scheme, CFHSS, is required

to satisfy the following properties:

– Correctness: For every λ ∈ N, circuit C ∈ Cλ, and input x ∈ Xλ, it holds
that:

Pr

⎡
⎣

{si,j,k}i,j,k∈[n] ← InpEncode(1λ, 1n, x)
{Ci,j,k}i,j,k∈[n] ← FuncEncode(1λ, 1n, C)
C(x) ← Decode({Ci,j,k(si,j,k)}i,j,k∈[n])

⎤
⎦ ≥ 1 − negl(λ),

where the probability is taken over the coins of the algorithms and negl(λ) is
a negligible function in λ.

– Security:

Definition 9 (IND-secure CFHSS). A combiner-friendly homomorphic secret
sharing scheme CFHSS for a class of circuits C = {Cλ}λ∈[N] and input space
X = {Xλ}λ∈[N] is selectively secure if for any PPT adversary A, there exists a
negligible function μ(·) such that for all sufficiently large λ ∈ N, the advantage
of A is

AdvCFHSSA =
∣∣∣Pr[ExptCFHSSA (1λ, 1n, 0) = 1] − Pr[ExptCFHSSA (1λ, 1n, 1) = 1]

∣∣∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N and n ∈ N, the experiment
ExptCFHSSA (1λ, 1n, b) is defined below:

1. Secure share: A submits an index i∗ ∈ [n] that it will not learn the input
shares for.
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2. Challenge input queries: A submits input queries,
(
x�
0, x

�
1

)
�∈[L]

with x�
0, x

�
1 ∈ Xλ to the challenger Chal, where L = poly(λ) is chosen by A.

3. For all �, Chal computes {s�
i,j,k}i,j,k∈[n] ← InpEncode(1λ, 1n, x�

b). For all �, the
challenger Chal then sends {s�

i,j,k}i,j,k∈[n]\{i∗}, the input shares that do not
correspond to i∗, to the adversary A.

4. Function queries: The following is repeated an at most polynomial number
of times: A submits a function query C ∈ Cλ to Chal. The challenger Chal
computes function shares {Ci,j,k}i,j,k∈[n] ← FuncEncode(1λ, 1n, C) and sends
them to A along with all evaluations {Ci,j,k(s�

i,j,k)}i,j,k∈[n] for all � ∈ [L].
5. If there exists a function query C and challenge message queries (x�

0, x
�
1) such

that C(x�
0) �= C(x�

1), then the output of the experiment is set to ⊥. Otherwise,
the output of the experiment is set to b′, where b′ is the output of A.

5.2 Construction

Using 3-input-local MPC protocols {ΦC} for a circuit class C and a PRF, we will
construct a combiner-friendly homomorphic secret sharing scheme for C. For a
circuit C ∈ C and number of parties n, we say that ΦC is an MPC protocol for
C on n parties if it computes the function C(x1 ⊕ . . .⊕xn) on inputs x1, . . . , xn.

Formally, we show the following.

Theorem 5. Given 3-input-local MPC protocols {ΦC} for a circuit class C
and assuming one-way functions, there exists a combiner-friendly homomorphic
secret sharing scheme for C for n = poly(λ) candidates.

Using Theorem 4 to instantiate the 3-input-local MPC protocols, we imme-
diately arrive at the following.

Theorem 6. Assuming one-way functions, there exists a combiner-friendly
homomorphic secret sharing scheme for P/poly for n = poly(λ) candidates.

Notation:

– Let PRF be a pseudorandom function with λ-bit keys that takes λ-bit inputs
and outputs in {0, 1}∗. PRF will be used to generate the randomness needed
for various randomized algorithms. As the length of randomness needed varies
by use case (but is always polynomial in length), we don’t specify the output
length of PRF here and the output length needed will be clear from context.
It is easy to build our required pseudorandom function from one with a fixed
length output. Let PRF′ be a pseudorandom function that maps {0, 1}2λ-
bit inputs to a single output bit in {0, 1}. Then, to evaluate PRF(K,x) to
an appropriate output length �, we would simply compute the output bit
by bit by evaluating PRF′(K,x||1),PRF′(K,x||2), . . . ,PRF′(K,x||�). When we
write (r1, r2, r3) := PRF(K,x), we mean that we generate the randomness
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needed for three different algorithms using this PRF, where the length of
each ri depends on the amount of randomness needed by the algorithm. This
can be done in the same manner, by computing ri bit by bit by evaluating
PRF′(K,x||i||1),PRF′(K,x||i||2), . . . etc.

– For a 3-input-local protocol Φ for a circuit C ∈ C, we use the same syntax as
in Sect. 4 to refer to the various components and algorithms associated with
this protocol. We implicitly assume that the description of the 3-input-local
protocol Φ for C is included in the descriptions of the function shares for C.

– Let Corr(1λ, 1�, i, j) → (ri,j , rj,i) be the function that on input the security
parameter λ, a length parameter �, and indices i �= j ∈ [n] outputs correlated
random strings ri,j and rj,i each in {0, 1}�. We will assume that i < j and
if not, we implicitly assume that the indices are swapped when evaluating
the algorithm. Looking ahead, � is set as the the length of the correlated
randomness required between two parties in the execution of the 3-input-
local protocol. For simplicity, we will omit the parameter � in the description
below when it is clear from the context. We note that Corr can be implemented
by generating random OT-correlations.

– In the construction, for simplicity, we will denote input and function shares
for the tuple of indices (i, i, i) by si and Ci, respectively. Similarly, we will
denote the input and function shares for the tuple of indices (i, j, i) with i �= j
by si,j and Ci,j , respectively. We will denote input and function shares for
the tuple of indices (i, j, k) with i �= j �= k by si,j,k and Ci,j,k respectively.
All other input and function shares are set to ⊥.

Overview: We provided a sketch of our construction in Sect. 1.2. Here, we
provide more details to assist in the understanding of our construction. The
input encoding algorithm will take an input x, n-out-of-n secret share it into
shares x1, . . . , xn, sample PRF keys Ki for i ∈ [n] and shared PRF keys
Kij for i < j ∈ [n]. Shares of the form si will be (xi,Ki), shares of the
form si,j will be (xi, xj ,Ki,Kj ,Kij), and shares of the form si,j,k will be
(xi, xj , xk,Ki,Kj ,Kk,Kij ,Kik,Kjk). These will serve as the inputs to the func-
tion shares {Ci,j,k}i,j,k∈[n]. Intuitively, a share si,j,k (or si,j or si) contains all
the input shares and PRF keys that correspond to the indices i, j, k (or i, j or i).

The description of function shares of the form Ci, Ci,j , and Ci,j,k is given
in Fig. 3, Fig. 4, and Fig. 5, respectively. The purpose of Ci, Ci,j , and Ci,j,k is to
simply output input-local bits in the transcript of ΦC dependent on either only
Pi, the two parties Pi and Pj , or the three parties Pi, Pj , Pk, respectively.

Given evaluations of all the function shares, decoding operates by using the
evaluations to obtain a transcript τ of an execution of ΦC and then running the
evaluation procedure of ΦC .

Construction: We now provide the formal construction.

– Input Encoding, InpEncode(1λ, 1n, x):
• XOR secret share x uniformly at random across n shares such that x1 ⊕

. . . ⊕ xn = x.
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• For i ≤ j ∈ [n], sample distinct PRF keys Kij . For i > j ∈ [n], set
Kij = Kji. Set Ki = Kii.

• For i ∈ [n], set si = (xi,Ki).
• For i, j ∈ [n] with i < j, set si,j = (xi, xj ,Ki,Kj ,Kij).
• For i, j, k ∈ [n] with i < j < k, set si,j,k = (xi, xj , xk,Ki,Kj ,Kk,

Kij ,Kik,Kjk).
• Set all other shares to ⊥.
• Output all shares {si,j,k}i,j,k∈[n].

– Function Encoding, FuncEncode(1λ, 1n, C): Let Φ denote the 3-input-local
MPC protocol for C on n parties. For every bit τα in τ , a transcript of Φ,
let Sα denote the set of parties that τα depends on and fα be the function
that computes τα with respect to these parties’ inputs and randomness (see
Sect. 4).

• Sample tag
tagrand from {0, 1}λ, uniformly at random.

• For i ∈ [n], function share Ci is given by circuit Ci in Fig. 3.
• For i, j ∈ [n] with i < j, function share Ci,j is given by circuit Ci,j in

Fig. 4.
• For i, j, k ∈ [n] with i < j < k, function share Ci,j,k is given by circuit

Ci,j,k in Fig. 5.
• Set all other function shares to ⊥ and output {Ci,j,k}i,j,k∈[n].

– Decoding, Decode({Ci,j,k(si,j,k)}i,j,k∈[n]): It does the following:
• Rearrange all input-local bits τα output by the function shares to obtain

τ , the transcript of an execution of Φ.
• Run Eval(τ) to obtain the output y.

Correctness: Correctness follows from the correctness of the underlying set of
3-input-local MPC protocols {φC}. In particular, for any circuit C ∈ Cλ and
input x ∈ Xλ, we note that the Decode algorithm obtains τ , the transcript of an
execution of φC . Therefore, by running Eval on τ , Decode obtains

y = C(x1 ⊕ . . . ⊕ xn) = C(x)

as desired.

Ci

Input: Input xi and PRF key Ki.
Hardwired: Index i, tag tagrand in {0, 1}λ.

• Compute ri := PRF(Ki, tagrand).
• For every input-local bit τα in a transcript τ of Φ with Sα = {i}, compute

τα := fα(xi, ri).
• Output (τα)τα input-local with Sα={i}.

Fig. 3. Description of function share Ci.
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Ci,j

Input: Inputs xi, xj and PRF keys Ki, Kj, Kij .
Hardwired: Indices i, j, tag tagrand in {0, 1}λ.

• For u ∈ {i, j}, compute ru := PRF(Ku, tagrand).
• Compute rCorrij := PRF(Kij , tagrand).
• Compute (ri,j , rj,i) := Corr(1λ, i, j; rCorrij ).
• For every bit input-local bit τα in a transcript τ of Φ with Sα = {i, j},
compute

τα := fα((xu)u∈Sα , (ru)u∈Sα , (ru,v)u,v∈Sα).

• Output (τα)τα input-local with Sα={i,j}.

Fig. 4. Description of function share Ci,j .

Security: The security proof can be found in the full version.

6 Construction of an FE Combiner from a CFHSS
Scheme

In this section, we show how to use a CFHSS scheme and one-way functions to
construct an FE combiner. Instantiating the CFHSS scheme with the construc-
tion in Sect. 5 and the one-way function with the concatenation of the one-way
function candidates implied by our FE candidates (as described in Sect. 1.2), we
arrive at the following result.

Theorem 7. There exists an unconditionally secure unbounded-key FE com-
biner for n = poly(λ) FE candidates for P/poly.

In the rest of this section, we show Theorem 7.

6.1 d-Nested FE

A tool used in our construction is d-nested FE (for d = 3). d-nested FE is a
new FE candidate that can be created easily from d FE candidates by simply
encrypting in sequence using the d FE candidates. Intuitively, this new FE candi-
date will be secure as long as one of the d candidates is secure since an adversary
should be unable to break the encryption of the secure candidate. d-nested FE
can be viewed as an FE combiner that can only handle a constant number of
FE candidates since the runtime of its algorithms may depend exponentially on
d. The construction and proof of d-nested FE can be found in the full version.
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Ci,j,k

Input: Inputs xi, xj , xk and PRF keys Ki, Kj , Kk, Kij , Kik, Kjk.
Hardwired: Indices i, j, k, tag tagrand in {0, 1}λ.

• For u ∈ {i, j, k}, compute ru := PRF(Ku, tagrand).
• Compute rCorrij := PRF(Kij , tagrand), rCorrik := PRF(Kik, tagrand), and rCorrjk :=
PRF(Kjk, tagrand).

• Compute (ri,j , rj,i) := Corr(1λ, i, j; rCorrij ), (ri,k, rk,i) := Corr(1λ, i, k; rCorrik ),
and (rj,k, rk,j) := Corr(1λ, j, k; rCorrjk ).

• For every bit input-local bit τα in a transcript τ of Φ with Sα = {i, j, k},
compute

τα := fα((xu)u∈Sα , (ru)u∈Sα , (ru,v)u,v∈Sα).

• Output (τα)τα input-local with Sα={i,j,k}.

Fig. 5. Description of circuit Ci,j,k.

6.2 Construction

We now formally describe the construction. First, we provide some notation that
will be used throughout the construction.

Notation:

– Let FE1, . . . ,FEn denote n FE candidates. In the following construction, we
assume that the descriptions {FEi}i∈[n] are implicit in all the algorithms of
FEComb.

– Let FEijk denote the 3-nested FE candidate derived by nesting FEi, FEj , and
FEk.

– Let CFHSS = (InpEncode,FuncEncode,Decode) be a combiner-friendly homo-
morphic secret sharing scheme. Let �output denote the length of the outputs
obtained from the evaluation of function shares on input shares.

– Let E be any λ-bit CPA-secure secret-key encryption scheme with message
space {0, 1}�output .

– Let �x = �x(λ) denote the length of the messages and let �E = �E(λ) denote
the length of the encryption key for the scheme E.

Construction:

– FEComb.Setup(1λ): On input the security parameter, it runs FEijk.Setup(1λ)
for i, j, k ∈ [n] and E.SK ← E.Setup(1λ). It outputs MSK =
({MSKijk}i,j,k∈[n],E.SK).

– FEComb.Enc(MSK, x ∈ {0, 1}�x): It executes the following steps.
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• First, encode x into n3 shares by running CFHSS.InpEncode(1λ, 1n, x) to
compute {si,j,k}i,j,k∈[n]. Then, for all i, j, k ∈ [n], compute

CTijk = FEij .Enc
(
MSKijk, (si,j,k, 0�E , 0)

)
.

• Output CT = {CTijk}i,j,k∈[n].
– FEComb.KeyGen(MSK, C): It executes the following steps.

• For all i, j, k ∈ [n], it computes ci,j,k ← E.Enc(E.SK, 0�output), where �output
is the length of evaluations of function shares on input shares of CFHSS.

• It computes {Ci,j,k}i,j,k∈[n] ← CFHSS.FuncEncode(1λ, 1n, C).
• For all i, j, k ∈ [n], it computes SKHi,j,k

← FEijk.KeyGen (MSKijk,Hi,j,k),
where circuit Hi,j,k is described in Fig. 6.

• It outputs SKC = ({SKHi,j,k
}i,j,k∈[n]).

Hi,j,k

Input: Input share si,j,k, a string t ∈ {0, 1} E, and a bit b
Hardwired: Ciphertext ci,j,k, circuit Ci,j,k

∗ If b = 0, output E.Dec(t, ci,j,k).

∗ Otherwise, output Ci,j,k(si,j,k).

Fig. 6. Description of the evaluation circuit.

– FEComb.Dec(SKC ,CT): Parse SKC as ({SKHi,j,k
}i,j,k∈[n]) and CT as

{CTijk}i,j,k∈[n]. For all i, j, k ∈ [n], compute yi,j,k = FEijk.Dec(SKHi,j,k
,

CTijk).
Run CFHSS.Decode({yi,j,k}i,j,k∈[n]) and output the result.

Correctness: Correctness follows from the correctness of CFHSS and the fact that
all correct encryptions are encryptions of messages of the form (si,j,k, 0�E , 0).
In particular, for all i, j, k ∈ [n], Hi,j,k(si,j,k, 0�E , 0) = Ci,j,k(si,j,k) and then
CFHSS.Decode({Ci,j,k(si,j,k)}i,j,k∈[n]) = C(x) by the correctness of CFHSS.

Polynomial Slowdown: The fact that all the algorithms of FEComb run in time
poly(λ, n) is immediate from the efficiency of the FE candidates, CFHSS, and E
and the fact that there are n3 = poly(n) different tuples (i, j, k) for i, j, k ∈ [n].

6.3 Security Proof

The security proof can be found in the full version.
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7 Robust FE Combiners and Universal FE

We can consider a stronger notion of an FE combiner called a robust FE com-
biner. A robust FE combiner is an FE combiner that satisfies correctness and
security provided that at least one FE candidate, FEi, satisfies both correctness
and security. No restrictions are placed on the other FE candidates. In particular,
they may satisfy neither correctness nor security. We note that the FE combiner
constructed in Sect. 6 is not robust. However, [2] showed how to unconditionally
transform an FE combiner into a robust FE combiner.

Theorem 8 ([2]). If there exists an FE combiner, then there exists a robust
FE combiner.

Combining Theorem 8 with Theorem 7, we obtain the following corollary.

Corollary 3. There exists an unconditionally secure unbounded-key robust FE
combiner for n = poly(λ) FE candidates for P/poly.

Universal Functional Encryption: Robust FE combiners are closely related to
the notion of universal functional encryption. Universal functional encryption is
a construction of functional encryption satisfying the following simple guarantee.
If there exists a Turing Machine with running time bounded by some T (n) =
poly(n) that implements a correct and secure FE scheme, then the universal
functional encryption construction is itself a correct and secure FE scheme. Using
the existence of a robust FE combiner (Corollary 3) and the results of [2,5], we
obtain the following corollary.

Corollary 4. There exists a universal unbounded-key functional encryption
scheme for P/poly.
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