
Modeling for Three-Subset Division
Property Without Unknown Subset
Improved Cube Attacks Against Trivium

and Grain-128AEAD

Yonglin Hao1(B), Gregor Leander2, Willi Meier3, Yosuke Todo4(B),
and Qingju Wang5

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
haoyonglin@yeah.net

2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
gregor.leander@rub.de

3 FHNW, Windisch, Switzerland
willimeier48@gmail.com

4 NTT Secure Platform Laboratories, Tokyo 180-8585, Japan
yosuke.todo.xt@hco.ntt.co.jp

5 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
qingju.wang@uni.lu

Abstract. A division property is a generic tool to search for integral dis-
tinguishers, and automatic tools such as MILP or SAT/SMT allow us to
evaluate the propagation efficiently. In the application to stream ciphers,
it enables us to estimate the security of cube attacks theoretically, and it
leads to the best key-recovery attacks against well-known stream ciphers.
However, it was reported that some of the key-recovery attacks based
on the division property degenerate to distinguishing attacks due to the
inaccuracy of the division property. Three-subset division property (with-
out unknown subset) is a promising method to solve this inaccuracy prob-
lem, and a new algorithm using automatic tools for the three-subset divi-
sion property was recently proposed at Asiacrypt2019. In this paper, we
first show that this state-of-the-art algorithm is not always efficient and
we cannot improve the existing key-recovery attacks. Then, we focus on
the feature of the three-subset division property without unknown subset
and propose another new efficient algorithm using automatic tools. Our
algorithm is more efficient than existing algorithms, and it can improve
existing key-recovery attacks. In the application to Trivium, we show
a 841-round key-recovery attack. We also show that a 855-round key-
recovery attack, which was proposed at CRYPTO2018, has a critical flaw
and does not work. As a result, our 841-round attack becomes the best
key-recovery attack. In the application to Grain-128AEAD, we show that
the known 184-round key-recovery attack degenerates to distinguishing
attacks. Then, the distinguishing attacks are improved up to 189 rounds,
and we also show the best key-recovery attack against 190 rounds.

Keywords: Stream ciphers · Cube attack · Division property ·
Three-subset division property · MILP · Trivium · Grain-128AEAD

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 466–495, 2020.
https://doi.org/10.1007/978-3-030-45721-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_17

Modeling for Three-Subset Division Property Without Unknown Subset 467

1 Introduction

Division Property. Integral cryptanalysis [1], a.k.a. Square attacks [2] or
higher-order differential attacks [3], are one of the most powerful cryptanaly-
sis techniques. Let CI be the set of chosen plaintexts. The integral distinguisher
for a cipher Ek is defined as the property

⊕
p∈CI

Ek(p) = 0 for any secret key k.
Since the probability that such a zero-sum property holds is low for ideal ciphers,
we can distinguish Ek from an ideal one.

The division property, as originated in [4], is the most accurate and generic
tool to search for integral distinguishers. Ever since its proposal, it has been
widely applied to many block ciphers ([5–8] etc.). For a set of texts X ⊆ F

n
2 , its

division property is defined by dividing a set of u’s into two subsets: vectors
u ∈ F

n
2 of the 1st subset satisfy

⊕
x∈X

xu = 0 (referred as 0-subset hereafter),
and those of the 2nd subset make

⊕
x∈X

xu undetermined (referred as unknown
subset hereafter). The initial division property is defined according to a set of
chosen plaintexts, and those of the intermediate states are deduced round by
round according to propagation rules. Finally, the division property for the set
of corresponding ciphertexts is evaluated, and the integral distinguisher can be
derived accordingly. The propagation of the division property was evaluated with
the breadth-first search algorithm in [4,5,7], but it is computationally imprac-
tical for ciphers with large block size. Then, Xiang et al. introduced the useful
concept called division trail and propose an MILP-based algorithm [9], enabling
us to apply the division property to various ciphers ([10–12] etc.). Nowadays, the
division property is often used not only for third party cryptanalysis but also
for the design of new ciphers ([13,14] etc.).

Although the division property can find more accurate integral distinguishers
than other methods, the accuracy is never perfect. As is pointed out by Todo and
Morii [7], the practically verified 15-round integral distinguisher for Simon32 [15]
cannot be proved with the conventional division property. To find more accurate
distinguishers, the three-subset division property was proposed in [7]. A set of u’s
is divided into three subsets rather than two ones: the first one is the 0-subset,
another one is the unknown subset, and the third one is the subset satisfying⊕

x∈X
xu = 1 (referred as 1-subset hereafter). The three-subset division property

enables us to prove the 15-round integral distinguisher of Simon32 [7].
Despite of its successful combination of the MILP and the conventional divi-

sion property, the MILP modeling technique does not work quite well with the
three-subset version. Very recently, two methods were proposed to tackle this
problem. The first method is a variant of the three-subset division property [16].
Although it sacrifices quite some accuracy of the three-subset division property,
this method has MILP-model-friendly propagation rules and improves some inte-
gral distinguishers. The latter, proposed by Wang et al. [17], models the prop-
agation for the three-subset division property accurately. Wang et al.’s idea is
to combine the MILP with the original breadth-first search algorithm [7]. In
their algorithm, each node on the breadth-first search algorithm is regarded as
the starting point of division trails, and the MILP evaluates whether there is a

468 Y. Hao et al.

feasible solution from every node. When there is no feasible solution, we can
prune these nodes from the breadth-first search algorithm as redundant ones.

Cube Attack. The cube attack was proposed by Dinur and Shamir in [18]. For
a cipher with public variables v ∈ F

m
2 and secret variables x ∈ F

n
2 , the cipher

can be regarded as a polynomial of v,x denoted as f(x,v). A set of indices,
referred as the cube indices, is selected as I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . ,m}.
Such an I determines a specific structure called cube, denoted as CI , containing
2|I| values where variables in {vi1 , vi2 , . . . , vi|I|} take all possible combinations
of values and all remaining (key and non-cube IV) variables are static. Then the
sum of f over all values of the cube CI is

⊕

CI

f(x,v) =
⊕

CI

(tI · p(x,v) + q(x,v)) = p(x,v),

where tI denotes a monomial as tI = vi1 · vi2 · · · vi|I| , and each term of q(x,v)
misses at least one variable from {vi1 , vi2 , . . . , vi|I|}. Then, p(x,v) is called the
superpoly of the cube CI . The cube attack consists of two steps. First, attackers
recover the superpoly in the offline phase. Then, attackers query the cube to the
encryption oracle, compute the summation, and get the value of the superpoly.
The secret key can be recovered when the polynomial p(x,v) is simple. Therefore,
the superpoly recovery plays the critical role in the cube attack.

Previously, superpolies could only be recovered experimentally. Therefore,
the size of cube indices |I| had to be limited within practical reach. In [11],
the division property was first introduced to cube attacks, and it enables us to
identify the secret variables NOT involved in the superpoly efficiently. After
removing such secret variables, the remaining variables are stored into the set
J as the secret variables that might be involved. It enables the attackers to
recover the truth table of the superpoly with a time complexity 2|I|+|J|. Then,
Wang et al. improved it by introducing flag and term enumeration technique
that can lower the complexities for the superpoly recoveries [12]. It is noticeable
that neither [11] nor [12] recovers the superpoly directly, and it only guarantees
the time complexity to recover the superpoly p(x,v). They only identify the
key variables (or monomials [12]) and make the assumption that such variables
(monomials) might be involved in the superpoly. If such an assumption does
not hold, the superpoly can be much simpler than estimated, or even in the
extreme case: p ≡ 0 degenerates key-recovery attacks to distinguishing attacks.
Such degeneration issues are reported in [19] and [17], where Wang et al.’s attack
on 839-round Trivium in [12] cannot recover secret keys because p ≡ 0.

Motivation. Our work is motivated by the latest three-subset division prop-
erty model with pruning technique [17]. In its application to the cube attack,
they claim that the three-subset division property without unknown subset can
recover the actual superpoly because it deterministically divides the set of u ∈ F

n
2

into two subsets whose summations are either 0 or 1. We do not need to assume

Modeling for Three-Subset Division Property Without Unknown Subset 469

Table 1. Summary of flaws or issues in some of the previous best key-recovery attacks

Cipher # Rounds Ref. Note Where discovered

Trivium 839 [12] Degeneration to distinguisher [17,19]

Trivium 855 [20] Attack does not work because of
a flaw in the degree estimation

This paper

Grain-128a 184 [12] Degeneration to distinguisher This paper

the accuracy of the division property, and the recovered superpolies are always
accurate. In spite of such a powerful tool, it was used to degenerate the key-
recovery attack against 839-round Trivium in [12]. Such a degeneration from
key-recovery to distinguisher implies unexpectedly simpler superpolies. There-
fore, we can expect that the superpolies for 840-round Trivium are also simpler
than previous estimations, and the key-recovery attacks can be carried out to 840
or more rounds. Thus, we implemented and executed the algorithm based on the
pruning technique, and we find that the algorithm is not always efficient: we can-
not recover the superpoly of 840-round Trivium in reasonable time. To recover
the more complicated superpoly, a more efficient algorithm for the three-subset
division property is required.

Our Contribution. We propose a new modeling method for the three-subset
division property without unknown subset. Here, we first introduce a modified
three-subset division property that is completely equivalent with the three-subset
division property without unknown subset. While the original three-subset divi-
sion property without unknown subset is defined by using the set L, the modified
one is defined by using the multiset L̃ instead of the set L, and it is suited to
modeling with MILP or SAT/SMT solvers. The previous algorithm focuses on
the feasibility of the model, but our algorithm focuses on all feasible solutions
that are enumerated by using the solver.

To demonstrate the efficiency of our new algorithm, we apply it to cube and
cube-like attacks against Trivium and Grain-128AEAD. We have two types of
contributions. The first one is to show flaws or issues in some of the best previous
key-recovery attacks, and these results are summarized in Table 1. The second
one is the best key-recovery attacks against Trivium and Grain-128AEAD, and
these results are summarized in Table 2.

We first apply our algorithm to the superpoly recovery for 840-round Triv-
ium, which was impossible in the previous algorithm. As a result, we can recover
the exact superpoly for not only 840-round Trivium but also for 841-round
Trivium. Moreover, the recovered superpolies are simple balanced Boolean func-
tions. In other words, we can recover 1-bit of information on the secret key
against 840- and 841-round Trivium, and exhaustive search with the recovered
superpoly allows us to recover the entire secret key with the time complexity
279. Note that the recovered superpoly is accurate and there is no assumption
like in the theoretical superpoly recoveries [11,12]. We next use our algorithm to

470 Y. Hao et al.

Table 2. Summary of our results

Cipher # Rounds Type of attacks Time complexity

Trivium 840 Key recovery 279

Trivium 841 Key recovery 279

Grain-128AEAD 184, 185, 186, 187, 188, 189 Distinguisher 296

Grain-128AEAD 190 Key recovery 2123

verify a new-type of cube attack [20] shown by Fu et al. In the new-type of cube
attack, the part of secret key bits is first guessed, one bit of the intermediate
state (denoted by P1) is computed, and the sum of (1 + P1) · z over the cube
is evaluated, where z denotes the key stream bit. The authors claimed that the
sum of (1 + P1) · z can be simpler than the sum of z by choosing P1 appro-
priately. As a result, they claimed that the algebraic degree of (1 + P1) · z is
at most 70. Unfortunately, this claim was based on their algorithm including
some man-made work that is not written in the paper, and a cluster of 600–2400
cores is necessary to run their code. Thus, no one can verify their algorithm.
Our algorithm is very simple, can run on a normal PC, and recovers the exact
superpoly. As we recover the superpoly of (1+P1) ·z over the cube, we find that
the algebraic degree of (1+P1) ·z is not bounded by 70, and there is a monomial
whose degree is 75 + 26 = 101. In other words, even if we guess the correct P1,
the sum of (1 + P1) · z over the cube is not 0. It implies that we cannot attack
855-round Trivium by using their method.

Another application is Grain-128AEAD, which was previously referred to as
Grain-128a. Grain-128AEAD is one of the 2nd round candidates of the NIST
LWC standardization process. And the specification is slightly revised from
Grain-128a according to [21,22]. Assuming that the first pre-output key stream
can be observed, there is no difference between Grain-128AEAD and Grain-128a
in the context of the cube attack. As a result, we show that the key-recovery
attack against 184-round Grain-128AEAD shown in [12] is a distinguisher rather
than a key recovery. Moreover, we show that the distinguishing attack can be
improved up to 189 rounds. From 190 rounds onwards, the superpoly involves
some secret key bits, and it can be used in a key-recovery attack. However, since
the recovered superpoly is highly biased toward 0, using one superpoly is not
sufficient to recover any secret key bit. Therefore, we recover 15 different super-
polies for 190-round Grain-128AEAD, and show an attack procedure to recover
the secret key by using their superpolies. As a result, we can recover the secret
key of 190-round Grain-128AEAD with 2123 time complexity.

2 Brief Introduction of Division Property

We first introduce some notations for bitvectors. For any bitvector x ∈ F
m
2 ,

x[i] denotes the ith bit of x. Given two bitvectors x ∈ F
m
2 and u ∈ F

m
2 , xu =∏m

i=1 x[i]u[i]. Moreover, x � u denotes x[i] ≥ u[i] for all i ∈ {1, 2, . . . ,m}.

Modeling for Three-Subset Division Property Without Unknown Subset 471

2.1 Conventional Division Property

The (conventional) division property was proposed at Eurocrypt 2015, and it is
regarded as the generalization of the integral property.

Definition 1 ((Bit-based) division property). Let X be a multiset whose
elements take a value of Fm

2 , and k ∈ F
m
2 . When the multiset X has the division

property D1m

K
, it fulfills the following conditions:

⊕

x∈X

xu =

{
unknown if there are k ∈ K s.t. u � k,

0 otherwise.

For example, when a multiset X ⊂ F
4
2 has the division property

D14

{1100,1010,0011}, it guarantees that
⊕

x∈X
xu = 0 for any u ∈ {0000, 1000, 0100,

0010, 0001, 1001, 0110, 0101}.

2.2 Three-Subset Division Property

The set of u is divided into two subsets in the conventional division property,
where one is the subset such that

⊕
x∈X

xu is unknown and the other is the
subset such that the sum is 0. Three-subset division property was proposed in
[7], where the number of divided subsets is extended from two to three.

Definition 2 (Three-subset division property). Let X be a multiset whose
elements take a value of Fm

2 , and k ∈ F
m
2 . When the multiset X has the three-

subset division property D1m

K,L, it fulfills the following conditions:

⊕

x∈X

xu =

⎧
⎪⎨

⎪⎩

unknown if there are k ∈ K s.t. u � k,

1 else if there is � ∈ L s.t. u = �,

0 otherwise.

For example, when a multiset X ⊂ F
4
2 has the three-subset division property

D14

K,L, where K = {1100, 1010, 0011} and L = {1000, 0010, 0110}, it guarantees
that

⊕
x∈X

xu is 0 for any u ∈ {0000, 0100, 0001, 1001, 0101} and 1 for any
u ∈ {1000, 0010, 0110}.

2.3 Propagation Rules for Division Property

The propagation rule of the division property is shown for three basic operations:
“copy,” “and,” and “xor” in [7].

Rule 1 (copy). Let F be a copy function, where the input x ∈ F
m
2 and the

output is calculated as (x[1], x[1], x[2], x[3], . . . , x[m]). Let X and Y be the

472 Y. Hao et al.

input and output multisets, respectively. Assuming that X has D1m

K,L, Y has
D1m+1

K′,L′ , where K
′ and L

′ are computed as

K
′ ←

{
(0, 0, k[2], . . . , k[m]), if k[1] = 0

(1, 0, k[2], . . . , k[m]), (0, 1, k[2], . . . , k[m]), if k[1] = 1
,

L
′ ←

{
(0, 0, �[2], . . . , �[m]), if �[1] = 0

(1, 0, �[2], . . . , �[m]), (0, 1, �[2], . . . , �[m]), (1, 1, �[2], . . . , �[m]) if �[1] = 1
.

from all k ∈ K and all � ∈ L, respectively. Here, K
′ ← k (resp. L

′ ← �)
denotes that k (resp. �) is inserted into K

′ (resp. L′).
Rule2 (and). Let F be a function compressed by an AND, where the input

x ∈ F
m
2 and the output is calculated as (x[1]∧x[2], x[3], . . . , x[m]). Let X and

Y be the input and output multisets, respectively. Assuming that X has D1m

K,L,
Y has D1m−1

K′,L′ , where K
′ is computed from all k ∈ K as

K
′ ←

(⌈
k[1] + k[2]

2

⌉

, k[3], k[4], . . . , k[m]
)

.

Moreover, L′ is computed from all � ∈ L s.t. (�1, �2) = (0, 0) or (1, 1) as

L
′ ←

(⌈
�[1] + �[2]

2

⌉

, �[3], �[4], . . . , �[m]
)

.

Rule3 (xor). Let F be a function compressed by an XOR, where the input
x ∈ F

m
2 , and the output is calculated as (x[1]⊕x[2], x[3], . . . , x[m]). Let X and

Y be the input and output multisets, respectively. Assuming that X has D1m

K,L,
Y has D1m−1

K′,L′ , where K
′ is computed from all k ∈ K s.t. (k[1], k[2]) = (0, 0),

(1, 0), or (0, 1) as

K
′ ← (k[1] + k[2], k[3], k[4], . . . , k[m]).

Moreover, L
′ is computed from all � ∈ L s.t. (�[1], �[2]) = (0, 0), (1, 0), or

(0, 1) as

L
′ x←− (�[1] + �[2], �[3], �[4], . . . , �[m]) .

Here, L′ x←− � denotes that � is inserted if it is not included in L
′. If it is already

included in L
′, � is removed from L

′. Hereinafter, we call this property the
cancellation property.

Another important rule is that bitvectors in L influence K. Assuming that a
state has D1m

K,L, the secret key is XORed with the first bit in the state. Then, for
all � ∈ L satisfying �[1] = 0, a new bitvector (1, �[2], . . . , �[m]) is generated and
stored into K. Hereinafter, we call this property the unknown-producing property.

Modeling for Three-Subset Division Property Without Unknown Subset 473

2.4 Various Algorithms to Evaluate Propagation of Division
Property and Three-Subset Division Property

Breadth-First Search Algorithm. Evaluating the propagation of the division
property is not easy. The first few papers [4,5,7] use the so-called breadth-first
search algorithm, where Ki+1 (resp. Li+1) is computed from Ki (resp. Li) from
i = 0 to i = R − 1 step by step to evaluate R-round ciphers. Each node in the
depth level i corresponds to each bitvector in Ki and Li. When the block length
is large, the sizes of Ki and Li increase explosively. Therefore, we cannot manage
all nodes, and the in breadth-first search algorithm becomes impractical.

MILP Modeling for Conventional Division Property. Xiang et al. showed
that a mixed integer linear programming (MILP) can efficiently evaluate the
propagation of the conventional division property [9]. First, they introduced the
division trail as follows.

Definition 3 (Division Trail). Let DKi
be the division property of the input

for the ith round function. Let us consider the propagation of the division prop-
erty {k} def= K0 → K1 → K2 → · · · → Kr. Moreover, for any bitvector
k∗

i+1 ∈ Ki+1, there must exist a bitvector k∗
i ∈ Ki such that k∗

i can prop-
agate to k∗

i+1 by the propagation rule of the division property. Furthermore,
for (k0,k1, . . . ,kr) ∈ (K0 × K1 × · · · × Kr) if ki can propagate to ki+1 for all
i ∈ {0, 1, . . . , r − 1}, we call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the target r-round iterated cipher. If we can prove that there is no
division trail k0

Ek−−→ ei, which is an unit vector whose ith element is 1, the ith
bit of r-round ciphertexts is always balanced.

Using MILP we can efficiently solve this problem. Three fundamental opera-
tions, i.e., copy, xor, and and, can be modeled by using MILP. We generate an
MILP model that covers all division trails, and the MILP solver evaluates the
feasibility whether there are division trails from the input division property to
the output one or not. If the solver guarantees that there is no division trail, we
can prove that the target bit is balanced.

MILP Modeling for Variant Three-Subset Division Property. Unlike
the conventional division property, evaluating the propagation of the three-
subset division property is difficult. The main difficulty comes from the can-
cellation property in Rule 3 (xor) and the unknown-producing property. The
cancellation property implies that just focusing on the single trail is not enough,
and the unknown-producing property implies that we need to know Li when the
secret key is XORed.

Hu and Wang tackled this problem [16], and they built the so-called variant
three-subset division property, where only the cancellation property is neglected
from the original one. The accuracy of the variant three-subset division property
is worse than the original three-subset division property because of this neglect.
However, they showed that such a variant is still useful and it is at least more
accurate than the conventional division property.

474 Y. Hao et al.

Pruning Technique for Three-Subset Division Property. The technique
for the accurate modeling for three-subset division property was proposed by
Wang et al. [17]. The new idea is the combination between the breadth-first
search algorithm and an intelligent MILP-based pruning technique. The first
step of their algorithm is the same as the breadth-first search algorithm. The
pruning technique is applied to Ki and Li for every i. For all � ∈ Li, we create an
MILP model of the conventional division property for the (R − i)-round cipher,
and evaluate the feasibility of the division trail from � to the observed bit. Then,
the bitvector � can be removed from Li if it is infeasible. We also apply the
similar pruning technique to Ki. As a result, this pruning technique allows the
sizes of Ki and Li to decrease dramatically, and the evaluation of the three-subset
division property becomes possible.

They applied this new modeling technique to Simon, Simeck, PRESENT,
RECTANGLE, LBlock, and TWINE. Moreover, they also applied this algorithm
to the cube attack against Trivium. As a result, they showed that the 839-round
key recovery attack proposed in [12] degenerates into a zero-sum distinguisher.

3 Cube Attack and Division Property

3.1 Cube Attack

The cube attack was proposed by Dinur and Shamir in [18]. A cipher is regarded
as a public Boolean function whose input is divided into two parts: secret vari-
ables x and public ones v. Then, the algebraic normal form of the Boolean
function is represented as

f(x,v) =
⊕

u∈F
n+m
2

af
u (x‖v)u .

For a set of indices I = i1, i2, . . . , i|I| ⊂ {1, 2, . . . ,m}, which is referred as cube
indices, tI denotes a monomial as tI = vi1 · vi2 · · · vi|I| . The Boolean function
f(x,v) can also be decomposed as

f(x,v) = tI · p(x,v) + q(x,v).

Let CI , which is referred as a cube (defined by I), be a set of 2|I| values where
variables in {vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values, and
all remaining variables are fixed to any value. The sum of f over all values of
the cube CI is

⊕

CI

f(x,v) =
⊕

CI

tI · p(x,v) +
⊕

CI

q(x,v) = p(x,v)

because tI = 1 for only one case in CI and each term in q(x,v) misses at least
one variable from {vi1 , vi2 , . . . , vi|I|}. Then, p(x,v) is called the superpoly of the
cube CI , and the goal of the cube attack is to recover the superpoly.

Modeling for Three-Subset Division Property Without Unknown Subset 475

3.2 Division Property and Cube Attack

The division property is formally developed as the generalization of the integral
property, and it has been initially used to evaluate the integral distinguisher.
When the division property is applied to the cube attack [11], the authors showed
the relationship between the division property and the algebraic normal form of
public functions.

Lemma 1 ([11]). Let f(x) be a polynomial from F
n
2 to F2 and af

u ∈ F2 (u ∈ F
n
2)

be the ANF coefficients. Let k be an n-dimensional bitvector. Then, assuming
that the initial division property D1n

{k} cannot propagate to D1
1 after evaluating

the function f , af
u is always 0 for u � k.

Even if the function f is complicated and practically impossible to describe the
algebraic normal form, the partial information can be recovered by using the
division property. The division property based cube attack first evaluates secret
variables that are not involved in the superpoly. Let J̄ be the set of such secret
variables, and the set J := {1, 2, . . . , n} \ J̄ denotes secret variables that could
be involved in the superpoly. Then, we can recover the superpoly with the time
complexity of 2|I|+|J|.

In the ANF of the superpoly recovered by the division property, if certain
coefficients are 0, it is guaranteed that these coefficients are 0. However, if certain
coefficients are 1, they cannot be guaranteed to be 1. Therefore, only using
the division property does not allow us to recover the exact algebraic normal
form. This limitation of the division property causes the so-called strong and
weak assumptions in [11], i.e., they assume af

u = 1 when the division property
D1n

u can propagate to D1
1. When these assumptions do not hold, the superpoly

can be much simpler than estimated, and in the extreme case, the superpoly
becomes a constant function. Then, the key-recovery attack degenerates into
the distinguishing attack. Such degeneration is reported in [19] and [17], where
the key-recovery attack against 839-round Trivium in [12] degenerates into the
distinguishing attack.

3.3 Three-Subset Division Property and Cube Attack

The authors in [17] showed that these assumptions can be removed by using
three-subset division property. Proposition 4 in [17] addresses this problem, but
a more simple formula is enough for our application.

Lemma 2 (Simple case of [17]). Let f(x) be a polynomial from F
n
2 to F2 and

af
u ∈ F2 (u ∈ F

n
2) be the ANF coefficients. Let � be an n-dimensional bitvector.

Then, assuming that the initial division property D1n

φ,{�} propagates to D1
φ,1 after

evaluating the function f , af
� = 1.

Note that we only consider the case that the function f is a public function.
Then, since the function f is not key-dependent, the propagation for K and
that for L are perfectly independent. In other words, we no longer consider the
propagation for K because the initial division property is empty φ.

476 Y. Hao et al.

0 8 16 24 32 40 46
0
8

16
24
32
40
48

number of rounds

si
ze

of
L
i

Fig. 1. Size of Li after applying the pruning technique. Check if the superpoly involves
K[61] in the cube shown in [12].

4 Three-Subset Division Property w/o Unknown Subset

4.1 Motivation and Limitation of Pruning Technique

Our initial motivation is to verify the potential of the state-of-the-art modeling
technique with the pruning technique [17]. They claimed that the exact superpoly
can be recovered, but the application for the largest number of rounds was the
degeneration from the key-recovery attack to a zero-sum distinguisher.1 The
natural question is why they did not show improved key-recovery attacks. Since
such a degeneration implies unexpectedly simpler superpoly, we can expect that
the cube described in [12] leads to a key-recovery attack for 840-round Trivium.
If we can recover the superpoly of such a cube, we can directly improve the key-
recovery attack against Trivium. Therefore, we implemented their algorithm
by ourselves and verified whether or not we can recover the actual superpoly
of 840-round Trivium. As a result, in order to make the breadth-first search
algorithm with pruning technique feasible, it requires an assumption that almost
all elements in Li must be pruned.

We first verify that the breadth-first search algorithm with pruning technique
is feasible to prove that the 839-round cube attack shown in [12] cannot recover
any secret key bit. In this attack, the number of cube bits is 78, where all IV
bits except for IV [34] and IV [47] are active and these constant bits are fixed
as (IV [34], IV [47]) = (0, 1). Then, the conventional division property shows
that a secret key bit K[61] could be involved in the superpoly [12]. We now
evaluate the same cube by using the three-subset division property. According to
[17], the corresponding initial property L0 consists of sixteen 288-bit bitvectors,
where 1 is assigned for cube bits and involved-key bit, any value is assigned for
four constant-1 bits (s93+47, s286, s287, s288), and 0 is assigned for other bits. We
applied the pruning technique to sixteen bitvectors, and only two bitvectors are
remaining and the other fourteen bitvecotrs can be removed. We applied the

1 They showed that the superpoly of 842-round Trivium can be recovered with the
complexity 232, but the unit of the complexity is the breadth-first search algorithm
with pruning technique. Even one unit requires to solve many MILPs, and the com-
plexity of the algorithm is not bounded. Therefore, unlike the previous theoretical
cube attack [11,12], we cannot guarantee that it is faster than the exhaustive search.

Modeling for Three-Subset Division Property Without Unknown Subset 477

0 1 2 3 4 5
0

64
128
196
256
320

number of rounds

si
ze

of
L
i

Fig. 2. Size of Li after applying the pruning technique. Check if the superpoly for
840-round Trivium has constant-1 term.

pruning technique in every round, and Fig. 1 summarizes the size of Li for the
ith round. The size of Li is bounded by a reasonable range and all bitvectors
are removed in 46 rounds. It implies that the actual superpoly does not involve
K[61].

We next try whether or not the breadth-first search algorithm with pruning
technique is available to attack 840-round Trivium. We use a cube similar to
the one above, but non-cube bits (IV [34], IV [47]) are fixed to 0 in order for
the superpoly to be more simplified. Before we recover all monomials in the
superpoly, as the first step, we aim to identify if the superpoly has the constant-
1 term. In other words, we evaluate whether or not 840-round Trivium has a
monomial

∏
i∈{1,2,...,80}\{34,47} s93+i. Figure 2 shows the increase of Li. The more

the size of Li increases, the more MILP instances we need to solve. We used
Gurobi Optimizer on a server (Intel Xeon CPU E5-2699 v3, 18 cores, 128 GB
RAM), and we spent almost two weeks to even draw Fig. 2, where only five
rounds are evaluated. To recover the superpoly for 841-round Trivium, we need
to finish this algorithm and apply the same algorithm to all other monomials that
could be involved. Therefore, we conclude that the breadth-first search algorithm
with pruning technique cannot recover the superpoly for 841-round Trivium in
reasonable time. It is inefficient unless the size of Li is bounded by reasonable
size, e.g., 100, for all i.

4.2 Three-Subset Division Property Without Unknown Subset

The pruning technique is not always efficient to evaluate the cube attack, and
we cannot improve the key-recovery attack against Trivium due to the explosive
increase of |Li|. To address this problem, we need to develop a new modeling
technique. Two properties, i.e., the unknown-producing property and the can-
cellation property, make it difficult to model the three-subset division property
directly. Thus, we first explain how to overcome these properties.

Unknown-Producing Property. Due to the unknown-producing property, we
need to evaluate the accurate L when the secret key is XORed. Otherwise, we
cannot generate accurate bitvectors that are newly inserted to K. Unfortunately,

478 Y. Hao et al.

no efficient model is known to handle the accurate intermediate L by using
automatic tools.

The simplest solution to address this property is the use of three-subset divi-
sion property without unknown subset. Recall the definition of the division prop-
erty. The unknown subset is defined as the set of u in which a parity

⊕
x∈X

xu

is unknown, where “unknown” means that the parity depends on the secret key.
The unknown subset is used to evaluate the key-dependent function such as in
block ciphers. On the other hand, when we evaluate the ANF coefficients of the
public function, we do not need to use the unknown subset. At first glance, it
looks like the application is restricted to public functions, but it does not matter
in the application to the cube attack. Besides, if the key-schedule function is
also included into the evaluated function, we can regard the block cipher as the
public function.

Cancellation Property. Another property that we need to address is the can-
cellation property. Our idea to overcome this property is to count the number of
solutions by using an MILP instead of evaluating the feasibility2. To understand
our modeling, we introduce the following slightly modified definition. Note that
this definition is equivalent to the definition of the three-subset division property
without unknown subset. It is introduced only for ease of understanding of our
modeling, and by itself does not yield new insight.

Definition 4 (Modified three-subset division property). Let X be a mul-
tiset whose elements take a value of Fm

2 . Let L̃ be also a multiset whose elements
take a value of Fm

2 . When the multiset X has the modified three-subset division
property (shortly T 1m

L̃
), it fulfils the following conditions:

⊕

x∈X

xu =

{
1 if there are odd-number of u’s in L̃,

0 otherwise.

Note that xu =
∏m

i=1 x[i]u[i].

Instead of considering the cancellation property, we count the number of appear-
ances in each bitvector in the multiset L̃ and check its parity. Since we do not
need to consider the cancellation property, the modeling for xor is simplified as
follows:

Rule3’ (xor). Let F be a function compressed by an XOR, where the input
x ∈ F

m
2 , and the output is calculated as (x[1] ⊕ x[2], x[3], . . . , x[m]). Let X

and Y be the input and output multisets, respectively. Assuming that X has
T 1m

L̃
, Y has T 1m−1

L̃′ , where L̃′ is computed from all � ∈ L s.t. (�[1], �[2]) = (0, 0),
(1, 0), or (0, 1) as

L̃
′ ← (�[1] + �[2], �[3], �[4], . . . , �[m]) .

2 The same idea was already described in [17] although the authors did not use the
idea in their model.

Modeling for Three-Subset Division Property Without Unknown Subset 479

Here, L̃ and L̃
′ are multisets, and L̃

′ ← � allows the same � is stored into L̃
′

several times.

We no longer use insertions with the cancellation property, and the produced
bitvector is always inserted to a multiset. We introduce a three-subset division
trail, which is similar to the division trail.

Definition 5 (Three-Subset Division Trail). Let T
L̃i

be the three-subset
division property of the input for the ith round function. Let us consider the prop-
agation of the three-subset division property {�} def= L̃0 → L̃1 → L̃2 → · · · → L̃r.
Moreover, for any bitvector �∗

i+1 ∈ L̃i+1, there must exist a bitvector �∗
i ∈ L̃i such

that �∗
i can propagate to �∗

i+1 by the propagation rule of the modified three-subset
division property. Furthermore, for (�0, �1, . . . , �r) ∈ (L̃0 × L̃1 × · · · × L̃r) if �i

can propagate to �i+1 for all i ∈ {0, 1, . . . , r − 1}, we call (�0 → �1 → · · · → �r)
an r-round three-subset division trail.

The modified three-subset division property implies that we do not need to
consider the cancellation property in every round. We just enumerate the number
of three-subset division trails �

f−→ ei. When the number of trails is odd, the
algebraic normal form of f contains x� . Otherwise, it does not contain x� .

In summary, removing the unknown subset allows us to skip recovering the
accurate L when the secret key is XORed. Using multisets instead of sets allows
us to handle the cancellation property by automatic tools such as MILP easily.

4.3 New Modeling Method

Unlike the pruning technique in [17], our method no longer uses the breadth-
first search algorithm and it just uses an MILP model. The previous algorithm
uses the MILP model for the conventional division property. On the other hand,
we use the MILP model for the modified three-subset division property, and all
feasible solutions are enumerated by using an off-the-shelf MILP solver3.

Proposition 1 (MILP Model for copy). Let a
copy−−−→ (b1, b2) be a three-

subset division trail of copy. The following inequalities are sufficient to describe
the propagation of the modified three-subset division property for copy.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M.var ← a, b1, b2 as binary.
M.con ← b1 + b2 ≥ a

M.con ← a ≥ b1
M.con ← a ≥ b2

3 Our model is very similar to the model for variant three-subset division property
proposed in [16], but there are two differences. First, we do not treat the unknown
subset. Second, the goal of our model is to enumerate all feasible solutions, but the
goal in [16] is to evaluate the feasibility of the model.

480 Y. Hao et al.

When the or operation is supported in the MILP solver, e.g., Gurobi optimizer
supports the or operation, we can simply write M.con ← a = b1 ∨ b2. Unlike
the conventional division property, we need to allow the following propagation
1

copy−−−→ (1, 1). Otherwise, we miss any feasible solutions.

Proposition 2 (MILP Model for and). Let (a1, a2, . . . , am)
and−−→ b be a three-

subset division trail of and. The following inequalities are sufficient to describe
the propagation of the modified three-subset division property for and.

{
M.var ← a1, a2, . . . , am, b as binary.
M.con ← b = ai for all i ∈ {1, 2, . . . , m}

Some feasible propagation on the conventional division property becomes infeasi-
ble. For example, (1, 1, 0) and−−→ 1 is feasible for the conventional division property,
but it is not so in the modified three-subset division property.

Proposition 3 (MILP Model for xor). Let (a1, a2, . . . , am)
xor−−→ b be a three-

subset division trail of xor. The following inequalities are sufficient to describe
the propagation of the modified three-subset division property for xor.

{
M.var ← a1, a2, . . . , am, b as binary.
M.con ← a1 + a2 + · · · + am = b

Note that this is the same as the one for the conventional division property.
While the goal of the previous method is to find one feasible solution or to

prove its infeasibility, the goal of our method is to enumerate all feasible solu-
tions. Three Propositions are enough to represent any cipher, but such a straight-
forward model sometimes increases the number of feasible solutions explosively.
A more clever model is sometimes required to avoid the explosive increase of
feasible (but redundant) solutions, and we discuss this in Sect. 6 in detail.

4.4 Algorithm to Recover ANF Coefficients of Public Function

Let f be a public Boolean function whose input denotes an n-bit string x =
(x[1], x[2], . . . , x[n]), and let it consist of the iteration of simple public functions.
Then, the algebraic normal form of f is represented as

f(x) =
⊕

u∈F
n
2

af
uxu .

Our goal is to recover the value of af
u for some u. We first prepare an MILP

model M that represents the modified three-subset division property of the
function f . Algorithm 1 shows the algorithm to recover an ANF coefficient af

u .
The initial modified three-subset division property is defined by u, and the
number of feasible solutions is enumerated by using the MILP solver. Note that

Modeling for Three-Subset Division Property Without Unknown Subset 481

Algorithm 1. Algorithm to recover an ANF coefficient af
u

1: procedure attackFramework(M, u)
2: Let xi be an MILP variable of M corresponding to the ith input of f .
3: M.con ← xi = 1 for all i s.t. u[i] = 1.
4: M.con ← xi = 0 for all i s.t. u[i] = 0.
5: solve MILP model M and enumerate all feasible solutions
6: if the number of solutions is odd then
7: af

u = 1
8: else
9: af

u = 0
10: end if
11: end procedure

Algorithm 2. Algorithm to recover the superpoly
1: procedure attackFramework(M, I, (C0))
2: Let xi be an MILP variable of M corresponding to the ith secret variable.
3: Let vi be an MILP variable of M corresponding to the ith public variable.
4: M.con ← vi = 1 for all i ∈ I
5: M.con ← vi = 0 for all i ∈ C0

6: prepare a hash table J whose key is (n + m)-bit string and value is counter.
7: solve MILP model M and enumerate all feasible solutions
8: for all feasible solutions do
9: get u = (x1, x2, . . . , xn, v1, v2, . . . , vm) in every found solution

10: increase J [u] by 1
11: end for
12: prepare a polynomial p = 0
13: for all u whose J [u] is an odd number do
14: p = p + (x‖v)u .
15: end for
16: return p/tI
17: end procedure

the efficiency of Algorithm 1 depends on the number of feasible solutions. When
there are too many solutions, it is practically impossible to enumerate all feasible
solutions. In other words, the necessary condition that Algorithm1 stops by
reasonable time is that the number of feasible solutions is bounded by reasonable
size, e.g., at most 216.

While Algorithm 1 is very simple, it is less efficient for the application to
the cube attack because we need to recover all monomials in the superpoly.
The number of monomials that Algorithm 1 can evaluate is only one. Therefore,
we need to repeat Algorithm 1 many times while changing the input u until all
monomials are recovered exactly. One of the advantages of our modeling method
is that we can simply extend the algorithm to recover the superpoly, and the
extended algorithm uses only one MILP model. Algorithm2 shows the dedi-
cated algorithm to recover the superpoly. Unlike Algorithm1, the initial division
property is not determined and only the part corresponding to the cube bits is

482 Y. Hao et al.

fixed to 1. When we enumerate all feasible solutions under such constraints, all
monomials that could be involved in the superpoly can be found as the feasible
solutions. The third input C0 is an option to declare that some public variables
are fixed to 0. Specific attention should be paid to the situation that C0 = φ.
In this case, Algorithm 2 gives the ANF of p(x,v) consisting of all secret and
non-cube public variables. In other words, we do not need to specify the assign-
ment of non-cube public variables in advance. This is an obvious advantage of
our method over the existing breadth-first search algorithm with pruning tech-
nique. On the other hand, when the assignment of non-cube public variables
is determined in advance, C0 should be set because it decreases the number of
three-subset division trails and increases the efficiency of the algorithm.

As far as we applied these algorithms to the cube attack against Triv-
ium or Grain-128AEAD, Algorithm2 is not only simpler but also more efficient
than the iteration of Algorithm1. Unfortunately, we cannot say the explicit
reason because it depends on the inside of MILP solvers. As one observation,
many three-subset division trails with different initial division property share
the same trail in the last several rounds. Therefore, we expect that their trails
are efficiently enumerated in Algorithm 2. On the other hand, the iteration of
Algorithm 1 needs to find the shared part of trails every time.

5 Improved Cube Attacks Against Trivium

5.1 Specification of Trivium and Its MILP Model

Trivium [23] is an NLFSR-based stream cipher, and the internal state is repre-
sented by a 288-bit state (s1, s2, . . . , s288). The 80-bit secret key K is loaded to
the first register, and the 80-bit initialization vector IV is loaded to the second
register. The other state bits are set to 0 except the last three bits in the third
register. Namely, the initial state bits are represented as

(s1, s2, . . . , s93) = (K[1],K[2], . . . ,K[80], 0, . . . , 0),
(s94, s95, . . . , s177) = (IV [1], IV [2], . . . , IV [80], 0, . . . , 0),

(s178, s279, . . . , s288) = (0, 0, . . . , 0, 1, 1, 1).

The pseudo code of the update function is given as follows.

t1 ← s66 ⊕ s93, t2 ← s162 ⊕ s177, t3 ← s243 ⊕ s288,

z ← t1 ⊕ t2 ⊕ t3,

t1 ← t1 ⊕ s91s92 ⊕ s171, t2 ← t2 ⊕ s175s176 ⊕ s264, t3 ← t3 ⊕ s286s287 ⊕ s69,

where z denotes the key stream. The state of the next round is computed as

(s1, s2, . . . , s93) ← (t3, s1, . . . , s92),
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176),
(s178, s279, . . . , s288) ← (t2, s178, . . . , s287).

Modeling for Three-Subset Division Property Without Unknown Subset 483

Algorithm 3. Model for modified three-subset division property for Trivium

1: procedure TriviumCore(M, x1, . . . , x288, i1, i2, i3, i4, i5)
2: M.var ← yi1 , yi2 , yi3 , yi4 , yi5 , z1, z2, z3, z4, a as binary
3: M.con ← xij = yij ∨ zj for all j ∈ {1, 2, 3, 4}
4: M.con ← a = z3
5: M.con ← a = z4
6: M.con ← yi5 = xi5 + a + z1 + z2
7: for all i ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5 do
8: yi = xi
9: end for

10: return (M, y1, . . . , y288)
11: end procedure

1: procedure TriviumEval(round R)
2: Prepare empty MILP Model M
3: M.var ← s0i for i ∈ {1, 2, . . . , 288}
4: for i = 81 to 93 and i = 93 + 80 to 285 do
5: M.con ← s0i = 0

6: end for
7: for r = 1 to R do
8: (M, x1, . . . , x288) = TriviumCore(M, sr−1

1 , . . . , sr−1
288 , 66, 171, 91, 92, 93)

9: (M, y1, . . . , y288) = TriviumCore(M, x1, . . . , x288, 162, 264, 175, 176, 177)
10: (M, z1, . . . , z288) = TriviumCore(M, y1, . . . , y288, 243, 69, 286, 287, 288)
11: (sr1, . . . , s

r
288) = (z288, z1, . . . , z287)

12: end for
13: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
14: M.con ← sRi = 0

15: end for
16: M.con ← (sR66 + sR93 + sR162 + sR177 + sR243 + sR288) = 1

17: return M
18: end procedure

In the initialization, the state is updated 1152 times without producing an out-
put. After the initialization, one bit key stream is produced by every update
function.

MILP Model. TriviumEval in Algorithm 3 generates a model M as the input
of Algorithm 1 or 2, and all three-subset division trails are included as feasible
solutions of this model M. TriviumCore in Algorithm 3 generates MILP vari-
ables and constraints of the update function for each register.

5.2 Practical Verification

To verify our new algorithm, we select the same parameters as the one in the
previous works [11,12]. Example 1 takes parameters from [11] and set the empty
set φ for C0. Then, Algorithm 2 recovers the algebraic normal form of p(x,v)
involving all key and non-cube IV bits.

484 Y. Hao et al.

Table 3. The monomial (x‖v)u /tI ’s and their J [u]’s corresponding to Example 1

Parity J [u] (x‖v)u /tI Parity J [u] (x‖v)u /tI

0 2 x60v22 1 1 v9v20

1 1 x60v19v20 1 1 v6v7v8v20

1 1 x60v20 0 2 v22v72

1 1 x60v6v20 1 1 v7v8

1 1 x60v7 1 1 v6v9v20

1 1 v7v8v19v20 1 1 v19v20v72

0 2 v7v8v22 1 1 v7v9

1 1 v9v19v20 1 1 v20v72

0 2 v9v22 1 1 v6v20v72

1 1 v7v8v20 1 1 v7v72

Example 1 (Parameters from [11]). We let I = {1, 11, 21, 31, 41, 51, 61, 71}
and evaluate z590. We first run Algorithm 3 as M ← TriviumEval(590) and get
the MILP model based three-subset division property. Then, we set C0 = φ and
acquire p(x,v) by running Algorithm 2 as p(x,v) ← attackFramework(I,M, φ).
The monomial (x‖v)u/tI ’s along with their J [u]’s are listed in Table 3. The ANF
of p(x,v) can therefore be determined as

p(x) = x60(v19v20 + v20 + v6v20 + v7)
+ (v7v8v19v20 + v9v19v20 + v7v8v20 + v9v20 + v6v7v8v20 + v7v8

+ v6v9v20 + v19v20v72 + v7v9v20v72 + v6v20v72 + v7v72)

5.3 Cube Attacks Against 840-Round and 841-Round Trivium

To demonstrate that our modeling method is more efficient than the previous
method, we applied it to Trivium. For R-round Trivium, the model M is
generated as M ← TriviumEval(R) by calling Algorithm 3. Then, we set all
non-cube IV bits to constant 0, i.e., for arbitrary cube I, the corresponding
parameter C0 is defined as the complement of I: C0 ← {0, . . . , 80}\I. With such
M, I and C0, the superpoly is defined as p(x) ← attackFramework(M, I, C0)
by calling Algorithm 2. As a result, we can successfully recover the superpoly of
840-round and 841-round Trivium. In other words, we show key-recover attacks
against 840- and 841-round Trivium without any assumption. The detailed
parameters of the two attacks are as follows:

Superpoly of 840-Round Trivium. We used the same cube as the one shown
in Sect. 4.1, i.e., the cube indices are

I = {1, 2, . . . , 33, 35, 36, . . . , 46, 48, 49, . . . , 80},

and IV [34] = IV [47] = 0. Note that the previous algorithm cannot recover the
corresponding superpoly as we already showed in Sect. 4.1. As a result, 12, 909

Modeling for Three-Subset Division Property Without Unknown Subset 485

feasible three-subset division trails are enumerated, and J [u] in Algorithm2 is
non zero for 228 different u’s. Out of 228 u’s, there are 67 u’s whose J [u] is
an odd number. In other words, the superpoly is represented as the sum of 67
monomials, and the following

p(x) = 1 + x80 + x79 + x79x80 + x78x79 + x76x77 + x75x76x78 + x75x76x77

+ x70 + x68 + x68x80 + x68x79x80 + x68x78x79 + x68x69 + x66x67

+ x66x67x80 + x66x67x79x80 + x66x67x78x79 + x65 + x64x66 + x64x65

+ x63x64 + x59x63 + x54x68 + x54x66x67 + x53x68 + x53x66x67 + x52

+ x52x53 + x51x77 + x51x75x76 + x51x52 + x50x78 + x50x76x77 + x50x51

+ x43 + x41 + x41x80 + x41x79x80 + x41x78x79 + x41x54 + x41x53 + x39

+ x39x64 + x38 + x37x38 + x35x55 + x33x34x55 + x27 + x26 + x22x66

+ x22x64x65 + x22x39 + x20x21x66 + x20x21x64x65 + x20x21x39 + x12

+ x8x78 + x8x77 + x8x76x77 + x8x75x76 + x8x55 + x8x51 + x8x50

+ x1x35 + x1x33x34 + x1x8

is the recovered superpoly, where x = (x1, x2, . . . , x80) denotes the secret key,
i.e., xi = K[i]. This superpoly is a balanced Boolean function because there is a
monomial x12 that is independent of other monomials. Therefore, we can recover
1 bit of information by using 278 data and time complexities. The dominant part
of the whole key recovery attack is the exhaustive search after 1-bit key recovery,
which is 279 time complexity.

Superpoly of 841-Round Trivium. We next aim to recover the superpoly
of 841-round Trivium, but it has too many trails to enumerate all of them.
Therefore, we heuristically change cube indices such that the number of trails is
not large. As a result, the following cube is considered:

I = {1, 2, . . . , 8, 10, 11, . . . , 78, 80},

and IV [9] = IV [79] = 0. As a result, 30, 177 feasible three-subset division trails
are enumerated, and J [u] in Algorithm 2 is non zero for 216 different u’s. Out
of 216 u’s, there are 53 u’s whose J [u] is an odd number. In other words, the
superpoly p(x) is represented as the sum of 53 monomials, and the following

p(x) = x78 + x76 + x75x76 + x74 + x74x75 + x74x75x77 + x74x75x76 + x72x73

+ x68 + x67 + x63 + x61x62 + x59 + x59x72 + x59x70x71 + x59x61 + x58

+ x58x80 + x58x78x79 + x58x66 + x58x59 + x53x58 + x51x74 + x51x73

+ x51x72x73 + x51x71x72 + x50x76 + x50x74x75 + x49 + x49x77

+ x49x75x76 + x49x50x74 + x49x50x73 + x49x50x72x73 + x49x50x71x72

+ x47 + x47x51 + x47x49x50 + x46x51 + x46x49x50 + x45x59 + x36 + x32

+ x30x31 + x24 + x24x74 + x24x73 + x24x72x73 + x24x71x72 + x24x47

+ x24x46 + x9 + x5

486 Y. Hao et al.

is the recovered superpoly. This superpoly is also a balanced Boolean function
because there is a monomial x5 that is independent of other monomials. There-
fore, we can recover 1 bit of information by using 278 data and time complexities.
The dominant part of the whole key recovery attack is the exhaustive search after
1-bit key recovery, which is 279 time complexity.

5.4 Verification of 855-Round Attack from CRYPTO2018 [20]

In CRYPTO2018, a new type of cube attacks was proposed, where a key recovery
attack against 855-round Trivium was shown. The authors claimed the following
statement.

Statement 1 ([20]). When IV [31] = IV [49] = IV [61] = IV [75] = IV [76] = 0,
the degree of (1 + s21094)z855 is bounded by 70.

Attackers first guess the part of a secret key involved in s21094 and compute the
sum of (1 + s21094)z855 over cubes whose dimension is larger than 70. When the
correct key is guessed, the sum must be 0. In other words, if the sum is 1, we
can discard the guessed key.

To prove Statement 1, the authors developed a new algorithm to evaluate
the upper bound of the degree. However, their algorithm includes some man-
made work that is not written in their paper, and a cluster of 600–2400 cores
is necessary to run their code. As a result, no one can verify their algorithm
and the correctness of Statement 1. The only supportive material is the practical
example by using 721-round Trivium4. Later, Hao et al. reviewed Statement 1
by using the conventional bit-based division property [24]. They showed that
the sum of (1 + s21094)z855 over 75-dimensional cube could involve all 80 key
bits with degree bound 27. According to this result, Hao et al. pointed out that
Statement 1 unlikely holds. However, as we already pointed out, the conventional
bit-based division property is not always accurate. Therefore, the correctness of
Statement 1 becomes an open question.

In comparison with Fu et al.’s algorithm, our algorithm using three-subset
division property has three advantages:

– Cheap implementation cost. Our task is to generate an MILP model, and the
complicated part is solved by using off-the-shelf MILP solvers. Our verification
code using Gurobi C++ API contains about 300 lines.

– Run on the normal PC. We do not need to prepare many clusters.
– Tight bound is proven. Our algorithm can recover the ANF coefficient af

u for
some u accurately.

With such a method, we inspect Statement 1.
4 In [20], the authors showed that the degree of (1+s29094)z721 is bounded by 32 when the

correct s29094 is guessed. However, Hao et al. pointed out that the degree is bounded
by 32 even if we guess s29094 with incorrect secret key, as a consequence we cannot
distinguish the correct key from the wrong keys [24]. Response to this error, Fu et
al. reproduced the practical example for 721-round Trivium [25].

Modeling for Three-Subset Division Property Without Unknown Subset 487

s01 s093 s094 s0177 s0178 s0288

s2101 s21093 s21094 s210177 s210178 s210288

210 rounds

645 rounds

s85566 s85593 s855162 s855177 s855243 s855288

1

(1 + s21094)z855

o
p

q

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

Fig. 3. Overview of new type of cube attack for 855-round Trivium

MILP Model to Verify 855-Round Attack. To verify Statement 1, we
consider a circuit shown in Fig. 3 and generate the corresponding MILP
model by calling Algorithm 4 as M ← TriviumSecEval(855, 210). Corre-
sponding to the setting of [20], we set I as the largest possible cube, i.e.,
I = {1, . . . , 80} \ {31, 49, 61, 75, 76}, and all non-cube IVs are set to 0, i.e.,
C0 = {31, 49, 61, 75, 76}. Then, with such M, I, C0, we run Algorithm 2 as
p(x) ← attackFramework(M, I, C0) to check whether p(x) is constant 0.
According to the result by Hao et al. by using the conventional bit-based division
property, we first evaluated whether or not p(x) has monomials whose degree
is 27. Then, the number of appearance J [u] is non-zero for the following two
27-degree monomials

∏

i∈{29,30,41,42,44,45,46,47,49,54,55,56,57,59,60,63,66,67,68,69,70,71,72,73,74,75,76}
xi,

∏

i∈{29,30,41,42,43,44,45,46,47,49,54,55,56,57,59,60,63,66,67,69,70,71,72,73,74,75,76}
xi,

but J [u] = 2 for the two monomials above. Therefore, these monomials do not
appear in p(x). We next evaluated whether or not p(x) has monomials whose
degree is 26. Since there are quite many candidates of u whose J [u] is non zero,
we randomly picked one from these candidates and evaluated the number of
trails. As a result, J [u] = 1 in the following monomial

∏

i∈{40,41,42,53,54,55,56,57,58,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,78,79}
xi.

Note that finding one u such that J [u] is an odd number is enough to disprove
Statement 1.

488 Y. Hao et al.

Algorithm 4. Model for modified three-subset division property of Trivium
corresponding to the Fu et al.’s method in [20]
1: procedure TriviumSecEval(round R, sector round R′)
2: Prepare empty MILP Model M
3: M.var ← s0i for i ∈ {1, 2, . . . , 288} and M.var ← o

4: for i = 81 to 93 and i = 93 + 80 to 285 do
5: M.con ← s0i = 0

6: end for
7: M.var ← o
8: for i = 81 to 93 and i = 93 + 80 to 285 do
9: M.con ← s0i = 0

10: end for
11: for r = 1 to R do
12: (M, x1, . . . , x288) = TriviumCore(M, sr−1

1 , . . . , sr−1
288 , 66, 171, 91, 92, 93)

13: (M, y1, . . . , y288) = TriviumCore(M, x1, . . . , x288, 162, 264, 175, 176, 177)
14: (M, z1, . . . , z288) = TriviumCore(M, y1, . . . , y288, 243, 69, 286, 287, 288)
15: (sr1, . . . , s

r
288) = (z288, z1, . . . , z287)

16: if r = R′ then
17: M.var ← ~sR

′
94, p, q

18: M.con ← sR
′

94 = ~sR
′

94

∨
p

19: M.con ← q = o + p

20: sR
′

94 = ~sR
′

94

21: end if
22: end for
23: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
24: M.con ← sRi = 0

25: end for
26: M.con ← (sR66 + sR93 + sR162 + sR177 + sR243 + sR288) = q

27: M.con ← q = 1

28: return M
29: end procedure

6 Improved Cube Attacks Against Grain-128AEAD

6.1 Specification of Grain-128AEAD and Its MILP Model

Grain-128AEAD [26] is a member of Grain family and also one of the 2nd-round
candidates of the NIST LWC standardization process. Grain-128AEAD inherits
many specifications from Grain-128a, which was proposed in 2011 [27]. There
are four differences between Grain-128AEAD and Grain-128a: (1) larger MACs,
(2) no encryption-only mode, (3) initialization hardening, and (4) keystream
limitation. These differences do not come only from the requirement for the
NIST LWC standardization process but also from recent cryptanalysis result
against Grain-128a [21,22].

The internal state is represented by two 128-bit states, (b0, b1, . . . , b127) and
(s0, s1, . . . , s127). The 128-bit key is loaded to the first register b, and the 96-bit
initialization vector is loaded to the second register s. The other state bits are

Modeling for Three-Subset Division Property Without Unknown Subset 489

set to 1 except the least one bit in the second register. Namely, the initial state
bits are represented as

(b0, b1, . . . , b127) = (K1,K2, . . . ,K128),
(s0, s1, . . . , s127) = (IV1, IV2, . . . , IV96, 1, . . . , 1, 0).

The pseudo code of the update function in the initialization is given as follows.

g ← b0 + b26 + b56 + b91 + b96 + b3b67 + b11b13 + b17b18 + b27b59

+ b40b48 + b61b65 + b68b84 + b88b92b93b95 + b22b24b25 + b70b78b82, (1)
f ← s0 + s7 + s38 + s70 + s81 + s96, (2)
h ← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94, (3)
z ← h + s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89, (4)
(b0, b1, . . . , b127) ← (b1, . . . , b127, g + s0 + z),
(s0, s1, . . . , s127) ← (s1, . . . , s127, f + z).

In the initialization, the state is updated 256 times without producing an output.
After the initialization, the update function is tweaked such that z is not fed to
the state, and z is used as a pre-output key stream. Hereinafter, we assume that
the first bit of the pre-output key stream can be observed. Note that there is no
difference between Grain-128a and Grain-128AEAD under this assumption.

MILP Model. Grain128aEval in Algorithm 5 generates MILP model M as
the input of Algorithm1 and 2, and the model M can evaluate all three-subset
division trails for Grain-128AEAD whose initialization rounds are reduced to R.
funcZ generates MILP variables and constraints for Eq. (3) and Eq. (4), funcG
generates MILP variables and constraints for Eq. (1), and funcF generates MILP
variables and constraints for Eq. (2).

6.2 Verification of 184-Round Attack from [12]

In [12], the cube attack against 184-round Grain-128AEAD (Grain-128a) was
shown. Here, the following cube indices

I = {1, 2, . . . , 46, 48, 49, . . . , 96},

where IV [47] = 0 are used.5 The conventional bit-based division property with
flag technique reveals that the algebraic degree of the corresponding superpoly
is at most 14 and the number of monomials is at most 214.61. It implies that the
corresponding superpoly can be recovered with 295+14.61 time complexity.

We run Algorithm2 with the model generated by Algorithm 5. Surprisingly,
the superpoly does not involve the secret key. There are 16, 384 three-subset
5 The first bit of IV is included in the cube index. When the target is Grain-128a,

this attack requires queries to both authentication and encryption-only modes. Note
that the first bit of IV can also be active in Grain-128AEAD.

490 Y. Hao et al.

Algorithm 5. Model for Grain-128AEAD
1: procedure Grain128aEval(round R)
2: Prepare empty MILP Model M
3: M.var ← b0i for i ∈ {0, 1, . . . , 127} as binary
4: M.var ← s0i for i ∈ {0, 1, . . . , 127} as binary
5: M.con ← s0127 = 0

6: for r = 1 to R do
7: (M, b′

0, . . . , b
′
127, s

′
0, . . . , s

′
127, z

r) = funcZ(M, br−1
0 , . . . , br−1

127 , sr−1
0 , . . . , sr−1

127)
8: M.var ← zg, zf as binary
9: M.con ← zr = zg ∨ zf

10: (M, b′′
0 , . . . , b′′

127, g) = funcG(M, b′
0, . . . , b

′
127)

11: (M, s′′
0 , . . . , s′′

127, f) = funcF(M, s′
0, . . . , s

′
127)

12: for i = 0 to 126 do
13: bri = b′′

i+1

14: sri = s′′
i+1

15: end for
16: M.var ← br127, s

r
127 as binary

17: M.con ← b′′
0 = 0

18: M.con ← br127 = g + s′′
0 + zg

19: M.con ← sr127 = f + zf

20: end for
21: (M, b′

0, . . . , b
′
127, s

′
0, . . . , s

′
127, z) = funcZ(M, bR0, . . . , b

R
127, s

R
0, . . . , s

R
127)

22: for all i ∈ {0, 1, . . . , 127} do
23: M.con ← b′

i = 0

24: M.con ← s′
i = 0

25: end for
26: M.con ← z = 1

27: return M
28: end procedure

division trails, but only three initial properties can be feasible (see Table 4, where
x = (x1, x2, . . . , x128) denotes the secret key). Moreover, all of them have even-
number of trails, i.e., the superpoly shown in [12] is constant-0. Therefore, the
cube attack against 184-round Grain-128AEAD is a zero-sum distinguisher.

6.3 Additional Constraints and Superpoly for 190 Rounds

Algorithm 5 evaluates funcZ, funcG, and funcF independently, and combines
them. While this algorithm can enumerate all three-subset division trails, it
includes many redundant trails. For example, let us consider that there are two
propagations for one round from the fixed bitvector to fixed one. Then, consider-
ing such propagations is redundant because the number of three-subset division
trails including such propagations in its inside is always even number. There-
fore, we should remove such propagations from the model in advance to reduce
the number of feasible three-subset division trails. We carefully checked three-
subset division trails found in the attack against 184-round Grain-128AEAD. As
a result, we find a frequently used (but redundant) propagation.

Modeling for Three-Subset Division Property Without Unknown Subset 491

Table 4. Detailed results for superpoly against 184-round Grain-128AEAD.

Parity # Trails Monomial

0 4096 x34x39x53x62x64x81x83x84x95x125

0 4096 x34x39x49x53x62x64x81x83x84x95x123x127x128

0 8192 x23x39x48x49x53x58x59x62x64x83x84x98x118x120

Property 1. In any round r, either sr0 or zr must be 0.

Proof. In round r, we assume that sr0 = 1 and zr = 1. The keystream bit
(zr = 1) can propagate to the rightmost bit of NFSR (br+1

127) and the rightmost
bit of LFSR (sr+1

127). The leftmost bit of the LFSR (sr0) can also propagate to the
same two bits. Therefore, unless either of sr+1

127 , br+1
127 , or sr+1

127 ·br+1
127 has monomial

sr
0 · zr, such a propagation is infeasible. Clearly, sr+1

127 and br+1
127 do not have such

a monomial. Moreover, the monomial sr
0 · zr is always canceled out in

sr+1
127 · br+1

127 = (fr + zr) · (gr + zr + sr
0)

= fr · gr + fr · sr
0 + (fr + gr + 1 + sr

0) · zr

= fr · gr + fr · sr
0 + (sr

7 + sr
38 + sr

70 + sr
81 + sr

96 + gr + 1) · zr.

��

Property 1 is very simple and powerful. We just add the following constraint

M.con ← sr0 + zr ≤ 1

between the line 6 and 7 in Algorithm5. We re-run Algorithm 2 by using the
model generated by Algorithm 5 with the modification above. Then, 16, 384 trails
become impossible, and there is no feasible solution.

Superpoly from 185 to 189 rounds. We showed that the 184-round attack
is a zero-sum distinguisher and cannot recover any secret key bit. Similarly to
the case of Trivium, we expect that the number of rounds that we can attack
can be improved. To attack more rounds, we use cube indices I = {1, 2, . . . , 96},
where all IV bits are active. As a result, there is no feasible solution up to 189
rounds. In other words, we find zero-sum distinguishers from 185 to 189 rounds.

Superpoly for 190 rounds. From 190 rounds onwards, secret key bits can be
involved. As a result, 7, 621 feasible three-subset division trails are enumerated,
and J [u] in Algorithm 2 is non zero for 3, 006 different u’s. Out of 3, 006 u’s, there
are 1, 097 u’s whose J [u] is an odd number. In other words, the superpoly is rep-
resented as the sum of 1, 097 monomials. Interestingly, the recovered superpoly
has completely different features of the one of Trivium. While the superpoly of
Trivium is a very low-degree and simple Boolean function, the recovered super-
poly for Grain128-AEAD has algebraic degree 21 and is a complicated Boolean

492 Y. Hao et al.

function with no monomials of degree lower than 6. Since the Boolean function is
too complicated to evaluate its weight theoretically, we experimentally evaluated
the balancedness. We picked 215 secret keys randomly and compute the output
of the Boolean function. As a result, it is highly biased, and the fraction of keys
that output 1 is about 0.032. Therefore, the information recovered from this
superpoly is very small. Indeed, if the superpoly in the online phase evaluates to
one, we gain almost 5 bit (i.e. − log2(0.032)) in an attack when filtering wrong
keys. However, in the case where the superpoly evaluates to zero, we gain less
than 0.04 bits (i.e. − log2(1 − 0.032)) in an attack. The average gain, given by
the entropy, is only

−0.032 log2(0.032) − (1 − 0.032) log2(1 − 0.032) ≈ 0.2

which limits the interest in this approach.

6.4 Towards Efficient Key-Recovery Attacks

To recover more bits of information, we use multiple cubes whose size decreases
from 96 to 95. However, if the cube index misses one IV bit, the number of three-
subset division trails increases. We need to pick appropriate non-cube indices,
where the number of three-subset division trails does not expand to much. We
were able to compute the representation of 15 superpolys pj where the cube
index set was {1..96} \ j with

j ∈ J = {27, 30, 31, 32, 34, 41, 44, 45, 46, 48, 58, 59, 64, 70, 72}.

Those polynomials vary significantly in size (between 176 and 19, 925 monomi-
als) but also share interesting properties. Again, due to their size, some of the
properties can only be estimated experimentally.

Interestingly, all polynomials are highly biased toward zero and none of the
polynomials involves all key bits. In particular none of the polynomials depends
on the key bits

K1,K2,K3,K6 and K9.

Moreover, all polynomials can be evaluated rather efficiently on average. The
details are given in Table 5. Note that the average total cost of evaluating the
polynomials is an upper bound on the number of XORs and ANDs needed. This
bound was derived using a time-memory tradeoff for the evaluation process,
by fixing 14 key bits that appear frequently in all 15 polynomials. Fixing to
all 214 possible values resulted in 15 · 214 polynomials. Those polynomials are
significantly simpler and simply counting the number of required AND and XOR
operations in a trivial evaluation process resulted in the numbers in Table 5 that
are sufficient for our attack. In particular, the average cost of evaluating all
15 polynomials together is smaller than 212, which is smaller than producing a
single key stream bit with Grain128-AEAD reduced to 190 rounds.

Besides being highly unbalanced, the polynomials are also not independent
when evaluated on random keys. In order to estimate how many wrong keys are

Modeling for Three-Subset Division Property Without Unknown Subset 493

Table 5. Properties of the superpolys for Grain128-AEAD.

Poly p27 p30 p31 p32 p34 p41 p44 p45 p46 p48 p58 p59 p64 p70 p72

Nb. of ind. Ki 7 6 12 8 6 13 14 47 6 16 6 10 12 11 8

Pr(pj = 0) 0.077 0.116 0.055 0.089 0.090 0.099 0.019 0.012 0.081 0.055 0.123 0.196 0.097 0.156 0.083

Av. cost 544 408 107 196 452 148 19 10 199 213 406 497 432 336 205

filtered on average, we estimated the entropy of (p27, . . . , p72) when evaluated at
uniformly random chosen keys. That is, for vj ∈ {0, 1} we estimated

Pr((P27, . . . , P72) = (v27, . . . , v72))

for all 215 possible outcomes. The distribution is still highly biased, in partic-
ular Pr(0, . . . , 0) ≈ 0.57. However, the entropy, which was estimated using 225

samples, increased to 5.03 which now makes the following attack possible.

1. The attacker evaluates in the online phase the values of the 15 superpolys for
the given secret key.

2. The attacker guesses all key-bits except the bits K1,K2,K3,K6,K9 and for
each guess filters with the correct values of the superpolys given from the
online phase.

3. For each guess that passes the filtering, the attacker runs through all possible
values of K1,K2,K3,K6,K9 and verifies the key against given key-stream.

The cost of the online phase is 15 × 295 time and 296 data, i.e. using all possible
IV values for the given secret key.

In the second step, the number of guesses is 2128−5 and, due to the entropy,
the average amount of not filtered guesses is 2128−5−5.03. As evaluating the poly-
nomials is cheaper than evaluating Grain128-AEAD, the cost for this step is less
than 2123 evaluations of Grain128-AEAD.

In the third step, the average cost is 25 · 2128−5−5.03, i.e. less than 2123 evalu-
ations of Grain128-AEAD as well. To conclude, the attack has an average time
complexity of less than 2123 evaluations of Grain128-AEAD and a data com-
plexity of 296. Note that this complexity is averaged over the given secret key.
In particular, after the first step of the attack, the attacker already knows how
efficient filtering will be in her particular case. For some keys filtering is signif-
icantly stronger. This observation might be further elaborated into a stronger
attack for a smaller fraction of keys, i.e. a weak-key attack.

7 Conclusion

In this paper, we proposed a new modeling technique for the three-subset division
property without unknown subset. Our technique is significant for the applica-
tion to the cube attack. Unlike the previous experimental or theoretical cube
attacks, our method does not need any assumption and can recover the actual
superpoly in practical time. Our method leads to the best key-recovery attack
on two of the most important stream ciphers.

494 Y. Hao et al.

Acknowledgement. The authors thank the anonymous Eurocrypt 2020 reviewers for
careful reading and many helpful comments. Yonglin Hao is supported by National Key
Research and Development Program of China (No. 2018YFA0306404). Gregor Leander
is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972. Qingju
Wang is funded by the University of Luxembourg Internal Research Project (IRP)
FDISC.

References

1. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

2. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

3. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptog-
raphy. SECS, vol. 276, pp. 227–233. Springer, Boston (1994). https://doi.org/10.
1007/978-1-4615-2694-0 23

4. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 287–314.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

5. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 20

6. Sasaki, Y., Todo, Y.: New differential bounds and division property of Lilliput:
block cipher with extended generalized Feistel network. In: Avanzi, R., Heys, H.
(eds.) SAC 2016. LNCS, vol. 10532, pp. 264–283. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69453-5 15

7. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

8. Sugio, N., Igarashi, Y., Kaneko, T., Higuchi, K.: New integral characteristics of
KASUMI derived by division property. In: Choi, D., Guilley, S. (eds.) WISA 2016.
LNCS, vol. 10144, pp. 267–279. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56549-1 23

9. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 24

10. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for
ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 5

11. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part
III. LNCS, vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63697-9 9

https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-47989-6_20
https://doi.org/10.1007/978-3-319-69453-5_15
https://doi.org/10.1007/978-3-319-69453-5_15
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-319-56549-1_23
https://doi.org/10.1007/978-3-319-56549-1_23
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-319-70694-8_5
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9

Modeling for Three-Subset Division Property Without Unknown Subset 495

12. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 275–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 10

13. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

14. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present - towards reaching the limit of lightweight encryption. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 16

15. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis
of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 9

16. Hu, K., Wang, M.: Automatic search for a variant of division property using
three subsets. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 412–432.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 21

17. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of searching
division property using three subsets and applications. In: Galbraith, S.D., Moriai,
S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 398–427. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 14

18. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

19. Ye, C.D., Tian, T.: Revisit division property based cube attacks: key-recovery or
distinguishing attacks? IACR Trans. Symm. Cryptol. 2019(3), 81–102 (2019)

20. Fu, X., Wang, X., Dong, X., Meier, W.: A key-recovery attack on 855-round Triv-
ium. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 160–184. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 6

21. Hamann, M., Krause, M.: On stream ciphers with provable beyond-the-birthday-
bound security against time-memory-data tradeoff attacks. Cryptogr. Commun.
10(5), 959–1012 (2018). https://doi.org/10.1007/s12095-018-0294-5

22. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revis-
ited - cryptanalysis on full Grain-128a, Grain-128, and Grain-v1. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 129–159.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 5

23. Cannière, C.D., Preneel, B.: Trivium specifications. eSTREAM portfolio, Profile 2
(HW) (2006)

24. Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: Observations on the
dynamic cube attack of 855-round TRIVIUM from Crypto ’18. Cryptology ePrint
Archive, Report 2018/972 (2018). https://eprint.iacr.org/2018/972

25. Fu, X., Wang, X., Dong, X., Meier, W., Hao, Y., Zhao, B.: A refinement of “a
key-recovery attack on 855-round Trivium” from crypto 2018. Cryptology ePrint
Archive, Report 2018/999 (2018). https://eprint.iacr.org/2018/999

26. Hell, M., Johansson, T., Meier, W., Sönnerup, J., Yoshida, H.: Grain-128AEAD: a
lightweight AEAD stream cipher. Lightweight Cryptography (LWC) Standardiza-
tion (2019)

27. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. IJWMC 5(1), 48–59 (2011)

https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-13039-2_9
https://doi.org/10.1007/978-3-030-12612-4_21
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-319-96881-0_6
https://doi.org/10.1007/978-3-319-96881-0_6
https://doi.org/10.1007/s12095-018-0294-5
https://doi.org/10.1007/978-3-319-96881-0_5
https://eprint.iacr.org/2018/972
https://eprint.iacr.org/2018/999

	Modeling for Three-Subset Division Property Without Unknown Subset
	1 Introduction
	2 Brief Introduction of Division Property
	2.1 Conventional Division Property
	2.2 Three-Subset Division Property
	2.3 Propagation Rules for Division Property
	2.4 Various Algorithms to Evaluate Propagation of Division Property and Three-Subset Division Property

	3 Cube Attack and Division Property
	3.1 Cube Attack
	3.2 Division Property and Cube Attack
	3.3 Three-Subset Division Property and Cube Attack

	4 Three-Subset Division Property w/o Unknown Subset
	4.1 Motivation and Limitation of Pruning Technique
	4.2 Three-Subset Division Property Without Unknown Subset
	4.3 New Modeling Method
	4.4 Algorithm to Recover ANF Coefficients of Public Function

	5 Improved Cube Attacks Against Trivium
	5.1 Specification of Trivium and Its MILP Model
	5.2 Practical Verification
	5.3 Cube Attacks Against 840-Round and 841-Round Trivium
	5.4 Verification of 855-Round Attack from CRYPTO2018ch16C:FWDM18

	6 Improved Cube Attacks Against Grain-128AEAD
	6.1 Specification of Grain-128AEAD and Its MILP Model
	6.2 Verification of 184-Round Attack from ch16C:WHTLIM18
	6.3 Additional Constraints and Superpoly for 190 Rounds
	6.4 Towards Efficient Key-Recovery Attacks

	7 Conclusion
	References

