
Extracting Randomness from
Extractor-Dependent Sources

Yevgeniy Dodis1, Vinod Vaikuntanathan2(B), and Daniel Wichs3,4(B)

1 NYU, New York, USA
2 MIT, Cambridge, USA
vinod.nathan@gmail.com

3 Northeastern University, Boston, USA
danwichs@gmail.com

4 NTT Research Inc., East Palo Altos, USA

Abstract. We revisit the well-studied problem of extracting nearly uni-
form randomness from an arbitrary source of sufficient min-entropy.
Strong seeded extractors solve this problem by relying on a public ran-
dom seed, which is unknown to the source. Here, we consider a setting
where the seed is reused over time and the source may depend on prior
calls to the extractor with the same seed. Can we still extract nearly uni-
form randomness?

In more detail, we assume the seed is chosen randomly, but the source
can make arbitrary oracle queries to the extractor with the given seed
before outputting a sample. We require that the sample has entropy and
differs from any of the previously queried values. The extracted output
should look uniform even to a distinguisher that gets the seed. We con-
sider two variants of the problem, depending on whether the source only
outputs the sample, or whether it can also output some correlated public
auxiliary information that preserves the sample’s entropy. Our results are:
Without Auxiliary Information: We show that every pseudo-random
function (PRF) with a sufficiently high security level is a good extractor
in this setting, even if the distinguisher is computationally unbounded.
We further show that the source necessarily needs to be computationally
bounded and that such extractors imply one-way functions.
With Auxiliary Information: We construct secure extractors in this
setting, as long as both the source and the distinguisher are computa-
tionally bounded. We give several constructions based on different inter-
mediate primitives, yielding instantiations based on the DDH, DLIN,
LWE or DCR assumptions. On the negative side, we show that one can-
not prove security against computationally unbounded distinguishers in
this setting under any standard assumption via a black-box reduction.
Furthermore, even when restricting to computationally bounded distin-
guishers, we show that there exist PRFs that are insecure as extractors
in this setting and that a large class of constructions cannot be proven
secure via a black-box reduction from standard assumptions.

1 Introduction

Extracting Randomness. Randomness is an important ingredient in many
algorithmic tasks, and is especially crucial in cryptography. Indeed, much of
c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 313–342, 2020.
https://doi.org/10.1007/978-3-030-45721-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-45721-1_12

314 Y. Dodis et al.

cryptography relies on the assumption that parties can sample uniformly ran-
dom bits. However, most natural sources of randomness are imperfect and not
uniformly random. This motivates the study of randomness extraction, whose
goal is to extract (nearly) uniform randomness from imperfect sources.

Ideally, we would have a deterministic function Ext that converts an imper-
fect source of randomness X into a (nearly) uniformly random output Ext(X).
Furthermore, such an extractor should work for all sources of randomness X
having a sufficiently large amount of (min-)entropy. Unfortunately, this is easily
seen to be impossible, even if we only want to output 1 bit [CG85]: for every
extractor function Ext, there is a source X that has almost full min-entropy yet
the output of Ext(X) is completely fixed.

There have been two broad lines of work to get around this. The first
line of work designs extractors for restricted types of sources X that satisfy
additional requirements beyond just having entropy (see e.g., [von51,CGH+85,
Blu86,LLS89,CG85,TV00,BST03,BIW04,CZ16]). While this is an important
research direction, we often know very little about natural sources of random-
ness and they may fail to satisfy the imposed requirements. The second line of
work considers (strong) seeded extractors [NZ93,NZ96], where the extractor is
given a public uniformly random seed S, which is independent of the source
X, and we require that the extracted output Ext(X;S) is close to uniform even
given the seed S.

Extractor-Dependent Sources. In this work, we consider a seeded extrac-
tor and envision a scenario where a single uniformly random seed S is chosen
once and then is reused over time by many different users and/or applications
to extract randomness from various “natural” sources of entropy. For example,
the seed S could be a part of a system random number generator (RNG) that
extracts randomness from physical sources of entropy, such as the timing of
interrupts etc. If the sources are truly independent of the seed S, then stan-
dard (strong) seeded extractors suffice to guarantee that the extracted outputs
are nearly uniform. However, since the seed S is continuously reused, past out-
puts of the extractor will make their way back into “nature” and may affect
the sources in the future. For example, interrupts may depend on processes that
themselves rely on previous outputs of the extractor. Furthermore, since we can-
not assume that all users/applications use the extractor securely, we have to
allow for the possibility that some of the prior calls to the extractor were made
on arbitrary samples that may not have any entropy. Unfortunately, if the source
can depends on prior calls to the extractor with the same seed S, we violate the
condition that the source is independent of the seed and can no longer rely on
the security of standard seeded extractors. We emphasize that, although the seed
S is public, the sources are not fully adversarial and not arbitrarily dependent
on S. (A restriction of this sort is of course necessary to circumvent the obvious
impossibility result.) Instead, we assume that the sources can only depend on
prior calls to the extractor with the given seed S, but are otherwise indepen-
dent of S. We call such sources “extractor-dependent”. Can we design extractors

Extracting Randomness from Extractor-Dependent Sources 315

for extractor-dependent sources (ED-Extractors) that manage to extract nearly
uniform randomness in this setting?

Defining the Problem. We now specify the problem in more detail. Our goal
is to design a seeded extractor EDExt that extracts randomness from extractor-
dependent sources. We consider a setting where a seed S is chosen uniformly at
random. A source SEDExt(·,S) gets oracle access to the extractor with the seed S
and outputs a sample X along with some public auxiliary information AUX. We
say that such a source S is a legal extractor-dependent source of entropy α if two
conditions hold: (1) the (conditional min-entropy) of X given S,AUX is at least
α, and (2) the source never queries the oracle on the value X that it outputs. An
α-ED-Extractor needs to ensure that for all legal extractor-dependent sources
of entropy α, the output EDExt(X,S) is indistinguishable from uniform, even
given the seed S and the auxiliary information AUX.

Discussion on the Legality Conditions. We motivate the reason behind
the two legality conditions imposed by the definition.

Firstly, just like for standard (seeded) extractors, we need to assume that X
has a sufficient level of entropy even conditioned on AUX in order to extract ran-
domness from it. In our case, the source also has access to the oracle EDExt(·, S)
with a random seed S, but we want the entropy to come from the internal ran-
domness of the source rather than from the seed S since the latter is public and
known to the distinguisher. Therefore, it is natural to also condition on S.

The second condition is clearly necessary: without it we could define a source
that queries the oracle on random values and outputs the first such value on
which the extracted output starts with a 0. Such a source would have almost full
entropy, yet the extracted output would be easily distinguishable from uniform.
Moreover, this condition is also reasonable when modeling our intended scenario
since the sample should have entropy even given all the prior extractor calls that
influenced nature, and therefore it should differ from all of them.

In particular, the two legality conditions include the following simpler sub-
class of sources, which already intuitively captures our intended scenario. Con-
sider sources S = (S1,S2) that consists of two components. The first component
SEDExt(·,S)
1 makes arbitrary oracle calls to the extractor and models the influ-

ence that these calls have on nature; it outputs some value state. The second
component S2(state) then outputs X,AUX without making any further oracle
queries and captures the entropic process that produces the sample. The only
condition we impose is that, for every possible fixed value of state, the entropy
of X conditioned on AUX when they are sampled according to S2(state) should
be at least α. If α is large enough then S satisfies both of the previous legality
conditions. In particular, S1 could not have queried the oracle on X since the
entropy of X comes only from the random coins of S2 that are unknown to S1.

Discussion on Auxiliary Info. Our default definition allows the source to
output some public auxiliary info AUX that can be correlated with the sample
X as long as it preserves its (average conditional min-)entropy. It is natural that
some such information may be public (e.g., the source X denotes the timing of

316 Y. Dodis et al.

interrupts, but the adversary can learn some auxiliary info AUX denoting the
high-order bits of such timings by interacting with the system). We also consider
a weaker setting without auxiliary info, where we don’t have AUX. In the case
of standard seeded extractors, it turns out that there is not much difference
between a setting with auxiliary info and without [DORS08]. However, as we
will see, there is a significant difference between the two settings when it comes
to ED-Extractors.

Prior Work. The work of Coretti et al. [CDKT19] initiates the study of
extracting from extractor-dependent sources in the special case where the
extractor is a random oracle. While their definition is specifically tailored to
the random-oracle model, our definition can be seen as the natural extension
of it to the standard model. In particular, they consider the setting where
O(·) = EDExt(·, S) is a truly random function. They show that this is an α-
ED-Extractor for any super-logarithmic entropy α, as long as the source only
makes polynomially many queries, but even if the distinguisher is computation-
ally unbounded and can see the entire truth table of the oracle. This gives
us heuristic evidence that a “good” cryptographic hash function is an ED-
Extractor in the standard model even against computationally unbounded dis-
tinguishers (as long as the source is computationally bounded). The main open
question is therefore whether we can construct ED-Extractors under standard
computational assumptions.

1.1 Our Results

We give positive and negative results for ED-Extractors with and without
auxiliary info.

Without Auxiliary Info. On the positive side, we show that any pseudo-
random function (PRF) with a sufficiently high security level is a good
ED-Extractor without auxiliary info. In particular, assuming the existence of sub-
exponentially secure one-way functions, there exist α-ED-Extractors with any
output size m for entropy α = m + ω(log λ), where λ is the security parame-
ter. Furthermore, such extractors achieve security even against computationally
unbounded distinguishers, as long as the source runs in polynomial time. If we only
want security against polynomial-time distinguishers, we can allow the output size
to grow to an arbitrary polynomial m while only requiring entropy α = λΩ(1).

On the negative side, we show that ED-Extractors imply one-way functions
and therefore cannot be constructed unconditionally. This holds even without
auxiliary info, even if we require that the source has almost full entropy, and
even if the extractor outputs only 1 bit. Furthermore, we show that such ED-
Extractors cannot exist for computationally unbounded sources.

With Auxiliary Info. We construct ED-Extractors in the setting with auxil-
iary info under standard assumptions. In particular, we give three constructions.

– The first construction relies on (adaptively secure) constrained PRFs [BGI14,
KPTZ13,BW13] for NC1 constraints. These can be instantiated under the

Extracting Randomness from Extractor-Dependent Sources 317

sub-exponential security of either the learning with errors (LWE) [BV15]
or the Decisional Diffie-Hellman Inversion (DDHI) assumption in arbitrary
prime-order groups (without requiring pairings) [AMN+18].1

– The second construction relies on shift-hiding shiftable functions [PS18],
which can be seen as a type of constraint-hiding constrained PRFs, and can
be instantiated under LWE without requiring sub-exponential security.

– The third construction relies on lossy functions and can be instantiated under
any of: decisional Diffie-Hellman (DDH), decisional-linear (DLIN), LWE, or
decisional composite residuosity (DCR) assumptions.

In all cases, we prove security against polynomial-time sources and distinguish-
ers. Our α-ED-Extractors can have arbitrarily large polynomial input size n and
output size m, and require entropy α = λΩ(1).

Note that, in the setting without auxiliary info, we achieved security even
against computationally unbounded distinguishers. Furthermore, the random-
oracle based result of [CDKT19] heuristically suggests that good cryptographic
hash functions achieve security against computationally unbounded distinguish-
ers even in the auxiliary info setting. However, our constructions in the auxiliary
info setting from standard assumptions only achieve security against polynomial-
time distinguishers. Unfortunately, we show that this is inherent. In particular,
we show that in the auxiliary info setting, one cannot prove the security of
any ED-Extractor against computationally unbounded distinguishers under any
standard assumption via a black-box reduction.

Furthermore, our instantiations in the auxiliary info setting rely on “crypto-
mania” assumptions (known to imply public-key encryption) rather than one-
way functions, and we ask whether this is necessary. While we do not resolve this
question, we give some evidence that the two settings necessitate substantially
different constructions. Firstly, one may be tempted to conjecture that every
PRF is also a good ED-Extractor even in the auxiliary info setting. We show
that this is not the case: there exist PRFs that are insecure as ED-Extractors
in the auxiliary info setting even for very high levels/rates of entropy α. More-
over, we show that a large class of natural PRFs (e.g., the Naor-Reingold PRF)
cannot be proven to be secure ED-Extractors in the setting of auxiliary info via
a black-box reduction from any standard assumption.

1.2 Our Techniques

ED-Extractors without Auxiliary Info from PRFs. Our first result
shows that every PRF is already a good ED-Extractor in the setting without
auxiliary info. In particular, the seed of the extractor is the PRF key and the
extractor just evaluates the PRF on the sample X. The main difficulty in prov-
ing ED-Extractor security is that the distinguisher gets the seed of the ED-
Extractor, but PRF security only holds if the key is never revealed. Our insight
1 The DDHI assumption in a cyclic group G of order q with generator g states that,

given any polynomially many values of the form (g, ga, ga2
, . . . , gaL

) where a ← Zq,
the value g1/a is computationally indistinguishable from uniform.

318 Y. Dodis et al.

is to design a reduction that never calls the distinguisher – indeed, this allows
us to prove security even for computationally unbounded distinguishers.

Let’s start with the case where the PRF/Extractor only outputs 1 bit. If
the extracted output is statistically far from uniform given the seed, it means
that it is biased towards either 0 or 1, but the direction of the bias is unknown
and may be different for each seed. Consider running the source S twice with
independent randomness, while giving it oracle access to the PRF/Extractor
with the same random key/seed. Let X0,X1 be the samples that the two runs
output respectively. Then the PRF/Extractor evaluations on those samples are
more likely to agree than disagree, since they are biased in the same direction.
But the legality conditions ensure that X0,X1 were never queried during either
of the two runs and are different from each other (since each run cannot query
its own output and the output of the other run should have enough entropy to
be unpredictable). So, given oracle access to the PRF, we can use the source S
to find two values X0,X1 that we haven’t yet queried, but if we then proceed to
query the PRF on them, the outputs are noticeably more likely to agree than
disagree. This cannot be the case given oracle access to a random function, and
therefore allows us to distinguish the two and break PRF security. The analysis
extends to a larger output size m, but the advantage of the reduction shrinks by a
factor of 2−m. Therefore, we need very secure PRFs that cannot be distinguished
from random functions with advantage better than negl(λ)2−m, which requires
sub-exponential security assumptions.

Note that the above argument completely breaks down in the setting with
auxiliary info. The problem is that now the direction of the bias can be different
for each choice of the key/seed and the auxiliary info. But the two independent
runs of the source S are unlikely to produce the same auxiliary info and hence
we cannot argue that the bias would go in the same direction. Indeed, we show
that there are PRFs that are completely insecure as ED-Extractors in the setting
with auxiliary info.

ED-Extractors imply One-Way Functions. We show that ED-Extractors
cannot exist if the source is allowed to be computationally unbounded. This holds
even in the setting without auxiliary info, even if we only consider polynomial-
time distinguishers, even if we require that the source has almost full entropy,
and even if the extractor outputs only 1 bit. The high level idea is that a com-
putationally unbounded source S with oracle access to the function EDExt(·, S)
can learn the function sufficiently well to predict its output on a random value
with high probability. It can then sample a random X subject to predicting that
EDExt(X,S) = 0, without querying the extractor on X. This is a legal source
with almost full entropy, yet the extractor output is highly biased towards 0.
We extend the above argument to showing that such extractors imply one-way
functions.

ED-Extractors with Auxiliary Info from Constrained PRFs. We
construct ED-Extractors in the setting with auxiliary info, using constrained
pseudorandom functions (C-PRF). A C-PRF allows us to constrain a PRF key

Extracting Randomness from Extractor-Dependent Sources 319

k on some constraint function C to yield a constrained key, denoted k{C}. The
constrained key allows us to evaluate the PRF on all points x such that C(x) = 0.
However, given the constrained key k{C}, the PRF outputs at all points x for
which C(x) = 1 look random. We need to rely on adaptively secure constrained
PRFs, where the adversary can choose the constraint C after seeing some PRF
outputs.

Our construction of ED-Extractors uses a constrained PRF and a standard
(seeded) randomness extractors Ext. The seed of the ED-Extractor is a con-
strained PRF key k{CS,U}, with the constraint CS,U (X) that outputs 1 (i.e.,
prevents evaluation) on all points X such that Ext(X;S) = U , where S,U are
chosen randomly. We choose the output size of the extractor to be � = ω(log λ)
and therefore the key is constrained on a negligible fraction of points. On input
X, the ED-Extractor checks if CS,U (X) = 1, in which case it outputs some fixed
dummy value, and otherwise it uses the seed k{CS,U} to evaluate the PRF on X.

To argue ED-Extractor security, we consider a source SEDExt(·,k{CS,U }) that
gets oracle access to the ED-Extractor with a random seed k{CS,U} and out-
puts X,AUX. A distinguisher D then gets the seed k{CS,U} together with AUX
and the extracted output R = EDExt(X, k{CS,U}). We first argue that this
is statistically indistinguishable from giving the source S oracle access to the
unconstrained PRF and setting R to be the output of the PRF with the uncon-
strained key on X (since the probability that any of the queries of S or its
output lie in the constrained set is negligible). Now, instead of giving the distin-
guisher D the constrained key k{CS,U} where U is uniform, we give it the key
k{CS,Ext(X;S)} which is constrained on X. This is statistically indistinguishable
since X has entropy even conditioned on AUX and is sampled independently
of S; therefore Ext(X;S) is close to uniform even given AUX. But now we can
switch R from the output of the PRF on X to uniform, and this is computation-
ally indistinguishable even given the constrained PRF key k{CS,Ext(X;S)} since
it is constrained on X (and we know that the source didn’t query the oracle on
X). This shows that the extracted output is indistinguishable form uniform even
given the ED-Extractor seed and the auxiliary info. (The above proof outline
conveys the intuition but is slightly oversimplified and ignores some subtleties;
see the full proof for details).

Since standard extractors can be evaluated in NC1, we only need constrained
PRFs for NC1 circuits. Fortunately, we have such constructions from the LWE
and DDHI assumptions [BV15,AMN+18]. However, they only achieve selective
security, where the constrained circuit needs to be chosen ahead of time before
any PRF outputs are given out, while we need adaptive security. We can get
this via standard complexity leveraging at the cost of having to assume the
sub-exponential security of the LWE and DDHI assumptions.

Additional Constructions (in the full version). We give two alter-
nate constructions of ED-Extractors in the setting with auxiliary info. The first
uses shift-hiding shiftable functions [PS18], which can be instantiated from stan-
dard LWE, without needing complexity leveraging. The construction and proof

320 Y. Dodis et al.

of security differ substantially from the one above. The second one uses lossy
functions, which are essentially equivalent to lossy trapdoor functions (LTDFs)
[PW08] without requiring a trapdoor. The construction can be instantiated from
several different assumptions (DDH,DLIN,LWE,DCR). Both constructions are
omitted from this proceedings version due to lack of space; please see the full
version [DVW19].

Not all PRFs are ED-Extractors with Aux Info. We construct PRFs,
which fail to be good extractors in the setting of auxiliary info. For example,
consider a PRF which first hashes the input x into a small digest using a collision-
resistant hash function and then applies another PRF on the output. Consider
a source that chooses a random x and sets the auxiliary info to be the hash of x.
Since the hash is small, this does not reduce the entropy of x by much. However,
if the distinguisher is given the PRF key (which is the ED-Extractor seed) and
the auxiliary info, it can compute the PRF on x and therefore easily distinguish
it from uniform. In this example, the auxiliary info reduces the entropy of x by
some small super-logarithmic amount. We give an even more dramatic example
of this type using fully-homomorphic encryption (FHE) where the auxiliary info
reduces the entropy of x by only 1 bit.

Black-Box Separation Results. Lastly, we give two black-box separation
results showing that, in the auxiliary info setting, one cannot prove security (via
a black-box reduction under a standard assumption) against computationally
unbounded distinguishers or for certain natural classes of constructions. Our
results rely on the framework of [Wic13] and rely on the fact that the ED-
Extractor definition is expressed as a two-stage game where the attacker consists
of two components (the source and the distinguisher) that cannot communicate.
This allows us to give black-box separations showing that, in certain cases, we
cannot prove security under any standard assumption which is in the form of a
single-stage game between a challenger and a single stateful adversary.

1.3 Additional Related Work

RNGs. Our scenario is partially motivated by the problem of extracting ran-
domness from physical sources as part of a system Random Number Generator
(RNG). We note that extracting randomness is only one component of a good
RNG; see e.g., [BH05,DPR+13,DSSW14,GT16,Hut16,CDKT19] for works that
formally deal with the broader problem of RNG design.

Universal Computational Extractors (UCE). The notion of universal
computational extractors (UCE) [BHK13,ST17] was originally proposed as a
way of capturing “random-oracle like” security properties of hash functions via
a standard-model definition. While the format of the UCE definition is also
given in terms of an extraction game with a source and a distinguisher, there are
major differences between the UCE definition and that of ED-Extractors, both
in terms of their syntactic structure, but also more conceptually in terms of what
they aim to capture. The key such difference is that the notion of legal source is

Extracting Randomness from Extractor-Dependent Sources 321

defined in the “ideal model”, and permits sources which only have computational
unpredictability in the “real” model (say, conditioned on the auxiliary informa-
tion).2 In contrast, this work only aimed to capture a smaller class of sources
that have entropy even in the “real model”, but could depend of the previous
extractor output.

Unfortunately, it is known that even the weakest form of UCE security can-
not be achieved under standard assumptions (via black-box reductions; this indi-
rectly follows from [Wic13]), while our work shows that ED-Extractors can. It
remains an interesting open problem whether ED-Extractors can be used in place
of UCEs to get any broader cryptographic applications beyond the immediate
ones of extracting randomness.

Low-Complexity Samplers. Introduced by Trevisan and Vadhan [TV00] and
later extended by [KRVZ11], these seedless extractors assume that the entropy
source producing input X is unable to run the extractor even once. In contrast,
our sampler can be much slower than the extractor, but we use a seed and
give the sampler oracle access to the extractor, before releasing the seed to the
distinguisher.

Seed-Dependent condensers. This approach, formalized by Dodis, Risten-
part and Vadhan [DRV12], relaxes the security guarantees of the randomness
extractor to only ensure that the output of the condenser is almost full entropy,
but not necessarily close to uniform. In this sense it is weaker than ED-Extractors.
However, the sampler is given the actual seed, which is stronger than our setting.
Interestingly, the availability of auxiliary information also played a crucial role in
the constructions of seed-dependent condensers from standard assumptions.

2 Preliminaries

When X is a distribution, or a random variable following this distribution, we
let x ← X denote the process of sampling x according to the distribution X. If
X is a set, we let x ← X denote sampling x uniformly at random from X.

Let X,Y be random variables with supports SX , SY , respectively. We define
their statistical difference as

SD(X,Y) =
1
2

∑

u∈SX∪SY

|Pr[X = u] − Pr[Y = u]| .

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X =
x]). Following Dodis et al. [DORS08], we define the (average) conditional min-
entropy of X given Y as: H∞(X|Y) = − log

(
Ey←Y

[
2−H∞(X|Y =y)

])
. Note that

H∞(X|Y) = k iff the optimal strategy for guessing X given Y succeeds with
probability 2−k.

2 Somewhat confusingly, this is true even for so called “UCEs for statistically unpre-
dictable sources”.

322 Y. Dodis et al.

Lemma 1. For any random variables X,Y where Y is supported over a set
of size T we have H∞(X|Y) ≤ H∞(X) − log T .

Definition 1 ((Strong, Average-Case) Seeded Extractor [NZ96]). We
say that an efficient function Ext : {0, 1}n × {0, 1}d → {0, 1}� is an (α, ε)-
extractor if for all random variables (X,Z) such that X is supported over {0, 1}n

and H∞(X|Z) ≥ α we have SD((Z, S,Ext(X;S)), (Z, S, U�)) ≤ ε where S,U� are
uniformly random and independent bit-strings of length d, � respectively.

Theorem 1 ([ILL89]). There exist (α, ε)-extractors with input length n and out-
put length � as long as α ≥ � + 2 log(1/ε).

Definition 2 ((Strong, Average-Case) Two-Source Extractor [CG88]).
We say that an efficient function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m is
an (e1, e2, δ)-strong 2-source extractor if for all random variables (X1,X2, Z)
such that X1,X2 are independent conditioned on Z and H∞(X1|Z) ≥ e1,
H∞(X2|Z) ≥ e2 we have SD((Z,X2, 2Ext(X1;X2)), (Z,X2, Um)) ≤ δ where Um

is a uniformly string of length m.

Theorem 2 ([Raz05]). For any polynomial input length n = poly(λ), any e1 =
λΩ(1) and any e2 = (1/2 + Ω(1))n, there exist (e1, e2, δ)-extractor with input
length n, output length m = λΩ(1) and error δ = 2−λΩ(1)

.

Definition 3. The collision probability of a random variable A is defined as
Col(A) = Pr[a = a′ : a ← A, a′ ← A]. The conditional collision probability of
A given B is defined as Col(A|B) = Pr[a = a′ : b ← B, a ← (A|B = b), a′ ←
(A|B = b)].

Claim 1 (Statistical Distance vs Collision Probability [IZ89]). Let A be
a random variable supported over {0, 1}m such that SD(A,Um) ≥ ε, where Um

is uniform over {0, 1}m. Then Col(A) ≥ 1
2m (1 + 4ε2).

Furthermore, let A,B be correlated random variables, where A is supported
over {0, 1}m and

SD((A,B), (Um, B)) ≥ ε.

Then Col(A|B) ≥ 1
2m (1 + 4ε2).

Learning with Errors. The (n,m, q, χ) LWE assumption states that (A, sA + e)
is computationally indistinguishable from (A, u) where A ← Z

n×m
q , s ← Z

n
q ,

e ← χm and u ← Z
m
q . Throughout this work, the LWE assumption (without

qualification), refers to assuming that there exists some n = poly(λ), some q ≥
2λΩ(1)

and some distribution χ over Z which is poly(λ) bounded such that the
(n,m, q, χ) assumption holds for all m = poly(λ). This is implied by the hardness
of worst-case lattice problems with sub-exponential approximation factors.

Definition 4 (Pseudorandom Function (PRF) [GGM84]). A polynomial-
time function F : {0, 1}� × {0, 1}n → {0, 1}m with key length � = �(λ), input

Extracting Randomness from Extractor-Dependent Sources 323

length n = n(λ) and output length m = m(λ) is a PRF if for any polynomial-time
attacker A there exists some negligible function μ(λ) = negl(λ) such that

| Pr[AF (k,·)(1λ) = 1] − Pr[AO(·)(1λ) = 1] | ≤ μ(λ).

where we choose k ← {0, 1}� and O : {0, 1}n → {0, 1}m is a uniformly random
function. We say that the PRF has security level σ = σ(λ) if μ(λ) ≤ 1/σ(λ).

Definition 5 (Constrained PRFs (CPRF) [BGI14,KPTZ13,BW13]). A
CPRF for a class of constraints C = {Cλ} consists of two polynomial-time algo-
rithms (F,Constrain) where:

– y = F (k, x) is a deterministic polynomial-time function that takes as input
a key k (either constrained or unconstrained) and a value x ∈ {0, 1}n and
outputs y ∈ {0, 1}m for some polynomial length parameters n = n(λ),m =
m(λ) in the security parameter λ.

– k{C} ← Constrain(k,C) takes as input a key k ∈ {0, 1}λ and a constraint
C : {0, 1}n → {0, 1} with C ∈ Cλ. It outputs a constrained key, denoted
k{C}.

We require that the scheme satisfies a correctness and a security property defined
below:

Correctness: We require that no adversary can find an input which is not con-
strained, yet the constrained key disagrees with the original key. More con-
cretely, consider the following game between a stateful adversary A and a
challenger:
– The adversary A(1λ) chooses C ∈ Cλ.
– The challenger chooses k ∈ {0, 1}λ and k{C} ← Constrain(k,C).
– The adversary AF (k,·)(k{C}) gets the constrained key k{C} and oracle

access to F (k, ·). It outputs a value x ∈ {0, 1}n.
We require that, in the context of the above experiment, we have Pr[C(x) =
0 ∧ F (k, x) �= F (k{C}, x)] ≤ negl(λ).

(Adaptive) Security: Consider the following distinguishing game between an
adversary A and a challenger:
– Challenger chooses k ← {0, 1}λ and a bit b ← {0, 1}.
– Adversary AF (k,·)(1λ) gets oracle access to F (k, ·) and outputs a con-

straint C ∈ Cλ and a values x such that C(x) = 1 and x was never
queries to the oracle.

– If b = 0, the challenger sets r = F (k, x) and else it chooses r ← {0, 1}m.
The challenger also computes k{C} ← Constrain(k,C).

– The adversary A is given k{C} and r. It outputs a bit b′.
We require that for all polynomial-time adversaries A, we have |Pr[b = b′] −
1
2 | = negl(λ).

We also consider several variants of the definition. Firstly, we define the notion
of no-constrained-evaluation security, where we restrict the adversary to never
querying the oracle F (k, ·) on a point x for which C(x) = 1. Secondly, we

324 Y. Dodis et al.

consider selective security where the adversary chooses C ∈ Cλ at the begin-
ning of the game before getting oracle access to F (k, c)̇). Lastly, we consider
no-evaluation security where the adversary does not get oracle access to F (k, ·)
at all.

Note that, via a simple guessing argument where we guess the adver-
sary’s choice of C, selective security with a sufficiently high security level
σ(λ) = |Cλ|ω(log λ) implies adaptive security. Furthermore by the same argu-
ment, no-evaluation security (which is inherently selective) with a sufficiently
high security level σ(λ) = |Cλ|ω(log λ) implies no-constrained-evaluation secu-
rity. This is because, if we guess the adversary’s choice of C ahead of time and
gets k{C}, we can answer queries on unconstrained points using k{C} rather
than calling the PRF oracle.

3 Defining ED-Extractors

In this section, we give a formal definition of extractors for extractor-dependent
sources (ED-Extractors) and provide some discussion on the various aspects of
the definition.

Definition 6 (Extractor-Dependent Extraction). An extractor for
α-entropy extractor-dependent sources (α-ED-Extractor) consists of two poly-
nomial-time algorithms (SeedGen,EDExt) with the following syntax:

– seed ← SeedGen(1λ) is a randomized algorithm that generates seed.
– EDExt(x, seed) is a deterministic algorithm that takes a sample x ∈ {0, 1}n,

together with seed and outputs a value y ∈ {0, 1}m for some polynomial length
parameters n = n(λ),m = m(λ).

Consider an adversarial source/distinguisher pair (S,D) and define the following
extraction experiment EDGameS,D(1λ):

– Sample a random bit b ← {0, 1} and a random seed ← SeedGen(1λ).
– Run (x, aux) ← SEDExt(·,seed)(1λ).
– If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
– Let b′ = D(1λ, seed, aux, r).

We say that S is an α-legal extractor-dependent source if the following conditions
hold:

1. The probability that S queries its oracle on the value x that it outputs is
negligible.

2. H∞(X|AUX,SEED) ≥ α(λ), where X,SEED,AUX denotes the joint distribu-
tion of the values x, seed, aux in the above experiment.

An α-ED-Extractor is secure if for all α-legal polynomial-time sources S and all
polynomial-time distinguishers D, the above experiment satisfies

∣∣∣∣Pr[b = b′] − 1
2

∣∣∣∣ = negl(λ).

Extracting Randomness from Extractor-Dependent Sources 325

We can also define a weaker notion without auxiliary info by restricting aux
to be empty. We can also strengthen security to computationally unbounded
sources or distinguishers by removing the restriction that the source or the dis-
tinguisher runs in polynomial time.

Remark on the Legality Conditions. As we discussed in the introduction, the
legality conditions above may not seem entirely intuitive on first look. For exam-
ple, it may be unclear why we prohibit the source from querying the extractor on
the value it outputs. Another undesirable aspect of definition is that the legality
conditions are construction-dependent: in other words, a source may be legal for
some constructions of the ED-Extractor but illegal for others since the entropy
of the output may depend on the oracle queries. Ideally, the legality of the source
could be checked independently of the construction. For these reasons, we can
also consider an alternate, weaker, definition, which may be more intuitively
compelling and does not suffer from the above issue. We say that source S is
α-super-legal if:

– It can be written as S = (S1,S2) where SEDExt(·,seed)
1 (1λ) gets oracle access to

the extractor and outputs some value state ∈ {0, 1}p(λ) for some polynomial
p, and S2(state) outputs x, aux without getting any further access to the
extractor.

– For all choices of state ∈ {0, 1}p(λ) it holds that H∞(X|AUX) ≥ α(λ), where
(X,AUX) are random variables for the output of S2(state).

Note that “super-legality” is only a condition of S2 which does not have oracle
access to the extractor, and is therefore construction-independent.

We claim that for any α(λ) = ω(log λ), every α-super-legal source S is
also α-legal. Firstly, if S1 only makes polynomially many queries and has a
non-negligible probability of querying the oracle on the value x that S2 out-
puts then there must be some value of state for which we can predict the
value x that S2(state) outputs with non-negligible probability. But this con-
tradicts H∞(X) ≥ H∞(X|AUX) ≥ ω(log λ). Therefore S satisfies the first
legality condition. Secondly, let STATE be a random variable for the value
state ← SEDExt(·,seed)

1 (1λ). Then SEED is independent of (X,AUX) if we con-
dition on STATE. Therefore, H∞(X|AUX,SEED) ≥ H∞(X|AUX,STATE) ≥
minstate H∞(Xstate|AUXstate) ≥ α(λ) where Xstate,AUXstate is the conditional dis-
tribution of X,AUX conditioned on STATE = state, which is just the distribution
of the outputs of S2(state). Therefore S satisfies the second legality condition.

As discussed in the introduction, the super-legality condition can also be
interpreted very intuitively: we think of S1 as capturing all of the influence that
prior extractor call can have on nature and S2 as modeling the entropic process
that’s responsible for generating x, aux. We chose to use “legality” rather than
“super-legality” in our default definition since it makes the definition stronger
and thus gives stronger positive results. We mention that (by simple inspection)
all of our negative results also hold for the weaker definition using super-legality.

326 Y. Dodis et al.

Remark about Conditioning on the Seed. Our legality condition in the formal
definition requires that the entropy H∞(X|AUX,SEED) ≥ α(λ), where we con-
dition on SEED. Note that we could remove this conditioning and have an
alternate, stronger, definition where we only require H∞(X|AUX) ≥ α(λ). We
observe that, assuming one-way functions, any α-ED-Extractor according to
our definition can be converted into an (α′ = α + λε)-ED-Extractor accord-
ing to the stronger definition for any constant ε > 0. The idea is that we can
modify the SeedGen algorithm to only use λε random bits by expanding them
out using a PRG to get as many pseudorandom bits as needed by the original
algorithm. By the security of the PRG, this change cannot harm ED-Extractor
security. But now SEED comes from a domain of size only 2λε

and therefore
H∞(X|AUX,SEED) ≥ H∞(X|AUX) − λε ≥ α′ − λε ≥ α. Hence the new con-
struction is an α′-ED-Extractor according to the stronger definition. The take-
away is that (as long as we’re only considering polynomial-time distinguishers)
it does not make much difference whether or not we condition on the seed in the
definition.

Remark on Output Size. Note that if we have an α-ED-Extractor with output
size m = λε for some constant ε > 0 then, assuming one-way functions, we can
also construct an α-ED-Extractor for arbitrarily large output size m = λc for any
constant c just by using a pseudorandom generator (PRG) to expand the output.
This holds as long as we’re only considering polynomial-time distinguishers.

4 Security Without Auxiliary Info

4.1 Construction from Any PRF

We first show that every pseudorandom function (PRF) with a sufficiently high
level of security is a good ED-Extractor in the setting without auxiliary info.

Theorem 3. Let F (·, ·) : {0, 1}� × {0, 1}n → {0, 1}m be a pseudorandom
function (PRF) with key-length � = �(λ), input length n = n(λ) and output length
m = m(λ), having security level σ(λ) = 2m(λ)ω(log λ). Define (SeedGen,EDExt)
where SeedGen(1λ) outputs seed ← {0, 1}�(λ) and EDExt(x, seed) = F (seed, x).
Then (SeedGen,EDExt) is an α-ED Extractor without auxiliary info for any α ≥
m + ω(log λ). Furthermore, it has security for unbounded distinguishers.

Proof. Assume that (S,D) is some α-legal source and distinguisher pair with
advantage ε = ε(λ) in the ED-Extractor security game. Assume that S runs in
polynomial time, but D can be unbounded. We define a polynomial-time adver-
sary A that has (ε2 − negl(λ))/2m advantage in the PRF game. In particular,
AO(·) is given access to an oracle O and runs SO(·) twice with independent ran-
domness to derive two values x, x′. Then AO(·) computes r = O(x), r′ = O(x′).
If r = r′, it outputs 1 else 0.

Firstly, consider the experiment where we sample k ← {0, 1}�, x ← SF (k,·),
r = F (k, x) and let K,R be the random variables for the values k, r respectively.

Extracting Randomness from Extractor-Dependent Sources 327

Then the statistical distance SD(((K,R), (K,Um)) ≥ ε since D distinguishes the
two distributions with probability ε. Therefore, by Claim 1, we have Col(R|K) ≥
1
2m (1 + 4ε2) where Col denotes the collision probability (Definition 3). It’s easy
to see that, by the definition of A, we have Pr[AF (k,·) = 1 : k ← {0, 1}�] =
Col(R|K) ≥ 1

2m (1 + 4ε2).
Secondly, consider the experiment where we sample k ← {0, 1}� and then

sample x ← SF (k,·), x′ ← SF (k,·) by running S twice with independent ran-
domness and let K,X,X ′ be the random variables for the value k, x, x′ in the
experiment. Since S is an α-legal source we know that:

– The probability that S queried the oracle on x during the first run or on x′

during the second run is negligible.
– Since H∞(X|K) = H∞(X ′|K) ≥ α ≥ m + ω(log λ), the probability that

either (1) S queried the oracle on x′ during the first run or (2) S queried the
oracle on x during the second run or (3) x = x′ is bounded by negl(λ)/2m.

To summarize, in the above experiment, if we define the “bad event’ that x = x′

or that the oracle is queried on one of x, x′ during the course of the experiment,
then the probability of the bad event is at most negl(λ)/2m. Now, consider
the modified experiment where we sample x ← SU(·), x′ ← SU(·) and U is a
truly random function. By σ(λ) security of the PRF, the probability of the bad
even occuring in the modified experiment is still be bounded by negl(λ)/2m.
If the bad event does not occur, then r = U(x), r′ = U(x′) are random and
independent values and therefore Pr[r = r′] = 1

2m . This shows that Pr[AU(·) =
1] ≤ (1 + negl(λ))2m.

This shows that the advantage of A in the PRF security game is (4ε2(λ) −
negl(λ))/2m which must be ≤ 1/σ(λ) ≤ negl(λ)/2m, by the σ(λ) security of the
PRF. Therefore ε(λ) = negl(λ), which concludes the proof of the ED-Extractor
security.

Corollary 1. Assuming the existence of sub-exponentially secure one-way func-
tions, for any polynomial input size n = n(λ) the following holds:

– For any polynomial output size m = m(λ), there exists an α-ED Extractor
in the setting without auxiliary info and with security for unbounded distin-
guishers as long as α ≥ m + ω(log λ).

– For any constant ε > 0 and any polynomial output size m = m(λ), there
exists an α-ED Extractor in the setting without auxiliary info and security
for polynomial-time distinguishers as long as α ≥ λε.

Proof. We note that sub-exponentially secure one-way functions imply the exis-
tence of PRFs with security level 2p(λ) for any polynomial p (by making the
key sufficiency large). Therefore the first part of the corollary follows directly
from the preceding Theorem. The second part follows by using a pseudorandom
generator (PRG) to expand the output-size of the ED-Extractor as discussed in
the Remark on Output Size in Sect. 3.

328 Y. Dodis et al.

4.2 Necessity of One-Way Functions

Theorem 4. For any input length n = n(λ), the existence of an (α = n−1)-ED-
Extractor, even without auxiliary info and even with output length m = 1, implies
the existence of one-way functions. Furthermore, such extractors cannot be secure
for computationally unbounded sources, even if we restrict to polynomial-time
distinguishers.

Proof. Let (SeedGen,EDExt) be an ED Extractor as in the theorem statement.
Assume SeedGen(1λ) uses at most � = �(λ) bits of randomness and let q =
7�+λ. Define the function f(r, x1, . . . , xq) = (x1, . . . , xq, y1, . . . , yq), which takes
as input a uniformly random r ∈ {0, 1}� and xi ∈ {0, 1}n and computes seed =
SeedGen(1λ; r) and yi = EDExt(seed, xi) for i ∈ [q]. Then we claim that f is a
one-way function.

Assume by way of contradiction that a polynomial-size adversary A breaks
the one-wayness of f with non-negligible probability. We define a source
SEDExt(seed,·) as follows:

1. Choose x1, . . . , xq uniformly at random form {0, 1}n. Query the oracle to
learn yi = EDExt(seed, xi) for each i ∈ [q].

2. Run A(xq, . . . , xq, y1, . . . , yq) and get some value (r′, x′
1, . . . , x

′
q).

3. Test if f(r′, xq, . . . , x
′
q) = (x1, . . . , xq, y1, . . . , yq). If not, output a uniformly

random x∗
0 ← {0, 1}n and halt. Else continue.

4. Compute seed′ = SeedGen(1λ; r′). Choose a random x∗
1 ← {0, 1}n and if

EDExt(seed′, x∗
1) = 0 output x∗

1 and halt. Else continue.
5. Choose a random x∗

2 ← {0, 1}n and output it.

We define a corresponding distinguisher D(seed, r), which outputs r. We claim
that the pair (S,D) breaks the (α = n − 1)-ED-Extractor security.

Firstly, we claim that S is an (α = n − 1)-legal source. It is easy to see that
the probability of it outputting a value x that it previously queried is negligible
since it outputs one of x∗

0, x
∗
1, x

∗
2 each of which is individually uniformly random

and independent of the prior queries. To analyze entropy, let us fix any choice
of the values of seed, x1, . . . , xq and randomness of A and let X be the random
variable for the output of S in the above experiment. We argue that, even for
any choice of the fixed values, it holds that H∞(X) ≥ n − 1, which proves the
claim. The fixed values determine whether the test in line 3 passes or fails. If it
fails, then X is uniformly random and so H∞(X) = n. If it passes, then let us
define the variable V which is 0 if x is output in line 4 and 1 if it is output in
line 5. Let us define the value P0 = |{x : EDExt(x, seed) = 0}|. Then we have

max
x

Pr[X = x] = max
x

(Pr[X = x|V = 0] Pr[V = 0] + Pr[X = x|V = 1] Pr[V = 1])

≤ 1

P0
· P0

2n
+

1

2n
(1 − 1

P0
)

≤ 2−(n−1)

and therefore H∞(X) ≥ n − 1.

Extracting Randomness from Extractor-Dependent Sources 329

Next, we analyze the success probability of the pair (S,D) in the ED-
Extractor security game. If the challenger chooses the challenge bit b = 1 then,
since r is uniformly random, we have Pr[b′ = 1] = 1

2 . On the other hand, let’s
analyze the security game when the challenge chooses the bit b = 0. Assume
that the adversary A breaks the security of the one-way function f with some
non-negligible probability ε = ε(λ). Then ε(λ) ≥ 1/p(λ) for some polynomial p
and for infinitely many values of λ. We define several events in the context of
the ED-Extractor security game with the particular sampler defined above:

FAIR: Let’s call a seed biased if Prx←{0,1}n [EDExt(seed, x) = 0] ≤ 1
2 − δ where

we set δ := 1
20p . Let’s define the event FAIR to occur if the seed is not biased.

Since we assumed that the ED-Extractor is secure, it must be the case that
probability that a random seed is biased is negligible (otherwise the sampler
that outputs a random x and the distinguisher that tests if the seed is biased
and if so outputs r else outputs random would break security). Therefore,
Pr[FAIR] = 1 − negl(λ).

INV: Let this be the event that the test in line 3 of the execution of S succeeds,
meaning that A succeeded to invert correctly. By definition Pr[INV] = ε.

CLOSE: Let this be the event that for the value seed′ computed in line 4, it holds
that

Pr
x←{0,1}n

[EDExt(x, seed) = EDExt(x, seed′)] ≥ .9

where, if the process terminates before line 4, we define seed′ = seed. If
CLOSE does not occur, it means that there exists some seed′ for which
Prx←{0,1}n [EDExt(x, seed) = EDExt(x, seed′)] < .9 but for all i ∈ [q] it holds
that EDExt(xi, seed) = EDExt(xi, seed

′). The probability of this happening for
any fixed seed′ is .9q ≤ .97�+λ ≤ 2−�negl(λ). By taking a union bound over
all 2� values of seed′ the probability that some such seed′ exists is negligible
and therefore Pr[CLOSE] ≥ 1 − negl(λ).

For simplicity, we also define the event IFC = INV ∧ FAIR ∧ CLOSE. When b = 0
we therefore have:

Pr[b′ = 0] ≥ Pr[b′ = 0 ∧ INV] + Pr[b′ = 0 ∧ ¬INV]

≥ Pr[b′ = 0 ∧ INV ∧ FAIR ∧ CLOSE] + Pr[b′ = 0 ∧ ¬INV ∧ FAIR]

≥ Pr[b′ = 0|IFC](Pr[INV] − Pr[¬FAIR] − Pr[¬CLOSE])

+ Pr[b′ = 0|¬INV ∧ FAIR](Pr[¬INV] − Pr[¬FAIR])

≥ Pr[b′ = 0|IFC](ε − negl(λ)) + Pr[b′ = 0|¬INV ∧ FAIR](1 − ε − negl(λ))

≥ Pr[b′ = 0|IFC](ε − negl(λ)) +

(
1

2
− δ

)
(1 − ε − negl(λ))

To analyze Pr[b′ = 0|IFC] let us fix all randomness z of the experiment except for
the choice of x∗

1, x
∗
2, such that this fixing makes the event IFC occurs. Let IFCz be

the event that the randomness takes on this value. For any such choice, let E1 be

330 Y. Dodis et al.

the event that EDExt(x∗
1, seed) = 0, let E′

1 be the event that EDExt(x∗
1, seed

′) = 0,
let A be the even that EDExt(x∗

1, seed) = EDExt(x∗
1, seed

′) and let E2 be the event
that EDExt(seed, x∗

2) = 0, where the randomness is only over the choice of x∗
1, x

∗
2.

Since we conditioned on CLOSE we have Pr[A] ≥ .9. Since we conditioned on
FAIR we have Pr[E1] ≥ (1/2 − δ),Pr[E2] ≥ (1/2 − δ). Therefore, for any such
choice of randomness z we have:

Pr[b′ = 0|IFCz] = Pr[E1 ∧ E′
1] + Pr[E2 ∧ ¬E′

1]
= Pr[A ∧ E′

1] + Pr[E2] (1 − Pr[E′
1])

≥ Pr[E′
1] − Pr[¬A] +

(
1
2

− δ

)
(1 − Pr[E′

1])

≥ 1
2

− δ − .1 +
1
2

Pr[E′
1]

≥ 1
2

− δ − .1 +
1
2
(Pr[E1] − Pr[¬A])

≥ 1
2

− δ − .1 +
1
2
(
1
2

− δ − .1)

≥ .6 − 3
2
δ

which also implies that Pr[b′ = 0|IFC] ≥ .6 − 3
2δ. Combining, we have:

Pr[b′ = 0] ≥
(

.6 − 3
2
δ

)
(ε − negl(λ)) +

(
1
2

− δ

)
(1 − ε − negl(λ))

≥ 1
2

− δ + ε(.1 − δ/2) − negl(λ)

≥ 1
2

+ ε/10 − (3/2)δ − negl(λ)

≥ 1
2

+
1

10p(λ)
− 3

40p(λ)
− negl(λ)

≥ 1
2

+
1

40p(λ)
− negl(λ)

for infinitely many values of λ. Therefore Pr[b′ = b] − 1
2 is non-negligible, which

leads to a contradiction and hence f must be one-way.
For the second part of the theorem, note that we showed how to convert an

inverter for f into a source S together with an efficient distinguisher D that
break ED-Extractor security. Since an inefficient inverter for f always exists, it
means that there exists an inefficient source S and an efficient distinguisher D
that break the security of the ED-Extractor.

Extracting Randomness from Extractor-Dependent Sources 331

5 Security with Auxiliary Info

5.1 Construction via Constrained PRFs

We now show how to construct an ED-Extractor in the setting with auxil-
iary info, using constrained PRFs (Definition 5) and standard seeded extractors
(Definition 1).

Construction. Let Ext : {0, 1}n × {0, 1}d → {0, 1}� be an (α′, ε)-seeded extrac-
tor for some lengths n = n(λ), d = d(λ), � = �(λ) and some α′ = α′(λ), ε = ε(λ).
Further let Ext also be a universal hash function. Let (F,Constrain) be a con-
strained PRF with input length n and output length m = m(λ) for the class of
constraints C = {Cs,u}s∈{0,1}d,u∈{0,1}� where Cs,u(x) = 1 iff Ext(x; s) = u. We
construct an ED-Extractor (SeedGen,EDExt) as follows:

– SeedGen(1λ): Choose a random k ← {0, 1}λ. Choose a random s ← {0, 1}d,
u ← {0, 1}� and let Cs,u ∈ C be the corresponding constraint. Let k{Cs,u} ←
Constrain(k,Cs,u). Output seed = k{Cs,u}.

– EDExt(x, seed): Output F (k{Cs,u}, x).

Note that F always outputs some value, even if x is in the constrained set. With-
out loss of generality, we can assume that the constrained key k{Cs,u} reveals
s, u in the clear and that, F (k{Cs,u}, x) outputs 0m whenever Cs,u(x) = 1.

Theorem 5. Assuming the constrained PRF has no-constrained-evaluation
security, the construction above is an α-entropy secure ED-Extractor for α =
α′ + m, as long as the parameters satisfy �(λ) = ω(log λ), and ε(λ) = negl(λ).

Proof. Our proof of security follows by a sequence of hybrid games:

Hybrid 0: This is the game EDGameS,D(1λ) with a source S and a distinguisher
D as in Definition 6. The game proceeds as follows:

– Sample a random bit b ← {0, 1} and a random seed ← SeedGen(1λ).
The latter consists of sampling k ← {0, 1}λ, s ← {0, 1}d, u ← {0, 1}�,
k{Cs,u} ← Constrain(k,Cs,u) and setting seed = k{Cs,u}.

– Run (x, aux) ← SEDExt(·,seed)(1λ).
– If b = 0 set r = EDExt(x, seed) else if b = 1 set r ← {0, 1}m.
– Let b′ = D(1λ, seed, aux, r).

Hybrid 1: In this game, instead of giving the source SEDExt(·;seed) access to the
oracle EDExt(·, seed) = F (k{Cs,u}, ·), we replace it with the oracle F (k, ·)
using the unconstrained key k. Furthermore, if b = 0, instead of setting
r = EDExt(x, seed) = F (k{Cs,u}, x), we now set r = F (k, x). In detail, the
hybrid is defined as follows:
1. Sample a random bit b ← {0, 1} and a random k ← {0, 1}λ.
2. Run (x, aux) ← SF (k,·)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ←

{0, 1}d, u ← {0, 1}� and seed ← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

332 Y. Dodis et al.

Hybrids 0 and 1 are indistinguishable. The only time Hybrid 0 differs from
Hybrid 1 is if in Hybrid 0 either: (A) some oracle query or the final output
x produced by S satisfy Ext(x; s) = u, or (B) some oracle query or the final
output x produced by S satisfy Cs,u(x) = 0 ∧ F (k, x) �= F (k{Cs,u}, x). Since
u is uniformly random, the probability of (A) happening when S makes q
queries is at most (q + 1)/2� which is negligible. By the correctness of the
constrained PRF, the probability of (B) happening is also negligible.

Hybrid 2: This is the same as Hybrid 1, except that we give the source access
to an oracle EDExt(·; seed′) where seed′ = k{Cs′,u′} ← Constrain(k,Cs′,u′) is
a constrained PRF key for random and independent values s′, u′. In detail,
the hybrid is defined as follows:
1. Sample a random bit b ← {0, 1} and a random k ← {0, 1}λ. Choose

s′ ← {0, 1}d, u′ ← {0, 1}� and seed′ ← Constrain(k,Cs′,u′).
2. Run (x, aux) ← SEDExt(·,seed′)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ←

{0, 1}d, u ← {0, 1}� and seed ← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

Hybrids 1 and 2 are statistically close. The only time Hybrid 1 differs from
Hybrid 2 is if in Hybrid 2 either: (A) some oracle query xi produced by S
satisfies Ext(xi; s′) = u′, or (B) some oracle query xi produced by S satisfy
Cs′,u′(x) = 0 ∧ F (k, x) �= F (k{Cs′,u′}, x). Since u′ is uniformly random, the
probability of (A) happening when S makes q queries is at most q/2� which
is negligible. By the correctness of the constrained PRF, the probability of
(B) happening is also negligible.

Hybrid 3: This is the same as Hybrid 2, except that in step 3, instead of
choosing u ← {0, 1}� we now set u = Ext(x; s). In detail, the hybrid is defined
as follows:
1. Sample a random bit b ← {0, 1} and a random k ← {0, 1}λ. Choose

s′ ← {0, 1}d, u′ ← {0, 1}� and seed′ ← Constrain(k,Cs′,u′).
2. Run (x, aux) ← SEDExt(·,seed′)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ← {0, 1}d

u = Ext(x; s) and seed ← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

Hybrids 2 and 3 are statistically close if Ext is an (α, ε)-extractor. To argue
this, let us use capital letters to denote random variables for the correspond-
ing values in the experiment. Firstly, note that the view of the source S in
hybrid 2 is identically distributed to that of hybrid 0.3 Therefore, we can
rely on the legality to S (which is defined relative to the distribution of
hybrid 0) to argue that H∞(X|AUX,SEED′) ≥ α. By Lemma 1, we also have
H∞(X|AUX,SEED′, R) ≥ α − m ≥ α′. Lastly since K is independent of X
when conditioned on SEED′, R, we also have H∞(X|AUX,K,R) ≥ α′. There-
fore, by the security of the extractor, U = Ext(X;S) is statistically close
to a uniformly random and independent U even given AUX,K,R, S. Lastly,
since the view of D in hybrids 2 and 3 is a function of AUX,K,R, S, U where

3 This was the reason for introducing hybrid 2 rather than directly going from 1 to 3.

Extracting Randomness from Extractor-Dependent Sources 333

U = Ext(X;S) in hybrid 3 and U is uniform/independent in hybrid 2, the
two hybrids are statistically close.

Hybrid 4: This is the same as Hybrid 3, except that we switch back from giving
S oracle access to EDExt(·, seed′) to giving it access to the unconstrained PRF
F (k, ·). In detail, the hybrid is defined as follows:
1. Sample a random bit b ← {0, 1} and a random k ← {0, 1}λ.
2. Run (x, aux) ← SF (k,·)(1λ).
3. If b = 0 set r = F (k, x) else if b = 1 set r ← {0, 1}m. Choose s ← {0, 1}d

u = Ext(x; s) and seed ← Constrain(k,Cs,u).
4. Let b′ = D(1λ, seed, aux, r).

Hybrids 3 and 4 are indistinguishable by the same argument as the indistin-
guishability of hybrid 1 and 2.

Advantage in Hybrid 4: We now claim that in Hybrid 4, the advantage
|Pr[b = b′] − 1

2 | is negligible by the no-constrained-evaluation security
of the constrained PRF. In particular, we define a reduction that runs
(x, aux) ← SF (k,·)(1λ) by making queries to its PRF oracle. The reduction
chooses s ← {0, 1}d, sets u = Ext(x; s) and gives the constraint Cs,u together
with the value x to its challenger. Since S is a legal source, x was never queried
by the oracle and, by the definition of the constraint, we have Cs,u(x) = 1.
Secondly, since Ext(·; s) is a universal hash function, the probability that of
any of the previous queries xi made by S satisfy Ext(xi; s) = Ext(x; s) is also
negligible. Therefore, our reduction makes no constrained-evaluation queries
to the PRF.
So, the reduction is a legal attacker in the no-constrained-evaluation secu-
rity game of constrained PRF. The reduction receives a value r, which is
either F (k, x) or uniform, along with a constrained key k{Cs,u}. It sets
seed = k{Cs,u} and outputs the bit b′ = D(1λ, seed, aux, r). The advantage of
the reduction in the constrained PRF security game is exactly the same as
that of the adversary in hybrid 3, and therefore the latter is negligible.

Since the advantage in hybrid 3 is negligible and hybrid 3 is indistinguishable
from hybrid 0, the advantage in hybrid 0 must be negligible as well. This proves
the theorem.

Corollary 2. Under the sub-exponential security of either the LWE assump-
tion or the DDHI assumption in an arbitrary prime-order group, there exists an
ED-Extractor for α-entropy sources with auxiliary info, for any α = λΩ(1) and
with any polynomial input length n and output length m. Security holds against
polynomial-time sources and distinguishers.

Proof. The work of [BV15] construct selectively secure constrained PRFs for
all circuits from LWE. We can then use complexity leveraging to get adaptive
security by assuming sub-exponential LWE. The results of [AMN+18] constructs
no-evaluation secure PRFs for NC1 from the DDHI assumption in arbitrary
prime-order groups (the also construct selectively secure PRFs from the DDHI
assumption in specific groups). We then use complexity leveraging to get no-
constrained-evaluation security under sub-exponential DDHI, as discussed in
the remarks after Definition 5.

334 Y. Dodis et al.

We use an extractor with output length α/4 which is secure for entropy
α′ = α/2 with ε = 2−(α/8) = negl(λ). We combine this with a constrained PRF
with output length m = α/2 which ensures α ≥ α′ + m. This gives us an ED-
Extractor with output length α/2 = λΩ(1). We can then use a PRG to then get
arbitrarily large polynomial output size as discussed in the Remark on Output
Size in Sect. 3.

5.2 Negative Results for ED Extractors with Auxiliary Info

Our constructions of ED-Extractors in the auxiliary info setting have several
disadvantages compared to our construction in the setting without auxiliary
info. Firstly, in the auxiliary info setting we needed complex constructions based
on “cryptomania” assumptions (LWE and DDHI), whereas in the setting with-
out auxiliary info, we showed that any sufficiently secure PRF is a good ED-
Extractor. Secondly, in the auxiliary info setting we only achieved security for
polynomial-time distinguishers while in the setting without auxiliary info we got
security even for computationally unbounded distinguishers. In this section, we
give some evidence that the two setting are substantially different and that we
indeed need to work harder and cannot hope for as much in the setting with
auxiliary info.

Not All PRFs Are ED-Extractors with Aux Info. Firstly, we show that
not every PRF is a good ED-Extractor in the setting with auxiliary info. We give
two variants of this result. The first is based on collision-resistant hash functions
(CRHFs) and gives a PRF that is not an α-ED-Extractor for entropy α = n−λε.
The second one is based on fully homomorphic encryption and gives a PRF that
is not an α-ED Extractor even for entropy α = n − 1. In both cases, the result
holds even if the PRF/ED-Extractor only outputs 1 bit.

CRHF-based Construction. Let F ′ : {0, 1}� × {0, 1}n′ → {0, 1} be a PRF
with key-length � = �(λ), input length n′ = n′(λ) and output length 1. Let
H : {0, 1}d × {0, 1}n → {0, 1}n′ be a collision-resistant hash function (CRHF)
with seed length d = d(λ), input length n = n(λ) and output length n′ = n′(λ).
We define a PRF F : {0, 1}�+d × {0, 1}n → {0, 1} as follows. Parse the key
k = (k′, s) with k′ ∈ {0, 1}�, s ∈ {0, 1}d. Define F (k, x):

– If x ≤ d output s[x], where we interpret x as an integer in the range [2n] and
s[x] denotes the x’th bit of s.

– Else output F (k′,H(s, x)).

It is easy to see that F is a PRF if F ′ is a PRF and H is a CRHF. On the other
hand it is not an α = (n − n′)-ED-Extractor. In particular, consider the source
that queries the oracle on values 1, . . . , d to learn the CRHF seed s. It then
chooses a random x ← {0, 1}n and outputs x, aux = H(s, x). It is clearly an α
legal source. Yet we can define a distinguisher D that gets k = (k′, s), aux, r and
outputs 1 iff r = F (k′, aux). Then D always outputs 1 if r is the outputs of the

Extracting Randomness from Extractor-Dependent Sources 335

ED-Extractor on x but only outputs 1 with probability 1/2 if r is truly random,
giving it a non-negligible advantage of 1/2. For parameters, we note that the
existence of CRHFs implies the existence of a CRHF with arbitrary polynomial
input size n = n(λ) and output size λε for any constant ε > 0. Therefore, we get
a PRF with arbitrary polynomial input size n = n(λ) and output size m = 1,
which is not an α-ED-Extractor for α = n − λε.

Theorem 6. Assuming the existence of collision-resistant hash functions, for
every polynomial n = n(λ) and every constant ε > 0 there exists a PRF with
n-bit input and 1-bit output which is not a secure α-ED-Extractor with auxiliary
input for α = n − λε.

FHE-based Construction. Let F ′ : {0, 1}� × {0, 1}n′ → {0, 1} be a PRF
with key-length � = �(λ), input length n′ = n′(λ) and output length 1. Let
(KeyGen,Enc,Dec,Eval) be an FHE scheme capable of evaluating the PRF F ′.
Furthermore assume that the ciphertexts are pseudorandom and that the Eval
procedure is statistically circuit private. Assume that the key-generation algo-
rithm and the encryption algorithm each use at most d = d(λ) bits of random-
ness, and that the encryption of an �-bit message produces an �′-bit ciphertext.
Define the PRF F : {0, 1}�+2d × {0, 1}n → {0, 1} as follows. Parse the key
k = (k′, s1, s2) with k′ ∈ {0, 1}�, s1, s2 ∈ {0, 1}d. Define F (k, x):

– Check if x ≤ �′(where we interpret x as an integer in the range [2n]). If so
let (pk, sk) ← KeyGen(1λ; s1), ct ← Enc(pk, k; s2). Output the x’th bit of ct
denoted by ct[x].

– Else output F (k, x).

It is easy to see that F is a secure PRF: by the security of the FHE with
pseudorandom ciphertexts, we can replace ct by a uniformly random value inde-
pendent of k, and by the security of the PRF F ′ the above is then a good PRF.
On the other hand it is not an α = (n−1)-ED-Extractor. In particular, consider
the source that queries the oracle on values 1, . . . , �′ to learn the the ciphertext
ct. It then chooses a random x ← {0, 1}n and outputs x, aux = Eval(F ′(·, x), ct)
so that aux is an FHE encryption of F ′(k, x). Since Eval is circuit private aux
does not reveal anything about x beyond F (k, x) and therefore is an α = n − 1
legal source. Yet we can define a distinguisher D that gets k = (k′, s1, s2), aux, r
and outputs 1 iff Dec(sk, aux) = r where (pk, sk) ← KeyGen(1λ; s1). Then D out-
puts 1 with probability 1) if r is the outputs of the ED-Extractor on x, but only
outputs 1 with probability 1/2 if r is truly random, giving it a non-negligible
advantage of 1/2 − negl(λ). Therefore, we get a PRF with arbitrary polynomial
input size n = n(λ) and output size m = 1, which is not an α-ED-Extractor for
α = n − 1.

Theorem 7. Assuming the existence of Fully Homomorphic Encryption (FHE)
with statistical circuit privacy and pseudorandom ciphertexts, for every polyno-
mial n = n(λ) there exists a PRF with n-bit input and 1-bit output which is not
a secure α-ED-Extractor with auxiliary input for α = n − 1.

336 Y. Dodis et al.

Black-Box Separations. We now show give two black-box separation results,
showing that certain types of ED-Extractors cannot be proven secure via a
black-box reduction from virtually any “standard” computational assumption
(e.g.,including general assumptions such as the existence of one-way functions
or public-key encryption, as well as specific assumptions such as DDH, LWE,
RSA, etc., even if we assume (sub-)exponential security). In particular, we show
two results of this type. Firstly, we show that one cannot prove the security of any
ED-Extractor in the auxiliary info setting against computationally unbounded
distinguishers (and polynomial-time sources) under such assumptions. This is
contrast to the setting without auxiliary info, where we were able to do so.
Secondly, we show that one cannot prove security in the auxiliary input set-
ting (even for polynomial-time sources and distinguisher) of any ED-Extractor
that has a certain type of seed-committing property: if you query the extractor
EDExt on some polynomial set of values x1, . . . , xq then the output uniquely
fixes a single possible seed that could have produced it. This is true for many
natural constructions, such as the Naor-Reingold PRF or most block-cipher and
hash-function based constructions. (But is crucially not true for our construc-
tions based on constrained PRFs.) We view this as partial evidence that more
complex constructions are necessary in the setting with auxiliary info.

Note that these results do not show that ED-Extractors with such proper-
ties cannot be constructed; in fact the work of Coretti et al. [CDKT19] in the
random-oracle model can be interpreted as showing that “good” hash functions
are heuristically likely to be good ED-Extractors in the auxiliary info setting
with security even against computationally unbounded distinguishers, and they
are also likely to be seed-committing. However, our results show that we cannot
prove security under standard assumptions.

Our results are of the same flavor as the work of Wichs [Wic13]. They define
the class of (single-stage) cryptographic game assumptions, which are modeled
via a game between a challenger and a stateful adversary. They require that any
polynomial-time (or sub-exponential time) attacker has at most a negligible (or
inverse sub-exponential) success probability in winning the game. This captures
essentially all standard assumptions used in cryptography. However, the secu-
rity definition of ED-Extractors is not a single-stage game since it involves two
separate entities (the source and the distinguisher) who cannot share state.

We use the “simulatable attacker” paradigm (also called a meta-reduction) to
prove our black box separations. This paradigm is formalized in [Wic13] and we
give a high-level overview. To prove a separation, we design a class of inefficient
attackers Ah indexed by some h that break the security property but otherwise
satisfy any structural/legality conditions (e.g., being multi-stage, entropy condi-
tions etc.). However we also design an efficient simulator A′ that may not satisfy
such conditions, such that one cannot distinguish between black-box access to Ah

for a random h versus A′. Therefore if some reduction can break an assumption
given black-box access to every Ah it would also be able to do so given access
to A′. If for any polynomial � we can further show such a simulatable attack

Extracting Randomness from Extractor-Dependent Sources 337

which is 2−�(λ) indistinguishable, then we also rule out black-box reductions
under sub-exponential or even exponential assumptions.

Unbounded Distinguishers. We first give a black-box reduction for ED-Extractors
in the auxiliary info setting with security against unbounded distinguishers. Since
the distinguisher can be computationally unbounded, a black-box reduction can-
not call it. Therefore it suffices to construct a class of simulatable inefficient
sources Ah that satisfy the legality conditions and ensure that for the output
(x, aux) it holds that seed, aux,EDExt(x, seed), is statistically far from seed, aux, u
where u is uniform. Our a high level, the source Ah that we construct makes
oracle queries and inefficiently learns the function EDExt(·, seed) sufficiently well
to predict EDExt(x, seed) for a random x with high accuracy without querying
it. It chooses such random x and sets aux to be a “statistically binding com-
mitment” of its prediction for EDExt(x, seed). This ensures that the distribution
of (seed, aux,EDExt(x, seed)) is statistically far from (seed, aux, uniform). The
commitment is generated using an exponentially large random function h and
can therefore be simultaneously statistically hiding and binding. Therefore this
attack is simulatable by an efficient simulator that chooses a random x and
outputs a commitment to a random value.

Theorem 8. For any candidate ED-Extractor (SeedGen,EDExt) with n(λ)-bit
input and 1 bit output and for any polynomial � = �(λ) there exists a 2−�(λ)-
simulatable attack against the α = (n−1)-ED-Extractor security of the candidate
in the setting with auxiliary info and unbounded distinguishers.

In particular, if there is a black-box reduction showing this type of security
for the candidate based on the security of some cryptographic game G, then G is
not secure. If the reduction is based on the 2�(λ)-security of the game G then G
is not 2�(λ) secure.

Proof. Assume that the length of seed ← SeedGen(1λ) is bounded by |seed| ≤
p(λ) for some polynomial p. Let q = q(λ) = 3p(λ) + λ. Let Hλ be the set of
all functions from {0, 1}�(λ) to {0, 1}. For any h ∈ Hλ, consider the inefficient
source Sλ,h that chooses x1, . . . , xq uniformly at random and queries its oracle
on them, gets back y1, . . . , yq, and finds the (lexicographically first) value seed′

such that EDExt(xi, seed
′) = yi for all i ∈ [q]. It chooses a random x, computes

z′ = EDExt(x, seed′) and sets aux = (r, h(r) ⊕ z′) where r ← {0, 1}�.
First we claim that for any h ∈ Hλ, the above source Sλ,h breaks the security

of the ED-Extractor with auxiliary info and an unbounded distinguisher. It’s
easy to see that Sλ,h is a legal source with entropy n − 1 since x is uniformly
random and aux can reveal at most 1-bit of information z′ about x. Secondly, we
claim that if Sλ,h has oracle access to EDExt(·, seed), then with overwhelming
probability the value seed′ that it finds must agree with seed on at least 3/4
of all inputs. Otherwise there exists some seed′ that agrees with seed on < 3/4
inputs yet agrees with it on x1, . . . , xq which occurs with probability at most
2p(3/4)q = negl(λ). This also implies that if we let z′ = EDExt(x, seed′), z =
EDExt(x, seed) in the experiment, then z′ = z′ with probability 3/4−negl(λ). But

338 Y. Dodis et al.

this shows that the distribution (seed, aux, u = EDExt(seed, x)) is statistically
far from (seed, aux, u ← {0, 1}) since in the first case, if we let aux = (r, v) then
h(r)⊕ v = u with probability at least 3/4−negl(λ) while in the second case this
happens with probability at most 1/2.

Secondly, we claim that for a random h ← Hλ, the above source Sλ,h can
be simulated by an efficient S ′

λ that runs in time poly(λ). We define S ′
λ which

chooses x1, . . . , xq uniformly at random and queries its oracle on them, gets back
y1, . . . , yq, and outputs a uniformly random (r, v) ← {0, 1}� × {0, 1}.

The only way that Sλ,h for a random h can be distinguished from S ′
λ using

black-box access is if two different executions of S use the same randomness r.
Given Q queries to S, this happens with probability at most poly(Q)2�.

Seed-Committing Extractors. We show that one cannot prove security in the
auxiliary input setting (even for polynomial-time sources and distinguisher) of
any ED-Extractor that has a certain type of seed-committing property.

Definition 7. An ED-Extractor is seed-committing if there exist some poly-
nomial q = q(λ) and some inputs x1, . . . , xq ∈ {0, 1}n(λ) such that for any
seed, seed′ for which EDExt(xi, seed) = EDExt(xi, seed

′) for all i ∈ [q] it must
hold that for all x∗ we have EDExt(x∗, seed) = EDExt(x∗, seed′).

For example, if we use the Naor-Reingold PRF [NR97] as an ED-Extractor
then it is seed-committing. Moreover, we believe that ED-Extractor construc-
tions using standard hash-functions and block-cipher will be seed-committing.

Theorem 9. For any candidate seed-committing ED-Extractor (SeedGen,
EDExt) with n(λ)-bit input and m(λ) bit output and for any polynomial � = �(λ)
there exists a 2−�(λ)-simulatable attack against the α = (n − 1)-ED-Extractor
security of the candidate in the setting with auxiliary info.

In particular, if there is a black-box reduction showing this type of security
for the candidate based on the security of some cryptographic game G, then G is
not secure. If the reduction is based on the 2�(λ)-security of the game G then G
is not 2�(λ) secure.

Proof. Let Hλ be the set of all pairs of functions h1 : {0, 1}� → {0, 1}q�+1,
h2 : {0, 1}q�+1 → {0, 1}�. First we define (Ench1,h2 ,Dech1,h2) to be an
information-theoretic authenticated encryption scheme whose key is h1, h2. In
particular, Ench1,h2(m) = (r, h1(r) ⊕ m,h2(r, h1(r) ⊕ m)) where r ← {0, 1}�

is uniformly random and Dech1,h2(r, c, σ) = h1(r) ⊕ c if h2(r, c) = σ and ⊥
otherwise.

For any h = (h1, h2) ∈ Hλ, consider an inefficient source/distinguisher pair
Aλ,h = (Sλ,h,Dλ,h) defined as follow. The source Ssec,h chooses x1, . . . , xq

as given by the seed-committing definition and queries its oracle on them,
gets back y1, . . . , yq, and finds the (lexicographically first) seed′ such that
EDExt(xi, seed

′) = yi for all i ∈ [q]. It chooses a random x, computes z′ to
be the first bit of EDExt(x, seed′) and sets aux ← Ench(y1, . . . , yq, z

′). The dis-
tinguisher Dλ,h gets (seed, aux, u), it computes z to be the first bit of u. It sets

Extracting Randomness from Extractor-Dependent Sources 339

Dech(aux) = (y1, . . . , yq, z
′). If EDExt(seed, xi) = yi for all i ∈ [q] and z′ = z it

outputs 0 else 1.
It is easy to see that, for any h, the adversary Aλ,h is an α = (n − 1)-legal

adversary and breaks ED-Extractor security with advantage 1/4: If the challenge
bit is b = 0, the distinguisher always outputs 0 and if the challenge bit is b = 1
the distinguisher only outputs 1 with probability > 1/2.

Secondly, for a random h = (h1, h2) the adversary Aλ,h can be efficiently
simulated by a stateful adversary A′ = (S ′,D′) that acts as both the source and
the distinguisher but allows them to share state. On input y1, . . . , yq to S ′, it
chooses a random x, aux and remembers the tuple (aux, y1, . . . , yq, x). On input
(seed, aux, u) to D′ it checks if it stores a tuple of the form (aux, y1, . . . , yq, x). If
it does store such a tuple and EDExt(seed, xi) = yi for all i ∈ [q] and u is equal
to the first bit of EDExt(x, seed) it outputs 0 else 1.

To show that one cannot distinguish between black-box access to A vs A′

we define an intermediate A∗ which is inefficient but also stateful. In particular,
A∗ = (S∗,D∗) acts just like A, but instead of encrypting, the source S sets
aux to be uniformly random and stores the tuple (aux, y1, . . . , yq, z

′) and instead
of decrypting D∗ retrieves the tuple indexed by aux to uses the corresponding
(y1, . . . , yq, z

′).
Firstly, we claim that A and A∗ are indistinguishable by any (comp.

unbounded) distinguisher that makes Q queries with probability better than
poly(Q) · 2−�. This essentially follows by the authenticated-encryption security
of the encryption scheme.

Secondly, we claim that A∗ and A′ are perfectly indistinguishable. The
only difference between them is that A∗ compares u against the first bit of
EDExt(seed′, x) while A′ compares it against EDExt(seed, x). But since seed, seed′

agree on x1, . . . , xq, the seed-committing property ensures that EDExt(seed′, x) =
EDExt(seed, x).

Acknowledgements. YD was partially supported by gifts from VMware Labs, Face-
book and Google, and NSF grants 1314568, 1619158, 1815546. VV was supported
in part by NSF Grants CNS-1350619 and CNS-1414119, an NSF-BSF grant CNS-
1718161, the Defense Advanced Research Projects Agency (DARPA) and the U.S.
Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236,
an IBM-MIT grant and a Microsoft Trustworthy and Robust AI grant. DW was sup-
ported by NSF grants CNS-1314722, CNS-1413964, CNS-1750795 and the Alfred P.
Sloan Research Fellowship.

References

[AMN+18] Attrapadung, N., Matsuda, T., Nishimaki, R., Yamada, S., Yamakawa,
T.: Constrained PRFs for NC1 in traditional groups. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 543–
574. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-
0 19

https://doi.org/10.1007/978-3-319-96881-0_19
https://doi.org/10.1007/978-3-319-96881-0_19

340 Y. Dodis et al.

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudo-
random functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 29

[BH05] Barak, B., Halevi, S.: A model and architecture for pseudo-random gen-
eration with applications to /dev/random. In: Atluri, V., Meadows, C.,
Juels, A. (eds.) ACM CCS 2005: 12th Conference on Computer and Com-
munications Security, pp. 203–212. ACM Press, November 2005

[BHK13] Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles
via UCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 398–415. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 23

[BIW04] Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using
few independent sources. In: 45th Annual Symposium on Foundations of
Computer Science, pp. 384–393. IEEE Computer Society Press, October
2004

[Blu86] Blum, M.: Independent unbiased coin flips from a correlated biased
source-a finite state Markov chain. Combinatorica 6(2), 97–108 (1986)

[BST03] Barak, B., Shaltiel, R., Tromer, E.: True random number generators
secure in a changing environment. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 166–180. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45238-6 14

[BV15] Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs
from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 1

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-42045-0 15

[CDKT19] Coretti, S., Dodis, Y., Karthikeyan, H., Tessaro, S.: Seedless fruit is the
sweetest: random number generation, revisited. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 205–234.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 8

[CG85] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity (extended abstract). In: 26th
Annual Symposium on Foundations of Computer Science, pp. 429–442.
IEEE Computer Society Press, October 1985

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput. 17(2),
230–261 (1988)

[CGH+85] Chor, B., Goldreich, O., H̊astad, J., Friedman, J., Rudich, S., Smolensky,
R.: The bit extraction problem of t-resilient functions (preliminary ver-
sion). In: 26th Annual Symposium on Foundations of Computer Science,
pp. 396–407. IEEE Computer Society Press, October 1985

[CZ16] Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and
resilient functions. In: Wichs, D., Mansour, Y. (eds.) 48th Annual ACM
Symposium on Theory of Computing, pp. 670–683. ACM Press, June
2016

https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/978-3-540-45238-6_14
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-030-26948-7_8

Extracting Randomness from Extractor-Dependent Sources 341

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how
to generate strong keys from biometrics and other noisy data. SIAM J.
Comput. 38(1), 97–139 (2008)

[DPR+13] Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security
analysis of pseudo-random number generators with input: /dev/random
is not robust. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS
2013: 20th Conference on Computer and Communications Security, pp.
647–658. ACM Press, November 2013

[DRV12] Dodis, Y., Ristenpart, T., Vadhan, S.: Randomness condensers for effi-
ciently samplable, seed-dependent sources. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 618–635. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28914-9 35

[DSSW14] Dodis, Y., Shamir, A., Stephens-Davidowitz, N., Wichs, D.: How to eat
your entropy and have it too – optimal recovery strategies for compro-
mised RNGs. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
II. LNCS, vol. 8617, pp. 37–54. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 3

[DVW19] Dodis, Y., Vaikuntanathan, V., Wichs, D.: Extracting randomness
from extractor-dependent sources. Cryptology ePrint Archive, Report
2019/1339 (2019). https://eprint.iacr.org/2019/1339

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions (extended abstract). In: 25th Annual Symposium on Foundations of
Computer Science, pp. 464–479. IEEE Computer Society Press, October
1984

[GT16] Gaži, P., Tessaro, S.: Provably robust sponge-based PRNGs and KDFs.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 87–116. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49890-3 4

[Hut16] Hutchinson, D.: A robust and sponge-like PRNG with improved efficiency.
Cryptology ePrint Archive, Report 2016/886 (2016). http://eprint.iacr.
org/2016/886

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from
one-way functions (extended abstracts). In: Johnson, D.S. (ed.) Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing, Seat-
tle, Washigton, USA, 14–17 May 1989, pp. 12–24. ACM (1989)

[IZ89] Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: 30th
Annual Symposium on Foundations of Computer Science, pp. 248–253.
IEEE Computer Society Press, October/November 1989

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013: 20th Conference on Computer and
Communications Security, pp. 669–684. ACM Press, November 2013

[KRVZ11] Kamp, J., Rao, A., Vadhan, S.P., Zuckerman, D.: Deterministic extractors
for small-space sources. J. Comput. Syst. Sci. 77(1), 191–220 (2011)

[LLS89] Lichtenstein, D., Linial, N., Saks, M.E.: Some extremal problems arising
form discrete control processes. Combinatorica 9(3), 269–287 (1989)

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. In: 38th Annual Symposium on Foundations
of Computer Science, pp. 458–467. IEEE Computer Society Press, Octo-
ber 1997

https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-662-44381-1_3
https://doi.org/10.1007/978-3-662-44381-1_3
https://eprint.iacr.org/2019/1339
https://doi.org/10.1007/978-3-662-49890-3_4
https://doi.org/10.1007/978-3-662-49890-3_4
http://eprint.iacr.org/2016/886
http://eprint.iacr.org/2016/886

342 Y. Dodis et al.

[NZ93] Nisan, N., Zuckerman, D.: More deterministic simulation in logspace. In:
25th Annual ACM Symposium on Theory of Computing, pp. 235–244.
ACM Press, May 1993

[NZ96] Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput.
Syst. Sci. 52(1), 43–52 (1996)

[PS18] Peikert, C., Shiehian, S.: Privately constraining and programming PRFs,
the LWE way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II.
LNCS, vol. 10770, pp. 675–701. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-76581-5 23

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM Symposium on
Theory of Computing, pp. 187–196. ACM Press, May 2008

[Raz05] Raz, R.: Extractors with weak random seeds. In: Gabow, H.N., Fagin,
R. (eds.) 37th Annual ACM Symposium on Theory of Computing, pp.
11–20. ACM Press, May 2005

[ST17] Soni, P., Tessaro, S.: Public-seed pseudorandom permutations. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211,
pp. 412–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 14

[TV00] Trevisan, L., Vadhan, S.P.: Extracting randomness from samplable dis-
tributions. In: 41st Annual Symposium on Foundations of Computer Sci-
ence, pp. 32–42. IEEE Computer Society Press, November 2000

[von51] von Neumann, J.: Various techniques used in connection with random
digits. In: Householder, A.S., Forsythe, G.E., Germond, H.H. (eds.)
Monte Carlo Method. National Bureau of Standards Applied Mathemat-
ics Series, vol. 12, pp. 36–38. U.S. Government Printing Office, Washing-
ton, D.C. (1951)

[Wic13] Wichs, D.: Barriers in cryptography with weak, correlated and leaky
sources. In: Kleinberg, R.D. (ed.) ITCS 2013: 4th Innovations in Theoret-
ical Computer Science, pp. 111–126. Association for Computing Machin-
ery, January 2013

https://doi.org/10.1007/978-3-319-76581-5_23
https://doi.org/10.1007/978-3-319-76581-5_23
https://doi.org/10.1007/978-3-319-56614-6_14
https://doi.org/10.1007/978-3-319-56614-6_14

	Extracting Randomness from Extractor-Dependent Sources*-18pt
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Additional Related Work

	2 Preliminaries
	3 Defining ED-Extractors
	4 Security Without Auxiliary Info
	4.1 Construction from Any PRF
	4.2 Necessity of One-Way Functions

	5 Security with Auxiliary Info
	5.1 Construction via Constrained PRFs
	5.2 Negative Results for ED Extractors with Auxiliary Info

	References

