
New Slide Attacks on Almost Self-similar
Ciphers

Orr Dunkelman1(B) , Nathan Keller2(B), Noam Lasry2, and Adi Shamir3

1 Computer Science Department, University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il

2 Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel
nkeller@math.biu.ac.il, noam.lasry@gmail.com

3 Faculty of Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot, Israel

adi.shamir@weizmann.ac.il

Abstract. The slide attack is a powerful cryptanalytic tool which can
break iterated block ciphers with a complexity that does not depend on
their number of rounds. However, it requires complete self similarity in
the sense that all the rounds must be identical. While this can be the case
in Feistel structures, this rarely happens in SP networks since the last
round must end with an additional post-whitening subkey. In addition,
in many SP networks the final round has additional asymmetries – for
example, in AES the last round omits the MixColumns operation. Such
asymmetry in the last round can make it difficult to utilize most of the
advanced tools which were developed for slide attacks, such as deriving
from one slid pair additional slid pairs by repeatedly re-encrypting their
ciphertexts. Consequently, almost all the successful applications of slide
attacks against real cryptosystems (e.g., FF3, GOST, SHACAL-1) had
targeted Feistel structures rather than SP networks.

In this paper we overcome this “last round problem” by developing
four new types of slide attacks. We demonstrate their power by apply-
ing them to many types of AES-like structures (with and without linear
mixing in the last round, with known or secret S-boxes, with periodicity
of 1, 2 and 3 in their subkeys, etc). In most of these cases, the time com-
plexity of our attack is close to 2n/2, the smallest possible complexity for
most slide attacks. Our new slide attacks have several unique properties:
The first uses slid sets in which each plaintext from the first set forms a
slid pair with some plaintext from the second set, but without knowing
the exact correspondence. The second makes it possible to create from
several slid pairs an exponential number of new slid pairs which form a
hypercube spanned by the given pairs. The third has the unusual prop-
erty that it is always successful, and the fourth can use known messages
instead of chosen messages, with only slightly higher time complexity.

1 Introduction

Most modern block ciphers are constructed as a cascade of r keyed components,
called rounds. Each round by itself can be cryptographically weak, but as r

c© International Association for Cryptologic Research 2020
A. Canteaut and Y. Ishai (Eds.): EUROCRYPT 2020, LNCS 12105, pp. 250–279, 2020.
https://doi.org/10.1007/978-3-030-45721-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45721-1_10&domain=pdf
http://orcid.org/0000-0001-5799-2635
https://doi.org/10.1007/978-3-030-45721-1_10

New Slide Attacks on Almost Self-similar Ciphers 251

Q fk fk fk · · · fk fk fk D

fk fk fk fk · · · fk fkP C

C

Q

Fig. 1. A slid pair

increases, the scheme becomes resistant against almost all the standard crypt-
analytic attacks (e.g., differential cryptanalysis [8], linear cryptanalysis [28]).
However, there is one type of attack called a slide attack (introduced in 1999
by Biryukov and Wagner [9]1) which can handle an arbitrarily large number of
rounds with the same complexity.

The original slide attack targets ciphers that are a cascade of r identical
rounds, i.e.,

Ek = fr
k = fk ◦ fk ◦ · · · ◦ fk,

and tries to find a slid pair of plaintexts (P,Q) such that Q = fk(P), as demon-
strated in Fig. 1. Due to the structure of Ek, the corresponding ciphertexts
C = Ek(P),D = Ek(Q) must satisfy D = fk(C). Hence, if a slid pair (P,Q) is
given, the adversary can use the simplicity of fk to solve the system of equations
to recover k: {

Q = fk(P),
D = fk(C), (1)

The adversary can start from any collection of O(2n/2) plaintexts along with
their ciphertexts, and consider their O(2n) pairs. One of them is likely to be a
slid pair, but the adversary does not know which one it is. By trying to solve the
system of Equation (1) for all the pairs, she gets a simple slide attack whose data
complexity is O(2n/2) known plaintexts, memory complexity is O(2n/2) (which
is used to store the data), and time complexity is O(t · 2n) (where t is the time
required for solving the system (1)).

1.1 Applicability of Slide Attacks to Modern Ciphers

The original slide attack can be used only when fk is so simple that it can be
broken efficiently using only two known input/output pairs. Subsequent papers
(e.g., [4,10,14,16,18]) developed advanced variants of the slide attack that allow
attacking self-similar constructions in which fk is rather complex. A central
observation used in many of these variants is that if (P,Q) is a slid pair, then
(Ek(P), Ek(Q)) is also a slid pair, and thus the adversary can create from a
single slid pair arbitrarily many additional friend pairs by repeatedly encrypting
P and Q in an adaptively chosen message attack. These advanced variants made
1 The slide attack is related to several previous techniques, e.g., the attack of Grossman

and Tucherman on Feistel ciphers [24] and Biham’s related-key attack [6]. Sometimes,
differential, linear, or subspace invariant attacks [27] may also succeed independently
of the number of rounds, when the underlying property is “strong” enough.

252 O. Dunkelman et al.

it possible to attack various generic forms of Feistel constructions with a periodic
key schedule, such as constructions with 1-round [9], 2-round [9], 3-round [4]
and 4-round [10] self similarity. Furthermore, they allowed obtaining practical
attacks on several real life cryptosystems – most notably, breaking the block
cipher Keeloq [1] and the 128-bit key variant of the block cipher GOST [4], and
attacking several hash functions [20].

While the advanced slide attacks extended the applicability of the technique,
the basic requirement that all the round functions must be exactly the same has
remained. As a result, it seemed that slide attacks can be thwarted completely
by inserting into the encryption process round constants that break the full
symmetry between the rounds. This countermeasure has become standard and
is applied in most modern block ciphers.

However, it turned out that round constants are not an ultimate solution,
as in many cases improper choice of the constants or interrelation between the
round constants and other components of the cipher, can be used to mount a
slide attack despite the countermeasure.

A recent example is the format preserving encryption scheme FF3 [11]. This
scheme was selected as a US standard by NIST in 2016, but had to be revised
in 2017 due to a devastating slide attack by Durak and Vaudenay [17]. This
happened even though the slide attack is well known, leading the designers of
the cryptosystem to use the standard countermeasure of using different round
constants to avoid them. Yet another example is the block cipher SHACAL-1
that was broken by Biham et al. [7] using a slide attack, although it used round
constants. It thus turns out that while adding round constants may be a useful
countermeasure, it is far from being a universal countermeasure, and slide attacks
remain highly relevant in practice.

1.2 Slide Attacks on SP Networks

Most of the previously known slide attacks, including the attacks on FF3, GOST,
Lilliput-AE and SHACAL1 described above, apply to Feistel constructions. The
other major type of a block cipher, the Substitution-Permutation (SP) Network,
cannot be directly attacked by a slide attack since its last round is always dif-
ferent from the other rounds.

Consider, for example, an AES-like structure in which each round consists
of XORing a subkey (which we denote by K), applying a parallel layer of S-
boxes (denoted by S), and linearly mixing their outputs (denoted by A). Assume
in addition that two subkeys are used in the cyclic order (k1, k2, k1, k2, . . .).
Simply composing these round functions makes no sense since the last layers of
S-boxes and linear mapping are known and can thus be stripped off. Any sensible
design must thus add to the last round a final post-whitening subkey, such as k1,
before outputting the ciphertext. This makes the last round different from the
other rounds, and we cannot simply complete the construction into a self similar
structure by applying to it A ◦S ◦K ◦A ◦S since we do not know the subkey k2
used in K. A similar situation arises when the S-boxes are secret or when the last
round operation A (before the post-whitening key) differs from previous rounds.

New Slide Attacks on Almost Self-similar Ciphers 253

Any such asymmetry suffices in order to destroy the crucial property that if two
plaintexts (P,Q) are a slid pair then so are their ciphertexts (Ek(P), Ek(Q)),
upon which many advanced slide attacks rely. In fact, the only advanced slide
attack on SP networks published so far, by Bar-On et al. [4, Sect. 2.2, 2.3] on an
AES-like cipher with a 2-round or 3-round self-similarity, applies only under a
non-standard additional assumption on the structure of the cipher.2

1.3 Our Settings

In this paper we overcome the last round problem by developing new slide attacks
that can be applied to SP-networks with an arbitrarily large number of rounds
in which the last round is different from the previous rounds. To be concrete, we
consider ciphers that can be viewed as a cascade

K ◦ A ◦ S ◦ K ◦ A ◦ S ◦ . . . K ◦ A ◦ S ◦ K,

where K denotes the XORing of a secret subkey, S is a non-linear operation (S-
box) applied in parallel to sub-blocks of size s of the state, and A is an affine oper-
ation. We call this structure KSA, and say that it has an �-round self-similarity
if the subkeys have the periodic structure k1, k2, . . . , k�, k1, k2, . . . , k�, We
denote such a structure by �-KSA.

We note that extremely simple key schedules, and in particular periodic
key-schedules with a short period, are widely used in modern lightweight block
ciphers, for the sake of saving place on the hardware taken by the key sched-
ule mechanism. Examples include LED-64 [25], Zorro [19], PRINTcipher [26],
CGEN [29] and MIDORI128 [3] (which have identical subkeys), LED-128 [25],
CRAFT [5] and MIDORI64 [3] (which have period 2), and many others.

Of course, designers of most modern block ciphers protect the ciphers against
slide attacks by adding round constants in order to destroy the self-similarity.
However, as was mentioned above, this countermeasure is not always sufficient. In
addition, some lightweight cryptosystems have a large number of simple rounds,
and XOR’ing a different randomly generated constant to each round greatly
increases the amount of memory required to implement the scheme, which is
very undesirable in many IoT applications. Consequently, designers of such cryp-
tosystems may be tempted to use other forms of asymmetry into their designs,
such as using a different last round, but as we show in this paper, such a simple
countermeasure can be defeated by new variants of slide attacks.

We study two types of KSA constructions: The first is �-KSAf , composed of
a sequence of rounds of the form A ◦ S ◦ K with an �-periodic key, augmented
by a final key whitening – which is the structure of many modern SP networks.
The second type is �-KSAt , which differs from �-KSAf by omission of the affine
operation A in the last round. Such a change is performed in some block ciphers
for implementation reasons—most notably, in the AES.
2 The additional assumption (that was not mentioned in [4]) is that either the final

key whitening step is omitted, or the number of rounds is odd (for 2-round self
similarity) or of the form 3� + 2 (for 3-round self-similarity).

254 O. Dunkelman et al.

We usually assume that the operations S,A are not key-dependent (like in
AES). However, interestingly, some of our new attacks apply with only a small
complexity overhead when S is key-dependent (like in the AES variant with a
secret S-box studied in [21,23,30,31]). We denote the block size by n and the
S-box size by s, and state our results in terms of the parameters n, s.

1.4 Our Contributions

We present four entirely new types of slide attacks, which solve the last round
problem in four different ways:

Slid sets. In this attack, we attach to each candidate slid pair (P,Q) a pair
of sets TP = {P1, P2, . . . , Pd} and TQ = {Q1, Q2, . . . , Qd} such that for each i
there exists j for which (Pi, Qj) is a slid pair. That is, the set TP is transformed
into the set TQ, while we do not know what is the counterpart of each specific
value in TP . Of course, this technique requires entirely different ways to solve
the equation system (1), and we provide such techniques as well.

Hypercube of slid pairs. This technique first uses differential properties of
the cipher to attach to each candidate slid pair (P,Q) a pair of d-tuples TP =
(P1, P2, . . . , Pd) and TQ = (Q1, Q2, . . . , Qd) such that with some unexpectedly
high probability, each (Pi, Qi) is a slid pair. Then, it uses a ‘mixing’ construction
reminiscent of the recently proposed mixture attack [22] to leverage the d-tuples
into 2d-tuples of slid pairs. Roughly speaking, if the slid pairs are placed at d
vertices of a d-dimensional hypercube, the technique allows us to attach to them
2d − d additional slid pairs which are placed at all other vertices of the cube.

Suggestive plaintext structures. This attack uses two plaintext structures
TP and TQ, designed in such a way that the mere knowledge that some P ∈ TP

has a slid counterpart Q ∈ TQ reveals significant key information, which is used
in the solution of the equation system (1). An interesting feature of this attack
is that while its data complexity is 3 · 2n/2, which is only slightly more than the
2n/2 complexity of standard slide attacks, it has 100% success probability. Note
that the success probability of standard slide attacks is about 63%; it can be
increased by using more data, but cannot get to 100% success unless the data
complexity is made extremely large.

Substitution slide. This attack is aimed at truncated �-KSA constructions, in
which in the equation system (1), the second equation is much more complex
than the first one. We use substitution into the (easier) first equation in order
to remove the key dependence from the (harder) second equation and trans-
form it into an even more complex equation which depends only on plaintexts
and ciphertexts and not on the key. This attack type applies even in the more
restrictive (and more realistic, of course) known plaintext model.

1.5 Our Results

Here are a few concrete results that can be obtained with our new slide attacks
(the full summary can be found in Table 1):

New Slide Attacks on Almost Self-similar Ciphers 255

Table 1. Summary of our new results

Cipher Technique Complexity (general) AES-like
Data/Memory Time Data/Memory Time

Known S-Boxes

1-KSAf Slide [4] 2n/2 (KP) 2n/2 264 (KP) 264

2-KSAf Slide [4]� s · 2s+n/2 (ACPC) s · 2s+n/2 269 269

3-KSAfi† Slide [4]�� 2(m+n)/2 (ACPC) 2(m+n)/2 281 281

1-KSAt Suggestive str. (Sect. 5) 3 · 2n/2 (CP) 4 · 2n/2 265.6 (CP) 266

1-KSAt Sub. slide (Sect. 6) 2n/2 (KP) 23n/4 264 (KP) 296

2-KSAf Slid sets (Sect. 3) 2(n+s)/2+1 (CP) 2(n+s)/2+1 269 (CP) 269

2-KSAf Slide + Key Guessing (FV) (n/s)2n/2 (CP) 2n/2+s 268 (CP) 272

2-KSAf Slide + Pt/Ct Coll. (FV)� See Full Version for full details 282‡ (KP) 282

2-KSAtpi† Slid sets (FV) 2(n+m)/2+1 (CP) max{2(n+m)/2+1, 22m} 278 (CP) 278

3-KSAfi† Slid sets (FV) 2(n+m)/2+1 (CP) max{2(n+m)/2+1, 22m} 281 (CP) 281

Secret S-Boxes

1-KSAf Slid sets (Sect. 3) 1.17
√

s2(n+s)/2 (CP) 1.17
√

s2(n+s)/2 270.3 (CP) 270.3

1-KSAf Hypercube (Sect. 4)
√

s2n/2+s(s+3)/4+1 (CP)
√

s2n/2+s(s+3)/4+1 288 (CP) 288

The exact definition of all variants is given in Sect. 2.1
KP – Known Plaintext; CP – Chosen Plaintext; ACPC – Adaptive Chosen Plaintext and Ciphertext
FV—Full version of the paper
For AES-like n = 128, s = 8
† – this version has incomplete diffusion layer, m denotes the “word” size of the linear operation.
‡ – the memory complexity of this attack is 247.
� – this attack works for an odd number of rounds.
�� – this attack works when the number of rounds is 1 mod 3.

1. Using the suggestive plaintext structures technique, we can break 1-KSAt
(e.g. a variant of AES with identical round subkeys and with no MixColumns
operation in the last round) with data and time complexity of 2n/2 (264 in
the special case of AES). In [4], Bar-On et al. presented an attack with the
same complexity, but only on 1-KSAf, or equivalently, AES in which the
MixColumns operation in the last round is not omitted.

2. Using substitution slide, we can break 1-KSAt with complexity of 2(n+4s)/2

known plaintexts and time (280 in the special case of AES).
3. Using slid sets, we can break 2-KSAt (e.g., a variant of AES with 2-periodic

round subkeys and with no MixColumns operation in the last round) with
data and time complexity of 2(n+3s)/2 (276 in the specific case of AES).

Organization of the Paper
In Sect. 2 we present the setting and notations used throughout the paper, as
well as some preliminary steps that are routinely performed in all our attacks.
In addition, we present the previous attack by Bar-On et al. [4] on 1-KSA.
In Sect. 3 we present the slid sets technique and use it for attacking several
constructions (e.g., 2-KSAf and 1-KSA with secret S-boxes). Section 4 presents
the new hypercube of slid pairs technique and presents an attack on 1-KSA
with secret S-boxes. The suggestive plaintext structures technique is presented
in Sect. 5. We introduce the substitution slide in Sect. 6. Several of our attacks
are presented in the full version. Finally, Sect. 7 concludes the paper.

256 O. Dunkelman et al.

2 Preliminaries

In this section we present the setting and notations that are used throughout the
paper, and describe the slide attack of Bar-On et al. [4] on SPNs with a 1-round
self similarity, which provides a simple example of the attack frameworks that
we use in this paper.

2.1 Setting and Notations

While the attacks presented in the paper target many different constructions
and use different techniques, they are all presented using a uniform setting and
set of notations. All these notations are given and explained in this section.

The general structure of the ciphers we study. Throughout the paper, we con-
sider a block cipher E : {0, 1}n × {0, 1}κ → {0, 1}n, which transforms an n-bit
plaintext P into an n-bit ciphertext C, using a κ-bit key k. For the sake of
simplicity, we assume that κ = n, but the results can be easily adapted for
other values of κ. We assume that the cipher is iterative, that is, consists of a
composition of r simpler functions, called rounds. All the attacks we present are
applicable with the same complexity to an arbitrarily large number of rounds.3

We assume that the first r−1 rounds of the cipher have the standard general
structure of an SPN, that is,

(A ◦ S ◦ K)r−1 = A ◦ S ◦ K ◦ A ◦ S ◦ . . . K ◦ A ◦ S ◦ K,

where K denotes key addition, S denotes a non-linear operation (S-box) applied
in parallel to words of s bits into which the state is partitioned, and A denotes an
affine operation. As the cipher essentially consists of repetitions of the sequence
of operations A ◦ S ◦ K, we name it KSA.

The structure of the last round. Regarding the last round, we study two types
of constructions:

– Full last round constructions, in which a single key addition operation is
appended at the end of the last round. That is,

Full r-round KSA = (K ◦ A ◦ S ◦ K) ◦ (A ◦ S ◦ K)r−1 = K ◦ (A ◦ S ◦ K)r.

This structure is exemplified in Fig. 2.
– Truncated last round constructions, in which a key addition is appended at

the end of the last round, and in addition, the last round affine transformation
A is omitted. That is,

Truncated r-round KSA = (K ◦ S ◦ K) ◦ (A ◦ S ◦ K)r−1.

3 The attacks presented in the full version (Slide and Key Guessing, and Slide and
plaintext/ciphertext collision) depend on the residue of r modulo the period of the
subkey sequence, but not on the number of repetitions. All other attacks are inde-
pendent of the number of rounds.

New Slide Attacks on Almost Self-similar Ciphers 257

P

K

⊕k
S A · · ·

K

⊕k
S A

K

⊕k
C

K

⊕k
S A · · ·

K

⊕k
S A

K

⊕k
C

K

⊕k
S A · · ·

K

⊕k
S A

K

⊕k
C

Fig. 2. The structure of 1-KSAf

The first type corresponds to a generic SPN construction, while the second type
corresponds to an AES-like construction, as removal of the last round affine
operation is adopted in the AES design.4

The structure of the operations K, S,A. In addition to the last round, the con-
structions we study differ in the assumptions on the operations K,S,A:

– Key addition: We shall always assume that the operation K in round i
denotes XOR with an n-bit round subkey ki, where the sequence of subkeys
k1, k2, k3, . . . is periodic. We study the variants 1-KSA, 2-KSA, and 3-KSA,
in which the length of the period is 1, 2, and 3, respectively. We assume that
all subkeys are derived from the n-bit secret key K using some “sufficiently
complex” function; hence, we never exploit relations between distinct sub-
keys, and at the same time, we aim for attacks of complexities lower than 2n,
as otherwise, the attack is slower than exhaustive key search. (We note that
such an assumption on the key schedule algorithm is made in many papers
analyzing the security of generic constructions; see, e.g., [2]).

– The S-box layer S: We shall always assume that the operation S consists of
partition of the state into s-bit words and parallel application of the same
function S : {0, 1}s → {0, 1}s to the blocks. We study two types of construc-
tions: the standard type in which the S-box S is publicly known (like in AES),
and the secret S-box type in which S is derived from the secret key using a
complex function, and thus, is unknown to the adversary (like in the variants
of AES studied in [21,23,30,31]). In both types of constructions, we do not
exploit the specific structure of the S-box.

– The affine layer A: We consider two variants of the operation A. In the com-
plete diffusion variant, A applies a publicly known affine transformation to
the entire state (i.e., the state is viewed as an n-bit vector v, and is trans-
formed into A′v + w, where A′ is an n-by-n binary matrix, w ∈ {0, 1}n, and
the operations are performed over Z2). In the incomplete diffusion variant,
the state is partitioned into several parts (e.g., 4 parts in the case of AES),
and the same affine transformation A is applied to each of them in parallel.

4 We note that in AES, only part of the last round affine layer is omitted. Namely, the
MixColumns operation is omitted, while the ShiftRows operation is left unchanged.
While maintaining the ShiftRows operation affects the complexity of some attacks
that exploit the key schedule (just like the omission of MixColumns, see [15]), it has
no effect on our attacks. Hence, for the sake of this paper, the design of the last
round of AES is equivalent to removing the entire affine layer.

258 O. Dunkelman et al.

In this variant, we introduce an additional parameter, m, to denote the size
of each part (e.g., 32 bits in AES).

Summary of types of constructions. To summarize, the constructions we consider
are defined by four parameters:

1. The length of the key period (1, 2, or 3);
2. Type of the last round – full (only a key addition appended) or truncated

(key addition appended and affine operation removed);
3. Type of the substitution layer S – public S-box or secret S-box derived from

the secret key;
4. Type of the affine layer – complete diffusion (i.e., A acts on the entire state)

or incomplete diffusion (i.e., A acts on several parts of the state in parallel).

Notation of types of constructions. The notation we use for the constructions
reflects all four parameters: the number at the beginning is the length of the key
period, then the letter ‘f’ or ‘t’ says whether the last round is full or truncated,
then the letter ‘p’ or ‘s’ denotes whether the S-box is public or secret, and finally,
the letter ‘c’ or ‘i’ denotes whether the diffusion is complete or incomplete. If
some parameter is not included (e.g., neither ‘p’ nor ‘s’ appear), this means that
the attack applies to both types described by that parameter.

For example, 2-KSAfpi denotes KSA with a 2-round key period, full last
round, public S layer and incomplete diffusion. Similarly, 1-KSAtc denotes KSA
with a 1-round key period, truncated last round, and complete diffusion, where
the omission of ‘p’ and ‘s’ means that the corresponding attack works for both
public and secret S-boxes.

Notation of data sets and slid pairs. In all the attacks proposed in this paper,
the data consists of two sets of plaintexts/ciphertext pairs. All the plain-
text/ciphertext pairs (Pi, Ci) are split such that TP contains the plaintexts
Pi, i = 1, 2, . . . , d and TC contains the ciphertexts Ci, i = 1, 2, . . . , d. Similarly,
the plaintext/ciphertext pairs (Qj ,Dj) are split between TQ that contains5

Qj , j = 1, 2, . . . , d′ and TD that contains Dj , j = 1, 2, . . . , d′.
If the considered variant is �-KSA, then a pair (Pi, Qj) of plaintexts is called

a slid pair if (A ◦ S ◦ K)�(Pi) = Qj . If the cipher was completely self-similar
like in standard slide attacks, this would guarantee that the corresponding pair
of ciphertexts (Ci,Dj) satisfies (A ◦ S ◦ K)�(Ci) = Dj . In our case, the relation
depends on whether the considered �-KSA construction is full or truncated. If
(Pi, Qj) is a slid pair, we call Qj the slid counterpart of Pi.

In some of our attacks, in order to save data complexity we use the same
plaintext set T both as TP and as TC . In such cases, we use both notations TP
and TQ for T , and in each candidate slid pair, we denote the ‘left’ element by
Pi ∈ TP and the ‘right’ element by Qj ∈ TQ. In this context, it is worth noting
that the pairs (X,Y) and (Y,X) are distinct candidates for a slid pair, since the
equations (A ◦ S ◦ K)�(X) = Y and (A ◦ S ◦ K)�(Y) = X are not equivalent.
5 In most of the slide attacks d = d′. However, this is not a mandatory requirement

by the attack.

New Slide Attacks on Almost Self-similar Ciphers 259

Modification of the plaintexts and the ciphertexts. In all our attacks, we consider
a pair of plaintexts (Pi, Qj) for which we want to decide whether it is a slid pair
or not, and study the relation between Pi and Qj , and the relation between the
corresponding ciphertexts Ci and Dj . In order to simplify these relations, we
would like to “remove” unkeyed operations that can be computed in advance
for all plaintexts/ciphertexts in the data set. There are two types of operations
we can remove: the first is operations that can be precomputed directly, and the
second is operations that can be precomputed after interchanging the order of
the operations K and A.

Let us exemplify this modification process on a concrete example. In 1-KSAp,
for each slid pair (Pi, Qj), we have

Qj = A ◦ S ◦ K(Pi),

or equivalently, S−1 ◦ A−1(Qj) = K(Pi). The left hand side S−1 ◦ A−1(Qj) can
be computed in advance for any plaintext Qj . We thus replace each Qj ∈ TQ by
Q′

j = S−1 ◦ A−1(Qj), and work with the simplified equation

Q′
j = K(Pi).

Furthermore, the corresponding ciphertexts, (Ci,Dj), satisfy

Dj = K ◦ A ◦ S(Ci),

(or equivalently, A−1 ◦ K−1(Dj) = S(Ci)). The right hand side S(Ci) can be
computed in advance for any ciphertext Ci. As for the left hand side, note that
by distributivity, for every invertible binary matrix A′ and binary vectors x,w, k
the following holds: (A′x + w) + k = A′(x + (A′)−1k) + w. Hence, we can always
interchange the order of the operations A,K, at the expense of replacing the
subkey k in the operation K with (A′)−1k, where A′ is the matrix used in the
operation A. Thus, we have A−1 ◦ K−1(Dj) = (K ′)−1 ◦ A−1(Dj), where K ′

denotes addition of the key A′k. The value D′
j = A−1(Dj) can be computed an

advance for any ciphertext Dj . Thus, we replace each Ci ∈ TC with C ′
i = S(Ci)

and each Dj ∈ TD with D′
j = A−1(Dj), and work with the simplified equation

D′
j = K ′(C ′

i).

Notations for modified plaintexts and ciphertexts. We perform such a change
routinely, whenever there is an unkeyed operation that can be performed in
advance (including cases where one has to interchange the order of the operations
K,A). We use the notation P̄i, C̄i to say that such a modification was performed
to Pi, Ci (respectively), and the notation Q̃j , D̃j to say that such a modification
was performed to Qj ,Dj (respectively). Note that the exact modification differs
between different variants of KSA.

We denote the sets of modified values that correspond to TP , TC , TQ, and TD
by T̄P , T̄C , T̃Q, and T̃D, respectively. We abuse notation and call the pair (P̄i, Q̃j)
a slid pair whenever the corresponding pair (Pi, Qj) is a real slid pair.

260 O. Dunkelman et al.

00
01
02
03

04
05
06
07

08
09
0a
0b

0c
0d
0e
0f

00
05
0a
0f

04
09
0e
03

08
0d
02
07

0c
01
06
0b

52
09
6a
d5

30
36
a5
38

bf

40
a3
9e

81
f3

d7
fb

0a
1b
00
11

1e
07
14
0d

02
13
08
19

16
0f
1c
05

SB SR MC ARK⊕

ki

Fig. 3. An AES round

2.2 AES Notations

As the best-known prototype of the constructions we consider is AES, we shall
present all our attacks in the special case of an AES-like construction with a
periodic key schedule, and then we will briefly explain how do these attacks
apply for generic �-KSA constructions. Hence, for the sake of convenience, we
briefly recall the structure of AES.

The structure of AES. The Advanced Encryption Standard (AES) [13] is an
SPN that supports key sizes of 128, 192, and 256 bits. A 128-bit plaintext is
treated as a byte matrix of size 4 × 4, where each byte represents a value in
GF (28). An AES round, depicted in Fig. 3, applies four operations to the state
matrix:

– SubBytes (SB)—applying the same 8-bit to 8-bit invertible S-box 16 times in
parallel on each byte of the state,

– ShiftRows (SR)—cyclically shifting the i’th row by i bytes to the left,
– MixColumns (MC)—multiplication of each column by a constant 4× 4 matrix

over the field GF (28), and
– AddRoundKey (ARK)—XORing the state with a 128-bit subkey.

Before the first round, an additional AddRoundKey operation takes place.
Thus, we “redefine” an AES round as starting with an AddRoundKey operation,
with the last round AddRoundKey operation serving as a post-whitening key.
In the last round of AES, the MixColumns operation is omitted. The number of
rounds depends on the key size, ranging between 10 and 14.

Notations for the variants of AES we study. Since we use AES-like construc-
tions as a prototype of general KSA constructions, their types and notations
are similar to the types of KSA constructions discussed above. Namely, in all
variants we consider, the key schedule is replaced by a periodic key schedule,
with a period of 1, 2, or 3. Following [4], we denote by �K-AES a variant with
period � in the key schedule. We call the variant truncated if in its last round,
the MixColumns operation is removed (like in original AES), and otherwise, we
call the variant full.6 We say that the S-box is public if it is publicly known (like
in AES), and say that it is secret if it is key-dependent (like in the variants of
6 We note that in [4], the notation �K-AES was used for a variant with a MixColumns

operation in the last round (unlike AES), and the variant with no MixColumns in
the last round was not considered.

New Slide Attacks on Almost Self-similar Ciphers 261

AES studied in [21,23,30,31]). The diffusion of the affine layer in AES (namely,
MC ◦ SR) is inherently incomplete, and so we use �K-AES as a prototype only
for KSA constructions with incomplete diffusion; constructions with complete
diffusion are treated separately.

Like for general KSA constructions, the notation we use for AES-like con-
structions reflects the three relevant parameters: the number at the beginning
is the length of the key period, then the letter ‘f’ or ‘t’ says whether the last
round is full or truncated, and then the letter ‘p’ or ‘s’ denotes whether the
S-box is public or secret. If some parameter is not included (e.g., neither ‘p’ nor
‘s’ appear), this means that the attack applies to both types described by that
parameter. (Note that the letters ‘c’ or ‘i’ are irrelevant in the case of AES as
explained above, and so are always omitted). For example, 3K-AESts denotes a
variant of AES with a 3-round key period, no MixColumns operation in the last
round, and secret S-boxes.

Notations for intermediate values in AES. We denote the bytes of the state
matrix of AES by 0, 1, 2, . . . , 15, in the order described in Fig. 3, and denote
the value of the i’th byte of a state x by xi. When several bytes i1, . . . , i� are
considered simultaneously, they are denoted x{i1,...,i�}. The columns are num-
bered 0, 1, 2, 3; the j’th column of the state x is denoted by xCol(j), and if several
columns are considered simultaneously, we denote them by xCol(j1,...,j�). Some-
times we are interested in ‘shifted’ columns, i.e., the result of the application of
ShiftRows to a set of columns. This is denoted by xSR(Col(j1,...,j�)). Similarly, a
set of ‘inverse shifted’ columns (i.e., the result of the application of SR−1 to a
set of columns) is denoted by xSR−1(Col(j1,...,j�)).

2.3 The Attack of [4] on 1-KSAf

Bar-On et al. [4] considered 1-KSAf, that is, E = K ◦ (A ◦ S ◦ K)r where all
operations K use the same key k. They showed that this variant can be broken
with probability of about 63%, given 2n/2 known plaintexts, and roughly the
same amount of time and memory.

The idea behind the attack is simple. Assume that (Pi, Qj) is a slid pair, i.e.,
that A ◦ S ◦ K(Pi) = Qj . Denoting Q̃j = S−1 ◦ A−1(Qj), we have

Pi ⊕ Q̃j = k. (2)

On the other hand, by the structure of E, the corresponding ciphertexts (Ci,Dj)
must satisfy Dj = K ◦ A ◦ S(Ci). Thus, denoting C̄i = A ◦ S(Ci), we have

Dj ⊕ C̄i = k. (3)

Combining (2) and (3), we get

Pi ⊕ C̄i = Q̃j ⊕ Dj . (4)

This relation allows one to mount the attack described in Algorithm 1. Note that
the data used in the attack consists of a single set T of 2n/2 known plaintexts.

262 O. Dunkelman et al.

Algorithm 1. A Slide Attack on 1-KSAf [4]
Initialize an empty hash table T .
Ask for the encryption of a set T of 2n/2 known plaintexts.
for each plaintext/ciphertext pair (Pi, Ci), where Pi ∈ T do

Compute the value C̄i = A ◦ S(Ci),
Compute the value Pi ⊕ C̄i,
Store in T the value (Pi ⊕ C̄i, Pi).

for each plaintext/ciphertext pair (Qj , Dj), where Qj ∈ T do
Compute the value Q̃j = S−1 ◦ A−1(Qj),
Compute the value Q̃j ⊕ Dj ,
if Q̃j ⊕ Dj is the first coordinate of an entry (Pi ⊕ C̄i, Pi) ∈ T then

Test the key candidate k = Pi ⊕ Q̃j by trial encryption.

As was described above, this single set is treated both as TP and as TQ, and when
we consider a candidate slid pair composed of two elements of T , we denote it
by (Pi, Qj) and denote the corresponding ciphertexts by Ci,Dj .

As the data set contains 2n/2 · (2n/2 − 1) ≈ 2n pairs, the probability that
the data set contains a slid pair, i.e., a pair that satisfies Qj = A ◦ S ◦ K(Pi), is
about 1 − (1 − 2−n)2

n ≈ 1 − 1/e ≈ 0.63. Each slid pair leads to a collision in the
table which suggests the right key candidate. On the other hand, for a random
pair (Pi, Qj), the probability that Pi ⊕ C̄i = Q̃j ⊕ Dj is 2−n, and thus, only
a single collision in the table is expected (though the actual number follows a
Poisson distribution with a mean of 1). Thus, the right key can be found easily
by going over all collisions in the table and checking the values of k they suggest.
The data complexity of the attack is 2n/2 known plaintexts, its time and memory
complexities are about 2n/2 operations, and its success probability is about 63%.

In addition to the attack described above, Bar-On et al. presented a mem-
oryless variant of the attack, based on classical cycle detection algorithms. The
attack requires 2n/2 adaptively chosen plaintexts, 2n/2 time, and a negligible
amount of memory.

3 The Slid Sets Attack

In this section we present a new cryptanalytic technique, the slid sets attack,
and use it to attack 2-KSAfp with complexity O(2(n+s)/2) and 1-KSAs with
complexity O(

√
s · 2(n+s)/2). In particular, our attack allows us to break an

AES-like cipher with secret S-boxes and the same round keys with complexity
of 270.3 – only slightly higher than 264, which is a natural lower bound for the
complexity of a slide attack on a 128-bit cipher.

The key idea behind the slide sets technique is to consider pairs of plain-
text sets U = {Pi}i=1,...,d and V = {Qj}j=1,...,d, such that if for some (i0, j0),
(Pi0 , Qj0) is a slid pair, then the entire set V is the slid counterpart of the entire
set U , in the sense that for any Pi ∈ U , there exists 1 ≤ j ≤ d such that the
slid counterpart of Pi is Qj . Interestingly, we will not be able to know (until

New Slide Attacks on Almost Self-similar Ciphers 263

the very end of the attack) which Qj is the counterpart of a specific Pi. This
attack paradigm stands in contrast with all previously known slide attacks which
treated either single slid pairs or slid tuples (P1, . . . , Pd), (Q1, . . . , Qd) in which
each Qi is the slid counterpart of Pi.

We begin with presenting the attack in the special case of 2-KSAf, where
its application is the simplest one. Then we show the more complex attack on
1-KSAs. Even more complex attacks on 2-KSAtpi and on 3-KSAfpi are given in
full version.

3.1 Slid Sets Attack on 2-KSAf

The setting. For the sake of helping readability, we present the attack in the
special case of 2K-AESfp (i.e., an AES-like cipher with 2-round periodic subkeys,
publicly known S-boxes, and with a MixColumns operation in the last round).
We assume that the number of rounds is even; it will be apparent from the
attack that it applies to the ‘odd’ case without change (as the only difference it
the last round’s key). First, we would like to simplify the problem.

Assume that (Pi, Qj) is a slid pair. This means that

Qj = MC ◦ SR ◦ SB ◦ ARK2 ◦ MC ◦ SR ◦ SB ◦ ARK1(Pi),

where ARK� denotes key addition with the subkey k�. As was described in
Sect. 2.1, we can peel off unkeyed operations by denoting Q̃j = SR−1 ◦ MC−1 ◦
SB−1 ◦ SR−1 ◦ MC−1(Qj), and obtain

Q̃j = ARK ′
2 ◦ SB ◦ ARK1(Pi), (5)

where ARK ′
2 denotes the addition of the subkey MC−1 ◦ SR−1(k2). By the

basic slide property, the relation between the corresponding ciphertexts (Ci,Dj)
is similar to the relation between the plaintexts (but of course, is not the same,
due to the last round asymmetry). Namely, we have

Dj = ARK1 ◦ MC ◦ SR ◦ SB ◦ ARK2 ◦ MC ◦ SR ◦ SB(Ci).

Like with the plaintexts, this relation can be simplified to

D̃j = ARK ′
1 ◦ SB ◦ ARK2(C̄i), (6)

where C̄i = MC ◦ SR ◦ SB(Ci), D̃j = MC−1 ◦ SR−1(Dj), and ARK ′
1 denotes

the addition of the subkey MC−1◦SR−1(k1) The important gain from obtaining
the simplified equations is that now the transformation from Pi to Q̃j consists of
application of 16 independent functions on the bytes of the state, and the same
goes for the transition from C̄i to D̃j . This plays a significant role in the attack.

Construction of candidate slid sets. The idea behind this step is as follows.
Let (Pi, Qj), (Pi′ , Qj′) be slid pairs, and let Q̃j , Q̃j′ be computed from Qj , Qj′ ,
as defined above. The fact that the transformation from Pi to Q̃j consists of

264 O. Dunkelman et al.

application of 16 independent functions on the bytes of the state, implies that if
Pi′ differs from Pi only in a single byte, then Q̃j′ differs from Q̃j only in a single
byte as well.

We observe that this property can be generalized from pairs to sets, as follows.
Consider two sets U = {Pi}, Ṽ = {Q̃j} which form Λ-sets (see [12]) with respect
to byte 0 of the state, i.e., each of them is a set of 256 values that are equal in all
S-boxes but S-box 0, and attains all possible values in S-box 0. (Of course, the
same can be performed with another byte instead of byte 0.) Let V = {Qj} be
the plaintext set obtained from Ṽ by setting Qj = MC ◦SR◦SB◦MC ◦SR(Q̃j)
for each Q̃j ∈ Ṽj . By the above property, if the slid counterpart of some Pi ∈ U
is Qj ∈ V , then any Pi′ ∈ U has a slid counterpart Qj′ in V . We call two sets of
plaintexts U, V that satisfy this property (namely, that each element of U has a
slid counterpart in V and vice versa) slid sets.

The same process can be performed in the converse direction: Each candidate
slid pair (Pi, Qj) suggests a pair of slid sets (U, V), by defining U to be a Λ-set
that contains Pi, defining Ṽ to be a Λ-set that contains Q̃j , and computing V

from Ṽ as described above. (Of course, we have to make sure that the permuted
byte in the Λ-set is the same byte.) Importantly, we do not know which element
in V is the slid counterpart of a given element of U ; we only know that this
counterpart exists in V , if indeed the original pair (Pi, Qj) is a slid pair.

The attack is based on collecting sufficiently many pairs of sets (U, V), such
that with a high probability the data contains a pair of slid sets. Then, the
question is how to find the slid sets among them.

Identifying the slid sets. Let (U, V) be a candidate pair of slid sets. Let W =
{Ci} be the set of ciphertexts corresponding to the plaintexts of U , and let
X = {Dj} be the set of ciphertexts corresponding to the plaintexts of V . Define
the sets W̄ and X̃ by setting C̄i = MC ◦ SR ◦ SB(Ci) for any Ci ∈ W and
D̃j = MC−1 ◦ SR−1(Dj) for any Dj ∈ X. If (U, V) are slid sets, then for each
C̄i ∈ W̄ , there exists D̃j ∈ W̃ such that Eq. (6) holds for the pair (C̄i, D̃j).
However, we have to check many combinations of U and V , and even if we know
that (U, V) are slid sets, we do not know which Qj corresponds to which Pi.

Luckily, the relation (6) consists of applying 16 independent functions on
the bytes of the state. This implies that in each byte separately, for each pair
Ci1 , Ci2 ∈ W , the equality C̄i1 = C̄i2 holds if and only if the equality D̃j1 = D̃j2

holds for some Dj1 ,Dj2 ∈ X ′ (though, we still do not know for which values!).
Consequently, the statistic: “how many values are attained q times in byte �” is
preserved between the sets W̄ and X̃, for any byte � and any multiplicity!

This can be used for obtaining a significant amount of filtering, in the follow-
ing way. We pick sufficiently many Λ-sets U l (all with the same permuted byte),
and for each corresponding W̄ l, for each byte �, we compute the sequence of mul-
tiplicities (i.e., the sequence which records: how many values are not obtained,
how many are obtained once, etc.), defined formally by

a�
q =

∣∣∣ {
v ∈ {0, 1, . . . , 255} : |

{
C̄i ∈ W̄ l : (C̄i)� = v

}
| = q

} ∣∣∣,

New Slide Attacks on Almost Self-similar Ciphers 265

and store the sequence-of-sequences (a�
q)�=0,1,...,15,q=0,1,... in a hash table. Then,

we pick sufficiently many Λ-sets Ṽ l, and for each corresponding V l, we look at
the ciphertext structure X l corresponding to V l. For each corresponding X̃ l, we
compute the sequence {b�

q}�=0,1,...,15,q=0,1,... defined by

b�
q,=

∣∣∣ {
v ∈ {0, 1, . . . , 255} : |

{
D̃j ∈ X̃ l : (D̃j)� = v

}
| = q

} ∣∣∣,
and check for a match in the table. If (U i, V j) are slid sets, a match must occur.

We now analyze the probability that two unrelated sets match, i.e., we cal-
culate an upper bound on the probability that two non-slid sets have the same
sequences. For this analysis, we can safely assume that each of the sets induce a
sequence generated by picking 256 random values selected from {0, 1, . . . , 255}.
If the two vectors have for each multiplicity the same number of elements, then
the sequences collide, i.e., if the number of elements not appearing in both sets
is different, then the sequences do collide. We can thus define the multiplicity
vector for each set—how many elements appear zero times, once, twice, etc.

The actual distribution of the multiplicity vector is a multinomial one. As
we are interested in an upper bound on the collision probability of two such
multiplicity vectors, we offer a lower bound on the entropy of these vectors. To
do so, we consider the number of values that do not appear. While we expect
about 256/e such elements, the exact number of values not appearing follows a
binomial distribution for 256 experiments, each with success probability of 1/e.
The entropy of this binomial distribution is 1

2 log2(2π · e · 256 · 1
e · (1− 1

e)) ≈ 4.99
bits. The same is true also w.r.t. the number of entries which appear once.

Thus, each byte of the sequence carries at least 9.98 bits of information, or
in total for the entire state more than 159 bits of information. This is more than
enough to detect all correct pairs of slid sets (U i, V j) with an overwhelming
probability. We verified experimentally that this statistic contains at least 8 bits
of information in each byte (and thus, at least 128 bits of information in total),
assuming random and uniform distribution of the ciphertexts.

Retrieving the key from a pair of slid sets. Given a pair of slid sets (U i, V j), and
the corresponding sets of values (W̄ i, X̃j) we can easily and efficiently find the
round keys k2 and k′

1 = MC−1(k1). The attack is based on Eq. (6), which consists
of 16 independent byte equations of the form (D̃j)� = (ARK ′

1◦SB◦ARK2(C̄i))�,
as was mentioned above. In each byte �, we know from W the multiplicity of
each value entering this byte (e.g., input value 0 appears once in W̄ i in this byte
position). Note that the statistic we use here is more refined than the statistic
we used above: we do not only ask how many values are obtained q times, but
rather which are the values that are obtained q times.

We now guess the value of byte � of k2 and of k′
1, and so, we can compute

the value (ARK ′
1 ◦ SB ◦ ARK2(C̄i))� for each Ci ∈ W . We compute this value

for every C̄i ∈ W̄ , and check whether the multiplicities of the obtained values
conform to their multiplicities in X̃j . If there is no match, we discard the guess
of (k2)�(k′

1)�.

266 O. Dunkelman et al.

This procedure offers a very strong filtering, and so with overwhelming prob-
ability, in each byte only a single candidate for k2 and k′

1 remains.
We note that this attack algorithm does not rely on the actual order of keys

used in the last two rounds. Thus, even though we presented the attack for the
case of even number of rounds, it can be applied in exactly the same way to an
odd number of rounds (where Eq. (6) is replaced by D̃j = ARK ′

2◦SB◦ARK1(C̄i)
and we obtain a single candidate for k1 and k′

2).

The attack algorithm. As shown in Algorithm 2, we consider two structures
TP , TQ of 268 chosen plaintexts each. The structure TP consists of 260 Λ-sets, all
with the first byte permuted and the rest fixed. Similarly, TQ is chosen such that
T̃Q contains 260 Λ-sets, all with the first byte permuted and the rest fixed. We
then compute for each Λ-set in TP its a�

q statistics and for each Λ-set in TQ its b�
q

statistics, and look for collisions between the statistics. Once such a collision is
found (i.e., a pair of slid sets is identified), we apply the key recovery algorithm.

The data complexity of the attack is 269 chosen plaintexts, the memory com-
plexity is 269 and the time complexity is 269 as well. The success probability
is the probability that the data contains a pair of slid sets. As the probabil-
ity of each set pair of sets U i ∈ TP and V j ∈ TQ to be slid is 2−120 (since a
match in 15 bytes is needed), the probability of containing pair of slid sets is
1 − (1 − 2−120)2

120 ≈ 0.63, which is the success rate of the attack.

Attacking 2-KSAfp. The same attack applies to any variant of 2-KSAfp, either
with complete or incomplete diffusion. The data, memory and time complexities
are 2(n+s)/2+1 = O(2(n+s)/2).

3.2 Slid Sets Attack on 1-KSAs

In this section we show that a modification of the above attack can be used
to break 1-KSA in which the operation S is key-dependent – i.e., consists
of a parallel application of n/s key-dependent permutations on s-bit words.
The complexity of the attack is only slightly higher than the complexity of
the attack described above – namely, data, memory, and time complexity of
2
√

s log 22(n+s)/2 = O(
√

s2(n+s)/2) (i.e., a factor of
√

s log 2 with respect to the
attack of Sect. 3.1).

The setting. For the sake of helping readability, we first present the attack in
the special case of 1K-AESf with a key-dependent S-box. A related variant (1-
KSAfs) was studied in a number of papers, e.g., [21,23,30,31]. First, we would
like to simplify the problem.

Assume that (Pi, Qj) is a slid pair. This means that

Qj = MC ◦ SR ◦ SB ◦ ARK(Pi),

where ARK denotes key addition with the subkey k. We can peel off the unkeyed
operations MC,SR by denoting Q̃j = SR−1 ◦ MC−1(Qj), and obtain

Q̃j = SB ◦ ARK(Pi). (7)

New Slide Attacks on Almost Self-similar Ciphers 267

Algorithm 2. A slide attack on 2K-AESfp using slid sets
Ask for the encryption of two structures TP , TQ, each of size 268, defined above.
Initialize an empty hash table T .
for all Λ-sets U i ∈ TP do

Let the ciphertexts corresponding to the plaintexts U i be W i, and consider the
corresponding set W̄ i,

Compute the sequence-of-sequences (a�
q)�=0,1,...,15,q=0,1,..., and store it in T , along

with the index i.
for all V j ∈ TQ do

Let the ciphertexts of corresponding to the plaintexts of V j be Xj .
Compute from Xj the corresponding X̃j .
Compute the sequence-of-sequences (b�

q)�=0,1,...,15,q=0,1,..., and check for a match-
ing sequence in T .

if a match exists then
Assume that (U i, V j) are slid sets, and consider the corresponding sets

(W̄ i, X̃j).
for all bytes � ∈ {0, . . . , 15} do

for all guesses of byte k2,� and k′
1,� do

Partially encrypt all (C̄i)� ∈ W i and obtain a set of values
{t1, t2, . . . t256}.

if the set {t1, t2, . . . t256} matches the set {D̃j,� : D̃j ∈ X̃} then
Output “the subkey values in byte � are k2,� and k′

1,�”.

By the slide property, the corresponding ciphertexts (Ci,Dj) satisfy

Dj = ARK ◦ MC ◦ SR ◦ SB(Ci).

We can simplify this relation by interchanging the operations ARK and MC, at
the expense of replacing the subkey k with SR−1 ◦ MC−1(k), and then peeling
off MC and SR as well. We obtain

D̃j = ARK ′ ◦ SB(Ci). (8)

Detection of slid sets. Equations (7) and (8) show that the transformation from
Pi to Q̃j consists of application of 16 independent functions on the bytes of the
state, and the same goes for the transition from Ci to D̃j . Hence, we can use the
same algorithm for detecting slid sets in as the previous attack (i.e., using the
sequences a�

q and b�
q that count multiplicities of values).

Deducing slid pairs from slid sets. The remaining goal is to retrieve the subkey
k and the key-dependent S-box S given a few pairs of slid sets (U i, V j). (As
we shall see, a single pair of slid sets does not contain enough information for
determining the S-box uniquely). The simple algorithm for this step described
above cannot be applied here since the S-box S is unknown. Instead, we make
use of a refined statistic that allows us deducing the slid counterpart Qj ∈ V of
each Pi ∈ U . Namely, while in Sect. 3.1 we used the multiplicities of values in

268 O. Dunkelman et al.

Algorithm 3. Retrieving slid pairs from slid sets, for 1K-AESfs
Initialize a list L of candidate slid pairs.
for Each Ci ∈ W do

Compute the sequence (ci
�)�=0,1,...,15, and store in a hash table, along with Pi.

for Each D̃j ∈ X̃ do
Compute the sequence (dj

�)�=0,1,...,15, and check for a match in the table,
for Each match in the hash table do

Add the corresponding pair (Pi, Qj) to L.

each byte separately, here we use the sequence of multiplicities of a value in all
bytes simultaneously.

As in Sect. 3.1, we denote by W,X the sets of ciphertexts that correspond
to the plaintext sets U, V , respectively. Furthermore, we denote by X̃ the set
obtained from X by setting D̃j = SR−1 ◦ MC−1(Dj), for any Dj ∈ X.

For each Ci ∈ W , and for each byte 0 ≤ � ≤ 15, we count the number of other
elements Ci′ ∈ W such that (Ci)� = (Ci′)�. That is, we construct the 16-element
sequence {ci

�}�=0,1,...,15, where

ci
� = |{Ci′ ∈ W : (i′ 	= i) ∧ ((Ci)� = (Ci′)�)}|.

Similarly, for each D̃j ∈ X̃, and for each byte 0 ≤ � ≤ 15, we construct the
16-element sequence {dj

�}�=0,1,...,15, where

dj
� = |{D̃j′ ∈ X̃ : (j′ 	= j) ∧ ((D̃j′)� = (D̃j)�)}|.

We observe that the statistic represented by the sequences {ci
�} and {dj

�} is
preserved by slid pairs. That is, if Qj is the slid counterpart of Pi, then the
corresponding sequences {ci

�}, {dj
�} must be equal! Indeed, if for some i′ we have

(Ci)� = (Ci′)�, then the equality (D̃j)� = (D̃j′)� must hold for D̃j , where Qj′ is
the slid counterpart of Pi′ . Therefore, we can retrieve the right slid pairs (Pi, Qj)
by the simple procedure described in Algorithm 3.

We experimentally checked and found that the statistic (ci
�)�=0,1,...,15 contains

about 27 bits of information, assuming random and uniform distribution of the
ciphertexts. This means that the probability of a random pair (Pi, Qj) to yield
a match in the table is 2−27. As the plaintext sets (U, V) contain only 216 pairs
(Pi, Qj), with a high probability only the right slid pairs match in the table.

Hence, the above algorithm, whose complexity is about 216 operations, finds
the slid counterpart Qj ∈ V of each Pi ∈ U .

Retrieving the secretmaterial, given several pairs of slid sets. By Eq. (8) (applied in
each byte separately), each slid pair (Pi, Qj) provides us with an input/output pair
for the function f�(x) = k′

� ⊕ SB(x), where k′
� denotes the �’s byte of k′ = SR−1 ◦

MC−1(k). Hence, each pair of slid sets provides us with 256 input/output pairs
for each function f�. However, these input/output pairs are not distinct. A rea-
sonable assumption is that the values (Ci)� (where Ci ranges over elements of W)

New Slide Attacks on Almost Self-similar Ciphers 269

are distributed uniformly at random in {0, 1, . . . , 255}. Hence, by the coupon col-
lector’s problem, we need 256 · log 256 input/output pairs in order to recover f�

completely with a high probability. Therefore, about log 256 ≈ 6 pairs of slid sets
are sufficient for recovering all functions f�.

Once the function ARK ′ ◦ SB is recovered, the key k can be recovered
instantly, by picking some (already queried) ciphertext C and partially decrypt-
ing it using the knowledge of the functions ARK ′ ◦ SB, SR,MC. The entire
decryption process can be simulated, except for the initial ARK operation.
Hence, we obtain the value P ⊕ k, where P is the plaintext that corresponds
to C. As P is known, k can be retrieved.

The complexity of the attack. The attack presented above contains two steps, in
addition to the steps of the attack described in Sect. 3.1. The first is a step that
recovers slid pairs from pairs of slid sets. As described above, the complexity
of this step is 216, which is negligible with respect to other steps of the attack.
The second step is recovering the function ARK ′ ◦ SB. Its complexity is also
negligible, but it requires 6 pairs of slid sets, instead of a single pair in the attack
of Sect. 3.1. This increases the data complexity of the attack by a factor of

√
6,

and increases the data and time complexity of the attack accordingly.
Therefore, the data, memory and time complexity of the attack on 1K-AES

with a secret S-box and a MixColumns operation in the last round, is about
270.3, and its success probability is about 63%.

Attacking 1-KSAs. The same attack applies to any variant of 1-KSAfs. The only
difference is that the number of required pairs of slid sets is s log 2 = log(2s)
(instead of log 256 in 1K-AES). Hence, the data, memory, and time complexity
of the attack is 2

√
s log 2 · 2(n+s)/2.

Furthermore, the attack applies with the same complexity also to any vari-
ant of 1-KSAts. Indeed, the difference between 1-KSAfs and 1-KSAts is in the
relation between Ci and Dj , which becomes

Dj = ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ci).

By replacing ARK with linear operations, we can simplify this equation into

D̃j = ARK ′ ◦ SB ◦ ARK ′′(C̄i), (9)

where D̃j = SR−1(Dj), C̄i = MC(Ci), ARK ′ denotes addition with SR−1(k)
and ARK ′′ denotes addition with MC(k) ⊕ k. Equation (9) has exactly the
same structure as Eq. (8), and hence, the attack described above applies, with
the same complexity, to 1-KSAts.

4 Slide Attack Using a Hypercube of Slid Pairs

In this section we present a new technique which we call a hypercube of slid pairs,
and use it to attack 1-KSAts (with a secret S-box) with data, memory, and time
complexity of

√
s2(n+s(s/2+1)+s/2)/2+1 (in the special case of 1K-AESt: 288). For

sake of concreteness, we demonstrate the attack on 1K-AES.

270 O. Dunkelman et al.

The idea behind the attack. The attack consists of two steps. First we detect a
slid pair, and then we use it to recover the key used in the ARK operation and
in the secret S-box. In order to detect a slid pair, we want to attach to each
candidate slid pair many “friend pairs”, such that if the candidate is indeed a
slid pair, then all the friend pairs are slid pairs as well.

To be specific, we consider 1K-AES with a secret S-box. Consider a slid pair
(Pi, Qj). As was shown in Sect. 3.2, the relation between Pi and Qj can be sim-
plified into the equation Q̃j = SB ◦ ARK(Pi), where Q̃j = SR−1 ◦ MC−1(Qj).
Furthermore, it was shown that if (Pi, Qj), (Pi′ , Qj′) are slid pairs, Q̃j , Q̃j′ are com-
puted from Qj , Qj′ , and if Pi′ differs from Pi only in a single byte, then Q̃j′ differs
from Q̃j only in a single byte as well.

It follows that if we take a, a′ be two vectors that are non-zero only in byte 0
(where they assume arbitrary values), then with probability 2−8, (Pi⊕a, Q̃j ⊕a′)
also corresponds to a slid pair.

In the same way, we take values b, c, d, e which are non-zero only in byte
1, 2, 3, 4, respectively. Then we define b′, c′, d′, e′ similarly to the definition of a′,
and obtain the pairs (Pi ⊕b, Q̃j ⊕b′), . . . , (Pi ⊕e, Q̃j ⊕e′), such that each of them
is a slid pair with probability 2−8. Thus, we may attach to the pair (Pi, Qj) five
friend pairs, such that if (Pi, Qj) is a slid pair, then each of its friend pairs is a
slid pair with probability 2−8.

Constructing a hypercube of slid pairs. We are ready to present the construction
of the hypercube of slid pairs. Assume that all five pairs (Pi⊕a, Q̃j ⊕a′), . . . , (Pi⊕
e, Q̃j ⊕ e′) correspond to slid pairs. We observe that this implies that for any
quintet α = (α1, α2, α3, α4, α5) ∈ {0, 1}5, the pair

(Pi ⊕ α1a ⊕ α2b ⊕ α3c ⊕ α4d ⊕ α5e, Q̃j ⊕ α1a
′ ⊕ α2b

′ ⊕ α3c
′ ⊕ α4d

′ ⊕ α5e
′)

is a slid pair as well. Indeed, in each of the 16 functions applied in parallel, the
two values of the new slid pair are equal either to the values of (Pi, Q̃j) or to the
values of one of its 5 “friends” which we assumed to be slid pairs as well. (For
example, in byte 0 the values are equal either to those of (Pi, Q̃j) or to those of
(Pi ⊕ a, Q̃j ⊕ a′).) We denote the new pair by (Pi,α, Q̃j,α).

This allows us to leverage 5 friend pairs into 25 − 1 friend pairs (or more
generally, t friend pairs into 2t − 1 friend pairs). As the friend pairs we con-
struct correspond to the vertices of the hypercube {0, 1}t, we call this method
of constructing a hypercube of slid pairs. We note that this construction idea is
motivated by the mixture differential attack presented by Grassi [22]. Hence, so
far we have attached to the pair (Pi, Qj) 31 friend pairs, such that if (Pi, Qj) is
a slid pair, then with probability 2−40, all the friend pairs are slid pairs as well.

Using the hypercube of slid pairs in the attack. Consider the ciphertexts (Ci,Dj)
that correspond to a slid pair (Pi, Qj). As was shown in Sect. 3.2, the relation
between Ci and Dj can be simplified into the equation

D̃j = ARK ′ ◦ SB(Ci).

New Slide Attacks on Almost Self-similar Ciphers 271

As both the transformation from Pi to Q̃j and the transformation from Ci to
D̃j consist of application of 16 independent functions on the bytes of the state,
it follows that if for some α, α′ ∈ {0, 1}5 and for some byte � ∈ {0, 1, . . . , 15}, we
have (Ci,α)� = (Ci,α′)�, then we must have (Dj,α)� = (Dj,α′)� as well. Note that
the same property was exploited in the attack of Sect. 3.2. In our attack, the size
of the structure is smaller, which restricts the amount of information that can
be collected. On the other hand, we know that the slid counterpart of each Pi,α

is Qi,α, and this turns out to be sufficient for detecting the slid pairs.
Indeed, the expected number of such collisions is 2−8·

(
32
2

)
·16 = 31. We denote

each such collision by the triple (α, α′, �), and store the list of all collisions in
a lexicographic order. The exhaustive list of all locations of collisions contains
more than 256 bits of information, and thus, the probability that two lists of
triples that do not originate from a slid pair are equal, is negligible. Hence,
equality of two lists implies a slid pair (with overwhelming probability).

Recovering the secret S-box. Once a slid pair (Pi, Qj), along with 31 friend
pairs, are detected, they provide us with 32 input/output values to the function
ARK ◦ SB. As was shown in Sect. 3.2, about 256 log 256 ≈ 1420 input/output
values are needed in order to recover the S-box, and thus, we have to take a
sufficiently large data set so that it will contain at least 45 slid pairs. Namely,
we take two structures TP , TQ of 287 plaintexts each. The structures contain
2174 pairs. As the probability that a pair and all its friend pairs are slid pairs is
2−128 · 2−40 = 2−168, the expected number of slid hypercubes is 64, and so, with
a high probability the number of slid pairs is sufficient for recovering ARK ◦SB.
Once this operation is recovered, all the operations in the cipher except for
the final ARK operation are known, and thus, the key k can be immediately
retrieved. The resulting attack algorithm is given in Algorithm 4.

We note that the plaintext structures can be chosen in such a way that
constructing the friend pairs does not require increasing the data complexity.
Indeed, we can choose each of the structures TP , T̃Q as a union of 247 sub-
structures of size 240, where in each sub-structure, all plaintexts attain some
equal value in bytes 5, 6, . . . , 15 and all possible values in bytes 0, 1, . . . , 4. This
guarantees that for any a, b, c, d, e, α and for any Pi ∈ TP , the value Pi ⊕ α1a ⊕
α2b ⊕ α3c ⊕ α4d ⊕ α5e also belongs to TP , and the same for T̃Q.

As was explained above, the algorithm requires 288 chosen plaintexts, mem-
ory and time, and succeeds with a high probability. The same attack applies
to any variant of 1-KSAts (possibly with a complete diffusion). First, in the
detection of a hypercube of slid pairs of dimension t (given s-bit S-boxes in n-bit
cipher) we get from each candidate hypercube 2−s ·

(
2t

2

)
·n/s values in the list. As

each such value suggests about s bits of entropy (i.e., a total of 2−s ·
(
2t

2

)
·n bits),

and as we have at most 22n sets of slid pairs, we require that 2−s ·
(
2t

2

)
· n ≈ 2n.

In other words, one needs to set 22t−s−1 · n = 2n, i.e., t = �s/2�. Now, if TP

and TQ have D plaintexts each, we expect D2 · 2−n · 2−ts hypercubes of slid
pairs, each suggesting 2t slid pairs. As we need about log 2s · 2s ≈ 0.7 · s · 2s slid

272 O. Dunkelman et al.

Algorithm 4. A Slide Attack on 1K-AES with a Secret S-box using Hypercube
of Slid Pairs

Ask for the encryption of two structures TP , TQ, each of 287 chosen plaintexts, con-
structed as defined above..
Initialize an empty list L (intended to store the detected slid pairs).
for each plaintext/ciphertext pair (Pi, Ci) ∈ TP do

Compute the 31 friend pairs (Pi,α, Ci,α) and the corresponding values D̃i,α,
Find all collisions of the form (C̄i,α)l = (C̃i,α′)l,
Store in a hash table the sequence of triples (α, α′, l) that represent all collisions,

arranged in lexicographic order, along with the value Pi used to create them.

for Each plaintext/ciphertext pair (Qj , Dj) do
Compute the 31 ‘friend values’ Q̄j,α and the corresponding pairs (Qj,α, Dj,α),
Find all collisions of the form (Dj,α)l = (Dj,α′)l,
Compute the sequence of triples (α, α′, l) that represent all collisions and check

for a match in the hash table.
for Each collision in the table do

Add the corresponding pair (Pi, Qj) and its 31 friends to L.

for Each slid pair (Pi, Qj) ∈ L do
Use the relation between Pi and Q̄j to detect an input/output pair of SB ◦ARK

for each byte, until the entire function is detected.

Once SB ◦ARK in all bytes is detected, find the final key whitening operation ARK
using a single trial encryption.

pairs, we need D =
√

s ·2(n+s(s/2+1)+s/2)/2, or a total of data, memory, and time
complexities of

√
s2(n+s(s/2+1)+s/2)/2+1.

We note that the complexity of the ‘hypercube of slides’ attack on 1-KSAts
is inferior to the complexity of the ‘slid sets’ attack of Sect. 3.2. However, this
attack may be advantageous in specific instances of 1-KSAts, e.g., when the
operation S admits differential characteristics with a non-negligible probability.

5 Slide Attack Using Suggestive Plaintext Structures

In this section we present a new technique which we call suggestive plaintext
structures, and use it to attack 1-KSAt (and in particular, 1K-AES) with data,
memory of 3 · 2n/2 and time complexity of 4 · 2n/2. Interestingly, unlike most
other slide attacks, this attack’s success rate is guaranteed at 100%.

The idea behind the attack is using two tailor-made plaintext structures
TP = {Pi}i=1,...,2n/2 and TQ = {Qj}j=1,...,2n/2 , such that the mere knowledge
that some Pi has a slid counterpart in the structure {Qj} (even without the
knowledge of which Qj exactly is the counterpart) yields some key information
that can be used in the attack.

To be specific, we consider 1K-AES. Let TP = {Pi} be a structure of 264

plaintexts that assume the constant value 0 in Col(2, 3), and assume all 264

possible values in Col(0, 1). We let TQ = {Qj} be a structure of 264 plaintexts
such that the plaintexts of the corresponding structure T̃Q = {Q̃j} (where for

New Slide Attacks on Almost Self-similar Ciphers 273

each j, Q̃j = SB−1◦SR−1◦MC−1(Qj)) assume the constant value 0 in Col(0, 1),
and assume all 264 possible values in Col(2, 3).

The main observations behind the attack. Observe that (Pi, Qj) is a slid pair if
and only if the corresponding pair (Pi, Q̃j) satisfies Pi ⊕ Q̃j = k. We use two
conclusions of this observation:

1. Friend pairs for free. If (Pi, Q̃j) is a slid pair, then for any a, (Pi ⊕ a, Q̃j ⊕ a)
is a slid pair as well.
This allows attaching to each candidate slid pair a friend pair, thus enhancing
the filtering condition on the ciphertext side. However, in our case, we have
Q̃j ⊕ a ∈ T̃Q only if aCol(0,1) = 0. In such a case, Pi ⊕ a 	∈ TP , unless a = 0
(which means that the new pair is identical to the initial one).
To overcome this problem, we add to the data set another structure TR = {Ri}
of 264 plaintexts that assume the constant value 0 in Col(2) and the constant
value 1 in Col(3), and assume all 264 possible values in Col(0, 1). Then, we can
attach to each Pi ∈ TP a friend Ri = Pi ⊕ (0, 0, 0, 1) ∈ TR, such that for each
Qj ∈ TQ, the pair (Pi, Q̃j) is a slid pair if and only if (Ri, Q̃j ⊕ (0, 0, 0, 1)) is a
slid pair as well. We denote the ciphertext that corresponds to the plaintext
Ri by Fi. Furthermore, we denote the element of TQ that corresponds to
Q̃j ⊕ (0, 0, 0, 1) ∈ T̃Q by Q′

j , and denote the corresponding ciphertext by D′
j .

2. Key information for free. Since all Q̃j ∈ TQ satisfies (Q̃j)Col(0,1) = 0, it follows
that for any Pi ∈ TP , we may have Pi ⊕ Q̃j = k only if (Pi)Col(0,1) = kCol(0,1).
Therefore, when we consider some Pi ∈ TP as a candidate for being part of
a slid pair (with counterpart from TQ), we immediately obtain a candidate
value for the two initial columns of the key k.
Of course, the adversary does not know whether some Pi ∈ TP has a slid
counterpart in TQ, and so does not obtain the key information directly. How-
ever, this key information can be used indirectly to check the validity of many
slid pair candidates simultaneously, as shown below.

We note that the latter observation also explains why the attack succeeds
deterministically. By the choice of the structure TP , its elements assume all
possible values in Col(0, 1). In particular, for the right secret key k, there exists
Pi ∈ TP such that (Pi)Col(0,1) = kCol(0,1). For that plaintext Pi, we have (Pi ⊕
k)Col(0,1) = 0. However, the structure T̃Q contains all 264 values whose first two
columns are equal to 0. Hence, Q̃j := Pi ⊕k ∈ T̃Q, and so, (Pi, Q̃j) is a slid pair.
Hence, the data set is guaranteed to contain a slid pair.

Exploiting the key information. Assume that (Pi, Qj) is a slid pair. Then, due
to the omission of MixColumns from the last round of AES, the corresponding
ciphertexts satisfy the relation

Dj = ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ci). (10)

Similarly, since (Ri, Q̃j ⊕ (0, 0, 0, 1)) is a slid pair (by property (1) above), the
corresponding ciphertexts Fi,D

′
j , satisfy

D′
j = ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Fi). (11)

274 O. Dunkelman et al.

Algorithm 5. A Slide Attack on 1K-AES
Ask for the encryption of three structures TP , TQ, TR, each of 264 plaintexts, as
described in the text.
Initialize an empty hash table T .
for each plaintext/ciphertext pair (Qj , Dj) ∈ TQ do

Compute the value Q̃j = SB−1 ◦ SR−1 ◦ MC−1(Qj),
Compute the value Q′

j = MC ◦ SR ◦ SB(Q̃j ⊕ (0, 0, 0, 1)),
Denote the corresponding ciphertext by D′

j .
Store in T the pairs ((Dj ⊕ D′

j)SR(Col(0,1)), Qj).

for each plaintext/ciphertext pair (Pi, Ci) ∈ TP do
Set kCol(0,1) = (Pi)Col(0,1),
Compute shifted columns SR(Col(0, 1)) of the value SR ◦ SB ◦ ARK ◦ MC ◦

ARK(Ci) ⊕ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ri),
if the computed value is the first coordinate of an entry (((Dj ⊕

D′
j)SR(Col(0,1)), Qj) then

Test the key candidate k = Pi ⊕ Q̃j by trial encryption.

Now, assume that some specific Pi ∈ TP has a slid counterpart in TQ. By
property (2) above, this implies kCol(0,1) = (Pi)Col(0,1). This allows us to compute
Col(0, 1) of ARK ◦ MC ◦ ARK(Ci) (since we know kCol(0,1)), and consequently,
also shifted columns SR(Col(0, 1)) of the state SR◦SB◦ARK ◦MC ◦ARK(Ci).
In a similar way, we can compute the value of shifted columns SR(Col(0, 1)) of
the state SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Fi). Hence, we can compute the value
of shifted columns SR(Col(0, 1)) of

SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ci) ⊕ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Fi)
= ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ci)⊕

ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Fi).

By Eqs. (10), (11), this value is equal to (Dj ⊕ D′
j)SR(Col(0,1)). This gives us

a 64-bit filtering condition that can be checked for all j’s simultaneously, by
searching for a collision in a precomputed hash table. This results in the attack
algorithm given in Algorithm 5.

Since the match checked in the hash table is a 64-bit filtering condition, in
expectation a single value of j is suggested for each value of i. As each match
yields a suggestion for the entire key, any random match is almost surely dis-
carded using a single additional encryption operation. (The probability that
some wrong guess survives is as low as 2−64, and so, can be neglected.) On the
other hand, as explained above, the data set must contain a slid pair (Pi, Qj),
and this slid pair suggests the correct value of the secret key.

Therefore, the attack requires data complexity of 3 · 264 chosen plaintexts,
memory complexity of 3 ·264, time complexity of 4 ·264 encryptions, and succeeds
with probability 100%.

The attack applies, with exactly the same complexity, to any variant of 1-
KSAt with incomplete diffusion. Indeed, the only place where the exact structure

New Slide Attacks on Almost Self-similar Ciphers 275

of AES was used in the attack is the ability to compute 64 bits of the value ARK◦
MC ◦ ARK(Ci), given kCol(0,1). The adversary has this ability (or equivalent
ability with some other part of the state) as long as the operation A is applied
to blocks of size at most half of the state. This is indeed the case in any variant
of 1-KSAt with incomplete diffusion. Therefore, we obtain an attack with data
complexity of 3 · 2n/2 chosen plaintexts, memory complexity of 3 · 2n/2, time
complexity of 4 · 2n/2 encryptions, and success probability of 100%.

For 1-KSAt with complete diffusion, the above attack does not apply, and
we are not aware of any attack with complexity close to 2n/2 on this variant.

6 Substitution Slide Attack

We now present a new technique which we call substitution slide, and use it to
attack 1-KSAt (and in particular, 1K-AES) using only 2n/2 known plaintexts,
2n/2 memory and about 23n/4 time. Unlike the attack presented in Sect. 5, this
attack applies also for 1-KSAt with complete diffusion.

The idea behind the attack. As before, we present the attack on 1K-AES for sake
of simplicity. Consider a structure TP of 264 known plaintexts, and let T̃ be the
structure obtained by7 setting P̃i = SB−1 ◦ SR−1 ◦ MC−1(Pi) for any Pi ∈ TP .
As was explained in Sect. 5, if (Pi, Pj) is a slid pair, then we have:

{
Pi ⊕ P̃j = k,

Cj = ARK ◦ SR ◦ SB ◦ ARK ◦ MC ◦ ARK(Ci).

The basic observation we use in this attack is that the (simpler) first equation
can be substituted into the (complex) second equation, in order to get rid of key
dependence.

Specifically, the second equation can be rewritten as

SB−1 ◦ SR−1 ◦ ARK(Cj) = ARK ◦ MC ◦ ARK(Ci). (12)

The right hand side of this equation can be written as

ARK ◦ MC ◦ ARK(Ci) = k ⊕ MC(Ci ⊕ k) = MC(k) ⊕ k ⊕ MC(Ci),

Now, we can get rid of the key dependence by substituting the value of k from
the first equation above. We have

MC(k) ⊕ k ⊕ M · Ci = MC(Pi ⊕ P̃j) ⊕ Pi ⊕ P̃j ⊕ MC(Ci).

Hence, Eq. (12) can be rewritten as

SB−1 ◦ SR−1 ◦ ARK(Cj) ⊕ MC(P̃j) ⊕ P̃j = MC(Pi) ⊕ Pi ⊕ MC(Ci). (13)

7 We alert the reader that in this section we use (Pi, Pj) to denote a slid pair (rather
than (Pi, Qj). This was done to emphasize that Pi and Pj , both, are part of a set of
known plaintexts.

276 O. Dunkelman et al.

Algorithm 6. A Known Plaintext Slide Attack on 1K-AES
Ask for 264 known plaintexts/ciphertext pairs (Pi, Ci).
Initialize an empty hash table T .
for each plaintext/ciphertext pair (Pi, Ci) do

Compute the value Pi = MC(Pi) ⊕ Pi ⊕ MC(Ci),
Store in T the triples ((Pi)Col(0), (Pi)SR(Col(0)), (Pi)SR(Col(1,2,3))), indexed by the

first two coordinates.
for each guess of kSR(Col(0)) do

for each plaintext/ciphertext pair (Pj , Cj) do
Compute Column 0 of the value Q = SB−1◦SR−1◦ARK(Cj)⊕MC(Pj)⊕Pj ,
Check for entries in the hash table whose first two coordinates match the pair

((Qj)Col(0), (P̃j ⊕ k)SR(Col(0))).

for Each match found in the table do
Test the key candidate k = Pi ⊕ P̃j .

Equation (13) is almost what we need. The right hand side depends only on
(Pi, Ci) and thus can be computed in advance for all values of i and stored in
a hash table. The left hand side depends on (Pj , Cj); however, it depends also
on the secret key, and thus, we cannot just evaluate it for all j and check for a
match in the table.

In order to evaluate � bytes of the left hand side, we have to guess � bytes
of the key k. However, this does not really provide filtering, as the amount of
filtering we obtain is equal to the amount of key material we have to guess.
Instead, we appeal again to the first equation, and note that it also provides �
bytes of filtering, once � bytes of k are guessed. Therefore, we obtain 2� bytes of
filtering, at the expense of guessing � key bytes.

The attack algorithm. Choosing � = 4, this allows mounting the attack described
in Algorithm 6.

Since the match checked in the hash table is a 64-bit filtering condition,
on expectation a single value of i is suggested for each value of j. As each
match yields a suggestion for the entire key, any random match is almost surely
discarded using a single additional encryption operation. (The probability that
at least one wrong candidate pair is not discarded is as low as 2−32, and thus,
can be neglected). On the other hand, the data set contains a slid pair with
probability 1 − (1 − 2−128)2

128 ≈ 0.63, and for the correct guess of kSR(Col(0)),
each slid pair suggests the correct value of the secret key.

Therefore, the attack requires data complexity of 264 known plaintexts, mem-
ory complexity of 264, and time complexity of 296 encryptions, and succeeds with
probability of about 63%.

The attack applies to any variant of 1-KSAt in which the transformations S, A
are publicly known, including variants with complete diffusion. Indeed, the exact
structure of AES (or more generally, the incomplete diffusion of the MixColumns
transformation) are not used in the attack at all. Therefore, we obtain an attack

New Slide Attacks on Almost Self-similar Ciphers 277

with data complexity of 2n/2 known plaintexts, memory complexity of 2n/2, time
complexity of 23n/4 encryptions, and succeeds probability of about 63%.

We note that the time complexity can be somewhat reduced by choosing
another value of � and using two plaintext structures of different sizes. For exam-
ple, in the case of AES, the time complexity can be reduced to 288, by guessing
5 key bytes (instead of 4), taking two different structures of plaintexts – TP of
size 284 and TQ of size 244, and searching for slid pairs of the form (Pi, Qj) where
Pi ∈ TP and Qj ∈ TQ. However, this leads to a significant increase in the data
and memory complexities (in the case of AES we described – to 284), and thus,
this tradeoff does not seem profitable.

7 Summary and Conclusions

In this paper we studied slide attacks on almost self similar constructions, in
which the symmetry is broken by the last round. As a study case, we concentrated
on SP networks, in which such a symmetry break is inherent due to the final key
whitening step, and especially, on AES-type constructions. We devised four new
techniques: slid sets, hypercube of slid pairs, suggestive plaintext structures and
substitution slides. We used the new techniques to attack various general SPN
schemes—of different key periods, with different structures of the last round,
with known or secret S-boxes, and with full or an incomplete diffusion.

Open problems left for further work include:

– Use the techniques proposed in the paper to attack other general SPN
constructions.

– Find other types of slide attacks on almost self similar constructions.
– Find (lightweight) block ciphers, with periodic key schedule, susceptible to

these attacks.

Acknowledgements. The research was partially supported by European Research
Council under the ERC starting grant agreement n. 757731 (LightCrypt) and by the
BIU Center for Research in Applied Cryptography and Cyber Security in conjunction
with the Israel National Cyber Bureau in the Prime Minister’s Office. Orr Dunkelman
was supported in part by the Israel Ministry of Science and Technology, the Center
for Cyber, Law, and Policy in conjunction with the Israel National Cyber Bureau
in the Prime Minister’s Office and by the Israeli Science Foundation through grants
No. 880/18 and 3380/19.

References

1. Aerts, W., et al.: A practical attack on KeeLoq. J. Cryptol. 25(1), 136–157 (2012)
2. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the

indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 29

https://doi.org/10.1007/978-3-642-40041-4_29

278 O. Dunkelman et al.

3. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 17

4. Bar-On, A., Biham, E., Dunkelman, O., Keller, N.: Efficient slide attacks. J. Cryp-
tol. 31(3), 641–670 (2017). https://doi.org/10.1007/s00145-017-9266-8

5. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019(1), 5–45 (2019)

6. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptology
7(4), 229–246 (1994)

7. Biham, E., Dunkelman, O., Keller, N.: A simple related-key attack on the full
SHACAL-1. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 20–30. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 2

8. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

9. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48519-8 18

10. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 41

11. Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption proposal
(2010). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/
bps/bps-spec.pdf

12. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

14. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Reflections on slide with a twist
attacks. Des. Codes Crypt. 77(2–3), 633–651 (2015)

15. Dunkelman, O., Keller, N.: The effects of the omission of last round’s MixColumns
on AES. Inf. Process. Lett. 110(8–9), 304–308 (2010)

16. Dunkelman, O., Keller, N., Shamir, A.: Slidex attacks on the Even-Mansour
encryption scheme. J. Cryptol. 28(1), 1–28 (2015)

17. Durak, F.B., Vaudenay, S.: Breaking the FF3 format-preserving encryption stan-
dard over small domains. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 679–707. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 23

18. Furuya, S.: Slide attacks with a known-plaintext cryptanalysis. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45861-1 17

19. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

20. Gorski, M., Lucks, S., Peyrin, T.: Slide attacks on a class of hash functions. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143–160. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 10

https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/s00145-017-9266-8
https://doi.org/10.1007/11967668_2
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.1007/3-540-45861-1_17
https://doi.org/10.1007/3-540-45861-1_17
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-540-89255-7_10

New Slide Attacks on Almost Self-similar Ciphers 279

21. Grassi, L.: MixColumns properties and attacks on (round-reduced) AES with a
single secret S-Box. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp.
243–263. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 13

22. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers
and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2),
133–160 (2018)

23. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

24. Grossman, E.K., Tucherman, B.: Analysis of a weakened Feistel-like cipher. In: Pro-
ceedings of International Conference on Communications 1978, pp. 46.3.1–46.3.5
(1978)

25. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

26. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a
block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15031-9 2

27. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9 12

28. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

29. Robshaw, M.J.B.: Searching for compact algorithms: cgen. In: Nguyen, P.Q. (ed.)
VIETCRYPT 2006. LNCS, vol. 4341, pp. 37–49. Springer, Heidelberg (2006).
https://doi.org/10.1007/11958239 3

30. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New Insights on AES-like SPN
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
605–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 22

31. Tiessen, T., Knudsen, L.R., Kölbl, S., Lauridsen, M.M.: Security of the AES with
a secret S-box. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 175–189.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 9

https://doi.org/10.1007/978-3-319-76953-0_13
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/11958239_3
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-48116-5_9

	New Slide Attacks on Almost Self-similar Ciphers
	1 Introduction
	1.1 Applicability of Slide Attacks to Modern Ciphers
	1.2 Slide Attacks on SP Networks
	1.3 Our Settings
	1.4 Our Contributions
	1.5 Our Results

	2 Preliminaries
	2.1 Setting and Notations
	2.2 AES Notations
	2.3 The Attack of ch10EfficientSlide on 1-KSAf

	3 The Slid Sets Attack
	3.1 Slid Sets Attack on 2-KSAf
	3.2 Slid Sets Attack on 1-KSAs

	4 Slide Attack Using a Hypercube of Slid Pairs
	5 Slide Attack Using Suggestive Plaintext Structures
	6 Substitution Slide Attack
	7 Summary and Conclusions
	References

