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1 Introduction

Each of the presently available technologies for noninvasive electromagnetic or
hemodynamic measurements of brain activity offers different spatiotemporal reso-
lution and physiological sensitivity. Human functional MRI [6, 30] is temporally
limited by the slow hemodynamic response (~ seconds) due to relative cerebral
blood flow (CBF), cerebral blood volume (rCBV), and metabolism changes, which
are indirect markers of neuronal signaling. Using the echo-planar imaging [36]
technique, fMRI can typically provide a spatial sampling on a millimeter scale
with homogeneous volumetric sensitivity and whole-brain coverage.

Magnetoencephalography (MEG) and electroencephalography (EEG) in turn
detect extracranial magnetic fields and electric potential differences on scalp,
which are both elicited by spatially clustered and temporally coherent postsynaptic
neuronal currents [40]. Consequently, MEG/EEG can be used to study neuronal
dynamics with millisecond resolution. Different from fMRI, where tomographic
images are usually obtained, the spatial resolution of MEG/EEG is related to the
capability to resolve intracranial current sources from extracranial measurements. To
characterize the distribution of postsynaptic neuronal currents responsible for the

F.-H. Lin (*)
Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Charlestown, MA, USA
e-mail: fhlin@sri.utoronto.ca

T. Witzel · M. S. Hämäläinen · A. Nummenmaa
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Charlestown, MA, USA

© The Author(s) 2021
S. N. Makarov et al. (eds.), Brain and Human Body Modeling 2020,
https://doi.org/10.1007/978-3-030-45623-8_10

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45623-8_10&domain=pdf
mailto:fhlin@sri.utoronto.ca
https://doi.org/10.1007/978-3-030-45623-8_10#DOI


macroscopically measured voltage and magnetic field, we have to solve an electro-
magnetic inverse problem, which admits no unique solution [26, 28]. With auxiliary
mathematical and physiological assumptions, we can get reasonable estimates of
the spatial distribution of the neuronal currents that generate the MEG (and EEG)
measurements (see, Fig. 1).

There are two main lines of approach to the MEG/EEG inverse problem (for a
review, see [22]). The most traditional one assumes that the measurements are
generated by a small number of equivalent current dipoles (ECDs). The main
challenges with this approach are that i) the optimization problem for finding the
best matching parameters for the ECDs is nonlinear and ii) the optimization becomes
more and more difficult with increasing number of dipoles. The problem of handling
the a priori unknown number of dipoles is also a nontrivial one, because it requires
rather involved numerical methods [3, 29]. The Minimum-Norm Estimate (MNE)
approach circumvents the nonlinearity of estimating current source location and

Fig. 1 (a) A simulated “point-like” current dipole shown on a simulated cortical surface obtained
by shrinking the inner skull segmented from anatomical MRI by about 1 cm. The orientation of the
dipole is tangential to the cortical surface. (b) The simulated MEG measurement shown with
a realistic outer skin surface and sensor locations from an actual measurement. (c) The Mini-
mum-Norm Estimate (MNE) vector field is displayed with black arrows, and the MNE amplitude is
shown in color scale. (d) The full width at half maximum (FWHM) of the MNE point-spread
function gives an estimate for the spatial resolution of the source localization method
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orientation by assuming a discrete grid of source locations, each of which has three
orthogonal dipole orientations. With respect to estimating dipole amplitudes, the
inverse problem is linear. A least squares estimator (i.e., the MNE) can be calculated
by standard numerical methods. The benefit is that the number of sources need not be
known a priori, and a closed form solution is available in a computationally robust
form. The natural drawback of this method is that the identity of each “localized
source” becomes less clear-cut. In the case of Fig. 1, both the MNE and the single
ECD explain the data equally well, which is a manifestation of the non-uniqueness of
the inverse solution.

In principle, fMRI and EEG/MEG data can be integrated in order to achieve high
spatiotemporal brain imaging (for a review, see, e.g., [44]). The basic rationale for
such data integration is based on neurophysiological evidence: invasive studies in
primates suggest that BOLD fMRI signal increases are closely related to the same
postsynaptic neuronal activity [34] that generates MEG responses [22, 40]. Tight
coupling between neuronal and vascular events has also been reported in the
somatosensory system of rodents [12, 13]. Tentatively, these observations support
the computational strategy of using fMRI, a vascular marker of neuronal events, as
a physiological constraint for reducing the spatial ambiguity in the source localiza-
tion of MEG/EEG. For example, the ECD fitting method in MEG/EEG source
localization can be informed by fMRI [2, 20, 48]. The statistical maps derived
from fMRI data can also be used as a spatial prior for the distributed source
reconstruction [10, 32, 33]. A further study using simulations demonstrated the
advantage of combined fMRI and EEG for a higher efficiency of cortical current
density estimation at different signal-to-noise ratios (SNRs) with the presence of
both fMRI-visible and fMRI-invisible sources [5]. MEG has a millisecond temporal
resolution, ideal for studying cortical oscillations. It has been shown that integrating
fMRI and MEG can also improve the localization of cortical sources of oscillatory
activity [31].

In this article, we use the cortically constrained distributed source modeling
framework to illustrate how fMRI information can be used to assist MEG/EEG
localization and what are the potential benefits and pitfalls of this approach. We then
briefly discuss the further modeling efforts and extensions of the fMRI-weighted
MNE that have been presented in the literature. We also elaborate on the practical
aspects of designing a successful MEG/EEG/fMRI experiment, data analysis, and
interpretation of the results. The neurovascular coupling, technical challenges, and
opportunities for further optimizing the integration are also described. As the MEG
and EEG signals have a similar physiological origin, but their sensors have different
sensitivity profiles, the combination of the two yields theoretically the best locali-
zation results. However, the EEG is substantially more sensitive to the volume
conductor model: the poorly conducting skull distorts and smears the electric scalp
potentials, whereas the currents in the skull and scalp make only a minor contribu-
tion to MEG [23]. In what follows, all models and methods could be formulated in
terms of both MEG and EEG measurements, but we use MEG as our main example
due to the less error-prone forward model. Ultimately, we expect to develop
multimodal MEG/EEG/fMRI neuroimaging methodology for characterizing
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spatiotemporal functional connectivity in large-scale neural networks of the human
brain with high sensitivity and accuracy.

2 Methods

2.1 Minimum-Norm Estimates

Under the quasi-static approximation of Maxwell’s equations [22], the measured
MEG signals and the underlying current source are related by a linear
transformation:

Y tð Þ ¼ AX tð Þ þ N tð Þ, ð1Þ

where Y(t) is an m-dimensional vector containing measurements from m sensors at
time instant t; X(t) is a 3n-dimensional vector denoting the unknown amplitudes of
the three components of n current sources; A is the gain matrix representing the
mapping from the unit dipole components to MEG sensors, i.e., the solution of the
forward problem; and N(t) denotes noise in the measured data. For typical analysis
of evoked responses, the measurement noise N(t) can be assumed to be Gaussian
with zero mean and a time-independent spatial covariance matrix C, which can be
estimated from the data. The number of sensors is some hundreds, and any realis-
tically spaced grid covering the cortex requires thousands of source points. Thus, the
inverse problem is severely underdetermined as the number of equations m (sensors)
is an order of magnitude smaller than the number of unknowns 3n (source ampli-
tudes). With the presently available accurate reconstructions of cortical surfaces
[8, 15, 16], the locations of the sources can be constrained according to the
individual anatomy. If we assume that apical dendrites of pyramidal cells, which
are mainly oriented perpendicular to the cortical mantle, are the principal generators
of the MEG signals [40], we can also fix the orientation of the sources and reduce the
number of unknowns from 3n to n (see, Fig. 2).

If we further assume that the source amplitudes have a Gaussian a priori
distribution with a time-independent covariance matrix R, we obtain the maximum
a posteriori (MAP) estimate or the ℓ2 minimum-norm solution, which is linearly
related to the measurements [9]:

XMNE tð Þ ¼ RAT ARAT þ λ2C
� ��1

Y tð Þ ¼ λ�2RAT λ�2ARAT þ C
� ��1

Y tð Þ
¼ WY tð Þ, ð2Þ

where λ2 is a regularization parameter, which is introduced to avoid noise amplifi-
cation in the matrix inversion, and the superscript T indicates matrix transpose. The
parameter λ2 can be estimated from the amplitude signal-to-noise ratio (SNR) of the

whitened data: λ2 ¼ tr eAReAT
� �

=tr Im�mð Þ=SNR2
. Here tr(�) denotes the trace of a
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matrix. The whitened forward operator is eA ¼ C�1=2A, and Im � m is the whitened
(unit) noise covariance. SNR is an estimate for the SNR of the data.

The solution XMNE(t) in Eq. (2) provides the values of the current amplitudes that
best fit the MEG measurements in the least squares sense, with the additional
constraint of having the minimal (Euclidean) ℓ2 norm. It may be desirable to further
transform the resulting current distribution estimate into a statistical map that takes
into account the spatial distribution of fluctuations in the source estimate caused by
noise [10]. To this end, we need to consider the variance of the linear inverse
estimates, when the data consists of noise only:

w2
k ¼ WCWT

� �
kk
¼ fWfWT

� �
kk
: ð3Þ

For fixed-orientation sources, we now obtain the noise-normalized activity esti-
mate for the kth dipole and tth time point as the ratio

Fig. 2 (a) A surface model
of the left cortical
hemisphere gray-white
matter boundary
reconstructed by FreeSurfer.
(b) A close-up view of the
sensorimotor cortex,
showing the dipole sources
as red arrows, oriented
perpendicular to the cortical
surface
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XdSPM
k tð Þ ¼ XMNE

k tð Þ
wk

: ð4Þ

The dSPM thus normalizes the actual MNE by the standard deviation of the
fluctuation of the MNE that results from inverting data, which consists of noise only.

To incorporate the spatial information from fMRI, it has been suggested that
MEG source locations coinciding with significant fMRI activity were given a higher
variance in the a priori source covariance matrix R [10, 32]. Specifically, the source
covariance matrix was assumed diagonal, and the fMRI weighting for source
location k was encoded as:

Rkk ¼
σ21 if k active in fMRI

σ20 otherwise

(
ð5Þ

A weighting ratio of 10:1 between active (σ21) and inactive cortical locations (σ
2
0) has

been suggested by a simulation study [32].

Fig. 3 (a) Simulated sources on the cortical surface with source orientations normal to the cortical
sheet. (b) Simulated MEG measurements corresponding to the source configuration of (a). (c) The
resulting cortically constrained MNE. (d) The noise sensitivity normalized MNE (dSPM)
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2.2 Example: MNE Analysis and the Effect of fMRI
Weighting

Figure 3a shows a simulated source consisting of two patches of activated cortex,
located approximately at motor and auditory areas. As dictated by physics of quasi-
static magnetic fields generated by dipolar current sources in a nearly spherical
volume conductor, MEG is mostly sensitive to sources in the sulcal walls. The
auditory cortical source is located entirely in the wall of the Sylvian fissure, whereas
the motor cortical source extends over the precentral gyrus, thus giving less optimal
summation of the MEG fields. This is readily visible in Fig. 3b: the dipolar field
pattern from the auditory cortex is much more prominent. This translates directly to
the MNE of Fig. 3c: even though originally of similar amplitude, the motor cortical
source estimate is weaker, and the gyral part of the source is missing. As smaller
more superficial sources can produce similar MEG field as larger deep sources, the
minimum-norm constraint has a tendency to push the estimates toward the more
superficial parts of the brain surface. However, as the superficial parts are also more
prone to noise fluctuations in the inverse estimates, the effect of the noise normal-
ization of dSPM counteracts this and pushes the source maxima deeper (Fig. 3d).

Continuing with the same simulated source, Fig. 4 demonstrates the effects of
incorporating an fMRI weighting. The first row shows the case where the fMRI
weighting matches closely to the true source. Consequently, both sources are
recovered, and the extra ripples are suppressed. The second row corresponds to the
case where the motor cortical activity is not visible in the fMRI. Then, the fMRI
weighting also abolishes this source from the MEG inverse solution with the selected
MNE threshold. For the last row, we demonstrate a case where an extra activation
cluster is present in the fMRI, leading to some false-positive sources at the
corresponding fMRI-weighted MNE.

Note that for all the cortical images, the threshold was set to be 30% of the
maximum amplitude, and the full color scale was used to display the sources or
estimates on the cortical surface. This selection is rather arbitrary and has an obvious
effect on the visual appearance of the estimates to be, for example, apparently more
focal.

3 Discussion

3.1 Developments of the fMRI-Weighted MNE

As shown by simulation examples, the main problem with the simple “fMRI-
weighted MEG” is the relatively strong bias toward the fMRI data. Biophysically,
we have reasons to expect that the “active” areas detected by MEG and fMRI may be
only partially overlapping. On one hand, the temporal synchronization and summa-
tion of the neuronal activity on a millisecond scale is crucial for elicitation of a
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measurable MEG response. On the other hand, fMRI hemodynamic response allows
the summation of activity over seconds. For instance, a sharp transient stimulus may
produce a response clearly visible in MEG but may not be strong enough to push the
vascular system to produce a robust hemodynamic response. On the contrary, weak
but asynchronously sustained activity may temporally integrate to a measurable
fMRI response but remain undetected by MEG. In addition to temporal summation,
MEG and fMRI have different spatial sensitivities: fMRI has no spatial cancellation
due to neuronal currents having incoherent orientations as MEG [1], and it has equal
sensitivity for detecting activity in gyri and sulci.

Different from using fMRI as a spatial prior, Daunizeau and colleagues propose a
symmetric approach for multimodal integration of fMRI and MEG/EEG data by
constructing a model where the spatial activation profile in each anatomically
defined parcel of the cortex is assumed to be similar in both modalities [11]. Activa-
tions, which are not present in both modalities, are modeled as Gaussian residuals,
allowing for natural discrepancies between the different types of data. The model
becomes computationally rather complex as variables between modalities become
spatiotemporally entangled. Although the explicit modeling of coupled and

Fig. 4 First row: the fMRI-weighted MNE in case where the fMRI prior information is concordant
with the MEG sources. Second row: the motor cortical source is missing from the fMRI map. Third
row: a superfluous activation cluster is present in the fMRI map near the auditory cortical source
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uncoupled sources is appealing from a theoretical viewpoint, it is somewhat ques-
tionable how desirable it is to let MEG/EEG data substantially influence the esti-
mated waveform of the fMRI hemodynamic response. Henson and colleagues
maintain the asymmetry between modalities but consider more flexible fMRI priors
while preserving the basic Gaussian model structure, which renders computations
highly tractable [27]. The work expresses the prior covariance as multiple variance/
covariance components Ri: R ¼ ΣiλiRi, each with an adaptive weight parameter λi.
The covariance components Ri are generated based on fMRI analysis, whereas
appropriate values for the covariance component weights bλi are estimated from the
MEG/EEG data with the parametric empirical Bayesian (PEB) method. Once the
prior covariance R is fixed to the PEB estimate bR ¼ Σi

bλiRi , the solution for the
dipole amplitudes reduces to the fMRI-weighted MNE. The obvious question is then
how to partition the fMRI activation map into different variance/covariance compo-
nents Ri – the limiting cases are that all locations determined active form one
diagonal variance component R1, and the inactive form another R0, in the spirit of
the original fMRI-weighted MNE (see, Eq. (5)) or that each fMRI-activated location/
cluster is assigned to an individual variance component. Moreover, off-diagonal
covariance terms in the components can be also introduced: we may have an a priori
reason to believe that, for instance, left and right primary auditory cortices should be
activated in a similar fashion if identical stimulation is delivered to both auditory
pathways. As the number of ways in which the fMRI data can be split into
covariance components is rather large, the practical question of how to generate a
reasonable prior structure of appropriate complexity remains an important challenge.
The fMRI-Informed Regional Estimation (FIRE) method [41] combines elements of
the symmetric approach and the automatic relevance determination (ARD)
approaches [19, 39, 45, 50]. FIRE also utilizes the anatomical parcellation of the
cortex [17] and assumes that both electromagnetic and hemodynamic activity have a
common spatial profile at each parcel but independent temporal waveforms. The
overall source variance is adaptively estimated for each region, the ARD structure
allowing adequate variability of source strengths for each parcel and letting thus
non-active regions to be suppressed. Different from the symmetric approach, the
FIRE approach assumes that the hemodynamic responses are directly observed.
Thus, FIRE is computationally tractable and conceptually simple. The result is that
for those regions where clear fMRI responses are detected, the MEG source local-
ization leans on the available fMRI spatial information, and if fMRI information is
missing but MEG signals detected, the localization results are similar to the
basic MNE.
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3.2 Experimental Design, Model Comparison and Validation,
and Neurovascular Coupling Models

As mentioned above, different physiological origins of the signals introduce a
natural challenge in how to design the experiment such that multimodal data fusion
is meaningful. In MEG/EEG, stimuli eliciting transient responses may be optimal for
high temporal resolution MEG/EEG measurements, while delivering “continuous”
trains of stimuli may be more appropriate to drive the vascular system into a steady
state for high contrast-to-noise ratio (CNR) fMRI data. Accordingly, the integrative
analysis of the data requires some special attention. The fMRI weighting prior for the
MNE, by definition, should encode information that we have about the phenomenon
before (a priori) we see the MEG/EEG data. Thus, determining the fMRI weighting
for the MNE should be based solely on the fMRI data. Strictly speaking, it is
incorrect to tweak the fMRI prior after seeing the results of the fMRI-weighted
MNE. However, saying that the (fMRI) prior should not depend on the (MEG/EEG)
data to be modeled does not mean that the prior cannot have unknown parameters
that are estimated from the data, such as the prior covariance weights λi in the PEB
approach [27]. The symmetrical approach [11, 27] and the FIRE approach [41]
partially avoid this problem as the prior is mainly fixed by the cortical parcellation
and other explicit modeling assumptions about the spatial concordance of the
electromagnetic and hemodynamic responses.

If multiple fMRI-MEG/EEG integration methods are applied to a given dataset,
what can be said about the validity or accuracy of these models? Can we compare the
models and select the most likely one in some sense? There are criteria for Bayesian
model comparison and selection such as the model evidence, as utilized in [27],
which can be useful for evaluating the model complexity and guiding the model
selection process. In principle, due to the MEG/EEG inverse problem, there is no
“true” solution that can be singled out by any statistical test – no matter how much
MEG/EEG data we collect, or how realistic we make the volume conductor (head)
model, there will be multiple source configurations that fit equally well to a given set
of MEG/EEG data. Even in the presence of almighty Bayes, the silent sources
remain silent. If the hypothetical silent MEG/EEG source configuration is detected
by fMRI and incorporated into the spatial prior, we do not gain further information of
its electromagnetic characteristics – the product between an inverse operator and
zero measurements (due to silent MEG/EEG source) still yields zero source esti-
mates. Obviously poor models can be detected by comparing, e.g., the data fit of a
given model against a standard model, such as the MNE, which operates on the
minimal assumptions. However, it is unlikely that any model will yield a substan-
tially better data fit for the MEG/EEG data, since the MNE is also an optimal
estimator in least squares sense. Some forms of cross-validation might also be
applied to test and compare prediction errors and to detect over-fitting.
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3.3 Neurovascular Coupling: The Physiological Bases
of Integrating fMRI and MEG Source Modeling

A better understanding of neurovascular coupling is of fundamental importance in
integrating hemodynamic and neuronal activity data (for review, see [25, 35]).
BOLD contrast fMRI has been suggested to be closely related to the input synaptic
activity [34] and to neuronal output spiking [24, 37]. When postsynaptic neuronal
signals are highly synchronous, they constitute the magnetic fields measured by
MEG in guinea pigs [40, 43]. Invasive recordings can directly measure the
neurovascular coupling and therefore offer more detailed information for further
testing and validating the noninvasive models. Animal models and intracranial
measurements in humans will be needed to provide a backbone for the development
of noninvasive imaging approach, which will always rest on some weighty modeling
assumptions due to the indirect nature of observations. Population-level models of
the neurovascular coupling can also provide insights and predictions about the
noninvasive data in various circumstances [4, 47].

A linear relationship between the strength of neuronal signal and hemodynamic
signal has been suggested by studies in the human visual system [24, 38, 43, 46, 49]
and the motor system [42]. However, using a rodent model, a nonlinear relationship
between the strength of the local hemodynamic response and neuronal activity has
also been reported [12]. Such hemodynamic output may be explained as the spatio-
temporal convolution of local electrophysiological responses [13]. A more compli-
cated correlation structure between MEG and BOLD fMRI responses was also found
in the human auditory system: the same auditory clicks can elicit transient and
sustained MEG responses with the transient response more closely related to the
BOLD fMRI signal [21]. Taken together, the mechanism through which the MEG
and fMRI signals become coupled, as well as the ensuing degree of observed
correlation in the macroscopic responses, remains only partially elucidated.

From the MEG/EEG source modeling perspective, it is highly motivated to
explore and exploit the fMRI data as a spatial prior to complement the non-unique
nature of estimating neuronal current source distributions using extracranial record-
ings [26]. Such a data fusion technique has been supported by studies showing
reliable correlations between hemodynamic responses and neuronal activity as
discussed above: brain areas showing significant hemodynamic responses measured
by fMRI are expected to be engaged in corresponding neuronal activity, the syn-
chronous synaptic components of which are measured by MEG. This rationale is
also supported by studies showing that MEG and fMRI can co-localize to the same
cortical areas in the visual system [7] and motor system [18]. However, it should be
noted that the spatial distribution between electrophysiological activity and hemo-
dynamic responses is not in a complete agreement. In the somatosensory area, the
distance between the center of fMRI map and the center of the electrophysiological
maps can be separated by approximately 1 cm [14]. In summary, further
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investigation of the neurovascular coupling should provide support for developing
the mathematical models of integrating fMRI and MEG data for spatiotemporally
sensitive and functionally specific detection of human brain activation.

In conclusion, the field of multimodal integration of noninvasive imaging tech-
nologies such as MEG/EEG and fMRI is still in a rather early stage, and the
methodology will continue to evolve as more data about the physiological origins
of the signals are accumulated.
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