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1 Introduction

Tumor-treating fields (TTFields) are electric fields with intensities of 1–5 V/cm in
the frequency range of 100–500 kHz known to inhibit the growth of cancerous
tumors. TTFields have been approved for the treatment of glioblastoma multiforme
(GBM) since 2011 [19–21]. Recently, the therapy was FDA-approved for the
treatment of malignant pleural mesothelioma (MPM) [4]. TTFields are delivered
noninvasively through two pairs of transducer arrays that are placed on the patient’s
skin in close proximity to the tumor (see Fig. 1). At any instance, only one pair of
arrays is used to create the field, while the second pair is switched off. The pairs of
arrays are placed such that the fields created are roughly orthogonal, and switching
of the active arrays occurs about once per second. This results in the creation of an
alternating electric field, which switches direction periodically. The field is generated
by a portable field generator. Treatment is continuous as analysis of clinical data has
shown a positive connection between device usage (fraction of time patient is on
therapy) and patient outcomes [2].

Preclinical studies have shown that the antimitotic effect of TTFields is fre-
quency- and intensity-dependent. The inhibitory effect on different cell types is
observed at cell-specific frequencies [6, 9, 10], and the higher the intensity of the
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field, the stronger the inhibitory effect. As mentioned above, the effect of TTFields is
also time-dependent, with higher usage associated with improved patient survival
[18]. Posthoc analysis of the EF-14 trials showed overall survival for patients treated
with TTFields+temozolomide (TMZ) with usage of 90% or more was 24 months
compared to 16.03 months in patients treated with TMZ alone [18]. More recently, a
study by Ballo et al. [2] showed that in newly diagnosed GBM patients, survival
correlated with TTFields dose delivered to the tumor bed. Dose was defined as
power loss density multiplied by usage. These findings suggest that patient outcome
could be significantly improved with rigorous treatment planning, in which numer-
ical simulations are used to identify array layouts that optimize delivery of TTFields
to the tumor bed. The plan could be adapted periodically as the tumor evolves to
maximize the effect of treatment in regions where tumor progression occurs.

Performing such adaptive planning in a practical and meaningful manner requires
a rigorous and scientifically proven framework defining TTFields dose and showing
how dose distribution influences disease progression in different malignancies
(TTFields dosimetry). The adaptive planning also requires a set of principles on
how best to perform treatment planning, along with numerical methods and algo-
rithms devised to optimize therapy based on the principles mentioned above. The

Fig. 1 Top left image shows Optune™ device used to deliver TTFields to the brain. The device
comprises a portable battery-powered field generator, connected to four transducer arrays which are
placed on the scalp as shown in top and bottom-right images. The image in the bottom-left corner
shows placement of transducer arrays for treatment of thoracic tumors with TTFields
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principles should be derived from our understanding of TTFields dosimetry and how
dose distributions influence disease. An effective treatment planning strategy also
requires quality assurance and uncertainty analysis to understand how uncertainties
in the model, numerical solver, and positions of the array influence the field
distribution to create a quality assurance system to ensure that the plan is adhered
to within the allowed uncertainties.

At EMBC 2019, several talks discussing key components related to TTFields
dosimetry and treatment planning were presented. The purpose of this manuscript is
to provide a short overview of this work and discuss how it sets the foundations for
the emerging field of TTFields dosimetry and treatment planning.

2 An Outline for TTFields Dosimetry and Treatment
Planning

Figure 2 is a flow chart describing the steps required in order to realize an effective
scheme for TTFields treatment planning.

The first step in the process is clinical evaluation and contouring. In this step, the
planning physician examines imaging data of the patient, identifies regions of active

Fig. 2 Flowchart describing the steps involved in treatment planning and how these could be
integrated into an effective workflow in the clinic
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tumor, and selects the target regions in which TTFields dose should be optimized.
The physician may also identify areas to avoid, like areas on the skin over which
transducer arrays should not be placed. Next, the imaging data are used to create a
patient-specific computational model, which can be used to simulate delivery of
TTFields to the patient. In the context of TTFields treatment planning, the model
involves the creation of a three-dimensional representation of the patient, in which
electric conductivity is assigned to each point. The model, target regions, and
avoidance areas are inputs for an optimization algorithm that seeks to find a
transducer array layout that optimizes the dose in the target regions while avoiding
placement of transducer arrays over the avoidance structures. The optimization
algorithm will typically entail iterative use of a numerical solver that simulates
delivery of TTFields to the patient for different array layouts. The output from this
process will be an optimal array layout for treating the patient, as well as quantitative
and visual aids that enable the physician to evaluate the quality of the plan. These
aids could include color maps describing the field distribution within the patient’s
body and dose-volume histogram (DVH) describing the distribution of TTFields
dose within the target regions and within other areas of interest. Once a plan that the
physician deems satisfactory has been generated, the patient is instructed on how to
place the transducer arrays on their body, and treatment commences. Patient follow-
ups occur periodically. During these follow-ups, additional imaging of the patient
may be acquired as physician assesses for disease progression. The new imaging
data may demonstrate regions in which the tumor has responded to therapy and/or
regions in which tumor has progressed. Depending on patient’s patterns of response
and progression, the physician may decide to re-plan in order to enhance treatment to
new target regions.

Three key components required to establish an effective framework for TTFields
treatment planning are:

TTFields Dosimetry: An understanding of how to define TTFields dose accurately
and an understanding on how TTFields dose distributions influence disease
progression and patient outcomes.

Patient-Specific Model Creation: An ability to accurately calculate field distributions
within patients in a quick and reliable manner is crucial for TTFields treatment
planning. This in turn requires an ability to build 3D patient-specific models in
which conductivity at each point within the model is well-defined, so that
accurate dose distributions can be calculated.

Advanced Imaging for Monitoring Response to Therapy: Imaging technologies that
enable accurate mapping of tumors and changes that occur within the tumor.

Below is a discussion of work presented at EMBC 2019, which touches on these
three topics.
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3 TTFields Dosimetry

As mentioned above, preclinical research has shown that the effect of TTFields on
cancer cells depends on the frequency of the field, its intensity, and the duration of
exposure to the fields. The EF-14 trial compared patient outcome in patients treated
with chemoradiation+TTFields with outcome in patients treated with
chemoradiation alone. Post hoc analysis of this trial has shown that patient outcome
positively correlates with device usage (% of time on active treatment) [2].

More recently, Ballo et al. [2] published a study in which they defined TTFields
dose as power loss density multiplied by usage and showed that within the EF-14
trial population, patients who received higher doses to the tumor bed exhibited
overall improvement. Bomzon et al. presented a summary of this work at EMBC
2019 [3].

A total of N ¼ 340 patients who received TTFields as part of the EF-14 trial were
included in the study. Realistic head models of the patients were derived from
T1-contrast-enhanced images captured at baseline using a previously described
method [24]. The transducer array layout on each patient was obtained from
EF-14 records, and average usage and average electrical current delivered to the
patient during the first 6 months of treatment were derived from log files of the
TTFields devices used by patients. Finite element simulations of TTFields delivery
to the patients were performed using Sim4Life (ZMT Zurich, Switzerland). The
average field intensity, power loss density, and dose density within a tumor bed
comprising the gross tumor volume and the 3-mm-wide peritumoral boundary zone
were calculated. The values of average field intensity, power loss density, and dose
density that divided the patients into two groups with the most statistically signifi-
cant difference in OS were identified.1

Figure 3 shows Kaplan-Meier curves for overall survival (OS) when dividing the
patients into two groups according to TTFields dose. The median OS (and PFS data
not shown) was significantly longer when average TTFields dose in the tumor bed
was > 0.77 mW/cm3: OS (25.2 vs 20.4 months, p ¼ 0.003, HR ¼ 0.611) and PFS
(8.5 vs 6.7 months, p ¼ 0.02, HR ¼ 0.699). In similar analysis, dividing the patients
according to TTFields intensity yielded that median OS and PFS were longer when
average TTFields intensity at the tumor bed was >1.06 V/cm OS (24.3 vs
21.6 months, p ¼ 0.03, HR ¼ 0.705) and PFS (8.1 vs 7.9 months, p ¼ 0.03,
HR ¼ 0.721).

This work sets a foundation for defining TTFields dose. It shows that TTFields
dose can be defined in terms of power and usage and that delivery of higher doses of

1Defining dose for TTFields therapy is important to remember that TTFields are delivered by two
sets of arrays, with the field direction switching direction every second. Thus, TTFields therapy
essentially involves delivery of two incoherent electric fields to the tumor. A key question is how to
meaningfully combine the two fields into a single metric defining dose. Ballo et al. established
connections between local minimum field intensity (LMiFI) and local minimum power density
(LMiPD) and survival. In this paper, dose was defined as LMiPD multiplied by usage.
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TTFields to the tumor bed does indeed improve OS. Thus, a first principle for
TTFields treatment planning is that treatment planning should strive to maximize
average dose delivered to a region comprising the tumor and the peritumoral region,
analogous to radiation therapy planning. A major difference between radiation
therapy planning and TTFields treatment planning is that due to the highly toxic
nature of radiation therapy; radiation therapy plans also need to account for avoid-
ance structures, in which the radiation dose should be limited. This adds a level of
complexity to the planning process. TTFields has a very low toxicity profile, with the
only adverse effect reported being skin toxicity [19, 22]. Thus, there is no need to
plan treatment to minimize dose in critical structures. It might be wise, however, to
incorporate avoidance areas on the skin into the plan where arrays should not be
placed.

Finally, it should be emphasized that TTFields treatment planning could benefit
from understanding how the distribution of the field alters the progression of the
tumor. This type of knowledge may help to devise more efficient strategies for

Fig. 3 Kaplan-Meier curves showing overall survival for patients treated with TTFields during the
EF-14 trial. Graph shows survival curves when patients are divided into two groups based on the
average dose in the tumor bed. The graphs clearly show improved survival in the group of patients
who received an average dose of above 0.77 mW/cm3 at the tumor bed. (Graph adapted from Ballo
et al. [2])
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planning the delivery of TTFields. These methods could be aimed at containing
tumor growth by delivering higher doses to regions to which the tumor is more likely
to grow or preventing tumor growth to critical structures by enhancing the field
intensity in these regions.

4 Patient-Specific Model Creation

In order to properly perform numerical simulations of TTFields delivery, it is
necessary to create accurate computational models that are patient-specific [11, 12,
24–26]. This involves creating a 3D volume representing the patient, in which
dielectric properties (primarily conductivity) are assigned to each voxel.

Two different approaches can be used for creating these models:

Segmenting medical images of the patients to identify the various tissue types in the
model and assignment of typical conductivity values to each tissue type [26]

Mapping conductivity from imaging data to assign a conductivity value to each
voxel in the patient model based on some signal in the imaging data that provides
information about the dielectric properties at a point [26, 27]

To date, most modelling work associated with TTFields has relied on the
segmentation of patient data and assignment of conductivity values to each tissue
type. Conductivity values have been assigned to the tissues based on empirical
measurements that appear in the literature. There is a high degree of certainty
associated with the conductivity values reported for healthy tissues of the brain, as
reported measurements are relatively consistent when comparing different reports.
However, little to no information exists on the electric properties of brain tumors. As
response to TTFields seems to depend on dose delivered to the tumor bed, and as
dose to the tumor will be influenced by the electric properties of the tumor, it is
important to gain reliable data on the electric properties of tumors. At EMBC 2019,
Proescholdt et al. [17] presented data on this topic. The data relied on measurements
performed on tissue probes acquired from 53 patients with tumors of different
histology and malignancy grades: low-grade glioma (n ¼ 5), glioblastoma (GBM;
n ¼ 16), meningioma (n ¼ 19), brain metastases (n ¼ 10), and other histology types
(1 craniopharyngioma, 1 lymphoma, 1 neuroma). Tissue probes were acquired from
the vital and perinecrotic compartments of the tumor if present. Several probes (up to
five) were sampled from each region. Immediately after acquisition, the electric
properties of tissue fragments taken from the probes were determined using a parallel
plate setup. The impedance of the sample was recorded at frequencies 20 Hz–
1 MHz. These measurements revealed significant differences between the conduc-
tivity observed in different tumor types, with meningiomas showing the lowest
conductivity (mean conductivity [S/m]: 0.189; range: 0.327–0.113) and GBM tissue
exhibiting the highest conductivity values (mean conductivity [S/m]: 0.382; range:
0.533–0.258). Consistently, the perinecrotic areas of tumors displayed lower con-
ductivity values compared to the solid tumor compartments and also significant
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intratumoral heterogeneity in tumors of one specific histological diagnosis. The
results of this study are summarized in Fig. 4.

This study sheds light on the dielectric properties of intracranial tumors, currently
not accounted for in numerical models. An understanding of the cause of heteroge-
neity is needed in order to improve model quality and better predict field distribu-
tions around the tumor. In the interim, sensitivity analysis analyzing the effect of
altering the electric properties of the tumor on field distributions is needed in order to
complete our understanding on how best to plan TTFields therapy and the uncer-
tainties associated with this planning.

EMBC 2019 also included a talk by Wenger et al. [26], discussing the use of
water content-based electric property tomography (wEPT) in order to create patient
models for TTFields-related numerical simulations. wEPT is an imaging tomogra-
phy technique that models electrical conductivity, σ, and relative permittivity, ε, as
monotonic functions of water content (WC) according to Maxwell’s mixture theory
[13]. WC maps are found via a transfer function mapping the image ratio (IR) of two
T1w images with different repetition times (TR) into water content. Previously,
wEPT was adapted to map WC, σ, and ε at 200 kHz in animal brain samples and
tumor-bearing rats with mixed results [26]. When comparing wEPT-based predic-
tions to empirical measurements of tissue samples using a parallel plate setup, we
found a good match between wEPT-based estimations in the healthy tissue, while
the quality of the match was poor within the tumors. At EMBC 2019, data were
presented on the applicability of wEPT to mapping the electric properties of the
human brain. The images used for wEPT mappings included, for this purpose, an
image with a short TR resembling a conventional T1w MRI and a proton density
(PD) image with the same parameters except for a long TR (Fig. 5).

EP maps for three patients who participated in the EF-14 trial were created using
wEPT. The adapted wEPT model coefficients were found via curve fitting according
to previous experiments and MRI scanner-specific parameters. Analysis of the
results showed that wEPT estimates of WC, σ, and ε in healthy brain tissues
(white and gray matter) appear accurate and comparable with reports in literature.
The properties were also relatively homogenous throughout the tissues and did not
vary much between patients. Contrary, wEPT estimates of σ and ε in tumor tissues
(necrosis, enhancing and non-enhancing tumor) were highly heterogeneous with
high variability between patients.

These results, combined with results of our previous study, show the potential of
wEPT-like methods for mapping the electric properties of the brain. However, the
results suggest that wEPT alone is insufficient to map the electric properties of the
tumor as well as the heterogeneous nature of the tumor. Future studies should focus
on understanding the connection between tissue microstructure and the electric
properties of the tissues at 200 kHz. When these processes are well understood,
then methods for accurately mapping electric properties can be devised.
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Fig. 4 (a) Boxplots showing the distribution of conductivities measured for four different brain
tumor types: meningiomas, low-grade gliomas, brain metastases, and glioblastomas. Conductivity
differs between tumor types, with the highest median conductivity measured in glioblastoma and
the lowest median conductivity measured in meningioma. In all tumor types, a high heterogeneity in
the electric conductivity is observed. (b) Bar plot showing the average conductivity measured in the
solid and perinecrotic regions of the tumor for several GBM patients. Surprisingly, conductivity is
consistently lower in the perinecrotic region of the tumor
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5 Advanced Imaging for Monitoring Response to Therapy

A key component in adaptive treatment planning is imaging. The ability to image the
tumor and assess response effectively is key to mapping regions in which the tumor
is responding to therapy and identifying the regions in which the disease is
progressing. Treatment can then be adapted to target the regions of progression.
Furthermore, advanced imaging holds the potential of early identification of molec-
ular and biological responses occurring at the tissue and cellular level. These
changes could indicate response or resistance to a specific treatment regimen,
enabling the treating physician to adapt treatment early in order to improve the
probability of positive outcomes. In the context of TTFields, this may mean adapting
the transducer array position in order to increase the dose in regions of progression in
order to suppress tumor growth in this region.

Fig. 5 (top-left) The tetrahedral mesh a of glioblastoma patient used to calculate TTFields induced
electric field distributions, along with the (top row) distribution of conductivity for (top middle) a
model created by segmenting a T1c image and assigning conductivity values to each tissue type and
(top right) a model created using wEPT. Bottom row shows the field distribution in the (bottom
middle) model created through segmentation and in the (bottom right) model created with wEPT.
The flow chart in the bottom-left corner shows the wEPT scheme. First an image ration (IR) is
calculated from the T1w and PD images. Next, WC is found from the IR, and conductivity derived
from the WC. Note the parameters in the equations are found using curve-fitting to empirical data as
detailed in Wenger et al. [26]
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At EMBC Mohan et al. presented a study investigating the use of advanced
imaging to map response to TTFields [14]. Twelve patients (both newly diagnosed
and recurrent GBM patients) previously treated with standard-of-care maximal safe
resection and chemoradiation received TTFields. Patients underwent baseline (prior
to initiation of TTFields therapy) and two follow-up (1 and 2 months post initiation
of TTFields) image acquisitions on a 3 T MRI. DTI data were acquired using
30 directions with a single-shot spin-echo EPI sequence. Motion and eddy current
corrections of raw DTI data were performed, and parametric maps of mean diffu-
sivity (MD) and fractional anisotropy (FA) generated using in-house software.
Perfusion-weighted imaging (PWI) was performed using T2*-weighted gradient-
echo EPI sequence which was acquired with a temporal resolution of 2.1 s. Leakage-
corrected cerebral blood volume (CBV) maps were constructed. 3D-EPSI was
acquired using a spin-echo-based sequence. EPSI data were processed using the
Metabolic Imaging and Data Analysis System (MIDAS) package. MD, FA, EPSI
[choline (Cho)/creatine(Cr)], CBV maps, and FLAIR images were co-registered to
post-contrast T1-weighted images, and contrast-enhancing neoplasms were seg-
mented using a semiautomated algorithm. Median values of MD, FA, relative
CBV (rCBV), and Cho/Cr were computed at each time point, as were the 90th
percentile rCBV (rCBVmax) values. Percent changes of each parameter between
baseline and follow-up time points were evaluated.

Analysis of the images demonstrated an increasing trend in MD (~3%) and
declining trend in FA (~8%) at the 2-month follow-up relative to baseline. Addi-
tionally, reductions in Cho/Cr and rCBV max from baseline to post-TTFields were
also observed. All patients were clinically stable at 2-month follow-up. The changes
in MD, FA, and Cho/Cr may indicate inhibition of cellular growth. Reduction in
rCBVmax may indicate anti-angiogenic effects associated with TTFields and
decreased perfusion within the tumor bed after the therapy. These preliminary results
suggest that advanced MR imaging may be useful in evaluating response to
TTFields in GBM patients. Further work is required to validate the findings in a
larger patient cohort in which these findings could be correlated with clinical
endpoints of PFS and OS. Fully utilizing the power of these findings for TTFields
treatment planning would also warrant studies looking to connect voxel-based
changes observed in the images with field intensity distribution patterns derived
from simulations. The completion of such studies would provide physicians with
valuable information about how to plan and dynamically adapt TTFields dose
distributions in order to maximize their ongoing effect on the tumor.

6 Discussion and Conclusions

In this chapter, we have provided an overview on some of the TTFields-related
research presented at EMBC 2019. The research presented in this chapter relates to
three key areas, which together lay the foundations for the field of TTFields
dosimetry and treatment planning:
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• Definition of TTFields dose and the influence of dose on patient outcome
• The creation of patient-specific computational models for simulating delivery of

TTFields
• Advanced imaging techniques for monitoring response to therapy

The area of TTFields dosimetry and treatment planning is very much in its
infancy. The work presented at EMBC 2019 not only provides a basis for this
field but also highlights the many open questions related to this field. The work
presented by Bomzon et al. provides a robust and relatively intuitive definition for
TTFields dose as the average power delivered by the fields. The authors clearly show
a connection between TTFields dose at the tumor bed and patient survival. However,
a crucial point required for effective treatment planning is to understand how dose
distributions influence progression patterns. Do tumors really tend to progress to
regions in which TTFields dose is lower? At a more fundamental level, given a
TTFields dose distribution map, can we predict the probability that the tumor will
progress in a certain region?

The work presented by Wenger et al. shows the potential of image-based electric
property tomography to accurately map conductivity within patients, thereby pro-
viding a quick and accurate method for creating the patient-specific models required
for TTFields treatment planning. This work also emphasizes the difficulty and
knowledge gap that needs to be bridged in order to accurately map the electric
properties of tissues in the vicinity of the tumor. The work by Proescholdt et al.
shows that electric properties of tumors are indeed highly heterogeneous. Thus,
accurate methods for modelling tumor tissue properties may be needed in order to
accurately model electric field distributions in the vicinity of the tumor when
performing treatment planning.

Finally, the work presented by Mohan shows the potential of advanced imaging
techniques to identify metabolic and physiological changes within the tumor. These
changes could be used as markers for response to therapy and could be adapted to
plan therapy throughout the course of treatment.

Thus, the combination of work presented at EMBC poses key questions that need
to be answered as the field of TTFields dosimetry and treatment planning evolves:

• How are progression patterns influenced by TTFields dose distributions? Do
tumors progress in regions where dose is lower?

• How do we improve methods for mapping conductivity in a patient-specific
method, specifically around the tumor?

• Can we utilize advanced imaging techniques to effectively monitor disease
response/progression in order to better tailor therapy in an adaptive manner?

A final component required for the maturation of TTFields treatment planning is
the development of a clinical quality assurance (QA) system analogous to that used
for radiation therapy planning. This system should aim to establish the uncertainties
associated with treatment plans and their effect on the dose distributions. This in turn
could lead to the development of clinical guidelines related to the desired accuracy of
the computational models used for TTFields treatment planning, the desired
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accuracy in the electric properties assigned to the various tissue types, and the
desired accuracy in the placement of the transducer arrays on the skin when initiating
treatment. Key to answering these questions are studies examining the sensitivity of
numerical simulations of TTFields delivery to all of the above parameters, as well as
studies aiming to experimentally validate the simulations using, for instance, suitable
anthropomorphic phantoms. The development of this QA framework would enable
the derivation of guidelines for best practices when performing TTFields treatment
planning, thereby guiding the practicalities associated with the assimilation of
sophisticated treatment planning procedures into the clinic.

As a concluding comment, we note that TTFields treatment planning could
benefit enormously from emerging studies utilizing mathematical models to predict
tumor progression [1, 7, 8]. These models attempt to incorporate information about
factors such as tumor cell density, cell proliferation rates, and cell invasiveness into
models that predict how tumors progress over time. Radiomic methods can be used
to extract relevant information on the tumor, which can be fed into such models
[5]. The effect of specific drugs or radiation therapy on tumor progression can then
be modelled, and patients would gain potential benefit from a specific treatment
quantified [15, 16]. A natural expansion to these models is to incorporate TTFields
dose distributions. In fact, an attempt to do this has previously been reported
[18]. The benefit of different TTFields treatment plan can be evaluated, and the
optimal plan selected. As the patient is monitored, and additional imaging data
collected, the treatment plan, combination of therapies, and patient-specific model
could be updated to continuously provide the patient with optimal care.

In summary, TTFields are emerging as a powerful addition to a growing arsenal
of tools applied in the fight against cancer. The development of effective techniques
for TTFields treatment planning will help to maximize the utility of this exciting
treatment modality, ultimately leading to improved patient outcomes.
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