Skip to main content

Biological Signalling

  • Chapter
  • First Online:
Bioinformatics

Part of the book series: Computational Biology ((COBO))

  • 588 Accesses

Abstract

This chapter is primarily concerned with signal transduction within cells: how information about a cell’s environment is transferred from the external cell surface to its nucleus, where it affects changes in gene expression appropriate to changes detected in the environment. Signal channel capacities are discussed, and the molecular mechanisms of the transduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Individual cells can communicate with their nearest neighbours via the so-called gap junctions.

  2. 2.

    Krauss (2008), Péter et al. (2021).

  3. 3.

    Hlavacek et al. (2006).

  4. 4.

    E.g., Fisher et al. (2000), Akhtar and Gasser (2007).

  5. 5.

    Forgacs (1995), Shafrir et al. (2000).

  6. 6.

    There is some arbitrariness in the deduction of amplification factors. For example, if the metabolite coursing in human blood caused its host to operate a lever in a factory producing epinephrine, the factor might be many, many orders of magnitude greater.

  7. 7.

    The blowfly photoreceptor was analysed along these lines by Abshire and Andreou in 2001.

  8. 8.

    Ashby (1958).

  9. 9.

    E.g., Ramsden and Vohradský (1998).

  10. 10.

    Thomas and Eckford (2016), Eckford and Thomas (2018); see also Tkačik and Bialek (2016).

  11. 11.

    Blumenfeld (1981).

  12. 12.

    Blake et al. (2003), Raser and O’Shea (2005).

References

  • Abshire PA, Andreou AG (2001) A communication channel model for information transmission in the blowfly photoreceptor. Biosystems 62:113–133

    Article  CAS  PubMed  Google Scholar 

  • Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genetics 8:507–517

    Article  CAS  PubMed  Google Scholar 

  • Ashby WR (1958) Requisite variety and its implications for the control of complex systems. Cursos Congr Univ Santiago de Compostela 1:189–201

    Google Scholar 

  • Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422:633–637

    Article  CAS  PubMed  Google Scholar 

  • Blumenfeld LA (1981) Problems of biological physics. Springer, Berlin

    Google Scholar 

  • Eckford AW, Thomas PJ (2018) The channel capacity of channelrhodopsin and other intensity-driven signal transduction receptors. IEEE Trans Molec Biol Multi-Scale Commun 4:27–38

    Article  Google Scholar 

  • Fisher MJ, Malcolm G, Paton RC (2000) Spatio-logical processes in intracellular signalling. Biosystems 55:83–92

    Article  CAS  PubMed  Google Scholar 

  • Forgacs G (1995) On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation. J Cell Sci 108:2131–2143

    Article  CAS  PubMed  Google Scholar 

  • Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M and Fontana W (2006) Rules for modeling signal-transduction systems. Sci STKE 2006:re6

    Google Scholar 

  • Krauss G (2008) Biochemistry of signal transduction and regulation, 4th edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Péter B, Boldizsár I, Kovács GM, Erdei A, Bajtay Z, Vörös A, Ramsden JJ, Szabó I, Bősze S, Horvath R (2021) Natural compounds as target biomolecules in cellular adhesion and migration: from biomolecular stimulation to label-free discovery and bioactivity-based isolation. Biomedicines 9:1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierobon M, Akyildiz IF (2011) Noise analysis in ligand-binding reception for molecular communication in nanonetworks. IEEE Trans Signal Process 59:4168–4182

    Article  Google Scholar 

  • Ramsden JJ, Vohradský J (1998) Zipf-like behavior in procaryotic protein expression. Phys Rev E 58:7777–7780

    Article  CAS  Google Scholar 

  • Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309:2010–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafrir Y, ben-Avraham D, Forgacs G, (2000) Trafficking and signaling through the cytoskeleton: a specific mechanism. J Cell Sci 113:2747–2757

    Google Scholar 

  • Thomas PJ, Eckford AW (2016) Capacity of a simple intercellular signal transduction channel. IEEE Trans Inf Theory 62:7358–7381

    Article  Google Scholar 

  • Tkačik G, Bialek W (2016) Information processing in living systems. A Rev Condens Matter Phys 7:89–117

    Article  Google Scholar 

  • Tsuruyama T (2018) Analysis of cell signal transduction based on Kullback-Leibler divergence. Entropy 20:438

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Ramsden .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramsden, J. (2023). Biological Signalling. In: Bioinformatics. Computational Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-45607-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45607-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45606-1

  • Online ISBN: 978-3-030-45607-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics