l‘)

Check for
updates

Graph Databases for Information
Retrieval

Chris Kamphuis®)

Radboud University, Nijmegen, The Netherlands
chris@cs.ru.nl

Abstract. Graph models have been deployed in the context of informa-
tion retrieval for many years. Computations involving the graph struc-
ture are often separated from computations related to the base ranking.
In recent years, graph data management has been a topic of interest
in database research. We propose to deploy graph database manage-
ment systems to implement existing and novel graph-based models for
information retrieval. For this a unifying mapping from a graph query
language to graph based retrieval models needs to be developed; extend-
ing standard graph database operations with functionality for keyword
search. We also investigate how data structures and algorithms for rank-
ing should change in presence of continuous database updates. We want
to investigate how temporal decay can affect ranking when data is contin-
uously updated. Finally, can databases be deployed for efficient two-stage
retrieval approaches?

Keywords: Graph databases - Information retrieval - Query languages

1 Motivation

Many IR systems make use of graph-based models. For social media Clements
et al. [5] show this by using random walks over typed social media. In the con-
text of websearch, Metzler et al. [9] and Craswell et al. [6] show the usefulness of
using anchor text. Vuurens et al. [12] presented a news tracker for ad-hoc infor-
mation needs. They used a temporal graph model; implemented as a standalone
application over streaming graphs. Entity oriented search has been another topic
of interest in the IR community [1,2], where researchers make extensive use of
knowledge bases to improve ranking. It would be a natural choice to use graph
databases to represent these models, especially if the system allows for data to be
updated continuously. The goal of this PhD research is to represent graph-based
models in a graph database that also supports keyword search. This would allow
graph based methods to be combined with traditional keyword search, without
using different system components.

2 Background and Related Work

There has been a long history of IR research in combination with relational
databases. Recently, Miihleisen et al. [10] implemented such a system, where

© Springer Nature Switzerland AG 2020
J. M. Jose et al. (Eds.): ECIR 2020, LNCS 12036, pp. 608-612, 2020.
https://doi.org/10.1007/978-3-030-45442-5_79


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45442-5_79&domain=pdf
https://doi.org/10.1007/978-3-030-45442-5_79

Graph Databases for Information Retrieval 609

they achieved efficiency and effectiveness on par with custom made inverted
index systems. They argue that using relational databases instead of custom-
made inverted indexes has the following advantages for IR.

Firstly, viewing IR as a database application offers a formal framework for
complex query operators. This forces IR researchers to be precise on how to
deal with more complex query operators and their edge cases. By expressing
the ranking logic in query languages, it is not possible to resort to heuristics or
shortcuts. This helps explaining the resulting rankings of documents. Secondly,
a relational database offers a clean system architecture. Storage management is
taken care of by the database engine, separating low level components shared
in any data application from IR components. Thirdly, advances in database
research offer benefits on systems build using databases. All performance gains in
database engines will directly trickle down to the IR system. Fourthly, databases
offer additional tools for error analysis. E.g., join together relevance judgement,
document representations and the result set to generate scatter plots. Finally,
it offers opportunities for rapid prototyping. Many IR researchers might not be
interested in data management and query evaluation. This can be taken care of
by the database engine, researches can focus on methods for ranking.

In previous work [7] we argued how a graph query languages for IR also yield
benefits for reproducible IR research.

Industry has also shown an interest in graph databases in combination with
full text IR. Neo4J, the most popular database', supports graph analysis in
combination with full text analysis using Lucene?. Lucene is however embedded
in their graph query language, while we envision retrieval to be carried out
by the same system that does the graph processing. Busch et al. [4] presented
Earlybird, a system that allows continuous updates to be searched real-time.
They show how updates can be processed in the context of inverted indexes.
A similar approach could be taken in the context of graph databases. Bottcher
et al. [3] presented an approach how updates for compressed databases can be
implemented efficiently by updating the data without decompressing all data.

3 Proposed Research and Methodology

How can keyword search be integrated with a graph query language?
Many retrieval models make use of graph information, often graph-based models
support traditional keyword search. When implementing graph-based models in
a graph database, it should be able to integrate graph-based results with keyword
search seamlessly.

As shown by Miihleisen et al. [10], keyword search can be expressed as SQL
queries over relational databases and executed efficiently. The goal of the pro-
posed research is to extend this idea, and express keyword search in graph
databases. This could be approached in two ways. One way would be to try

! https://db-engines.com/en/ranking/graph+dbms, Last Accessed: November 2019.
2 https://neodj.com/docs/cypher-manual /3.5/schema/index/#schema-index-
fulltext-search, Last Accessed: November, 2019.


https://db-engines.com/en/ranking/graph+dbms
https://neo4j.com/docs/cypher-manual/3.5/schema/index/#schema-index-fulltext-search
https://neo4j.com/docs/cypher-manual/3.5/schema/index/#schema-index-fulltext-search

610 C. Kamphuis

to express the keyword ranking functions as structured queries in a graph query
language. This could for example be achieved by representing documents and
terms as properties in the graph e.g. vertices themselves, and translate classic
keyword search algorithms to functions over the graph. Especially in the context
of entity ranking, where entities are part of a knowledge base, this would make
sense. Another approach would be to follow Miihleisen et al., and represent the
graph database as an extension on top of the relational database. Using the
relational database as the core for a graph database would be a natural fit, as
graph traversal algorithms can be expressed using recursive join operations. As
keyword search can already be expressed in the relational database, combining
keyword search with the additional graph information will computationally be
cheap.

What data structures and algorithms should be used when data is
continuously updated? Often when IR systems are being developed, they are
evaluated on static data. When deploying such a system to production, it might
not be as effective or efficient when data is constantly changing. For example,
index compression algorithms might assign document identifiers to documents
according to their contents; delta gaps should be as small as possible. When data
is constantly updated, many of these algorithms will not work. Graph data does
tend to appear in the context when data constantly is changing. Ideally the data
does not have to be re-indexed all the time, the underlying index can just be
updated when changes to the data are being presented.

In order for a graph database system to be useful in an IR context, it needs
to be efficient in both handling updates to data and when it is used for ranking.
In our research we want to investigate which algorithms and data structures can
be used to efficiently handle both database transactions and retrieval.

How should edges/vertices be ranked in the presence of continuous
updates? When graph databases do support continuous updates, temporal
graphs could be represented in the graph database. One could add timestamps
to vertices to store useful temporal information of the graph (e.g. when the is
vertex added). The question then arises how the temporal evolution of the graph
should affect the ranking scores of the edges and/or vertices. Examples of use-
cases where this would be especially interesting include tweets and comments on
videos, where not only their content but also their recency are relevant. Using a
temporal graph database would also be an ideal setup to establish a connection
between temporal decay and ranking in models for temporal summarizing as
described in the Real-Time Summarization track [8].

Can a database be used in order to unify different stages in the rank-
ing process? IR systems often consist of multiple parts that carry out differ-
ent stages in the retrieval process. An initial ranker calculates an initial rank-
ing score, e.g. BM25, over inverted indexes. After the initial ranking stage, a
more effective, but computationally more expensive method re-ranks the top-k
retrieved documents. This second stage re-ranker is often completely detached
from the initial ranker, e.g. neural approaches and learning-to-rank methods are



Graph Databases for Information Retrieval 611

often implemented in different programming languages than the initial ranker.
Data from the inverted index and results from the initial retrieval step, need to be
copied in order for the re-ranking algorithm to work. Often re-ranking algorithms
work with different data structures than inverted indexes do, so it might be nec-
essary to restructure the data also. These mismatches between retrieval stages
can introduce latency in the full retrieval pipeline. In order to avoid this latency,
ideally the initial ranking stage and the re-ranking stage can be expressed in the
same programming language using the same data structures such that latency
introduced by re-ranking is only an effect of the re-ranking algorithm itself.

Recently Raasveldt and Miihleisen [11] presented DuckDB, an analytical
embeddable database system. It has been specifically designed for executing ana-
lytical queries fast in an embedded environment. This research proposes to use
DuckDB as a database backend for fast top-k retrieval by implementing meth-
ods as described by Miihleisen et al. [10]. DuckDB has bindings for Python, the
de facto language used for experiments with neural methods. DuckDB supports
extracting the results of the issued queries directly to NumPy arrays, allowing
for (neural) re-rankers to quickly start the re-ranking without first having to
move the data. We want to investigate whether the results of Miihleisen et al.
[10] also hold for DuckDB. If so, latency introduced by moving data might be
minimized, and re-ranking systems might be able to re-rank the top-k faster.
Allowing more re-ranking methods to be deployed in production.

4 Discussion

Are graphs to correct abstraction level in the context for TR? One
could argue that graphs are not the correct abstraction level in the context
of IR. Specifically expressing keyword queries as graph database queries might
make things more complex. We would argue that although this might be seen
as a disadvantage, it would allow for more complex (graph inherent) structures
to be integrated with keyword search more easily.

How should graphs be constructed for text documents? It would be
possible to construct graphs from text documents in different ways. What would
be the right granularity of the graph? Edges could represent terms in a document
and link terms together when they appear in the same document. Maybe it would
make more sense to express sentences or even documents as edges in the graph.
For example in the context of the web, a document level graph could make sense.
It would also make sense to change the granularity depending on the search task.
When processing the text documents, should preprocessing (stopping, stemming)
be integrated in the graph query language or should the graph query language
only be used for querying the database retrieval time?

Acknowledgements. This work is part of the research program Commit2Data with
project number 628.011.001 (SQIREL-GRAPHS), which is (partly) financed by the
Netherlands Organisation for Scientific Research (NWO).



612

C. Kamphuis

References

10.

11.

12.

. Balog, K.: Entity-Oriented Search. Springer, Cham (2018). https://doi.org/10.

1007/978-3-319-93935-3

. Balog, K., Serdyukov, P., De Vries, A.P.: Overview of the trec 2010 entity track.

Tech. rep. Norwegian University of Science and Technology Trondheim (2010)
Bottcher, S., Biiltmann, A., Hartel, R., Schlifller, J.: Implementing efficient
updates in compressed big text databases. In: Decker, H., Lhotska, L., Link, S.,
Basl, J., Tjoa, A.M. (eds.) DEXA 2013. LNCS, vol. 8056, pp. 189-202. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40173-2_17

Busch, M., Gade, K., Larson, B., Lok, P., Luckenbill, S., Lin, J.J.: Earlybird:
real-time search at twitter. In: 2012 IEEE 28th International Conference on Data
Engineering, pp. 1360-1369 (2012)

Clements, M., De Vries, A.P., Reinders, M.J.T.: The task-dependent effect of tags
and ratings on social media access. ACM Trans. Inf. Syst. 28(4), 1-42 (2010).
https://doi.org/10.1145/1852102.1852107

Craswell, N., Hawking, D., Robertson, S.: Effective site finding using link anchor
information. In: Proceedings of the 24th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR 2001, pp.
250-257. ACM, New York (2001). https://doi.org/10.1145/383952.383999
Kamphuis, C., de Vries, A.P.: Reproducible IR needs an (IR) (graph) query lan-
guage. In: Proceedings of the Open-Source IR Replicability Challenge Co-Located
with 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, OSIRRCQSIGIR 2019, Paris, France, 25 July 2019, pp.
17-20 (2019). http://ceur-ws.org/Vol-2409/position03.pdf

Lin, J., et al.: Overview of the TREC 2017 real-time summarization track. In:
TREC (2017)

Metzler, D., Novak, J., Cui, H., Reddy, S.: Building enriched document representa-
tions using aggregated anchor text. In: Proceedings of the 32nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
2009, pp. 219-226. ACM, New York (2009). https://doi.org/10.1145/1571941.
1571981

Miihleisen, H., Samar, T., Lin, J., de Vries, A.: Old dogs are great at new tricks:
column stores for IR prototyping. In: Proceedings of the 37th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2014, Gold Coast, Australia, pp. 863-866 (2014)

Raasveldt, M., Miihleisen, H.: [demo] DuckDB: an embeddable analytical database.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 1981-1984, June 2019. https://doi.org/10.1145/3299869.3320212
Vuurens, J.B., de Vries, A.P., Blanco, R., Mika, P.: Online news tracking for ad-
hoc information needs. In: Proceedings of the 2015 International Conference on
The Theory of Information Retrieval, ICTIR 2015, pp. 221-230. ACM, New York
(2015). https://doi.org/10.1145/2808194.2809474


https://doi.org/10.1007/978-3-319-93935-3
https://doi.org/10.1007/978-3-319-93935-3
https://doi.org/10.1007/978-3-642-40173-2_17
https://doi.org/10.1145/1852102.1852107
https://doi.org/10.1145/383952.383999
http://ceur-ws.org/Vol-2409/position03.pdf
https://doi.org/10.1145/1571941.1571981
https://doi.org/10.1145/1571941.1571981
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/2808194.2809474

	Graph Databases for Information Retrieval
	1 Motivation
	2 Background and Related Work
	3 Proposed Research and Methodology
	4 Discussion
	References




