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Abstract. Collaborative filtering predicts a user’s preferences by aggre-
gating ratings from similar users and thus the user similarity (or distance)
measure is key to good performance. Existing similarity measures either
consider only the co-rated items for a pair of users (but co-rated items
are rare in real-world sparse datasets), or try to utilize the non-co-rated
items via some heuristics. We propose a novel user distance measure,
called Preference Mover’s Distance (PMD), based on the optimal trans-
portation theory. PMD exploits all ratings made by each user and works
even if users do not share co-rated items at all. In addition, PMD is
a metric and has favorable properties such as triangle inequality and
zero self-distance. Experimental results show that PMD achieves superior
recommendation accuracy compared with the state-of-the-art similarity
measures, especially on highly sparse datasets.
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1 Introduction

Collaborative filtering (CF) is one of the most widely used recommendation
techniques [14,47]. Given a user, CF recommends items by aggregating the pref-
erences of similar users. Among CF recommendation approaches, methods based
on nearest-neighbors (NN) are widely used, thanks to their simplicity, efficiency
and ability to produce accurate and personalized recommendations [13,35,44].
Although deep learning (DL) methods [16,19,43] have attracted much atten-
tion in the recommendation community over the past few years, a very recent
study [12] shows that NN-based CF is still a strong baseline and outperforms
many DL methods. For NN-based methods, the user similarity measure plays
an important role. It serves as the criterion to select a group of similar users
whose ratings form the basis of recommendations, and is used to weigh users
so that more similar users have greater impact on recommendations. Besides
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CF, user similarity is also important for applications such as link prediction [4],
community detection [34] and so on.

Related Work. Traditional similarity measures, such as cosine distance
(COS) [9], Pearson’s Correlation Coefficient (PCC) [9] and their variants [18,
29,38,39], have been widely used in CF [13,44]. However, such measures only
consider co-rated items and ignore ratings on other items, and thus may only
coarsely capture users’ preferences as ratings are sparse and co-rated items are
rare for many real-world datasets [35,40,44]. Some other similarity measures,
such as Jaccard [22], MSD [39], JMSD [8], URP [27], NHSM [27], PIP [5] and
BS [14] do not utilize all the rating information [6]. For example, Jaccard only
uses the number of rated items and omits the specific rating values, while URP
only uses the mean and the variance of the ratings. Critically, all these measures
give zero similarity value when there are no co-rated items, which would harm
recommendation performance. Recently, BCF [35] and HUSM [44] were proposed
to alleviate the co-rating issue by modeling user similarity as a weighted sum of
item similarities, where the weights are obtained using heuristics. As the weights
are not derived in a principled manner, they do not satisfy important properties
such as triangle inequality and zero self-distance, which are important for a high
quality similarity measure.

The Earth Mover’s Distance (EMD) is a distance metric on probabilistic
space that originates from the optimal transportation theory [25,37]. EMD has
been applied to many applications, such as computer vision [7], natural language
processing [17,23] and signal processing [41]. EMD has also been applied to
CF [48] but is used as a regularizer to force the latent variable to fit a Gaussian
prior in auto-encoder training rather than a user similarity measure.

Our Solution. We propose the Preference Mover’s Distance (PMD), which
considers all ratings made by each user and is able to evaluate user similarity even
in the absence of co-rated items. Similar to BCF and HUSM, PMD uses the item
similarity as side information and assumes that if two users have similar opinions
on similar items, then their tastes are similar. But the key difference is: PMD
formulates the distance between a pair of users as an optimal transportation
problem [26,36] such that the weights for item similarities can be derived in a
principled manner. In fact, PMD can be viewed as a special case of EMD [33,
37,45], which is a metric that satisfies important properties such as triangle
inequality and zero self-distance. We also make PMD practical for large datasets
by employing the Sinkhorn algorithm [10] to speed up distance computation and
using HNSW [30] to further accelerate the search for similar users. Experimental
results show that PMD leads to superior recommendation accuracy over the
state-of-the-art similarity measures, especially on sparse datasets.

2 Preference Mover’s Distance

Problem Definition. Let U be a set of m users, and I a set of n items. The
user-item interaction matrix is denoted by R ∈ R

m×n, where R(u, i) ≥ 0 is
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the rating user u gives to item i. R is a partially observed matrix and usually
highly sparse. For user u ∈ U , her rated items are denoted by Iu ⊂ I. The
item similarities are described by matrix D and D(i, j) ≥ 0 denotes the distance
between items i and j. Item similarities can be derived from the ratings on
items [35,44] or content information [46], such as item tags, comments, etc. In
this paper, we assume D is given. We are interested in computing the distance
between any pair (u, v) of users in U given R and D. User similarity can be
easily derived from the user distance as they are negatively correlated.

PMD. Let Σk = {p ∈ [0, 1]k | p�1 = 1} denote a (k − 1)-dimensional simplex
and 1 is an all-1 column vector. We model a user’s preferences as a probabilistic
distribution pu ∈ Σ|Iu| on Iu, where pu(i) indicates how much user u likes item
i. In practice, the ground truth of pu cannot be observed and we estimate it
by normalizing user u’s ratings on Iu, i.e., pu(i) ≈ R(u,i)∑

j∈Iu
R(u,j) for i ∈ Iu. We

model the distance between users u and v, denoted by d(pu,pv), as the weighted
average of the distances among their rated items, i.e.,

∑

i∈Iu

∑

j∈Iv

Wu,v(i, j)D(i, j), (1)

where Wu,v(i, j) ≥ 0 is the weight for an item pair (i, j) and we introduce the
constraint

∑
i∈Iu

∑
j∈Iv

Wu,v(i, j) = 1 to control the scaling.
∑

j∈Iv
Wu,v(i, j)

is the aggregate weight received by item i for user u and it should be large if pu(i)
is large such that d(pu,pv) can focus on the items that user u likes. Similarly,∑

i∈Iu
Wu,v(i, j) should also be large if pv(j) is large. Thus, we constrain the

marginal distributions of Wu,v follow pu and pv, i.e., Wu,v ∈ U(pu,pv), where

U(pu,pv) :=
{
Wu,v ∈ [0, 1]|Iu|×|Iv| | Wu,v1 = pu,WT

u,v1 = pv

}
. (2)

However, U(pu,pv) contains many different configurations of Wu,v, which means
that the user distance is indeterminate. Therefore, we define the user distance
as the smallest among all possibilities:

d(pu,pv) := min
Wu,v∈U(pu,pv)

∑

i∈Iu

∑

j∈Iv

Wu,v(i, j)D(i, j). (3)

Equation (3) is a special case of the earth mover’s distance (EMD) [11], when
the moment parameter p = 1 and the probability space is discrete. Moreover,
PMD is a metric as long as D is a metric [37]. We call d(pu,pv) the preference
mover’s distance (PMD) to highlight its connection to EMD. Being a metric has
some nice properties that make the user distance meaningful. For example, the
triangle inequality indicates that if both user A and user B are similar to a third
user C, then user A and user B are also similar. Moreover, a user should be
most similar to himself among all users if D(i, i) = 0. In contrast, it is unclear
whether BCF and HUSM also have these properties as they determine weights
using heuristics.
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Fig. 1. An example of PMD. (a) shows the preference distributions of u0, u1 and u2

using histogram and the arrows depict the optimal transportation plan (i.e., Wu,v)
between the preference distributions. (b) is the distance matrix for the 5 movies, in
which movies with the same genre have smaller distance, i.e., are more similar.

Illustration. Intuitively, d(pu,pv) can be viewed as the minimum cost of trans-
forming the ratings of user u to the ratings of user v, which we show in Fig. 1.
pu and pv define two distributions of mass, while D(i, j) models the cost of
moving one unit of mass from pu(i) to pv(j). Therefore, PMD can model the
similarity between u and v even if they have no co-rated items. If two users like
similar items, Wu,v(i, j) takes a large value for item pairs with small D(i, j),
which results in a small distance. This is the case for u0 and u1 in Fig. 1 as they
both like science fiction movies. In contrast, if two users like dissimilar items,
Wu,v(i, j) is large for item pairs with large D(i, j), which produces a large dis-
tance. In Fig. 1, u0 likes science fiction movies while u2 likes romantic movies,
and thus d(pu0 ,pu2) is large. Even if u0 has no co-rated movies with u1 and u2,
PMD still gives d(pu0 ,pu1) < d(pu0 ,pu2), which implies that u0 is more similar
to u1 than to u2.

Computation Speedup. An exact solution to the optimization problem in
Eq. (3) takes a time complexity of O(q3 log q) [36], where q = |Iu ∪ Iv|. To
reduce the complexity, we use the Sinkhorn algorithm [10], which produces a
high-quality approximate solution with a complexity of O(q2). To speed up the
lookup for similar users in large datasets, we employ HNSW [30], which is the
state-of-the-art algorithm for similarity search. HNSW builds a multi-layer k-
nearest neighbour (KNN) graph for the dataset and returns high quality nearest
neighbours for a query with O(log N) distance computations, in which N is
the number of users. With these two techniques, looking up for the top 100
neighbours takes only 0.02 s on average for a user and achieves a high recall of
99.2% for the Epinions dataset in our experiments. We conduct the experiment
on a machine with two 2.0 GHz E5-2620 Intel(R) Xeon(R) CPU (12 physical
cores in total), 48 GB RAM, a 450 GB SATA disk (6 Gb/s, 10k rpm, 64 MB
cache), and 64-bit CentOS release 7.2.
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Positive/Negative Feedback. We can split the user ratings into positive rat-
ings Rp, e.g., 3, 4 and 5 if a score of 1–5 is allowed, which indicates that the user
likes the item, and negative ratings Rn, e.g., 1 and 2, which indicates that the
user dislikes the item. Based on Rp and Rn, we define positive preference pp

u and

negative preference pn
u, i.e., pp

u(i) = Rp(u,i)∑
j∈Rp Rp(u,j) and pn

u(i) =
1

Rn(u,i)∑
j∈Rn

1
Rn(u,j)

.

Then we can define more fine-grained user distances using Eq. (3), e.g., d(pp
u,pp

v),
d(pn

u,pn
v ), d(pn

u,pp
v) and d(pp

u,pn
v ). A small d(pn

u,pn
v ) indicates that the two

users dislike similar items and can be used to avoid making bad recommenda-
tions that may lose users. A small d(pp

u,pn
v ) or d(pn

u,pp
v) means that the interests

of the two users complement each other and may be used for friend recommenda-
tion in social networks. We may also construct composite PMD (CPMD) such as:

d̃(pu,pv) := μd(pp
u,pp

v) + (1 − μ)d(pn
u,pn

v ), (4)

where μ ∈ [0, 1] is a tuning parameter weighting the importance of the distances
of positive and negative preferences.

3 Experiments

We evaluate PMD by comparing its performance for NN-based recommendation
with various user similarity measures. Two well-known datasets, i.e., MovieLens-
1M [2] and Epinions [1], are used and their statistics are reported in Table 1.
The rating user u gives to item i is predicted as a weighted sum of its top-K
neighbours in the training set, i.e., R̂(u, i) = ū +

∑
v∈Nu

s(u,v)×(R(v,i)−v̄)∑
v∈Nu

s(u,v) [13],
in which ū is the average of the ratings given by user u, Nu contains the top-K
neighbours of u and s(u, v) is the similarity between a user pair u and v. We
convert PMD into a similarity measure using s(u, v) = 2 − d(pu,pv) and divide
all ratings into train/validation/test sets, with an 8:1:1 ratio. Hyper-parameters
are tuned to be optimal on the validation set for all methods. The mean absolute
error (MAE) and the root mean square error (RMSE) [15,31,32] of the predicted
ratings on the test set are used to evaluate the recommendation performance.

Table 1. Data statistics.

MovieLens Epinions

#user 6,040 116,260

#item 3,959 41,269

#rating 1,000,000 181,394

sparsity 4.14% 0.0038%

#rating/user 166 1.56

#rating/item 250 4.40

Table 2. CPMD under different K and µ.

MovieLens

(K = 200)

Epinions

(K = 50)

MovieLens

(µ = 0.6)

Epinions

(µ = 0.6)

µ MAE RMSE MAE RMSE K MAE RMSE MAE RMSE

0.2 0.7126 0.9019 0.8542 1.1340 30 0.7148 0.9064 0.8518 1.1294

0.4 0.6970 0.8851 0.8506 1.1302 50 0.7084 0.9052 0.8458 1.1260

0.6 0.6918 0.8817 0.8458 1.1260 100 0.6972 0.8898 0.8550 1.1456

0.8 0.6955 0.8875 0.8550 1.1456 200 0.6918 0.8817 0.8592 1.1435

0.95 0.6989 0.8915 0.8596 1.1520 300 0.6938 0.8846 0.8667 1.1506
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Table 3. Comparison with other user similarity measures.

Dataset Metric COS PCC MSD Jaccard JMSD NHSM BCF HUSM PMD CPMD

Movie lens MAE 0.7477 0.7234 0.7387 0.7109 0.7024 0.7079 0.7044 0.7034 0.7019 0.6918

RMSE 0.9394 0.9182 0.9293 0.9125 0.8982 0.9080 0.9089 0.9067 0.8935 0.8817

Epin ions MAE 1.0476 1.0468 1.0449 1.0340 1.0392 1.0213 0.9846 0.9734 0.8757 0.8458

RMSE 1.4412 1.4384 1.4380 1.4226 1.4291 1.3969 1.3014 1.2846 1.1701 1.1260

Table 4. Comparison with latent factor models.

Dataset Metric NMF SVD SVD++ PMD CPMD

Movie lens MAE 0.7252 0.6864 0.6739 0.7019 0.6918

RMSE 0.9177 0.8741 0.8629 0.8935 0.8817

Epin ions MAE 0.9444 0.9482 0.9439 0.8757 0.8458

RMSE 1.2096 1.2154 1.2091 1.1701 1.1260

Item Similarity. Both MovieLens and Epinions come with side information
for computing item similarities. For MovieLens, we compute movie similarity
using Tag-genomes [3,42]. For Epinions, we evaluate item similarity by applying
Doc2Vec [24] on the comments. Since both Tag-genome and doc2vec derive item
similarity by cosine, we convert item similarity into distance using D(i, j) =
arccos(s(i, j)), which is a metric on the item space. For fair comparison, the
same item similarity matrix is used for PMD, BCF and HUSM1.
Comparison Methods. COS, PCC and MSD are three classical user simi-
larity measures. Jaccard, JMSD, NHSM, BCF, HUSM are five state-of-the-art
measures. NMF [28], SVD [21] and SVD++ [20] are latent factor models for CF.

We report the performance of various similarity measures in Table 3, where
PMD is based on Eq. (3) and CPMD is based on Eq. (4). The results show
that PMD and CPMD consistently outperform other similarity measures and
the improvement is more significant on the Epinions dataset which is much more
sparse. We believe that our methods achieve good performance on sparse datasets
mainly because it utilizes all rating information and derives the weights of the
items using the optimal transportation theory, which works well when there are
only few or no co-rated items. This is favorable as ratings are sparse in many
real-world datasets [40]. CPMD achieves better performance than PMD, which
suggests that it is beneficial to distinguish positive and negative feed-backs.

We also compare our methods with the latent factor models in Table 4. On
the sparse Epinions dataset, both PMD and CPMD outperform the latent factor
models. We report the performance of CPMD-based NN CF under different
configurations of K and μ in Table 2. CPMD performs best when μ is around

1 BCF and HUSM originally compute item similarity using the Bhattacharyya coeffi-
cient or the KL-divergence of ratings but we found that using the tag-genomes and
doc2vec provides better performance.
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0.6 on both datasets possibly because positive ratings can better represent the
taste of a user than the negative ratings. In contrast, the optimal value of K is
dataset dependent.

4 Conclusions

We proposed PMD, a novel user distance measure based on optimal transporta-
tion, which addresses the limitation of existing methods in dealing with datasets
with few co-rated items. PMD also has the favorable properties of a metric.
Experimental results show that PMD leads to better recommendation accuracy
for NN-based CF than the state-of-the-art user similarity measures, especially
when the ratings are highly sparse.
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