
Generation of Synthetic Query Auto
Completion Logs

Unni Krishnan1 , Alistair Moffat1(B) , Justin Zobel1 ,
and Bodo Billerbeck2

1 The University of Melbourne, Melbourne, Australia
ammoffat@unimelb.edu.au

2 Microsoft Australia and RMIT University, Melbourne, Australia

Abstract. Privacy concerns can prohibit research access to large-scale
commercial query logs. Here we focus on generation of a synthetic log
from a publicly available dataset, suitable for evaluation of query auto
completion (QAC) systems. The synthetic log contains plausible string
sequences reflecting how users enter their queries in a QAC interface.
Properties that would influence experimental outcomes are compared
between a synthetic log and a real QAC log through a set of side-by-
side experiments, and confirm the applicability of the generated log for
benchmarking the performance of QAC methods.

1 Introduction

Query auto completion (QAC) systems offer a list of completions while users
enter queries in a search interface. Users can either submit one of the completions
as their query , or advance their partial query by selecting a completion and then
continuing to type [33]. A detailed QAC log capturing the sequence of partial
queries, along with the completions presented and the user interactions with
them, is required in order to evaluate a QAC system [37,38]. However, concerns
about the privacy of query logs and regulatory requirements such as GDPR mean
that there is a need for alternative ways of obtaining logs for academic purposes.

Here we explore a framework for generating synthetic QAC logs, extend-
ing the work of Krishnan et al. [33], who suggest converting a QAC log to an
abstracted format (an abstract QAC log) that records only the length of each
partial query and the lengths of words used, minimizing privacy concerns but
removing the possibility of performing evaluations on actual strings. Synthetic
QAC log generation seeks to produce a list of plausible synthetic partial query
sequences by mapping the word lengths from the abstract QAC log to strings
from a publicly available dataset. An example of the proposed process is shown
in Fig. 1. On the left are partial queries typed by a user. The abstracting process
converts these to the digit sequences shown in the middle column, describing
the strings but not their characters; and then the corresponding synthesized
strings are shown at the right. Note that it is neither necessary nor sufficient for
the synthetic log to contain semantically valid phrases. Comparison between the
c© Springer Nature Switzerland AG 2020
J. M. Jose et al. (Eds.): ECIR 2020, LNCS 12035, pp. 621–635, 2020.
https://doi.org/10.1007/978-3-030-45439-5_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45439-5_41&domain=pdf
http://orcid.org/0000-0003-4838-8158
http://orcid.org/0000-0002-6638-0232
http://orcid.org/0000-0001-6622-032X
http://orcid.org/0000-0002-9311-8504
https://doi.org/10.1007/978-3-030-45439-5_41

622 U. Krishnan et al.

k

kung fu yo

kung fu panda

k
ku
kung fu yoga
kung fu yo
kung fu
kung fu p
kung fu panda

1
2
12
10
7
9
13

〈1〉
〈2〉
〈4, 2, 4〉
〈4, 2, 2〉
〈4, 2〉
〈4, 2, 1〉
〈4, 2, 5〉

j
jo
john of riga
john of ri
john of
john of g
john of gaunt

QAC Interface QAC log Abstract QAC log Synthetic QAC log

Fig. 1. A sample QAC log entry, the corresponding abstract QAC log entry, and a
synthetic QAC log entry generated from the string “john of gaunt”.

original and synthetic logs across a range of properties show that the synthetic
log can be used to evaluate QAC system performance. Moreover, the synthetic
log eliminates the privacy concerns associated with the original.

2 Background

A QAC system retrieves a candidate set matching the partial query P, drawing
from a target string collection, with strings in the target collection having an
associated score. Query Auto Completion systems typically match P against past
queries from a log; or, in the absence of logs, they can also be synthesized [14,40].
Methods of ranking the candidates include static popularity [9], search context
[9,29], forecast popularity [15], personalized ranking parameters [15,29,42], and
diversity [16]. It is also possible to choose an initial candidate set based on
popularity and then apply a second ranking criteria to obtain the final strings
[15,16]. QAC implementation strategies vary based on how the partial query P
is matched against the target strings [32]. A common approach is to use a trie
[3,4,25,27] to retrieve candidates that have P as a prefix; or inverted index-based
approaches [10,11,23] that offer completions independent of the ordering of the
words in the partial query. The functionality of a QAC system can be extended
beyond character level matches by including contextual cues [11] or synonyms
[12,28]. Error-tolerant QAC approaches [17,28,36,47] allow up to a fixed number
of character mismatches to account for possible typing errors.

User interactions are a key factor in implementation and evaluation of QAC
systems [26,33,38] and have been captured using a wide range of models [31–
33,37,38,43,44]. In particular, users are not limited to entering single characters,
and can alter the partial query by selecting a completion or deleting characters
already entered. Until now, the test collections used to evaluate traditional search
systems have been anonymized commercial logs [1,19,34,48] or synthesized logs
[5,30,45,49]. QAC system evaluations have typically been performed over large
publicly available string collections [10,14,23], with strings taken sequentially
from left-to-right to generate partial query sequences [10]. However this approach
does not account for the full range of possible interactions [32,33]. In this work,
we explore an approach to generation of synthetic partial query sequences that
addresses this gap.

Generation of Synthetic Query Auto Completion Logs 623

...
〈2〉, 〈2, 1〉, 〈2, 5〉
〈1〉, 〈2〉, 〈5〉, 〈5, 2〉
〈6, 3〉
〈6〉, 〈2〉, 〈1〉, 〈7, 9〉
〈1〉, 〈2〉 〈6〉, 〈6, 3〉
...

...
〈2, 5〉
〈5, 2〉
〈6, 3〉
〈7, 9〉
〈6, 3〉
...

...
〈9〉
〈5, 8〉
〈9〉
〈6, 3〉
〈4, 4〉
...

...
autopilot

stack overflow

christmas

coffee mug

main page
...

Abstract QAC log seedsig list targsig list Surrogate log

Fig. 2. The synthetic pattern generation process. Signatures of FinalP from the abstract
QAC log are used to form the seedsig list, and the signatures from surrogate log form
targsig list. A match between the signature 〈6, 3〉 in the seedsig list and in the targsig
list might correspond to the target string “coffee mug”.

Terminology. A partial query P is the string currently displayed in the search
box. An interaction updates P and results in loggable changes. A new conver-
sation starts when the user begins a query, and continues until either explicitly
terminated by the user or as a result of a session timeout. The last partial query
from a conversation is referred to as FinalP. A QAC log records a set of conver-
sations as a sequence of partial queries. A surrogate log is a dictionary of strings
that can be used as substitutes for final partial queries, with each such string
having an associated score reflecting its popularity. For a string T, the ordered
tuple 〈|w1| , |w2| . . . |wk|〉 representing the lengths of its words w1,w2, . . .wk in T
is referred to as its signature. For each partial query P, an abstract QAC log
records only its signature and its length |P|, including whitespace. The signature
of each FinalP in the abstract QAC log is referred to as seedsig. The signature
of a string in the surrogate log is its targsig.

Problem Definition. For each conversation in the abstract QAC log, find a tar-
get string in the surrogate log with the same signature as the final partial query
FinalP. Then, starting from the first interaction in the conversation, apply the
word lengths from the abstract QAC log to the target string in order to obtain
a plausible partial query sequence. For example, consider the last conversation
in Fig. 2, with its signature sequence 〈1〉, 〈2〉, 〈6〉, 〈6, 3〉. The seedsig for this con-
versation is 〈6, 3〉. The string “coffee mug” in the surrogate log has the same
signature and hence might be selected as a target string. Mapping the signature
sequence from the conversation, we get the synthetic partial query sequence “c”,
“co”, “cof”, “coffee”, and then “coffee mug”.

3 Generation Process

Depending on the distribution of word lengths in the surrogate log, for every
final partial query in the abstract QAC log, there may not be a string having
the same signature. Moreover, strings are not entered by the users in the word
order of the target collection. For instance, a user looking for the Wikipedia

624 U. Krishnan et al.

main page might enter the queries “wikipedia”, “main page wikipedia”, or
“wiki”. We narrow down the possible ways of matching a seedsig with the list
of signatures in targsig list to the following hierarchical modes:

1. Exact. The targsig is equal to the seedsig. For example, the seedsig 〈3, 3, 2〉 only
matches with the target signature 〈3, 3, 2〉. There might be zero, or multiple
strings in the surrogate log that match.

2. Prefix. The seedsig is a prefix of the targsig. For example, seedsig 〈3, 3, 2〉
matches 〈3, 3, 2, 4〉 and 〈3, 3, 2, 4, 7〉, but not 〈9, 3, 3, 2〉.

3. Match by Drop (MbD). The seedsig is an ordered subset of the targsig, For
example, 〈3, 3, 2〉 matches 〈3, 4, 3, 2〉 and 〈4, 3, 1, 3, 6, 2〉, but not 〈3, 4, 2, 3〉.

4. Bag of Numbers (BoN). Relaxing the ordering requirement, a BoN match
occurs if the sets of word lengths in seedsig are a subset of those in targsig.
For example, seedsig 〈3, 3, 2〉 matches 〈2, 3, 3, 4〉 and 〈5, 2, 3, 6, 3〉, but not
〈3, 4, 2, 6〉. In a BoN match the target string’s words are reordered to match
the seed signature ordering.

Locating Target Strings. The first step locates, for a given seedsig, a set of match-
ing signatures in the targsig list. The set of target candidates is maintained in
lexicographically sorted order, so that the exact-match signatures for a given
seedsig can be found via two binary searches, establishing a range [rbeg, rend).
A similar process can be used to find the prefix-match range, which is a larger
contiguous block in the lexicographically sorted array of target candidates.

If a target signature St matches with seedsig using MbD, any targsig having St

as a prefix will also have an MbD match with seedsig. For example, under MbD
the seedsig 〈3, 5〉 matches 〈3, 2, 5〉. Then signatures 〈3, 2, 5, 4〉 and 〈3, 2, 5, 9, 16〉
will also be a match because they have 〈3, 2, 5〉 as a prefix. Using this property,
once a matching signature St for MbD is found, we can add the prefix match
range for St to the MbD range for the current seedsig. In contrast to exact and
prefix match ranges, MbD ranges may not form a continuous range over SigList.

For BoN matching, the tokens in the signature are sorted to form a canonical
representation. For example, 〈3, 2, 4〉 becomes 〈2, 3, 4〉. This list is sorted into
lexicographical order. A BoN match between the canonical representations of a
seedsig and a target signature Stc can be verified by a linear scan over the tokens.
The matching ranges for BoN in the modified SigList are calculated by finding
prefix match ranges for each Stc that matches with seedsig using BoN.

Handling Deletions. To include deletions, we assume that something different
was initially typed (the replacement word) and was converted to the word from
the target string after the deletions. In particular, suppose that the current
conversation contains the deletion of a word wk starting from the ith interaction
and ending with the jth interaction. Then, for every interaction preceding the
jth interaction, wk is substituted by a replacement word constructed via a set
of deletion heuristics. If character sequences are deleted and re-entered several
times during the conversation, several replacement words will be required. The
last replacement word should be close to the original word, and the penultimate

Generation of Synthetic Query Auto Completion Logs 625

Table 1. Deriving synthetic partial query sequence for a conversation containing mul-
tiple word deletions. The fourth column shows three target strings used.

Sequence |P| Signature Modified target string Synthetic P

1 12 〈5, 6〉 “black mirror” “black mirror”

2 11 〈5, 5〉 “black mirror” “black mirro”

3 5 〈5〉 “black mirror” “black”

4 6 〈5〉 “black hole” “black”

5 7 〈5, 1〉 “black hole” “black h”

6 8 〈5, 2〉 “black hole” “black ho”

7 7 〈5, 1〉 “black hole” “black h”

8 8 〈5, 2〉 “black hawk down” “black ha”

9 15 〈5, 4, 4〉 “black hawk down” “black hawk down”

replacement prior to it should similarly be a modification of the last replacement
word. Table 1 gives an example of the partial query sequence generated by re-
writing target strings when the conversation contains multiple deletions.

Users delete characters either due to typing errors [6,20] made within that
word, or to switch to an entirely different word. Among various typing errors that
can occur in any character level entry systems [22], the following error categories
that are predominantly discussed in past research [6,20,21,46] are included in
the generation process.

Deletion. A deletion error occurs when the user initially missed out one of the
characters in the word, for example, in the correction “acount” → “account”.
Deletion errors are more frequent at character repetitions, and occur more
commonly at the beginning of a word [6]. To simulate a deletion error, if
there is a deletion sequence from ith interaction to the jth interaction in
which more than two characters of wk are removed, then wk from the j +1th
interaction (after the deletions) is examined to see if the last two characters in
wk are repeating. The error is then simulated by deleting one of the repeating
characters of wk in the interactions prior to j + 1.

Insertion. These arise when an extra letter is initially typed, for example, the
correction “sherriff” → “sheriff”. Our experimental results show that
only a low fraction of insertion errors are observed in a QAC log and for that
reason, they are not included in the synthetic QAC log generation process.

Substitution. These arise when the user enters one of the neighboring keys instead
of the intended key, for example, the correction “disturv” → “disturb”. Sin-
gle character deletions are assumed to be substitution errors. The substituted
character is found via a probability distribution for mistyped keys around the
current key.

Transposition. This is when the user swaps two characters in a word either
not knowing the correct spelling or because of mis-ordered keystrokes, for

626 U. Krishnan et al.

TS2

Match ranges

TS1

seedsig �→ cid list

SL2

SL1

cid �→ signature seq

Map signature seq

Synthetic QAC Log

Fig. 3. Framework for generating a synthetic QAC log. See the text for details.

example, the correction “wierd” → “weird”. Deletions of length two are
considered to be transposition errors and the last two characters of the word
are swapped to get the replacement word.

In a QAC interface, typing errors may not be the only reason why users delete
characters. Sometimes users replace certain parts of a well-formed partial query,
for instance to get a different set of completions. In such cases, referred as mul-
tichar deletions, the corrected word will differ from the original word in two or
more character positions. To allow for such cases, the deleted part of the word is
replaced with another string starting with the word’s remaining prefix, but dif-
fering in the next character. For example, consider the word “hawk” in Table 1. A
deletion chain removed all of the characters except the “h”; and hence (working
backwards), “hawk” was replaced by an alternate word that starts with “h” but
not “ha”, such as “hole”.

Generation Framework. The overall framework for generation of a synthetic
QAC log is illustrated in Fig. 3. The seed signatures are stored with a mapping
from signatures to the list of cids having the same signature. Signatures from
the surrogate log are precomputed and stored in lexicographically sorted order
(TS1). Additionally, the strings in the surrogate log are re-ordered based on
TS1 ordering to obtain the permutation SL1. The permutations TS2 stores a
sorted list of within sorted signatures to support BoN matching, and SL2 is the
corresponding permutation of the surrogate log. To generate a synthetic QAC
log entry, a signature is selected from seedsig �→ cid list and a list of target
signatures retrieved based on the four modes. Using the mappings SL1 and SL2,
strings from the surrogate log corresponding to the target signatures are then
obtained.

The strings are converted to target strings by aligning the word lengths
with the seedsig. A target string can be generated from multiple origi-
nals. If, say, seedsig is 〈9, 4〉, then “wikipedia main page” gives the target
string “wikipedia page” using MbD; and another string “personal web page
wikipedia” gives the same target using BoN mode. If the same target string
is produced by more than one string from the surrogate log, then the one with
lower score is discarded.

Generation of Synthetic Query Auto Completion Logs 627

The signature sequences obtained from the file providing the cid �→ signature
sequence mapping are then applied to the list of target strings, to obtain a
synthetic partial query sequence for each conversation. Partial query sequences
are generated for each cid from the current seedsig �→ cid list until either the cid
list or the target strings are exhausted. Finally, after the generation process is
completed, the synthetic QAC log is re-ordered so that the conversations in the
synthetic QAC log have one-to-one correspondence with the abstract QAC log.

4 Experiments

Datasets Used. The Wikipedia clickstream dataset,1 generated from Wikipedia
request logs containing tuples of the form (referrer, resource, frequency), is used
to generate the surrogate log. The number of requests for an article (resource)
is the frequency. Data dumps from January to March 2019 were aggregated by
updating the frequency of each resource by the mean frequency over the dumps.
We refer to the resulting dataset as Wiki-Clickstream and the synthetic QAC
log generated from Wiki-Clickstream as Wiki-Synth.

A QAC log was formed by randomly sampling the logs from Bing2 QAC sys-
tem over a period of one week from 13 August 2018. This Bing-QAC-2018 records
the partial queries entered by the users and a unique cid for each conversa-
tion. The abstracted version of Bing-QAC-2018, referred to as Bing-Abs-QAC-2018,
is generated by recording the signature and total length of each partial query
along with a unique cid for each conversation. Note that Wiki-Synth was gen-
erated from Bing-Abs-QAC-2018 only (with no use of Bing-QAC-2018), and that
the subsequent comparisons between Wiki-Synth and Bing-QAC-2018 were per-
formed on secure Microsoft servers and in accordance with Microsoft privacy
requirements.

Preprocessing. Conversations in Bing-Abs-QAC-2018 where an intermediate sig-
nature contained more words than the signature of the final partial query, or
contained words that were longer than the corresponding words in the final par-
tial query, were removed. The strings from Bing-QAC-2018 were transliterated
from UTF-8 to ASCII encoding using Unidecode3 Python package. Conversa-
tions containing non-converting characters in any partial query were discarded.
The strings from Wiki-Clickstream were transliterated in the same way and non-
converting strings were removed. The conversion from UTF-8 to ASCII resulted
in the loss of 0.26 million conversations from Bing-QAC-2018 and 0.02 million
strings from Wiki-Clickstream. After the preprocessing, there were 1.44 million
conversations in Bing-Abs-QAC-2018 and 5.11 million strings in Wiki-Clickstream.
In Bing-Abs-QAC-2018, 7.53% of signatures were unique, of which 2.26% had
no matches in Wiki-Clickstream. A total of 0.23 million conversations from
1 https://meta.wikimedia.org/wiki/Research:Wikipedia clickstream, accessed 29th

October, 2019.
2 https://www.bing.com, accessed 29th October, 2019.
3 https://pypi.org/project/Unidecode, accessed 29th October, 2019.

https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream
https://www.bing.com
https://pypi.org/project/Unidecode

628 U. Krishnan et al.

Bing-Abs-QAC-2018 were not included in Wiki-Synth because there were not
enough matching strings in Wiki-Clickstream to map their signature sequence.

Sampling of Target Strings. The frequency of search queries has been found to
exhibit a power law distribution [8] with the probability distribution p(x) ∝ x−α.
Therefore, while generating a synthlog, the target strings need to be sampled
to obtain a power law distribution based on their frequencies. Strings in the
Wiki-Clickstream log have a score that tends to follow a power law distribution
with α = 3.09. Using this observation we sample target strings based on a
weighted probability distribution over their scores, so that the probability of a
string T given a seed signature seedsig is

Prob(T | seedsig) =
score(T)

∑n
i=1 score(Ti)

(1)

where T1,T2, . . . ,Tn are the set of target strings retrieved for seedsig. The
frequency distribution of the resulting target strings used as the FinalP in
Wiki-Synth is analyzed below, where we compare partial query frequencies.

Language Model for Finding Replacement Words. For deletion types other than
multichar, the replacement word will be a modification of the original word
based on the error category. For multichar deletions, the heuristics discussed
above are used to find replacement words. The best replacement word based
on contextual information among the candidate words that passes the heuris-
tics is selected using a 4-gram language model (LM) trained on the title strings
from Wiki-Clickstream. The language model is generated using KenLM [24],4

which is based on modified Kneser-Ney smoothing and provides fast model con-
struction and querying. For example, an LM-based replacement for the target
string “live queen”, is “live together” while a random replacement gives
“live teufelshorner”; for the target string “web server”, a random replace-
ment yields “web castelvetere” and an LM-based replacement gives “web
content”. A similar character bigram model trained on the Microsoft spelling-
correction dataset5 is used to find the most likely next mistyped character, given
the previous character, to simulate substitution errors.

Comparison of Synthetic QAC Logs with QAC Logs. A synthetic QAC log should
have some properties similar to the QAC log, and these can be used to validate
the generation process. A comparison of these properties is given in Table 2.
Other properties are desirable if a synthetic QAC log is to be a substitute in
experiments for a QAC log. While comparing these properties, the partial queries
from both the logs are treated as the test queries that will be queried against
a collection of strings acting as the test collection. Extending our assumption
that a user’s goal was to enter FinalP, we claim that these strings could get

4 https://github.com/kpu/kenlm, accessed 29th October, 2019.
5 https://www.microsoft.com/en-us/download/details.aspx?id=52418, accessed 29th

October, 2019.

https://github.com/kpu/kenlm
https://www.microsoft.com/en-us/download/details.aspx?id=52418

Generation of Synthetic Query Auto Completion Logs 629

Table 2. Basic statistics of Bing-QAC-2018 and Wiki-Synth.

Attribute Bing-QAC-2018 Wiki-Synth

Number of conversations (millions) 1.74 1.21

Number of interactions (millions) 11.75 7.90

Percentage of unique partial queries 38.99 39.41

Percentage of unique final partial queries 52.30 63.32

Lengths of partial queries – mean (characters) 10.37 9.67

Lengths of partial queries – std.dev. (characters) 9.68 8.53

Table 3. Goodness of power law fit against other distributions.

Frequency distribution Exponential Log-normal

R p R p

Bing-QAC-2018, P 11885.4 <0.01 0.04 0.8

Wiki-Synth, P 10895.3 <0.01 0.16 0.15

Bing-QAC-2018, FinalP 5903.6 <0.01 −2.42 0.04

Wiki-Synth, FinalP 1211.9 0.01 0.12 0.04

eventually indexed by the QAC system and subsequently be queried. Thus, in
our experiments, the list of FinalP strings are considered as a representative
sample of a larger hypothetical test collection.

Heap’s Law. Heap’s law gives an estimate of the number of unique terms V in
a collection as a function of the number of terms N . The relationship is given
by V = kNβ and the typical values of the parameters are 30 ≤ k ≤ 100, with
β ≈ 0.50 for English text [39] and β ≈ 0.60 for web documents [7]. The values
for Heap’s law parameters estimated from Bing-QAC-2018 are k = 14.50, β = 0.67
and the parameters from Wiki-Synth are k = 32.61, β = 0.57. The difference in
growth rate can be explained by the nature of the logs. The growth rate of V is
expected to be higher in a collection containing numbers and spelling errors [39].
Each of the FinalP strings from Wiki-Synth is a Wikipedia title that comes from
a curated collection whereas FinalP strings in Bing-QAC-2018 are strings entered
by users. Considering, all partial queries, the parameters estimated are k = 5.54,
β = 0.71 for Bing-QAC-2018 and k = 20.94, β = 0.60 for Wiki-Synth.

Frequency of Partial Query Strings. The likelihood of a query being repeated
over time as a result of the power-law distribution affects the performance of var-
ious query processing strategies [13,35]. The frequency distributions of partial
queries and final queries from Wiki-Synth and Bing-QAC-2018 are given in Fig. 4
(left) with dashed lines showing the power-law fits for the corresponding distri-
butions. The distributions give similar exponents except for the distribution of
FinalP from Wiki-Synth, which has α = 3.02, indicating a steeper decay in the

630 U. Krishnan et al.

101 102 103 104 105

Frequency (x)

10−9

10−7

10−5

10−3

10−1

Pr
ob
ab
ili
ty

de
ns
ity

xmin α

Bing-QAC-2018 (LastP) 13.00 2.14
Wiki-Synth (LastP) 32.00 3.02
Bing-QAC-2018 (P) 47.00 2.03
Wiki-Synth (P) 39.00 2.13

Bing-QAC-2018 (LastP)
Wiki-Synth (LastP)
Bing-QAC-2018 (P)
Wiki-Synth (P)

100 101 102 103 104 105

Bigram frequency

100

101

102

103

104

105

106

N
um

be
r
of

bi
gr
am

s

Bing-QAC-2018 (LastP)
Wiki-Synth (LastP)
Bing-QAC-2018 (P)
Wiki-Synth (P)

Fig. 4. Power law fit (left) and bigram frequency distribution (right).

probability of higher frequency partial query strings. The goodness of power-law
fit against exponential and log-normal fits is compared using likelihood ratio R
[2,18] along with the significance level p, as reported in Table 3. Except for the
frequency distribution of FinalP from Bing-QAC-2018, which is better explained
with a log-normal distribution (R = −2.42, 0.04), the other three distributions
suit a power-law distribution, perhaps as a result of the sampling process fol-
lowed. For some datasets, it is not surprising to get a better log-normal fit [18].

N -Gram Frequency. The distribution of terms in a collection can be modeled
using a decay law which estimates the collection frequency of the ith most com-
mon term as Fi = Cik, where k = −1 and C is constant. Similarity in term dis-
tribution with a real log is considered to be a desirable property of a synthetic log
[45]. Figure 4 (right) shows the bigram frequency distribution from partial queries
and final partial queries. We find close correspondence between the bigram fre-
quency distributions (Kolmogorov-Smirnov statistic, D = 0.05, 0.63 for FinalP
and D = 0.06, 0.04 for all partial queries). Unigram frequencies follow a similar
trend. While the bulk of the distribution can be explained with the decay law,
the tail of the distributions coming from rare n-grams show deviations.

Empirical Entropy. The empirical entropy of the FinalP strings gives a measure
of their compressibility. The kth-order empirical entropy of a string T[1 . . . n]
over an alphabet set Σ is given by

Hk(T) =
1
n

∑

w∈Σk

|Tw| · H0(Tw) , with H0(T) =
1
n

∑

c∈Σ

nc · log
n

nc
, (2)

where Tw is formed by collecting the characters that immediately follow context
w in T, and where nc is the frequency of character c in T. A lower bound on the
number of bits required to encode T is given by nHk(T) [41]. For a list of strings
T1,T2, . . . ,Tl, it can be observed that

∑
i niHk(Ti) ≤ ncHk(Tc) where Tc is the

concatenation of strings Ti. This can be shown by extending the proof given by
Navarro [41, Chapter 2], applying Jensen’s inequality to

∑
i niHk(Ti). Therefore,

we consider ncHk(Tc) as the worst case lower bound for the space required to
encode the FinalP strings from Bing-QAC-2018 and Wiki-Synth. The values of
Hk(Tc) for k = 0 . . . 4 computed from Bing-QAC-2018 and Wiki-Synth are given

Generation of Synthetic Query Auto Completion Logs 631

Table 4. Values of Hk and number of contexts Ct per length n (× 10−3) of the
concatenated string formed by the FinalP strings of Bing-QAC-2018 and Wiki-Synth.

Dataset k = 0 k = 1 k = 2 k = 3 k = 4

H0 Ct/n H1 Ct/n H2 Ct/n H3 Ct/n H4 Ct/n

Bing-QAC-2018 4.39 0.00 3.64 0.00 2.50 0.17 1.41 2.51 0.64 11.27

Wiki-Synth 4.28 0.00 3.43 0.00 2.32 0.08 1.27 0.97 0.54 4.95

Table 5. Example for pre-correction and post-correction strings. In the table “pal”
is taken as the pre-correction string and “pla” is taken as the post-correction string.
This correction pair will be classified as a transposition error.

Inter. Partial query Word len. Edit dist.

2 coffee pa 2

3 coffee pal 3

4 coffee pa 2

5 coffee p 1

6 cofee pl 2 1

6 coffee pla 3 1

6 cofee places 6 4

in Table 4. The values for Hk tend to be similar between the two logs. Slightly
higher values of Hk and increased Ct/n for Bing-QAC-2018 can be explained by
the higher degree of randomness expected from web search queries, compared to
the results obtained for Heap’s law coefficients.

Identification of Typing Errors. Similarities in typing patterns between the syn-
thetic QAC log and the original QAC log are verified by analyzing the typing
errors present in both logs. Typing errors are identified by extracting and com-
paring a set of pre-correction and post-correction strings from the conversations,
extending the method proposed by Baba and Suzuki [6]. When the kth word wk

in P gets deleted from the ith interaction, wk from the i−1th interaction is taken
as the pre-correction string. To find the post-correction string, the edit distance
between the pre-correction string and the words wk from the interactions after
the end of current deletion sequence are calculated until |wk| from interaction j
is less than that from interaction j +1. From this list, the word having minimum
edit distance with the pre-correction string is taken as the post correction string.
Table 5 gives an example for how pre-correction and post-correction strings are
calculated from a deletion sequence. The edit distance between two strings is
calculated as a Damerau-Levenshtein distance, so transposition of two charac-
ters is given a cost of 1. The pre-correction and post-correction pairs are then
compared to classify the possible typing errors as one of the types discussed
above. The results obtained by analyzing the typing errors from Bing-QAC-2018

632 U. Krishnan et al.

Deletion Insertion Multichar Substitution Transposition
Error category

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob
ab
ili
ty

Wiki-Synth
Bing-QAC-2018

Substitution Multichar Transposition Deletion Insertion
Error category

0

20

40

60

80

100

Pe
rc
en
t.

w
or
d
le
ng
th

Fig. 5. Comparison between frequency (left) and position (right) of typing errors.

and the synthetic QAC log are in Fig. 5. The fraction of transposition errors was
found to be higher in Wiki-Synth compared to Bing-QAC-2018 while the latter
contains more deletion errors than Wiki-Synth. As a result of the method of sim-
ulating substitution errors, they tend to occur more towards the end of words in
Wiki-Synth. The remainder of the error categories are distributed across similar
word positions in both the logs, suggesting similarities in typing patterns.

5 Conclusions

We have explored a method for generating a synthetic QAC log from an abstract
QAC log, by mapping the word lengths of the abstract QAC log to those of a
publicly available string collection, and applying a range of corrective techniques.
Synthetic QAC formation can also be posed as a language generation problem
relying on various models of QAC systems [31,33].

We have demonstrated that the synthetic log generated from a pre-existing
string collection encompasses many of the properties found in the original QAC
log from which the abstract QAC log was derived. In particular, an analysis of
typing errors found in actual QAC logs is reported, along with a description of
how they were introduced into the synthetic log. As a result, there is a close
correspondence between the real QAC log and the synthetic QAC log across
a range of properties, each of which might influence the computational cost of
providing the completion strings. That is, experiments using the synthetic QAC
log can be expected to provide close approximations to behaviors that would
be observed on a real QAC log. A particular example is efficiency, which we
plan to examine in future work, comparing the performance of a range of QAC
implementations using both synthetic and real QAC logs.

Acknowledgments. This work was supported by the Microsoft Research Centre for
Social Natural User Interfaces (SocialNUI) at The University of Melbourne. We are
grateful to Peter Bailey (Microsoft Australia) for his support of that project, and for
additionally facilitating the work that is reported here.

Generation of Synthetic Query Auto Completion Logs 633

References

1. Adar, E.: User 4xxxxx9: anonymizing query logs. In: Proceedings of the WWW
Query Log Analysis Workshop (2007). http://www.cond.org/anonlogs.pdf

2. Alstott, J., Bullmore, E., Plenz, D.: Powerlaw: a Python package for analysis of
heavy-tailed distributions. PLoS One 9(1), 1–11 (2014)

3. Askitis, N., Sinha, R.: HAT-trie: a cache-conscious trie-based data structure for
strings. In: Proceedings of the Australasian Conference on Computer Science, pp.
97–105 (2007)

4. Askitis, N., Zobel, J.: Redesigning the string hash table, burst trie, and BST to
exploit cache. ACM J. Exp. Algorithmics 15, 1–7 (2010)

5. Azzopardi, L., de Rijke, M., Balog, K.: Building simulated queries for known-item
topics: an analysis using six European languages. In: Proceedings of the SIGIR,
pp. 455–462 (2007)

6. Baba, Y., Suzuki, H.: How are spelling errors generated and corrected? A study of
corrected and uncorrected spelling errors using keystroke logs. In: Proceedings of
the ACL, pp. 373–377 (2012)

7. Baeza-Yates, R., Saint-Jean, F.: A three level search engine index based in query
log distribution. In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE
2003. LNCS, vol. 2857, pp. 56–65. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39984-1 5

8. Baeza-Yates, R., Tiberi, A.: Extracting semantic relations from query logs. In:
Proceedings of the KDD, pp. 76–85 (2007)

9. Bar-Yossef, Z., Kraus, N.: Context-sensitive query auto-completion. In: Proceed-
ings of the WWW, pp. 107–116 (2011)

10. Bast, H., Weber, I.: Type less, find more: fast autocompletion search with a succinct
index. In: Proceedings of the SIGIR, pp. 364–371 (2006)

11. Bast, H., Weber, I.: The CompleteSearch engine: interactive, efficient, and towards
IR & DB integration. In: Proceedings of the CIDR, pp. 88–95 (2007)

12. Bast, H., Majumdar, D., Weber, I.: Efficient interactive query expansion with com-
plete search. In: Proceedings of the CIKM, pp. 857–860 (2007)

13. Beitzel, S.M., Jensen, E.C., Chowdhury, A., Grossman, D., Frieder, O.: Hourly
analysis of a very large topically categorized web query log. In: Proceedings of the
SIGIR, pp. 321–328 (2004)

14. Bhatia, S., Majumdar, D., Mitra, P.: Query suggestions in the absence of query
logs. In: Proceedings of the SIGIR, pp. 795–804 (2011)

15. Cai, F., Liang, S., de Rijke, M.: Time-sensitive personalized query auto-completion.
In: Proceedings of the CIKM, pp. 1599–1608 (2014)

16. Cai, F., Reinanda, R., de Rijke, M.: Diversifying query auto-completion. ACM
Trans. Inf. Syst. 34(4), 25:1–25:33 (2016)

17. Chaudhuri, S., Kaushik, R.: Extending autocompletion to tolerate errors. In: Pro-
ceedings of the SIGMOD, pp. 707–718 (2009)

18. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Rev. 51(4), 661–703 (2009)

19. Cooper, A.: A survey of query log privacy-enhancing techniques from a policy
perspective. ACM Trans. Web 2(4), 19:1–19:27 (2008)

20. Damerau, F.J.: A technique for computer detection and correction of spelling
errors. Commun. ACM 7(3), 171–176 (1964)

21. Dhakal, V., Feit, A.M., Kristensson, P.O., Oulasvirta, A.: Observations on typing
from 136 million keystrokes. In: Proceedings of the CHI, pp. 646:1–646:12 (2018)

http://www.cond.org/anonlogs.pdf
https://doi.org/10.1007/978-3-540-39984-1_5
https://doi.org/10.1007/978-3-540-39984-1_5

634 U. Krishnan et al.

22. Gentner, D.R., Grudin, J.T., Larochelle, S., Norman, D.A., Rumelhart, D.E.: A
glossary of terms including a classification of typing errors. In: Cooper, W.E. (ed.)
Cognitive Aspects of Skilled Typewriting, pp. 39–43. Springer, New York (1983).
https://doi.org/10.1007/978-1-4612-5470-6 2

23. Hawking, D., Billerbeck, B.: Efficient in-memory, list-based text inversion. In: Pro-
ceedings of the Australasian Document Computing Symposium, pp. 5.1–5.8 (2017)

24. Heafield, K.: KenLM: faster and smaller language model queries. In: Proceedings
of the Workshop on Statistical Machine Translation, pp. 187–197 (2011)

25. Heinz, S., Zobel, J., Williams, H.: Burst tries: a fast, efficient data structure for
string keys. ACM Trans. Inf. Syst. 20(2), 192–223 (2002)

26. Hofmann, K., Mitra, B., Radlinski, F., Shokouhi, M.: An eye-tracking study of
user interactions with query auto completion. In: Proceedings of the CIKM, pp.
549–558 (2014)

27. Hsu, B.-J.P., Ottaviano, G.: Space-efficient data structures for top-k completion.
In: Proceedings of the WWW, pp. 583–594 (2013)

28. Ji, S., Li, G., Li, C., Feng, J.: Efficient interactive fuzzy keyword search. In: Pro-
ceedings of the WWW, pp. 371–380 (2009)

29. Jiang, J., Ke, Y., Chien, P., Cheng, P.: Learning user reformulation behavior for
query auto-completion. In: Proceedings of the SIGIR, pp. 445–454 (2014)

30. Jordan, C., Watters, C., Gao, Q.: Using controlled query generation to evaluate
blind relevance feedback algorithms. In: Proceedings of the JCDL, pp. 286–295
(2006)

31. Kharitonov, E., Macdonald, C., Serdyukov, P., Ounis, I.: User model-based metrics
for offline query suggestion evaluation. In: Proceedings of the SIGIR, pp. 633–642
(2013)

32. Krishnan, U., Moffat, A., Zobel, J.: A taxonomy of query auto completion modes.
In: Proceedings of the Australasian Document Computing Symposium, pp. 6:1–6:8
(2017)

33. Krishnan, U., Billerbeck, B., Moffat, A., Zobel, J.: Abstraction of query auto com-
pletion logs for anonymity-preserving analysis. Inf. Retrieval J. 22(5), 499–524
(2019). https://doi.org/10.1007/s10791-019-09359-8

34. Kumar, R. Novak, J., Pang, B. Tomkins, A.: On anonymizing query logs via token-
based hashing. In: Proceedings of the WWW, pp. 629–638 (2007)

35. Lempel, R., Moran, S.: Predictive caching and prefetching of query results in search
engines. In: Proceedings of the WWW, pp. 19–28 (2003)

36. Li, G., Ji, S., Li, C., Feng, J.: Efficient fuzzy full-text type-ahead search. VLDB J.
20(4), 617–640 (2011). https://doi.org/10.1007/s00778-011-0218-x

37. Li, L., Deng, H., Dong, A., Chang, Y., Zha, H., Baeza-Yates, R.: Analyzing user’s
sequential behavior in query auto-completion via Markov processes. In: Proceed-
ings of the SIGIR, pp. 123–132 (2015)

38. Li, Y., Dong, A., Wang, H., Deng, H., Chang, Y., Zhai, C.: A two-dimensional
click model for query auto-completion. In: Proceedings of the SIGIR, pp. 455–464
(2014)

39. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

40. Maxwell, D., Bailey, P., Hawking, D.: Large-scale generative query autocompletion.
In: Proceedings of the Australasian Document Computing Symposium, pp. 9:1–9:8
(2017)

41. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press, Cambridge (2016)

https://doi.org/10.1007/978-1-4612-5470-6_2
https://doi.org/10.1007/s10791-019-09359-8
https://doi.org/10.1007/s00778-011-0218-x

Generation of Synthetic Query Auto Completion Logs 635

42. Shokouhi, M.: Learning to personalize query auto-completion. In: Proceedings of
the SIGIR, pp. 103–112 (2013)

43. Smith, C.L., Gwizdka, J., Feild, H.: Exploring the use of query auto completion:
search behavior and query entry profiles. In: Proceedings of the CHIIR, pp. 101–110
(2016)

44. Smith, C.L., Gwizdka, J., Feild, H.: The use of query auto-completion over the
course of search sessions with multifaceted information needs. Inf. Process. Manag.
53(5), 1139–1155 (2017)

45. Webber, W., Moffat, A.: In search of reliable retrieval experiments. In: Proceedings
of the Australasian Document Computing Symposium, pp. 26–33 (2005)

46. Wobbrock, J.O., Myers, B.A.: Analyzing the input stream for character- level
errors in unconstrained text entry evaluations. ACM Trans. Comput.-Hum. Inter-
act. 13(4), 458–489 (2006)

47. Xiao, C., Qin, J., Wang, W., Ishikawa, Y., Tsuda, K., Sadakane, K.: Efficient
error-tolerant query autocompletion. Proc. VLDB 6(6), 373–384 (2013)

48. Xiong, L., Agichtein, E.: Towards privacy-preserving query log publishing. In: Pro-
ceedings of the WWW Query Log Analysis Workshop (2007)

49. Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files versus signature files for
text indexing. ACM Trans. Database Syst. 23(4), 453–490 (1998)

	Generation of Synthetic Query Auto Completion Logs
	1 Introduction
	2 Background
	3 Generation Process
	4 Experiments
	5 Conclusions
	References

