
A Framework for Argument Retrieval

Ranking Argument Clusters by Frequency and Specificity

Lorik Dumani(B) , Patrick J. Neumann , and Ralf Schenkel(B)

Trier University, 54286 Trier, Germany
{dumani,s4paneum,schenkel}@uni-trier.de

Abstract. Computational argumentation has recently become a fast
growing field of research. An argument consists of a claim, such as “We
should abandon fossil fuels”, which is supported or attacked by at least
one premise, for example “Burning fossil fuels is one cause for global
warming”. From an information retrieval perspective, an interesting task
within this setting is finding the best supporting and attacking premises
for a given query claim from a large corpus of arguments. Since the
same logical premise can be formulated differently, the system needs to
avoid retrieving duplicate results and thus needs to use some form of
clustering. In this paper we propose a principled probabilistic ranking
framework for premises based on the idea of tf-idf that, given a query
claim, first identifies highly similar claims in the corpus, and then clusters
and ranks their premises, taking clusters of claims as well as the stances of
query and premises into account. We compare our approach to a baseline
system that uses BM25F which we outperform even with a primitive
implementation of our framework utilising BERT.

Keywords: Argumentation retrieval · Argument clustering ·
Argument ranking · Argument search

1 Introduction

Computational argumentation is an emerging research area that has recently
received increasing interest. It deals with representing and analysing arguments
for controversial topics, which includes mining argument structures from large
text corpora [8]. A widely accepted definition for an argument is that it consists
of a claim or a standpoint, for instance “We should abandon fossil fuels”, which
is supported or attacked by at least one premise, for example “Burning fossil
fuels is one cause for global warming” or “Poor people cannot afford alternative
fuels” [21]. The claim is the central and usually also a controversial compo-
nent, which should not be accepted by the reader without further support (by
premises) [28].

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG) within the
project ReCAP, Grant Number 375342983 - 2018–2020, as part of the Priority Program
“Robust Argumentation Machines (RATIO)” (SPP-1999).

c© Springer Nature Switzerland AG 2020
J. M. Jose et al. (Eds.): ECIR 2020, LNCS 12035, pp. 431–445, 2020.
https://doi.org/10.1007/978-3-030-45439-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45439-5_29&domain=pdf
http://orcid.org/0000-0001-9567-1699
http://orcid.org/0000-0003-3606-0200
http://orcid.org/0000-0001-5379-5191
https://doi.org/10.1007/978-3-030-45439-5_29

432 L. Dumani et al.

From an information retrieval perspective, an interesting task within this
setting is finding the best supporting (pro) and attacking (con) premises for a
given query claim [31]. This has applications in many domains, including jour-
nalism and politics, and in general is relevant for making informed decisions. By
now, existing (Web) search engines like Google only provide the most relevant
documents to the user, but cannot structure their results in terms of claims and
premises. There is a relatively large body of work on how arguments can be mined
from text (see [8] for a recent survey). In this paper, we build upon established
research on argument search engines and focus on effectively retrieving premises
for a query claim from a large corpus of already mined arguments. Here, a query
can be either a controversial topic (e.g. “fossil fuels”) or statement (e.g. “we
should abandon fossil fuels”), and the task of the system is to retrieve a ranked
list of pro and con premises for the query. Since the same logical premise can
be formulated semantically similar, an argument retrieval system has to avoid
retrieving duplicate results and thus needs to use some form of clustering.

Previous approaches in this area have focused on estimating the relevance
of premises in combination with the corresponding claims, using BM25F [30]
for example. The novel contribution of this paper is a principled probabilistic
ranking framework for premises that, given a query claim, first determines highly
similar claims in the corpus, and then clusters and ranks their premises, taking
clusters of claims as well as the stances of query and premises into account.

The remainder of this paper is structured as follows: Sect. 2 discusses related
work. Section 3 introduces necessary notation and Sect. 4 presents our probabilis-
tic ranking framework. Section 5 describes details of the implementation of our
framework in which we use BERT [11] to capture the vectors of premises and
applied hierarchical clustering. In Sect. 6 we evaluate our approach with a large
corpus [12] consisting of 63,250 claims and about 695,000 premises and compare
it to a baseline system that uses BM25F. Section 7 concludes the paper and
discusses ideas for future work.

2 Related Work

Stab et al. [27] present ArgumenText [4]. Their argument retrieval system
first retrieves relevant documents, then it identifies relevant arguments. We do
not address the argument mining task. Our work is more similar to the work of
Wachsmuth et al. [30] who present Args [3], one of the first prototypes of an
argument search engine. Args operates on arguments crawled from five debate
portals (such as debate.org and idebate.org). Given a user’s keyword query, the
system retrieves, ranks, and presents premises supporting and attacking the
query, taking similarity of the query with the premise, its corresponding claim,
and other contextual information into account. They apply a standard BM25F

ranking model implemented on top of Lucene. In our prior work [12], we build
on the work of Wachsmuth et al. and systematically compared 196 methods for
identification of similar claims by textual similarity, using a comparable large
corpus of (claim, premise) pairs crawled from several debate portals. The results

https://www.debate.org/
http://www.idebate.org

A Framework for Argument Retrieval 433

imply that matching similar claims to a query claim with Divergence from Ran-
domness (DFR) [2] yields slightly better results than BM25 [24]. Thus, we will
make use of DFR to find the most similar claims to a query claim.

The work on argument quality and ranking is also a subarea addressed in
the community. Habernal and Gurevych address the relevance of premises [15].
They confronted users in a crowdsourced task with pairs of premises to decide
which premise is more convincing. Then, they used a bidirectional LSTM to
predict which of two given arguments is better. In a follow-up work [14], they
also investigate in the constitution of convincing arguments. Wachsmuth et al.
[32] consider the problem of judging the relevance of arguments. An overview of
the work on computational argumentation quality in natural language, includ-
ing theories and approaches is provided by them. Their work can be used to
determine the quality of arguments and thus also for the ranking.

Reimers et al. [23] deal with clustering premises. ELMo [22] and BERT [11]
were used to classify and cluster topic-dependent arguments. They improve the
baseline for both tasks but also recognise that arguments can address multiple
aspects and therefore belong to multiple clusters. We build upon this work by
using BERT to cluster claims as well as premises. As they do, we use a hard clus-
tering algorithm and leave soft clustering algorithms for future work since this
paper intends to set up the foundation and show the potential of the framework.

3 Problem Definition and Notations

We assume that we work with a large corpus of argumentative text, for example
collections of political speeches or forum discussions, that has already been mined
and transferred into claims with the corresponding premises and stances.

We consider the following problem: Given a controversial claim or topic, for
example “We should abandon fossil fuels”, a user searches for the most important
premises from the corpus supporting or attacking it. It is important to take into
account that even if different claims or premises are semantically equivalent,
they will usually be formulated in different ways, so we will consider clusters
of claims (and clusters of premises) with the same meaning instead of isolated
claims and premises. Finding this clustering of premises and claims as well as
choosing a good representative of each result cluster to show to the user are
additional tasks of the system.

We will now introduce some notations used in the remainder of the paper.
Let C be the set of all claims in our corpus. A claim cluster γj ⊆ C is a subset
of claims with the same meaning, and a claim clustering Γ = {γ1, γ2, . . .} is a
disjoint partitioning of C into claim clusters. The function γ : C → Γ assigns to
a claim ci ∈ C its corresponding cluster γj (which exists and is unique).

Let P be the set of all premises in the corpus. We write p → c if p ∈ P
appears as a premise for c ∈ C in the corpus, and p+ → c if p supports c. Similar
to claim clusters, we consider premise clusters πj ⊆ P of premises with the same
meaning and the corresponding premise clustering Π = {π1, π2, . . .} as a disjoint
partitioning of P into premise clusters. The function π : P → Π assigns to a
premise pi ∈ P its corresponding premise cluster πj .

434 L. Dumani et al.

For a premise cluster πj , C(πj) ⊆ C denotes the set of claims attacked or
supported by premises in πj . Note that two subsets C(πj), C(πl) with j �= l may
overlap for different premise clusters because the same premise or premises from
the same cluster (e.g. ‘it is very expensive’) can support or attack very different
claims (e.g. ‘nuclear energy ’ and ‘health care’). Figure 1 gives an example of a
corpus with similar claims and premises.

Fig. 1. Example for a corpus with clusters of similar claims Γ = {γ1, γ2, . . .} and
clusters of similar premises Π = {π1, π2, . . .}.

A claim may come with a stance, and different claims may have different
stances, even though they deal with the same topic. To see why this is important,
consider the following example claims and their stances: c1 = “We should use
fossil fuels” (positive stance), c2 = “We should abandon fossil fuels” (negative
stance), c3 = “Fossil fuels” (neutral stance), and c4 = “Should fossil fuels be
used?” (neutral stance). We treat claims with neutral stances as if they had a
positive stance. For a query asking for “increase usage of fossil fuels”, supporting
premises would be premises that support c1, c3, c4, but also premises that attack
c2. Similarly, attacking premises would be those attacking c1, c3, c4 or supporting
c2. Let q and c be query and claim on the same topic, then if q and c have the
same stance, a premise supporting c will also support q. Also, if q and c have
opposite stance, a premise supporting c will attack q. We write q ↑↑ c if the

A Framework for Argument Retrieval 435

stances of q and c are aligned and q ↑↓ c otherwise. We further assume that all
claims within the same cluster have the same stance.

4 Probabilistic Ranking Framework

4.1 Probability of Premise Clusters

Given a query claim q, the goal is to find the best clusters of supporting and
attacking premises π+, π− for q in the corpus. Here, P (π+|q) defines the proba-
bility that a user would pick π as the supporting cluster of premises for q amongst
all premise clusters in the corpus. Furthermore, P (π−|q) is defined analogously
for attacking clusters.

To compute these probabilities, we first consider single premises and claims
and extend this to clusters afterwards; we then will discuss how stances can be
taken into account. We will restrict the examination to supporting premises,
attacking premises are computed analogously.

First we estimate the probability P (p+|q) that the user picks the supporting
premise p for query claim q. We assume the following user model: To pick a
supporting premise, the user initially selects a matching claim c for q amongst
all claims in the corpus with probability P (c|q), and then picks a premise p with
probability P (p+|c, q) amongst all supporting premises of this claim. Considering
that p may support multiple claims, P (p+|q) can thus be written as

P (p+|q) =
∑

c∈C
P (c|q) · P (p+|c, q) (1)

where
∑

c∈C P (c|q) = 1. Since P (p+|c, q) = 0 if p is not a premise of c as the
user picks only premises of c, we can restrict the summation to claims for which
p appears as premise. In addition, we assume that P (p+|c, q) = P (p+|c), i.e. p
is picked as support for c independently from q.

To include the stances of query and claims, we must consider that an attack-
ing premise of a claim with opposite stance to the query can also be picked as a
supporting premise of the query. This results in the following updated expression:

P (p+|q) =
∑

c:p→c

P (c|q) · (P (q↑↑c) · P (p+|c) + P (q↑↓c) · P (p−|c)) (2)

with P (p−|c) describing the probability that p is picked as an attacking premise
of claim c, P (q ↑↑ c) being the probability that q and c have the same stance,
and P (q↑↓c) being the probability that q and c have opposite stance.

Finally, to compute the probability of picking a premise cluster instead of a
single premise, we additionally need to aggregate over all premises in the cluster;
this works since premise clusters are disjoint by construction:

P (π+
j |q) =

∑

p∈πj

P (p+|q) (3)

436 L. Dumani et al.

Note that if the user does not make a distinction between supporting and
attacking clusters, but instead just wants good premise clusters, we can extend
the experiment such that the user first throws a fair coin to decide if he will pick
a supporting or attacking premise cluster. This leads to the following probability
for picking premise cluster πj :

P (πj |q) =
P (π+

j |q) + P (π−
j |q)

2
(4)

4.2 Estimating the Probabilities

We now present possible estimators for each of the probabilities used in our
ranking framework. While we think that these estimators are reasonable, there
are clearly many other ways for their estimation, for example taking argument
quality [32] into account; this is left for future work.

P (c|q) denotes the probability that c is “relevant” for query q, which can be
estimated using standard text retrieval approaches; in our experiments, we will
use Divergence from Randomness [2]. Since most retrieval approaches are not
probabilistic in nature, we need to recalibrate the computed scores such that
their values correspond to probabilities.

P (p+|c) is the probability that p is chosen amongst all supporting premises
of c. Here, we will not use textual similarity of p and c since good premises
supporting or attacking a claim often have only small textual overlap with the
claim. As an example, consider a user searching for premises supporting the claim
“we should abandon fossil fuels”. A good premise could be “wind and solar energy
can already provide most of the needed energy”, which does not overlap at all
with the claim. Instead, we will estimate this based on two different frequency
statistics: the premise frequency pf(p+, c), which describes the frequency with
which premise p is used as support for claims within c’s claim cluster, i.e. with
the same meaning as c, and the claim frequency cf(p+), which is the number
of claim clusters for which premise p is used as support. Intuitively, we prefer
premises that appear frequently within a claim cluster, and we may want to give
lower weight to premises that appear within most or even all claim clusters. This
is exactly the same principle used in the tf-idf term weight [25]. We therefore
use the inverse claim frequency icf(p+) in a form similar to standard idf. Since
the same “semantic” premise can appear in different textual formulations, we
will consider its premise cluster instead of the actual premise when computing
pf(p+) and icf(p+). We can formalise this as follows:

(i) pf(p+, c) = |{p′+ → c′ : p′ ∈ π(p+), c′ ∈ γ(c)}|
(ii) icf(p+) = log

(
|Γ|

|{γ∈Γ: ∃p′+∈π(p),∃c′∈γ such that p′+→c′}|
)

We then estimate P (p+|c) as

P (p+|c) =
pf(p+, c) · icf(p+)

Z
(5)

A Framework for Argument Retrieval 437

where Z is a normalisation term computed as the sum of the unnormalised pf · icf
products over all candidate premises; this is not needed for ranking the premises.

Estimating the probability that two claims (or, more generally, two state-
ments) have the same stance is a surprisingly hard problem that has not yet
been solved, especially if two statements have different stances [16]. We there-
fore omit this part of the framework in this paper and instead focus on the
evaluation of the other parts, which form the core of the framework.

5 Implementation

Now we describe the concrete implementation of the framework, i.e. the cluster-
ing of claims as well as the clustering of premises.

Clustering the Claims. We cluster the claims in an offline operation with hierar-
chical clustering. For each claim, we calculate its embeddings using BERT [11]1.
This allowed us to create an agglomerative clustering [17], i.e. a bottom-up app-
roach2. Compared to k-means [20], hierarchical clustering has the advantage of
not needing to provide the number of resulting clusters beforehand. In general,
only few parameters are expected here, which leads to less overfitting. For exam-
ple, it expects only a method to determine the distance between two vectors and
a method to link clusters. For the former we have taken the often used Euclidean
distance function, and for the latter the widely used average linkage method [26],
which calculates the mean of two clusters for connecting both. In order to deter-
mine a cutoff value for the clustering, we took the implementation of Langfelder
et al. [19], which produces a dynamic tree cut. Contrasting constant height cut,
amongst others it is capable of identifying nested clusters.

Clustering the Premises and Computing Results. Since there are usually many
more premises than claims, precomputing their clustering is not viable. Instead,
we use an approximation that clusters relevant premises at query time. After a
query claim q arrives in the system, the top K most similar claims R = {ri|1 ≤
i ≤ K} are retrieved from the corpus using Divergence from Randomness [2]. At
the same time, we obtain P (c|q) (after normalisation). Then the corresponding
claim clusters are determined and all their premises M = {p|∃c ∈ R, ∃c′ ∈
γ(c) such that p → c′} are retrieved from the corpus. From the set M , an
expanded set M ′ is then constructed by adding, for each premise in M , its N
most similar premises from the corpus, according to the state-of-the-art standard
retrieval method BM25

3. This ensures that our premise set is large enough
1 We use the python framework Flair which supports document embeddings [1] and

choose the pretrained model “large-uncased” where the output vectors have 4,096
dimensions.

2 We perform the clustering with the scripting language R and the packages stats

and fastCluster.
3 Note that we use DFR to find similar claims, but not to find similar premises,

because we only have a study supporting the former [12]. Also, claims and premises
differ in length as well as details and information [13].

438 L. Dumani et al.

to compute claim frequencies. Using BERT embeddings again, this expanded
premise set is first hierarchically clustered and then a dynamic tree cut is made.

Unfortunately, BERT does not support more than 512 tokens, but some
premises are longer. We have thus implemented the three variants BERT512,
BERTsw, and BERTsent. With BERT512 we simply truncate a premise after
512 tokens, i.e. the embeddings only refer to the first 512 tokens of a text. With
BERTsw we utilised a sliding window, i.e. for premises with more than 512
tokens we always considered only text spans with a maximum length of 512, but
always shifted the window to the right by 256 until the end of the premise in
order to keep as much context information as possible. Hence, for a text s that
has more than 512 tokens, we get

⌈
|s|
256

⌉
embeddings, of which the average is

calculated pointwise at the end. With BERTsent we determine embeddings for
each sentence of a premise and finally form the average of all embeddings for a
premise pointwise.

After the clustering, premise frequency and claim frequency are computed
for each premise in the original set M as well as the final probabilities for each
premise cluster. Lastly, the clusters have to be presented to the user in an ade-
quate format. Therefore, a premise is chosen from each cluster as a representa-
tive. In our implementation, this is the premise p with the longest text.

6 Evaluation

Now we describe the evaluation of our approach which clusters and ranks
premises with respect to given queries. First we explain the dataset and the
baseline we used, then we describe the setup of the ground-truth of premise
clusters and the evaluation metrics. Finally, we present the evaluation results.

6.1 Dataset and Baseline

We used the dataset of our prior work [12] which consists of 63,250 claims and
about 695,000 premises extracted from four debate portals. After clustering, the
63,250 claims were distributed over a total of 10,611 clusters. The average cluster
size is about 6.1, the median is 5.

The final evaluation corpus in this prior work consists of triples of the form
(query claim, result claim, result premise) for a total of 232 query claims which
are all related to the topic “energy”. Result claims are these which were iden-
tified by pooling the top five similar claims for a query claim using standard
IR methods. The result premises are associated with the corresponding result
claims. Using this final evaluation corpus, we randomly selected 30 query claims
and extracted 1,221 individual triples. As the premises later had to be clustered
manually, we made sure that the union of the result premises of all result claims
for each of the 30 query claims did not exceed the number 50.

The relevance of each premise for the corresponding query claim was assessed
by two annotators on a three-fold relevance scale as “very relevant”, “relevant”,
and “not relevant”. Note that the actual result claims were not shown to the

A Framework for Argument Retrieval 439

assessors. The inter-annotator agreement, measured with Krippendorff’s α [18],
was 0.480 on a nominal scale and 0.689 on an interval scale, indicating that the
annotation is robust. Disagreements between the annotations were discussed in
order to achieve an agreement. After removing 26 triples because their premises
were annotated as “spam” or “other”, we obtained a final corpus corpeval of
1,195 triples consisting of 389 very relevant, 139 relevant, and 667 not relevant
premises for the 30 queries.

As a baseline system, we implemented the approach proposed by Wachsmuth
et al. [30] that indexes premises together with their claims and uses a BM25F

scoring model [24], giving more importance to the claim than to the premise4.
Since they gave no parameter settings, we use the default values 1.2 and 0.75
for k1 and b, respectively [7]. As Wachsmuth et al. describe, the three fields
conclusion, full arguments, and discussion were added to the BM25F method.
In the field ‘conclusion’ we store the result claim, in the field ‘full argument’ the
premise together with the result claim. The field ‘discussion’ reflects the context
and contains the whole debate, i.e. the result claim and all its premises.

6.2 Ground-Truth and Evaluation Metrics

In order to setup a ground-truth for our experiments, we derive a ground-truth
corpus corpgt by including only the 528 triples from corpeval where the premises
were assessed either as relevant or as very relevant to the query claim.

For each of the 30 query claims, the premises of corpgt were clustered by two
annotators. They were shown all result premises for a query claim, then they
clustered them based on their subjectively perceived semantic similarity. One
annotated, the other checked. Again, discordances were discussed in order to
achieve an agreement. Please note, that the annotators were instructed to assign
only premises with the same relevance level to the same (ground-truth) cluster,
which also served as a pre-filter to reduce complexity.

Since we are searching for similar claims to a query claim in the first step, it
is essential to know their stances in order to identify the stances of the premises
to a query, so that the clustering of the premises can be divided into pros and
cons. However, as it is (still) an unsolved problem to match the stance with a
good probability [16], we will ignore the stance in this experiment and tackle
this task in future work.

For each query, the ground-truth G then consists of clusters G1, . . . , Gt such
that each Gi contains premises with the same meaning and with the same rele-
vance level assigned by the assessors. The relevance level assigned to premises in
cluster Gi is denoted by rel(Gi). We assume that the clusters are numbered such
that i ≤ j implies rel(Gi) ≥ rel(Gj). Note that premises assessed as irrelevant
are not included in any ground-truth cluster.

The user now asks for a summary of premises supporting and attacking the
query claim. A good system will now retrieve, for a given query, a list of premises
that (1) covers the different premises clusters in the ground-truth, (2) retrieves

4 To implement a BM25F scoring model, we used the code described in [5,6].

440 L. Dumani et al.

premises from highly relevant clusters before premises from “only” relevant clus-
ters, and (3) does not retrieve multiple premises from the same cluster. Note that
this setup is different from standard adhoc retrieval since the system must iden-
tify the various aspects of the results. It also differs from diversity-aware and
novelty-aware approaches [9] since the user is interested in all aspects of the
query, but asks for a single representative result per aspect only.

To evaluate the quality of the retrieved results, we use a simplified variant
of α-nDCG [10], which we will later extend to work with clusters as results. We
consider two sub-tasks here. In Task A, the system retrieves a list of premise
clusters, whereas in Task B, the system needs to additionally decide for one
representative premise from each cluster to show to the user. A system that
would not at all consider premise clusters, for example by indexing and searching
directly at the level of premises, can solve Task B only.

We will now first explain how to evaluate Task B with a simplified variant
of α-nDCG [10] where we set α = 1.0 and consider each ground-truth cluster
as an information nugget. The system returns a sorted list of premises R =
(r1, r2, ..., rk) where r1 is the topmost result; we assume that there are no ties
in the ranking (otherwise, ties will be broken arbitrarily). To compute the gain
of the result at rank i, we first check if it appears in any ground-truth cluster; if
not, its gain is 0. Otherwise, let gj be the ground-truth cluster of ri. If no result
of this cluster has appeared up to rank i − 1, the gain of ri is rel(gj); otherwise,
its gain is 0 since it does not contribute a novel aspect. As in standard nDCG,
the discount for rank i is computed as 1

log2 i if i ≥ 2 and 1 otherwise. In the
ideal gain vector needed for computing nDCG, the component at position i is
the relevance level rel(Gi) of Gi, which is ideal since ground-truth clusters are
ordered by descending relevance level.

To illustrate the principles of our metrics for Task B, consider the ground-
truth shown in Fig. 2. The left visualises the ground-truth for a query with three
clusters: G1 which is highly relevant (score 2), and G2 and G3 which are relevant
(score 1). On the right are the premises that the system has returned, sorted by
their estimated relevance. The ideal gain vector for this ground-truth is 2, 1, 1,
corresponding to an ideal discounted cumulative gain of 2 + 1 + 1

log2(3)
≈ 3.63.

The gains for the result list retrieved by the system are 2, 1, 0, 0, 0, 0, 0, 1 (since
duplicate results from the same cluster are assigned a gain of 0), corresponding
to a discounted cumulative gain of 2+1+ 1

log2(8)
= 10

3 . The nDCG of this result

list is thus (approximately) 10/3
3.63 = 0.92.

Task A is more difficult to evaluate since we do not have a list of premises,
but of premise clusters (i.e. sets of premises); existing nDCG variants cannot
be applied here since they operate on lists of documents, not clusters. To be
able to apply the evaluation machinery introduced for Task B, we generate
all possible result lists from the list of clusters, compute nDCG for each list,
and aggregate the per-list values using either average, max, or min. If, e.g. our
system returns two clusters π1 = {p1, p2}, π2 = {p3, p4}, then the result lists
(p1, p3), (p1, p4), (p2, p3), (p2, p4) are generated.

A Framework for Argument Retrieval 441

Fig. 2. Example of premise clusters with graded relevance assessments.

6.3 Evaluation Results

The results of our evaluation can be found in Tables 1 and 2. Table 1 shows the
evaluation of Task B, i.e. the mean nDCG@{5,10} values for all queries. Since
this process requires the selection of a representative and is difficult to decide
even for humans, we have simply taken the longest premise. The table reveals
that the implementation BERTsw, which calculates the premises’ embeddings
using the ‘sliding window’ method, performs best. For BERTsw and BERT512,
the observed improvements over the baseline BM25F are statistically significant
for nDCG@5 (tested with Welch’s t-test [33] with p = 0.05).

Table 1. The evaluation results for Task B showing the mean nDCG values for the
baseline and clustering methods BERTm with premise preprocessing method m for
the 30 queries. The p-values are related to the baseline.

Method Representative mean
nDCG@5

p-value
(nDCG@5)

mean
nDCG@10

p-value
(nDCG@10)

BM25F − .6383 − .6087 −
BERT512 longest premise .6458 .008 .6097 .085

BERTsw longest premise .6782 .002 .6467 .084

BERTsent longest premise .5943 − .5615 −

Since the baseline only returns a ranked list and not a ranked list of clusters,
we interpret this list as clusters each with one entry in Table 2. We can infer from
Table 2 that BERTsw performs best. Using Welch’s t-test with p = 0.05 once
more, the observed improvement over the baseline is statistically significant for
the mean average nDCG@5 but not for nDCG@10. Still, the results imply that
BERTsw is at least as good as the baseline for nDCG@10. Note that BERTsw

has not even been fine-tuned. Moreover, the results in Table 2 unambiguously
underline the importance of clustering and even more the choice of the correct
representative. If we always chose the best representative, then we always have

442 L. Dumani et al.

Table 2. The evaluation results for Task A showing the nDCG values for baseline
BM25F as well as the mean average, minimum, and maximum nDCG values for cluster-
ing methods BERTm with premise preprocessing method m. The p-values are related
to the baseline.

Method mean

average

nDCG

mean

minimum

DCG@5

mean

maximum

nDCG@5

p-value

(mean

average

nDCG@5)

mean

average

nDCG@10

mean

minimum

nDCG@10

mean

maximum

nDCG@10

p-value

(mean

average

nDCG@10)

BM25F .6383 − − − .6087 − − −
BERT512 .6309 .4409 .7744 .439 .5987 .4292 .7381 .586

BERTsw .6523 .4561 .8053 .012 .6187 .4383 .7638 .203

BERTsent .5994 .4274 .7449 − .5665 .4135 .7067 −

the maximum value and vice versa. Note that the premises used in our experi-
ment are extracted from debate portals and thus are not always premises in the
sense of argumentation theory, as they often consider more than one aspect.

7 Conclusion and Future Work

Clustering and ranking premises is a very difficult, but important task, since
a user searching for premises wants them to be presented in a compact and
complete format. In this paper, we made use of the idea of tf-idf and presented
a framework for clustering and ranking premises. We used premises from debate
portals, which are partially from moderated websites, and of high quality but
usually very long. We showed that ranking premises by their frequency and
specificity has great potential since our implementation using BERT and a hard
clustering algorithm outperforms the baseline BM25F although the model was
not fine-tuned and the premises actually cover many aspects, so a premise could
be assigned to several clusters.

In future work we will integrate soft clustering algorithms, for which we first
have to break down the premises into their individual parts (e.g. Argumentative
Discourse Units and Elementary Discourse Units) [29]. In addition, we will train
different fine-tunings for different sentence embedding models in order to achieve
better results. In our implementation, the clustering of the 695,000 premises was
not precalculated, instead it was determined dynamically for a smaller subset,
since this is a very computationally intensive task. Therefore, we will also pre-
calculate the clusters of premises. To stay within the scope of this paper, we
have assumed a flat hierarchy for argument graphs, where an argument consists
of a claim and many premises, as they occur e.g. in debate portals. In the future
we will extend our framework with more complex structures with more layers.

Acknowledgement. We would like to thank Manuel Biertz, Christin Katharina
Kreutz, Alex Witry, and Tobias Zeimetz for their invaluable help in the annotations.

A Framework for Argument Retrieval 443

References

1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence
labeling. In: Proceedings of the 27th International Conference on Computational
Linguistics, COLING 2018, Santa Fe, New Mexico, USA, 20–26 August 2018, pp.
1638–1649 (2018). https://aclweb.org/anthology/C18-1139/

2. Amati, G., van Rijsbergen, C.J.: Probabilistic models of information retrieval based
on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20(4), 357–
389 (2002). https://doi.org/10.1145/582415.582416

3. Args. https://www.args.me/index.html. Accessed 08 Jan 2020
4. ArgumenText. http://www.argumentsearch.com/. Accessed 08 Jan 2020
5. BM25F in lucene. github. https://github.com/o19s/lucene-bm25f/. Accessed 23

Sept 2019
6. Open source connections. BM25F in lucene. https://opensourceconnections.com/

blog/2016/10/19/bm25f-in-lucene/. Accessed 23 Sept 2019
7. Standard values for k1 and b for BM25. https://www.elastic.co/guide/en/

elasticsearch/guide/current/pluggable-similarites.html/. Accessed 23 Sept 2019
8. Cabrio, E., Villata, S.: Five years of argument mining: a data-driven analysis.

In: Proceedings of the Twenty-Seventh International Joint Conference on Artifi-
cial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018, pp. 5427–5433
(2018). https://doi.org/10.24963/ijcai.2018/766

9. Clarke, C.L.A., Craswell, N., Soboroff, I., Ashkan, A.: A comparative analysis of
cascade measures for novelty and diversity. In: King, I., Nejdl, W., Li, H. (eds.)
Proceedings of the Forth International Conference on Web Search and Web Data
Mining, WSDM 2011, Hong Kong, China, 9–12 February 2011, pp. 75–84. ACM
(2011). https://doi.org/10.1145/1935826.1935847

10. Clarke, C.L.A., et al.: Novelty and diversity in information retrieval evaluation. In:
Proceedings of the 31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2008, Singapore, 20–24 July
2008, pp. 659–666. ACM (2008). https://doi.org/10.1145/1390334.1390446

11. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, 2–7 June 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019).
https://aclweb.org/anthology/papers/N/N19/N19-1423/

12. Dumani, L., Schenkel, R.: A systematic comparison of methods for finding good
premises for claims. In: Proceedings of the 42nd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR 2019, Paris,
France, 21–25 July 2019, pp. 957–960 (2019). https://doi.org/10.1145/3331184.
3331282

13. Gleize, M., et al.: Are you convinced? Choosing the more convincing evidence with
a Siamese network. In: Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, 28 July–2 August 2019,
Volume 1: Long Papers, pp. 967–976 (2019). https://www.aclweb.org/anthology/
P19-1093/

14. Habernal, I., Gurevych, I.: What makes a convincing argument? Empirical analysis
and detecting attributes of convincingness in web argumentation. In: Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, 1–4 November 2016, pp. 1214–1223 (2016).
http://aclweb.org/anthology/D/D16/D16-1129.pdf

https://aclweb.org/anthology/C18-1139/
https://doi.org/10.1145/582415.582416
https://www.args.me/index.html
http://www.argumentsearch.com/
https://github.com/o19s/lucene-bm25f/
https://opensourceconnections.com/blog/2016/10/19/bm25f-in-lucene/
https://opensourceconnections.com/blog/2016/10/19/bm25f-in-lucene/
https://www.elastic.co/guide/en/elasticsearch/guide/current/pluggable-similarites.html/
https://www.elastic.co/guide/en/elasticsearch/guide/current/pluggable-similarites.html/
https://doi.org/10.24963/ijcai.2018/766
https://doi.org/10.1145/1935826.1935847
https://doi.org/10.1145/1390334.1390446
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://doi.org/10.1145/3331184.3331282
https://doi.org/10.1145/3331184.3331282
https://www.aclweb.org/anthology/P19-1093/
https://www.aclweb.org/anthology/P19-1093/
http://aclweb.org/anthology/D/D16/D16-1129.pdf

444 L. Dumani et al.

15. Habernal, I., Gurevych, I.: Which argument is more convincing? Analyzing and
predicting convincingness of web arguments using bidirectional LSTM. In: Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics, ACL 2016, Berlin, Germany, 7–12 August 2016, Volume 1: Long Papers
(2016). https://www.aclweb.org/anthology/P16-1150/

16. Hanselowski, A., et al.: A retrospective analysis of the fake news challenge stance-
detection task. In: Proceedings of the 27th International Conference on Compu-
tational Linguistics, COLING 2018, Santa Fe, New Mexico, USA, 20–26 August
2018, pp. 1859–1874 (2018). https://www.aclweb.org/anthology/C18-1158/

17. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Upper
Saddle River (1988)

18. Krippendorff, K.: Estimating the reliability, systematic error and random error of
interval data (1970)

19. Langfelder, P., Zhang, B., Horvath, S.: Dynamic tree cut: in-depth descrip-
tion, tests and applications (2009). https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/BranchCutting/Supplement.pdf

20. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–136 (1982). https://doi.org/10.1109/TIT.1982.1056489

21. Peldszus, A., Stede, M.: From argument diagrams to argumentation mining in
texts: a survey. Int. J. Cogn. Inform. Nat. Intell. 7(1), 1–31 (2013). https://doi.
org/10.4018/jcini.2013010101

22. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2018,
New Orleans, Louisiana, USA, 1–6 June 2018, Volume 1 (Long Papers), pp. 2227–
2237 (2018). https://www.aclweb.org/anthology/N18-1202/

23. Reimers, N., Schiller, B., Beck, T., Daxenberger, J., Stab, C., Gurevych, I.: Clas-
sification and clustering of arguments with contextualized word embeddings. In:
Proceedings of the 57th Conference of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, 28 July–2 August 2019, Volume 1: Long Papers,
pp. 567–578 (2019). https://www.aclweb.org/anthology/P19-1054/

24. Robertson, S.E., Zaragoza, H.: The probabilistic relevance framework: BM25 and
beyond. Found. Trends Inf. Retrieval 3(4), 333–389 (2009). https://doi.org/10.
1561/1500000019

25. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975). https://doi.org/10.1145/361219.361220

26. Sokal, R.R., Michener, C.D.: A statistical method for evaluating systematic rela-
tionships. Univ. Kansas Sci. Bull. 38, 1409–1438 (1958)

27. Stab, C., et al.: ArgumenText: searching for arguments in heterogeneous sources.
In: Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, NAACL-HLT 2018, New Orleans, Louisiana,
USA, 2–4 June 2018, Demonstrations, pp. 21–25 (2018). https://www.aclweb.org/
anthology/N18-5005/

28. Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive
essays. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, 25–29 October 2014, Doha, Qatar, A Meeting
of SIGDAT, A Special Interest Group of the ACL, pp. 46–56 (2014). https://www.
aclweb.org/anthology/D14-1006/

https://www.aclweb.org/anthology/P16-1150/
https://www.aclweb.org/anthology/C18-1158/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/BranchCutting/Supplement.pdf
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/BranchCutting/Supplement.pdf
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.4018/jcini.2013010101
https://doi.org/10.4018/jcini.2013010101
https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/P19-1054/
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/361219.361220
https://www.aclweb.org/anthology/N18-5005/
https://www.aclweb.org/anthology/N18-5005/
https://www.aclweb.org/anthology/D14-1006/
https://www.aclweb.org/anthology/D14-1006/

A Framework for Argument Retrieval 445

29. Stede, M., Afantenos, S.D., Peldszus, A., Asher, N., Perret, J.: Parallel discourse
annotations on a corpus of short texts. In: Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evaluation LREC 2016, Portorož,
Slovenia, 23–28 May 2016 (2016). http://www.lrec-conf.org/proceedings/lrec2016/
summaries/477.html

30. Wachsmuth, H., et al.: Building an argument search engine for the web. In: Pro-
ceedings of the 4th Workshop on Argument Mining (ArgMining@EMNLP), pp.
49–59 (2017). https://doi.org/10.18653/v1/W17-5106. https://www.aclweb.org/
anthology/W17-5106/

31. Wachsmuth, H., Stein, B., Ajjour, Y.: “PageRank” for argument relevance. In:
Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics, EACL 2017, Valencia, Spain, 3–7 April 2017, Volume
1: Long Papers, pp. 1117–1127 (2017). https://aclweb.org/anthology/E17-1105/

32. Wachsmuth, H., et al.: Computational argumentation quality assessment in natural
language. In: Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics, EACL 2017, Valencia, Spain, 3–7 April
2017, Volume 1: Long Papers. pp. 176–187 (2017), https://aclweb.org/anthology/
E17-1017/

33. Welch, B.L.: The generalization of ‘student’s’ problem when several different pop-
ulation variances are involved. Biometrika 34(1–2), 28–35 (1947). https://doi.org/
10.1093/biomet/34.1-2.28

http://www.lrec-conf.org/proceedings/lrec2016/summaries/477.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/477.html
https://doi.org/10.18653/v1/W17-5106
https://www.aclweb.org/anthology/W17-5106/
https://www.aclweb.org/anthology/W17-5106/
https://aclweb.org/anthology/E17-1105/
https://aclweb.org/anthology/E17-1017/
https://aclweb.org/anthology/E17-1017/
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28

	A Framework for Argument Retrieval
	1 Introduction
	2 Related Work
	3 Problem Definition and Notations
	4 Probabilistic Ranking Framework
	4.1 Probability of Premise Clusters
	4.2 Estimating the Probabilities

	5 Implementation
	6 Evaluation
	6.1 Dataset and Baseline
	6.2 Ground-Truth and Evaluation Metrics
	6.3 Evaluation Results

	7 Conclusion and Future Work
	References

