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Abstract. Topology-Hiding Computation (THC) allows a set of par-
ties to securely compute a function over an incomplete network without
revealing information on the network topology. Since its introduction in
TCC’15 by Moran et al., the research on THC has focused on reducing
the communication complexity, allowing larger graph classes, and toler-
ating stronger corruption types.

All of these results consider a fully synchronous model with a known
upper bound on the maximal delay of all communication channels. Unfor-
tunately, in any realistic setting this bound has to be extremely large,
which makes all fully synchronous protocols inefficient. In the literature
on multi-party computation, this is solved by considering the fully asyn-
chronous model. However, THC is unachievable in this model (and even
hard to define), leaving even the definition of a meaningful model as an
open problem.

The contributions of this paper are threefold. First, we introduce a
meaningful model of unknown and random communication delays for
which THC is both definable and achievable. The probability distribu-
tions of the delays can be arbitrary for each channel, but one needs
to make the (necessary) assumption that the delays are independent.

R. LaVigne—This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 1122374. Any opinion,
findings, and conclusions or recommendations expressed in this material are those of the
authors(s) and do not necessarily reflect the views of the National Science Foundation.
Research supported in part by NSF/BSF grant no. 1350619, an MIT-IBM grant, and
a DARPA Young Faculty Award.
T. Moran—Supported in part by ISF grant no. 1790/13 and by the Bar-Ilan Cyber-
center.
M. Mularczyk—Research supported by the Zurich Information Security and Privacy
Center (ZISC).
D. Tschudi—Work was done while author was at Aarhus University, supported by
advanced ERC grant MPCPRO.

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 215–245, 2020.
https://doi.org/10.1007/978-3-030-45388-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_8&domain=pdf
http://orcid.org/0000-0002-0349-3838
http://orcid.org/0000-0001-6188-1049
https://doi.org/10.1007/978-3-030-45388-6_8


216 R. LaVigne et al.

The existing fully-synchronous THC protocols do not work in this setting
and would, in particular, leak information about the topology. Second,
in the model with trusted stateless hardware boxes introduced at Euro-
crypt’18 by Ball et al., we present a THC protocol that works for any
graph class. Third, we explore what is achievable in the standard model
without trusted hardware and present a THC protocol for specific graph
types (cycles and trees) secure under the DDH assumption. The speed of
all protocols scales with the actual (unknown) delay times, in contrast to
all previously known THC protocols whose speed is determined by the
assumed upper bound on the network delay.

1 Introduction

In the wake of GDPR and other privacy laws, companies need ways to process
data in a way such that the trust is distributed among several parties. A fun-
damental solution to this problem is secure multiparty computation. Here, one
commonly assumes that all parties have pairwise communication channels. In
contrast, for many real-world scenarios, the communication network is not com-
plete, and parties can only communicate with a subset of other parties. A natural
question is whether a set of parties can successfully perform a joint computa-
tion over an incomplete communication network while revealing no information
about the network topology.

The problem of topology-hiding computation (THC) was introduced by Moran
et al. [MOR15], who showed that THC is possible in the setting with passive
corruptions and graphs with logarithmic diameter. Further solutions improve
the communication efficiency [HMTZ16] or allow for larger classes of graphs
[AM17,ALM17]. Recent results [BBMM18,LLM+18] even provide THC for fail-
stop or semi-malicious adversaries (although at the price of leaking some small
amount of information about the topology).

However, all those results consider the fully synchronous model, where a
protocol proceeds in rounds. This model makes two assumptions: first, the parties
have access to synchronized clocks, and second, every message is guaranteed to be
delivered within one round. While the first assumption is reasonable in practice,
as nowadays computers usually stay synchronized with milliseconds of variation,
the second assumption makes protocols inherently impractical. This is because
the running time of a protocol is always counted in the number of rounds, and
the round length must be chosen based on the most pessimistic bound on the
message delivery time. For concreteness, consider a network where most of the
time messages are delivered within milliseconds, but one of the connections, once
in a while, may slow down to a couple of hours. In this case, a round would have
to take a couple of hours.

1.1 Contributions

This motivates the goal of this work, which is to construct THC protocols for
more realistic settings, where messages are not guaranteed to be delivered within
a fixed time bound.
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Model. A natural starting point would be to consider the strongest possible
adversary, i.e. one who fully controls message delivery (this is the standard set-
ting considered by asynchronous MPC, e.g. [BOCG93,Can01]). First, note that
this standard model is not well suited for our setting, since in order to decide
when messages are delivered, the adversary must know the network, which we
attempt to hide. The next logical step is to consider a model where the adversary
can only interfere with delays between parties he controls, but unfortunately,
even this grants the adversary too much power. In fact, we prove in AppendixA
that it is impossible to get a topology-hiding broadcast in this model.

This forces us to define a slightly weaker model. We call it the Probabilistic
Unknown Delay Model and we formally define it in Sect. 2. In this model the
messages are delayed independently of the adversary, but different connections
have different, unbounded probabilistic delays. This means that we throw off
the assumption that makes the synchronous protocols impractical. Still, parties
have access to synchronized clocks.

Protocols. We remark that it is not easy to modify synchronous THC protocols
(even those tolerating fail-stop adversaries) to remain secure in the Probabilistic
Unknown Delay Model. For example, consider the standard technique of letting
each party attach to each message a round number r, and then wait until it
receives all round-r messages before proceeding to the next round. This seems
to inherently leak the topology, as the time at which a party receives a message
for round r reveals information about the neighborhood of the sender (e.g., that
it contains an edge with very long delays).

This forces us to develop new techniques, which result in three new protocols,
secure in the Probabilistic Unknown Delay Model against any number of passive
corruptions. We require a setup, but this setup is independent of the network
topology (it only depends on the number of parties), and it can be used to run
multiple instances of the protocols, with different communication graphs.

Our first two protocols (Sect. 3) implement topology-hiding broadcast (any
functionality can then be realized using standard techniques, by executing a
sequence of broadcasts). The protocols are based on standard assumptions, but
can only be used in limited classes of graphs (the same ones as in [AM17]): cycles
and trees, respectively.1

Furthermore, observe that the running time of a protocol could itself leak
information about the topology. Indeed, this issue seems very difficult to over-
come, since, intuitively, making the running time fully independent of the graph
delays conflicts with our goal to design protocols that run as fast as the actual
network. We deal with this by making the running time of our protocols depend
only on the sum of all the delays in the network.

Then, in Sect. 4, we introduce a protocol that implements any functional-
ity, works on arbitrary connected graphs, and its running time corresponds to

1 Our second protocol works for any graphs, as long as we agree to reveal a spanning
tree: the parties know which of their edges are on the tree and execute the protocol,
ignoring other edges. See also [AM17].
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(one sample of) the sum of all delays. On the other hand, we assume state-
less secure hardware. Intuitively, a hardware box is a stateless program with
an embedded secret key (the same for all parties). This assumption was intro-
duced in [BBMM18] in order to deal with fail-stop adversaries in THC. Similar
assumptions have also been considered before, for example, stateless tamper-
proof tokens [CGS08,GIS+10,CKS+14]2, or honestly-generated secure hardware
[HMQU05,CT10].

While secure hardware is a very strong assumption, the paradigm of con-
structing protocols with the help of a hardware oracle and then replacing the
hardware oracle by more standard assumptions is common in the literature (see
for example the secure hardware box assumption for the case of synchronous
topology-hiding computation (with known upper bounds on the delays) for fail-
stop adversaries [BBMM18], which was later relaxed to standard assumptions
[LLM+18], or the Signature Card assumption for proofs-carrying-data schemes
[CT10]). We hope that the techniques presented in this paper can be useful to
construct protocols in more standard models.

1.2 Related Work

Topology-hiding computation was introduced by Moran et al. in [MOR15]. The
authors propose a broadcast protocol tolerating any number of passive corrup-
tions. The construction uses a series of nested multi-party computations, in
which each node is emulated by its neighbors. This broadcast protocol can then
be used to achieve topology-hiding MPC using standard techniques to trans-
form broadcast channels into secure point-to-point channels. In [HMTZ16], the
authors provide a more efficient construction based on the DDH assumption.
However, both results are only feasible for graphs with logarithmic diameter.
Topology-hiding communication for certain classes of graphs with large diame-
ter was described in [AM17]. This result was finally extended to arbitrary (con-
nected) graphs in [ALM17]. These results were extended to the fail-stop setting
in [BBMM18] based on stateless secure hardware, and [LLM+18] based on stan-
dard assumptions. All of the results mentioned above are in the cryptographic
setting. Moreover, all results are stated in the synchronous communication model
with known upper bounds on the delays.

In the information-theoretic setting, the main result is negative [HJ07]: any
topology-hiding MPC protocol inherently leaks information about the network
graph. This work also shows that if the routing table is leaked, one can construct
an MPC protocol which leaks no additional information.

2 The Probabilistic Unknown Delay Model

At a high level, we assume loosely synchronized clocks, which allow the parties
to proceed in rounds. However, we do not assume that the messages are always
2 The difference here is that a token typically needs to be passed around during the

protocol and the parties can embed their own programs in it, whereas a secure
hardware box is used only by one party and is initialized with the correct program.



Topology-Hiding Computation for Networks with Unknown Delays 219

delivered within one round. Rather, we model channels that have delays drawn
from some distributions each time a message is sent along (a different distribu-
tion for each channel). These delays are a property of the network. As already
mentioned, this allows to achieve a significant speedup, comparable to that of
asynchronous protocols and impossible in the fully synchronous model.

2.1 Impossibility of Stronger Models

Common models for asynchronous communication [BOCG93,Can01] consider a
worst-case scenario and give the adversary the power to schedule the messages.
By scheduling the messages, the adversary automatically learns which parties are
communicating. As a consequence, it is unavoidable that the adversary learns
the topology of the communication graph, which we want to hide.

A natural definition, then, would be to give to the adversary control over
scheduling on channels from his corrupted parties. However, any reasonable
model in which the adversary has the ability to delay messages for an unbounded
amount of time allows him to learn something about the topology of the graph.
In essence, a very long delay from a party behaves almost like an abort, and an
adversary can exploit this much like a fail-stop adversary in the impossibility
result of [MOR15]. We formally prove this in a very weak adversarial model in
AppendixA.

Since delays cannot depend on the adversary without leaking topology, delays
are an inherent property of the given network, much like in real life. As stated
before, we give each edge a delay distribution, and the delays of messages travel-
ing along that edge are sampled from this distribution. This allows us to model
real-life networks where the adversary cannot tamper with the network connec-
tions. For example, on the Internet, delays between two directly connected nodes
depend on their distance and the reliability of their connection.

2.2 Adversary

We consider an adversary, who statically and passively corrupts any set Z ⊆
P = {P1, . . . , Pn} of parties, with |Z| < n. Static corruptions mean that the set
Z is chosen before the protocol execution. Passively corrupted parties follow the
protocol instructions, but the adversary can access their internal states during
the execution.

The setting with passive corruptions and secure hardware boxes is somewhat
subtle. In particular, the adversary is allowed to input to the box of a corrupted
party any messages of his choice, even based on secret states of other corrupted
parties; he can even replay messages from honest parties with different corrupted
inputs. This will be why we need authenticated encryption, for example. Impor-
tantly, in the passive model, the messages actually sent by a corrupted party are
produced using the box with valid inputs.
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2.3 Communication Network and Clocks

Clocks. Each party has access to a clock that ticks at the same rate as every
other clock. These ticks are fast; one can think of them as being milliseconds
long or even faster (essentially, the smallest measurable unit of time).

We model the clocks by the clock functionality Fclock of [KMTZ13], which
we recall here for completeness. The functionality keeps the absolute time τ ,
which is just the number of ticks that have passed since the initialization. Every
single tick, a party is activated, given the time, and runs a part of the protocol.
To ensure that honest parties are activated at least once every clock tick, the
absolute time is increased according to “Ready” messages from honest parties.

Functionality Fclock

The clock functionality stores a counter τ , initially set to 0. For each honest party
Pi it stores a flag di, initialized to 0.

ReadClock: On input (ReadClock) from party Pi return τ .

Ready: On input (Ready) from honest party Pi set di = 1.

ClockUpdate: On every activation the functionality runs this code before doing

anything else.

1: if for every honest party Pi it holds di = 1 then
2: Set di = 0 for every honest party Pi.
3: Set τ = τ + 1.

Because clocks wait for “Ready” messages, computation is instant, happening
within a single clock-tick. While this is not exactly what happens in the real
world, our protocols do not abuse this property. In particular, they proceed in
rounds, where each round takes a number (e.g., one million) clock-ticks. Parties
process and send messages only once in a round, and remain passive at other
times (in real world, this would be the time they perform the computation).

Network. The (incomplete) network with delays is modeled by the network
functionality Fnet. Similar to the synchronous models for THC, the description
of the communication graph is inputted before the protocol execution by a special
party Psetting. In our case, this description also contains a (possibly different)
probability distribution for each edge indicating its delay. Each party can ask
the functionality for its neighborhood in the communication graph and the delay
distributions on the edges to its neighbors.3 During the protocol execution, at

3 In fact, our hardware-based protocol does not use this information, and our protocols
for cycles and trees only need upper bounds on the expected values of the delays.
This bound can be easily established, e.g. by probing the connection.
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every clock tick, parties can send to each neighbor a message, which is delivered
after a delay sampled from a given distribution.

Functionality Fnet

The functionality is connected to a clock functionality Fclock. The functionality
stores a communication graph G and, for each edge e, a distribution De from
which delays are sampled. Initially, G contains no edges. The functionality also
stores the current time τ and a set of message tuples buffer which initially is
empty.

Clock Update: Each time the functionality is activated, it first queries Fclock

for the current time and updates τ accordingly.

Initialization Step: // This is done at most once, before the protocol starts.

The party Psetting inputs a communication graph G and, for each edge e, a distri-
bution De. The functionality stores G and De.

Graph Info: On input (GetInfo) from an honest party Pi, the functionality

outputs to Pi its neighborhood NG(Pi) and the delay distribution D(i,j) for all
j ∈ NG(Pi).

Communication Step:

– On input (Send, i, j, m) from party Pi, where Pj ∈ NG(Pi), Fnet samples the
delay dij for the edge (i, j) from D(i,j) and records the tuple (τ+dij , Pi, Pj , m)
in buffer.a

– On input (FetchMessages, i) from Pi, for each message tuple (T, Pk, Pi, m)
from buffer where T ≤ τ , the functionality removes the tuple from buffer

and outputs (k, m) to Pi.

a Technically, our model allows to send in one round multiple independent messages.

However, our protocols do not exploit this property; we only assume that messages are

independent if they are sent in different rounds.

Leakage in the Ideal World. During the protocol execution the adversary
can learn local neighborhoods from Fnet. Therefore, any ideal-world adversary
should also have access to this information. This is ensured by the ideal-world
functionality FL

info, which has the same initialization step and the same graph
information as Fnet, but does not allow for actual communication.

Moreover, in any protocol it is unavoidable that the adversary learns the
time at which the output is revealed. In previous synchronous THC protocols,
this quantity corresponded to a fixed number of rounds (depending on an upper
bound on the graph size or its diameter). This can no longer be the case in our
model, where the number of rounds it takes to deliver a message is unbounded.
Hence, it is necessary to parameterize FL

info by a leakage function L, that allows
the adversary to compute the output time. L depends on the set D of all delay



222 R. LaVigne et al.

distributions in the network, but it does not depend on the communication graph
itself. Additionally, we allow the adversary to pass to L an auxiliary input, that
will accommodate any protocol parameters that influence the output time.

For example, in our protocol based on secure hardware, L will return the
distribution of the sum of all network delays, rounded to the next multiple of
the round length R (where R is provided as auxiliary input by the adversary).

Functionality FL
info

Initialization Step: // This is done at most once, before the protocol starts.

The party Psetting inputs a communication graph G and, for each edge e, a distri-
bution De. The functionality stores G and De.

Graph Info:

– On input (GetInfo) from an honest party Pi, the functionality outputs to Pi

its neighborhood NG(Pi) and the delay distribution D(i,j) for all j ∈ NG(Pi).
– On the first input (GetInfo, aux) from the adversary the functionality out-

puts: the neighborhood of all corrupted parties, the delay distribution of
every edge where at least one of the nodes is corrupted, and the leakage
L(aux, D), where D is the set of all delay distributions in the network.

2.4 Additional Related Work

Katz et al. [KMTZ13] introduce eventual-delivery and channels with a fixed
known upper bound. These functionalities implement communication between
two parties, where the adversary can set, for each message, the delay after which
it is delivered. For reasons stated at the beginning of this section, such function-
alities cannot be used directly to model topology-hiding computation. Instead
of point-to-point channels we need to model the whole communication network,
and we cannot allow the adversary to set the delays. Intuitively, Fnet implements
a number of bounded-delay channels, each of which is modified so that the delay
is chosen once and independently of the adversary. If we did not consider hiding
the topology, our modified channels would be a stronger assumption.

Cohen et al. [CCGZ16] define different channels with probabilistic delays,
for example point-to-point channels (the SMT functionalities) and an all-to-all
channel (parallel SMT, or PSMT). However, their PSMT functionality cannot
be easily modified to model THC, since the delivery time is sampled once for
all parties. One could modify the SMT functionalities and use their parallel
composition, but we find our formulation simpler and much better suited for
THC.
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3 Protocols for Restricted Classes of Graphs

This section considers protocols that realize topology-hiding broadcast in the
Probabilistic Unknown Delay Model under standard assumptions (in particular,
we give an instantiation based on DDH), but in the limited setting where graphs
are trees or cycles. We stress that we can deal with any graphs if a spanning tree
is revealed. In the following, we first recall the known technique to achieve fully-
synchronous THC using random walks and so-called PKCR encryption [ALM17].
Then, we extend PKCR by certain additional properties, which allows us to
construct a broadcast protocol for cycles in the Probabilistic Unknown Delay
Model. Finally, we extend this protocol to trees.

3.1 Synchronous THC from Random Walks

Currently, the most efficient fully-synchronous THC protocols are based on the
technique of correlated random walks, introduced in [ALM17]. Intuitively, a
PKCR scheme is assumed, which is an enhanced public-key encryption scheme
on group elements, where the public keys come with a group operation: we
write pk12 = pk1 � pk2. The encryption and decryption algorithms are denoted
PKCR.Enc(m, pk) and PKCR.Dec(c, sk), respectively. Additionally, a party can
add a layer of encryption to a ciphertext c encrypted under pk1, using the algo-
rithm PKCR.AddLayer(c, sk2), which outputs an encryption c′ under the com-
bined key pk12. This operation can be undone with PKCR.DelLayer(c′, sk2). We
also require that PKCR is homomorphic and rerandomizable (note that the lat-
ter is implied).

The goal is to broadcast one bit. However, we instead realize the OR function-
ality, which can then be used for broadcast (in the semi-honest setting) by having
the sender input his bit, and all other parties input 0. The protocol proceeds as
follows. A party starts by encrypting 0 if its input bit is 0, and a random group
element otherwise, under a fresh key. In the first, so-called aggregate phase, this
ciphertext travels along a random walk for a fixed number of rounds R (col-
lecting the input bits of each party until it has traversed the whole graph with
high probability). In each round, each party adds a layer of encryption to the
received ciphertext (using a freshly generated key) and homomorphically adds
its input. After R rounds, the parties start the decrypt phase, in which they
send the final ciphertext back through the same walk it traversed in the first
phase, and the layers of encryption are removed (using the secret keys stored
during the aggregate phase). It is important that the ciphertext is sent via the
same walk, to remove exactly the same layers of encryption that were added in
the first phase. The parties determine this walk based on how they routed the
ciphertext in the corresponding round of the aggregate phase. After another R
rounds, each party interprets the group element as a 0-bit (the 0 element) or as
a 1-bit (any other element).

This technique breaks down in the Probabilistic Unknown Delay Model. For
example, it is not clear how to choose R such that the walk traverses the whole
graph since it would depend on an upper bound on the delays. Moreover, in the
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decrypt phase, parties no longer know how to route a ciphertext back via the
same walk it took in the aggregate phase. This is because they do not know
the number of steps it already made in the backward walk (this depends on
the actual delays). Furthermore, it is not straightforward to modify the random
walk technique to deal with this. For instance, the standard method of attaching
a round number to every message (to count the number of encryption layers)
reveals information about the topology.

3.2 Protocol for Cycles

We assume an enhanced PKCR scheme, denoted PKCR*. The main differences
from PKCR are as follows. First, the message space in PKCR* is now the set
{0, 1}, and it is disjoint from the ciphertext space. This allows to distinguish
between a layered ciphertext and a plaintext. Moreover, we no longer require
explicit homomorphism, but instead use the algorithm PKCR*.ToOne(c) that
transforms an encryption of 0 into an encryption of 1 without knowing the
public key.4 We formally define PKCR* and give an instantiation based on the
DDH assumption in AppendixB.

Rounds. Although we are striving for a protocol that behaves in a somewhat
asynchronous way, we still have a notion of rounds defined by a certain number
of clock ticks. Even though each party is activated in every clock tick, each
party receives, processes and sends a message only every R clock ticks—this
keeps parties in sync despite delays, without clogging the network. Even if no
message is received, a message is sent.5 This means that at time τ , we are on
round rτ = �τ/R�; the τ parameter will be dropped if obvious from context.
Moreover, observe that the message complexity increases as R decreases. For
reference, R can be thought of as relatively large, say 1,000 or more; this is also
so that parties are able to completely process messages every round.

A Protocol with Constant Delays. To better explain our ideas, we first
describe our protocol in the setting with constant delays, and then modify it to
deal with any delay distributions.

The high-level idea is to execute directly the decrypt phase of the random-
walk protocol, where the walk is simply the cycle traversal, and the combined
public key corresponding to the ciphertext resulting from the aggregate phase is
given as the setup (note that this is independent of the order of parties on the
graph). More concretely, we assume that each party Pi holds a secret key ski

4 Its functionality does not matter and is left undefined on encryptions of 1.
5 If the parties do not send at every round, the topology would leak. Intuitively, when

a party Pi sends the initial message to its right neighbor Pj , the right neighbor
of Pj learns how big the delay from Pi to Pj was. We can extend this to larger
neighborhood, eventually revealing information about relative positions of corrupted
parties.
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and the combined public key pk = pk1 � . . .�pkn. Assume for the moment that
each party knows who the next clockwise party is in the cycle. At the beginning,
a party Pi, every round (i.e., every R clock ticks), starts a new cycle traversal
by sending to the next party a fresh encryption of its input PKCR*.Enc(bi, pk).
Once Pi starts receiving ciphertexts from its neighbor (note that since the delays
are fixed, there is at most one ciphertext arriving in a given round), it instead
continues the cycle traversals. That is, every time it receives a ciphertext c
from the previous neighbor, it deletes the layer of encryption using its secret
key: PKCR*.DelLayer(c, ski). It then rerandomizes the result and sends it to
the next party. The sender additionally transforms the ciphertext it receives to
a 1-ciphertext in case its bit is 1. After traversing the whole cycle, all layers
of encryption are removed and the parties can recognize a plaintext bit. This
happens at the same time for every party.

In order to remove the assumption that each party knows who the next
clockwise party is, we simply traverse the cycle in both directions.

A Protocol Accounting for Variable Delays. The above approach breaks
down with arbitrary delays, where many messages can arrive at the same round.
We deal with this by additionally ensuring that every message is received in
a predictable timely manner: we will be repeating message sends. As stated in
Sect. 2, the delays could be variable, but we make the assumption that if messages
are sent at least R clock-ticks from each other, then the delay for each message is
independent. We also assume that the median value of the delay along each edge
is polynomial, denoted as Med[De]. Now, since the protocol will handle messages
in rounds, the actual values we need to consider are all in rounds: �Med[De]/R�.

Now, if over κ rounds, P1 sends a message c each round, the probability that
none of the copies arrives after κ+ �Med[De]/R� rounds is negligible in terms of
κ, the security parameter (see full version [LLM+19] for the proof). Because we
are guaranteed to have the message by that time (and we believe with reasonable
network delays, median delay is small), we wait until time (κ+�Med[De]/R�) ·R
has passed from when the original message was sent before processing it.6

For the purposes of this sketch, we will just consider sending messages one
way around the protocol. We will also focus on P1 (with neighbors Pn and P2)
since all parties will behave in an identical manner. First, the setup phase gives
every party the combined public key pk = pk1�. . .�pkn. At each step, processing
a message will involve using the PKCR.DelLayer functionality for their key.

In the first round, P1 sends its bit (0 if not the source node, bs if the source
node) encrypted under pk to P2, let’s call this message c

(1)
1 . P1 will wait w =

κ + �Med[De]/R� rounds to receive Pn’s first message during this time. Now,
because P1 needs to make sure c

(1)
1 makes it to P2, for the next κ rounds, P1

continues to send c
(1)
1 . However, because P1 also needs to hide w (and thus cannot

6 Note that delays between rounds are independent, but not within the round. This
means we need to send copies of the message over multiple rounds for this strategy
to work.
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reveal when it starts sending its processed message from Pn), P1 starts sending a
new ciphertext encrypting the same message, c

(1)
2 (again κ times over κ rounds),

until it has waited w rounds—so, P1 is sending c
(1)
1 and c

(1)
2 in the second round,

c
(1)
1 , c

(1)
2 and c

(1)
3 the third round and so forth until it sends c

(1)
1 , . . . c

(1)
κ in round

κ. Then it stops sending c
(1)
1 and starts sending c

(1)
κ+1. P1 will only ever send κ

messages at once per round. Once it has waited w rounds, P1 is guaranteed to
have received the message from Pn and can process and forward that message,
again sending it κ times over κ rounds. In the next round, P1 will then be
guaranteed to receive the next message from Pn, and so on.

Let MedRSum[D] =
∑n

i=1

⌈
Med[D(i,(i+1 mod n)+1)]/R

⌉
denote the median-

round-sum of the delays. Because each party waits like this, the protocol has a
guaranteed time to end, the same for all parties:

R ·
n∑

i=1

wi = R (nκ + MedRSum[D]) .

This is the only information ‘leaked’ from the protocol: all parties learn the
sum of ceiling’d medians, MedRSum[D]. Additionally, parties all know the (real,
not a round-delay) distribution of delays for messages to reach them, and thus
can compute �Med[De]/R� for their adjacent edges.

Formally, the protocol CycleProt is described as follows.

Protocol CycleProt

// The common input of all parties is the round length R. Additionally, the sender
Ps has the input bit bs.
Setup: For i ∈ {1, . . . , n}, let (pki, ski) = PKCR*.KGen(1κ). Let pk = pk1 �

. . . � pkn. The setup outputs to each party Pi its secret key ski and the product
public key pk.

Initialization for each Pi:

– Send (GetInfo) to the functionality Fnet and assign randomly the labels P 0,
P 1 to the two neighbors.

– Let Rec0,Rec1 be lists of received messages from P 0 and P 1 respectively, both
initialized to ⊥ . Let Send0 and Send1 be sets initialized to ∅; these are the
sets of messages that are ready to be sent.

– For each � ∈ {0, 1}, D(i,�) is the delay distribution on the edge between Pi

and P �, obtained from Finfo.
– Let w� = κ +

⌈
Med[D(i,�)]/R

⌉
be the time Pi waits before sending a message

from P � to P 1−�

Execution for each Pi:

1: Send (ReadClock) to the functionality Fclock and let τ be the output. If τ
mod R �= 0, send (Ready) to the functionality Fclock. Otherwise, let r = τ/R
be the current round number and do the following:
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2: Receive messages: Send (FetchMessages, i) to the functionality Fnet. For
each message (rc, c) received from a neighbor P �, set Rec�[rc + w�] = c.

3: Process if no messages received: For each neighbor P � such that Rec�[r] = ⊥,
start a new cycle traversal in the direction of P 1−�:

– If Pi is sender (i.e. i = s) then add (κ, r,PKCR*.Enc(bs, pk)) to Send1−�.
– Otherwise, add (κ, r,PKCR*.Enc(0, pk)) to Send1−�.

4: Process received messages: For each P � such that Rec�[r] �= ⊥ (we have
received a message from P �), set d = PKCR*.DelLayer(Rec�[r], ski), and do
the following:

– If d ∈ {0, 1}, output d and halt (we have decrypted the source bit).
– Otherwise, if i = s and bs = 1, then set d = PKCR*.ToOne(d). Then, in

either case, add (κ, r,PKCR*.Rand(d)) to Send1−�.
5: Send message: For each � ∈ {0, 1}, let Sending� = {(k, rc, c) ∈ Send� : k > 0}.

For each (k, rc, c) ∈ Sending�, send (rc, c) to P �.
6: Update Send set: For each (k, rc, c) ∈ Sending�, remove (k, rc, c) from Send�

and insert (k − 1, rc, c) to Send�.
7: Send (Ready) to the functionality Fclock.

In the full version [LLM+19] we prove the following theorem (FBC denotes
the broadcast functionality).

Theorem 1. The protocol CycleProt UC-realizes (Fclock,FLmedian
info ,FBC) in the

(Fclock,Fnet)-hybrid model with an adversary who statically passively corrupts
any number of parties, where the leakage function is defined as Lmedian(R,D) =
MedRSum[D].7

3.3 Protocol for Trees

We show how to modify the cycle protocol presented in the previous section
to securely realize the broadcast functionality FBC in any tree. As observed in
[AM17], given a tree, nodes can locally compute their local views of a cycle-
traversal of the tree. However, to apply the cycle protocol to this cycle-traversal,
we would need as setup a combined public key that has each secret key ski as
many times as Pi appears in the cycle-traversal. To handle that, each party sim-
ply removes its secret key from the ciphertexts received from the first neighbor,
and we can assume the same setup as in the cycle protocol.

In the full version [LLM+19] we give a formal description of the protocol
TreeProt. The proof of the following theorem is a straightforward extension of
the proof of Theorem 1.

Theorem 2. The protocol TreeProt UC-realizes (Fclock,FLmedian
info ,FBC) in the

(Fclock,Fnet)-hybrid model with an adversary who statically passively corrupts
any number of parties, where the leakage function is defined as Lmedian(R,D) =
MedRSum[D].
7 Note that the round length R is a parameter of the protocol, so we allow the adver-

sary to provide it.
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4 Protocol for General Graphs

We present a protocol that allows us to securely realize any functionality in
any connected communication graph with unknown delay distributions on the
edges. For that, we use the same setup as [BBMM18]: we assume that the parties
have access to secure hardware boxes, initialized with the same secret key, and
executing the same functionality FHW, independent of the graph and the realized
functionality (see [BBMM18] for details of this model).

Our protocol is divided into two sub-protocols: preprocessing and compu-
tation. Both sub-protocols do not terminate on their own. Rather, we assume
that each party gets a signal when it can finish each sub-protocol.8 The prepro-
cessing is executed only once, before any input is specified and can be re-used.
Intuitively, it outputs, for each party, an encryption of the entire communication
graph under the secret key embedded in the hardware boxes. The computa-
tion allows to evaluate any function, with the help of the encrypted information
outputted by the preprocessing. One output of preprocessing can be used to
execute the computation any number of times, each time with different function
and different inputs.

In the following, we formally describe both protocols. To make the exposition
easier to follow, we postpone the precise definition of the functionality FHW exe-
cuted by the hardware boxes, to AppendixC, and for now only give an informal
description of its behavior whenever FHW is invoked.

4.1 Preprocessing

The preprocessing is executed without any inputs. The output is a pair (idi, c),
where idi is a (secret) random string used to identify a party, and c is a ciphertext
that contains an encrypted state with the whole graph. This output pair will be
inputted to the computation protocol.

At a high level, the protocol floods the network with encrypted partial images
of the graph, until the signal to terminate occurs. We assume that the sig-
nal occurs late enough for all parties to collect all information. In more detail,
throughout the protocol, a party Pi keeps an encrypted state c, containing infor-
mation about the graph and parties’ id’s, that it collected up to a given point.
Initially, c contains only the local neighborhood and idi chosen at random by
Pi. Then, every round, Pi sends c to all its neighbors. When it receives a state
cj from a neighbor Pj , it uses the functionality FHW box to update c with the
information from cj . That is, FHW gets as input two encrypted states containing
partial images on the graph, respectively, decrypts both states and merges the
information into a new state, which is encrypted and output.
8 In practice, this is not an unrealistic assumption. It would be enough, for example,

if each party was given a very rough upper bound on the time it takes to flood
the network and traverse all edges of the graph (for instance, a constant number
proportional to the sum of delays on all edges). This is still faster than assuming
worst-case upper bounds on the delays along edges, as one would need to do to adapt
a fully synchronous protocol.
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Protocol Hw-Preprocessing

// The common input of all parties is the round length R.

Setup: Each party Pi has access to a secure hardware box functionality FHW.

Initialization for each Pi: Choose an identifier idi at random and send

(GetInfo) to Fnet, to obtain the neighborhood NG(Pi). Input (i, idi,NG(Pi))
to FHW and store the resulting encrypted state c.

Execution for each Pi at every round (every R clock ticks):

1: Send c to each Pj ∈ NG(i).
2: Send (FetchMessages, i) to Fnet. For each received message c′, input

(idi, c, c
′) to FHW and set the updated state c to the result.

Termination for each Pi: Upon receiving the signal, output (idi, c).

4.2 Computation

The inputs to the computation protocol are, for every Pi, its input xi, a descrip-
tion of the function fi that evaluates Pi’s output of the computed function, and
the values idi and ci, outputted by preprocessing.

The high-level idea is that the hardware box FHW gets as part of its input
the value ci, containing, among others, the encrypted communication graph.
This allows it to deterministically compute an Eulerian cycle, which visits every
edge exactly twice. Then, every party starts a traversal of the Eulerian cycle,
in order to collect the inputs from all parties. Once all inputs are collected, the
box computes the function and gives the output to the party. Traversing each
edge exactly twice allows all parties to learn the output at a time that does not
depend on the graph topology but (roughly) on the distribution of the sum of
the delays. Of course, all messages are encrypted under the secret key embedded
in the hardware boxes.

This means that at any time during the protocol there are n cycle traversals
going through the graph (one per a starting party). Each of the traversals visits
all edges in the graph twice. So in each round a party Pi processes messages for
up to n traversals. To hide the number of actual traversal processed Pi sends n
messages to each of its neighbors. This means that each round, Pi receives from
each neighbor n messages. It inputs all of them to its hardware box (together
with its input to the computed function) and receives back, for each neighbor,
a set of n messages that it then sends to him.

A party receives the output once the cycle has been traversed, which takes
time proportional to the sum of the rounded delays. Once the parties receive
output, they continue executing the protocol until they receive the termination
signal, which we assume occurs late enough for all parties to get their outputs.
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There are still some subtle issues, that the above sketch does not address.
First, the adversary could try to tamper with the ciphertexts. For example, in
our protocol a message contains a list of id’s that identifies the path it already
traversed. This is done so that the adversary cannot extend the traversal on
behalf of an honest party Pi without knowing its secret idi. Now the adversary
could try to extend this list nevertheless, by copying part of the encrypted state
of a corrupted party—recall that this state contains all idi’s. To prevent such
situations, we use authenticated encryption.

Second, we need to specify when the parties input the function they are
evaluating into the box. Doing this at the very end would allow the adversary
to evaluate many functions of her choice, including the identity. So instead, in
our protocol the function is inputted once, when the cycle traversal is started,
and it is always a part of the message. This way, when the output is computed,
the function is taken from a message that has been already processed by all
honest parties. Since honest parties only process messages that are actually sent
to them, and even corrupted parties only send correctly generated messages, this
function must be the correct one. In some sense, when sending the first message
to an honest party, the adversary commits herself to the correct function.

A similar problem occurs when the parties input to their boxes the inputs
to the computed function. A sequence of corrupted parties at the end of the
traversal can emulate the last steps of the protocol many times, with different
inputs. To prevent this, we traverse the cycle twice. After the first traversal, the
inputs are collected and the function is evaluated. Then, the (still encrypted)
output traverses the cycle for the second time, and only then is given to the
parties.

Finally, we observe that at the end of the protocol, a graph component of
neighboring corrupted parties learns where the traversal enters their compo-
nent (this can be done by fast-forwarding the protocol). Depending on how the
eulerian cycle is computed, this could leak information about the topology. To
address this, we introduce in Sect. 4.3 an algorithm for computing the traver-
sal that does not have this issue (formally, the last part of the cycle can be
simulated).

Protocol Hw-Computation

// The common input of all parties is the round length R. Additionally, each Pi

has input (xi, fi, idi, ci), where idi is the identifier chosen in Hw-Preprocessing,
and ci is the encrypted state outputted by Hw-Preprocessing.

Setup: Each party Pi has access to a secure hardware box functionality FHW.

Initialization for each Pi: For each neighbor Pj , let Ej = ∅.

Execution for each Pi at every r clock ticks:

1: Send (FetchMessages) to Fnet and receive the messages (E1, . . . , Eν).
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2: Choose r at random and input (i, idi, ci,
⋃

j Ej , xi, fi, r) to FHW. Get the

result (val, {(E′
1, next1), . . . , (E′

k, nextk)}). If val �= ⊥, output val, but con-
tinue running.

3: For each (E′
j , nextj), for each e ∈ E′

j , send e to nextj via (Send, i, nextj , e).
a

Termination for each Pi: Upon receiving the signal, terminate.

a We will assume that every message sent in this round is independent. In this case

this is equivalent to assuming only independence between rounds—since there is an

upper bound n on the number of messages sent at once, one can always make the

round longer, partition it into slots separated by a sufficient time interval, and send

one message in every slot.

Realizing Reactive Functionalities. Reactive functionalities are those which
require explicit interaction between parties, e.g. if the function we realize is very
simple but we want to evaluate a complex function, parties may need to run
this protocol multiple times in sequence, using previous outputs to generate the
next inputs. Our current hardware protocol allows us to realize secure function
evaluation. In the synchronous setting, this can be easily extended to reactive
functionalities by invoking many function evaluations in sequence. However, in
the setting with unknown delays this is no longer clear. For example, if our
protocol is composed sequentially in the naive way, then parties start the second
execution at different times, which leaks topology.

So, to get reactive functionalities or composition to work for this hardware
protocol we can do one of two things. First, we could add a synchronization
point before each ‘round’ of the reactive function. Second, we could employ the
same trick as for the cycle/tree protocol in Sect. 3, sending the same message
many times so that with high probability it arrives to the next node within
some reasonable time interval. With this method, every party ends the protocol
at exactly the same time, and so can start the next protocol at the same time,
despite the delays.

The running time of the protocol Hardware depends only on the sum of all
delays in the network, each rounded to the next multiple of the round length
R, which is the only information leaked in the ideal world. In the full version
[LLM+19] we prove the following theorem.

Theorem 3. For any efficiently computable and well-formed9 functionality F ,
the protocol Hardware UC-realizes (Fclock,FLsum

info ,F) in the (Fclock,Fnet,FHW)-
hybrid model with an adversary who statically passively corrupts any number of
parties, where Lsum := R

∑
De∈D�De/R�.

Remark. One can observe that in our protocol the hardware boxes must be able
to evaluate a complex function. This can be resolved at the cost of efficiency, by

9 Intuitively, a functionality is well-formed if its code does not depend on the ID’s of
the corrupted parties. We refer to [CLOS02] for a detailed description.
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computing the functionality by many calls to the simple broadcast functionality.
Note that even if we require one synchronization point per broadcast, this still
seems reasonable, since it is possible to evaluate any function with constant
number of broadcasts [DI05,LPSY15].

4.3 Computing the Eulerian Cycle

It turns out that not every algorithm computing an Eulerian cycle can be used
in FHW to achieve THC. In particular, during the execution of our protocol the
adversary learns some information about a part of the cycle, which for some
algorithms depends on the graph. More technically, during the simulation, it
is necessary to compute the time when the adversary learns the output, and
this happens as soon as the Eulerian cycle traversal enters a fragment of con-
secutive corrupted parties containing the output party. This is because it can
“fast-forward” the protocol (without communication). Hence, we need an algo-
rithm for computing such a cycle on a graph with doubled edges, for which the
“entry point” to a connected component (of corrupted parties) can be simulated
with only the knowledge of the component.

Common algorithms, such as Fleury or Hierholzer [Fle83,Fle91], check a
global property of the graph and hence cannot be used without the knowledge of
the entire graph topology. Moreover, a distributed algorithm in the local model
(where the parties only have knowledge of its neighbors) such as [Mak97] is also
not enough, since the algorithm has to be executed until the end in order to
know what is the last part of the cycle.

We present the algorithm EulerianCycle, which, if executed from a node u on
a connected neighborhood containing u, leads to the same starting path as if it
was executed on the whole graph. This property is enough to simulate, since the
simulator can compute the last fragment of the Eulerian Cycle in the corrupted
neighborhood. We note that the start of the cycle generated by our algorithm
can be simulated, however, the simulator needs to compute the end. Hence, the
hardware boxes will traverse the path outputted by EulerianCycle from the end.

Fig. 1. An example of a graph G (on the left) and the corresponding tree T , computed
by EulerianCycle(1, G) (on the right). The eulerian cycle (on the graph with doubled
edges) is (1, 2, 4, 1, 3, 1, 3, 5, 3, 4, 2, 1).
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The idea is to generate a tree from the graph, in such a way that the gener-
ated tree contains exactly the same edges as the graph. To do that, the tree is
generated in a DFS-manner from a source u. At every step, a new edge (the one
that leads to the smallest id according to a DFS order, and without repeating
nodes) is added to the tree. Since the graph is connected, all edges are eventually
added. Moreover, each edge is added exactly once, since no repeated nodes are
expanded. See Fig. 1 for an example execution.

Algorithm EulerianCycle(u,G = (E, V ))

// Computes an eulerian cycle on the graph G with the set of nodes V and the
set of edges E (where each edge is considered doubled), starting at node u ∈ V .
We assume some ordering on V .

1: Let T be the tree with a single root node u.
2: while E �= ∅ do
3: if there is no v ∈ V such that (u, v) ∈ E then
4: Set u = parent(T , u)
5: else
6: Pick the smallest v such that (u, v) ∈ E and append v to the children

of u in T .
7: Set E = E \ {(u, v)}.
8: If v /∈ nodes(T ), then set u = v.

9: Output the path corresponding to the in-order traversal of T .

Appendix

A Adversarially-Controlled Delays Leak Topology

Much like how adversarially-controlled aborts were shown to leak topological
information in [MOR15], we can show that adversarially-controlled delays also
leak topological information. First, note that if we have bounded delays, we can
always use a synchronous protocol, starting the next round after waiting the
maximum delay. So, in order for this model to be interesting, we must assume
the adversary has unbounded delays. In order to be as general as possible, we
prove this with the weakest model we can while still giving the adversary some
control over its delays: the adversary can only add delay to messages leaving
corrupt nodes.

Our proof will follow the structure of [MOR15], using a similar game-based
definition and even using the same adversarially-chosen graphs (see Fig. 2). Our
game is straightforward. The adversary gives the challenger two graphs and a
set of corrupt nodes so that the corrupt neighborhoods are identical when there
is no adversarially added delay. The challenger then chooses one of those graphs
at random, runs the protocol, and gives the views of all corrupt nodes to the
adversary. The adversary wins if she can tell which graph was used. In [MOR15],
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the adversary would choose a round to failstop one of its corrupt parties. In our
model, the adversary will instead choose a time (clock-tick) to add what we call
a long-delay (which is just a very long delay on sending that and all subsequent
messages). The adversary will be able to detect the delay based on when the
protocol ends: if the delay was early in the protocol, the protocol takes longer
to finish for all parties, and if it was late, the protocol will still finish quickly for
most parties.

This impossibility result translates to an impossibility in the simulation-based
setting since a secure protocol for the simulation-based setting would imply a
secure protocol for the game-based setting.

Fig. 2. Graphs used to prove the impossibility of THC with adversarial delays. PS is
the sender. The corrupted parties (black dots) are: PL and PR (they delay messages),
and the detective PD. The adversary determines whether PD (and its two neighbors)
are on the left or on the right.

A.1 Adversarially-Controlled Delay Indistinguishability-based
Security Definition

Before proving the impossibility result, we first formally define our model. This
model is as weak as possible while still assuming delays are somewhat controlled
by the adversary. We will assume a minimum delay along edges: it takes at least
one clock-tick for a message to get from one party to another.

Delay Algorithms. In order to give the adversary as little power as possible,
we define a public (and arbitrary) randomized algorithm that outputs the delays
for a graph for protocol Π. Both the adversary and challenger have access to
this algorithm and can sample from it.

Definition 1. A indistinguishability-delay algorithm (IDA) for a protocol Π,
DelayAlgorithmΠ , is a probabilistic polynomial-time algorithm that takes as input
an arbitrary graph outputs unbounded polynomial delays for every time τ and
every edge in the graph. Explicitely, for any graph G = (V,E), DelayAlgorithm(G)
outputs T such that for every edge (i, j) ∈ Eb and time τ , T ((i, j), τ) = d(i,j),τ
is a delay that is at least one.

The Indistinguishability Game. This indistinguishability definition is a game
between an adversary A and challenger C adapted from [MOR15]. Let DelayAl-
gorithm be an IDA as defined above.
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– Setup: Let G be a class of graphs and Π a topology-hiding broadcast protocol
that works on any of the networks described by G according to our adversarial
delay model, and let DelayAlgorithm be a public, fixed IDA algorithm. Without
loss of generality, let P1 have input x ∈ {0, 1}, the broadcast bit.

– A chooses two graphs G0 = (V0, E0) and G1 = (V1, E1) from G and then a
subset Z of the parties to corrupt. Z must look locally the same in both G0

and G1. Formally, Z ⊂ V0 ∩ V1 and NG0(Z) = NG1(Z). If this doesn’t hold,
C wins automatically.
A then generates TZ , a function defining delays for every edge at every time-
step controlled by the adversary. That is, TZ((i, j), τ) = d(i,j),τ , and if Pi ∈ Z,
then every message sent from Pi to Pj at time τ is delayed by an extra d(i,j),τ .
A sends G0, G1,Z, and TZ to C.

– C chooses a random b ∈ {0, 1} and executes Π in Gb with delays according
to DelayAlgorithm(Gb) = T for all messages sent from honest parties. For
messages sent from corrupt parties, delay is determined by the time and
parties as follows: for time τ a message sent from party Pi ∈ Z to Pj has
delay T ((i, j), τ)+TZ((i, j), τ) in reaching Pj . A receives the view of all parties
in Z during the execution.

– A then outputs b′ ∈ {0, 1} and wins if b′ = b and loses otherwise.

Notice that in this model, the adversary statically and passively corrupts any
set of parties, and statically determines what delays to add to the protocol.

Definition 2. A protocol Π is indistinguishable under chosen delay attack
(IND-CDA) over a class of graphs G if for any PPT adversary A, there exists
an IDA DelayAlgorithm such that

Pr[A wins] ≤ 1
2

+ negl(n).

A.2 Proof that Adversarially-Controlled Delays Leak Topology

First, we will define what we mean when we say a protocol is ‘weakly’ realized
in the adversarial delay model. Intuitively, it is just that the protocol outputs
the correct bit to all parties if there is no adversarial delay.

Definition 3. A protocol Π weakly realizes the broadcast functionality if Π is
such that when all parties execute honestly with delays determined by any IDA,
all parties get the broadcast bit within polynomial time (with all but negligible
probability).

Theorem 4. There does not exist an IND-CDA secure protocol Π that weakly
realizes the broadcast functionality of any class of graphs G that contains line
graphs.

Throughout the proof and associated claim, we refer to a specific pair of
graphs that the adversary has chosen to distinguish between, winning the IND-
CDA game. Both graphs will be a line of n vertices: G = (V,E) where E =
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{(Pi, Pi+1)}i=1,...,n−1. We will let Π be a protocol executed on G that weakly
realizes broadcast when P1 is the broadcaster, see Fig. 2.

Our adversary in this model will either add no delay, or will add a very long
polynomial delay to every message sent after some time τ .

Notice that A is given access to DelayAlgorithm at the start of the protocol.
One can sample from DelayAlgorithm using G0, G1, and Z to get an upper bound
T on the time it takes Π to terminate with all but negligible probability. Since
Π weakly realizes broadcast, T is polynomial. So, A has access to this upper
bound T .

Long-Delays. Let a long-delay be a delay that lasts for T clock-ticks. Consider
an adversary that will only add long-delays to a protocol, and once an adversary
has long-delayed a message, he must continue to long-delay messages along that
edge until the end of the protocol. That is, once the adverary decides to delay
along some edge, all subsequent messages along that edge cannot arrive for at
least T clock-ticks.

Claim. Consider any party Pv whose neighbors do not add any extra delay as
described by the long-delay paragraph above. As in [MOR15], let Hv,b be the
event that Pv outputs the broadcast bit by time T (Pv may still be running the
protocol by time T or terminate by guessing a bit by T ). Let Eτ be the event
that the first long-delay is at time τ . Then either Π is not IND-CDA secure, or
there exists a bit b such that

|Pr [Hv,b|ET−1] − Pr [Hv,b|E0]| ≥ 1
2

− negl(n).

Proof. If some Pi long-delays at time 0, then the first message it sends is at time
T , and so the graph is disconnected until time T . This makes it impossible for
parties separated from P1 to learn about the output bit by time T . So, by that
time, these parties must either guess an output bit (and be right with probability
at most 1/2) or output nothing and keep running the protocol (which is still not
Hv,b). If Π is IND-CDA secure, then all honest parties must have the same
probability of outputting the output bit by time T , and so there exists a b such
that Pr[Hv,b|E0] ≤ 1

2 − negl(n) for all honest parties Pv.
However, if Pi long-delays at time T − 1, then the only parties possibly

affected by Pi are Pi−1 and Pi+1; all other parties will get the output by
time T and the information that Pi delayed cannot reach them (recall we
assumed a minimum delay of at least one clock-tick in the DelayAlgorithm).
So, Pr[Hv,b|E0] = Pr[Hv,b|no extra delays] = 1 − negl(n) for all honest parties
without a delaying neighbor by the definition of weakly realizing broadcast.

The claim follows: |Pr [Hv,b|ET−1] − Pr [Hv,b|E0]| ≥ |12 − negl(n) − 1| ≥
1
2 − negl(n). �
Proof (Theorem 4). This just follows from the previous claim. A simple hybrid
argument shows that there exists a pair (τ∗, b) ∈ {0, . . . , T − 1} × {0, 1} such
that

|Pr [Hv,b|Eτ∗ ] − Pr [Hv,b|Eτ∗+1]| ≥ 1
2T

− negl(n)
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for all Pv who do not have a neighbor delaying. Since T is polynomial, this
is a non-negligible value. Without loss of generality, assume Pr[Hv,b|Eτ∗ ] >
Pr[Hv,b|Eτ∗+1]. Leveraging this difference, we will construct an adversary A
that can win the IND-CDA game with non-negligible probability.

A chooses two graphs G0 and G1. G = G0 and G1 is G except parties 3, 4,
and 5 are exchanged with parties n−2, n−1, and n respectively. A corrupts the
source part PS := P1, a left party PL := Pn/2−1, a right party PR := Pn/2+1,
and the detective party PD := P4. See Fig. 2 for how this looks. The goal of A
will be to determine if PD is to the left or right side of the network (close to the
broadcaster or far).

A computes the upper bound T using DelayAlgorithm and randomly guesses
(τ∗, b) that satisfy the inequality above. At time τ , A initiates a long-delay at
party PL, and at time τ +1, A initiates a long-delay at party PR. So, A gives the
challenger TZ where TZ((i, j), t) = 0 for t < τ∗, and for t ≥ τ∗: TZ((L, n/2), t) =
TZ((L, n/2 − 2), t)T and TZ((R,n/2), t + 1) = TZ((R,n/2 + 2), t + 1) = T .

Notice that news of PL’s delay at time τ∗ cannot reach PR or any other party
on the right side of the graph by time T . Also note that the time A gets output
for each of its corrupt parties is noted in the transcript.

If C chooses G0, then PD is on the left side of the graph and has probability
Pr[HD,b|Eτ∗ ] of having the output bit by time T because its view is consistent
with PL delaying at time τ∗. If C chooses G1, then PD is on the right side of
the graph, and has a view consistent with the first long delay happening at
time τ∗ + 1 and therefore has Pr[HD,b|Eτ∗ ] of having the output bit by time T .
Because there is a noticeable difference in these probabilities, A can distinguish
between these two cases with 1

2 plus some non-negligible probability. �

Consequences of this Lower Bound. We note that this is just one model
where we prove it is impossible for the adversary to control delays. However, we
restrict the adversary a great deal, to the point of saying that regardless of what
the natural network delays are, the adversary can learn something about the
topology of the graph. The lower bound proved in this model seems to rule out
any possible model (simulation or game-based) where the adversary has power
over delays.

B PKCR* Encryption

This section formally defines PKCR*—the extended Privately Key Commutative
and Rerandomizable (PKCR) encryption of [AM17].

Let PK, SK and C denote the public key, secret key and ciphertext spaces.
In contrast to PKCR, the message space is {0, 1}. Moreover, C ∩ {0, 1} = ∅.
As in any public-key encryption scheme, we have the algorithms PKCR*.KGen :
{0, 1}∗ → PK × SK and PKCR*.Enc : {0, 1} × PK → C for key generation
and encryption, respectively (decryption can be implemented via deleting lay-
ers). Moreover, we require the following properties, where only the first two are
provided (with minor differences) by PKCR.
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Key-Commutative. PK forms a commutative group under the operation �. In
particular, given any pk1, pk2 ∈ PK and the secret key sk1 corresponding to
pk1, we can efficiently compute pk3 = pk1 � pk2 ∈ PK (note that sk1 can be
replaced by sk2, since PK is commutative).
This group must interact well with ciphertexts; there exists a pair of deter-
ministic efficiently computable algorithms PKCR*.AddLayer : C × SK → C
and PKCR*.DelLayer : C × SK → C ∪ {0, 1} such that for every pair of public
keys pk1, pk2 ∈ PK with corresponding secret keys sk1 and sk2, for every bit
b ∈ {0, 1}, and every ciphertext c = PKCR*.Enc(b, pk1), with overwhelming
probability it holds that:

– The ciphertext PKCR*.AddLayer(c, sk2) is an encryption of b under the
public key pk1 � pk2.

– PKCR*.DelLayer(c, sk2) is an encryption of b under the public key pk1 �
pk−1

2 .
– PKCR*.DelLayer(c, sk1) = b.

Notice that we need the secret key to perform these operations.10

Rerandomizable. There exists an efficient probabilistic algorithm PKCR*.Rand :
C → C, which re-randomizes a ciphertext.11 Formally, we require that for
every public key pk ∈ PK, every bit b, and every c = PKCR*.Enc(b, pk), the
following distributions are computationally indistinguishable:

{(b, c, pk,PKCR*.Enc(b, pk))} ≈ {(b, c, pk,PKCR*.Rand(c, pk))}

Transforming a 0-ciphertext to a 1-ciphertext. There exists an efficient algorithm
PKCR*.ToOne : C → C, such that for every pk ∈ PK and for every c =
PKCR*.Enc(0, pk), the output of PKCR*.ToOne(c) is an encryption of 1 under
pk.

Key anonymity. A ciphertext reveals no information about which public key was
used in encryption. Formally, we require that PKCR* is key-indistinguishable
(or IK-CPA secure), as defined by Bellare et al. [BBDP01].

B.1 Construction of PKCR* Based on DDH

We use a cyclic group G = 〈g〉. We keep as ciphertext a pair of group elements
(c1, c2). The first group element contains the message. The second group element
contains the secret keys of each layer of encryption. All information is contained
in the exponent.

To add a layer of encryption with a secret key sk, one simply raises the
second element to sk. Similarly, one can remove layers of encryption. When all
layers of encryption are removed, both group elements are either equal c1 = c2

10 In PKCR of [ALM17], computing pk1�pk2 does not require the secret key. Moreover,
PKCR requires perfect correctness.

11 In [ALM17] the rerandomization algorithm is given the public key as input. We also
note that they require public keys to be re-randomizable, while we do not need this
property.
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(the message is 0) or c1 = c22 (the message is 1). To transform an encryption of
0 to an encryption of 1, one simply squares the first group element.

Algorithm PKCR*

We let G be a group of order p, generated by g. These parameters are implicitly
passed to all algorithms (formally, they are part of each ciphertext and an input
to key generation).

PKCR*.KGen

1: Sample the secret key sk uniform
at random from Zp.

2: Output (gsk, sk).

PKCR*.Enc(b, y)

1: Sample r at random from Zp.
2: Output c = (g(b+1)r, yr).

PKCR*.AddLayer((c1, c2), sk)

1: Output (c1, c
sk
2 ).

PKCR*.Rand((c1, c2))

1: Sample r at random from Zp.
2: Output (cr

1, c
r
2).

PKCR*.DelLayer((c1, c2), sk)

1: Set c′
2 = csk

−1

2 .
2: if c1 = c′

2 then Output 0.
3: else if c1 = c′2

2 then Output 1.
4: else Output (c1, c

′
2).

PKCR*.ToOne((c1, c2))

1: Output (c21, c2).

The proof of security of our scheme can be found in the full version [LLM+19].

C The Function Executed by the Hardware Boxes

The functionality FHW contains hard-wired the following values: a symmetric
encryption key pk, and a key rk for a pseudo-random function prf. Whenever
it outputs an encryption, it uses an authenticated encryption scheme AE with
key pk, and with encryption randomness computed as prfrk(x), where x is the
whole input of FHW. FHW can receive three types of input, depending on the
current stage of the protocol: the initial input and an intermediate input during
Hw-Preprocessing, and an intermediate input during Hw-Computation. On any
other inputs, FHW outputs ⊥.

Behavior During Preprocessing. During the preprocessing, the first input
is a triple (i, idi,NG(Pi)), and next inputs are triples (id, c, cj), where c and cj

are states of parties, encrypted under pk. In particular, the state of a party Pi

consists of the following information:

– i: the index of Pi,
– G: the current image of the graph (stored in an n-by-n matrix),
– ID = (id1, . . . , idn): a vector, containing the currently known identifiers of

parties.

On the first input, FHW outputs an encryption of the initial state, that is, the
state where the graph G contains only the direct neighborhood of Pi, and ID
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contains only the value idi chosen by Pi. For the inputs of the form (id, c, cj),
FHW decrypts the states c and cj and merges the information they contain into
a new state s, which it then encrypts and outputs.

Behavior During Computation. Recall that the goal of FHW at this stage
is to compute the next encrypted messages, which a party Pi will send to its
neighbors. That is, it takes as input a set of encrypted messages received by Pi

and, for each neighbor of Pi, outputs a set of n messages to be sent.
Each encrypted message contains information about which graph traversal it

is a part of, about the current progress of the traversal, and about all the inputs
collected so far. Moreover, we include the information from the encrypted state:
(i, G, ID) and the function f of the party starting the cycle. Intuitively, the
reason for including f and the encrypted state is that, since the adversary is
passive, the information taken from the message must be correct (for example,
now a corrupted party cannot use its box to evaluate any function of its choice).
Formally, an encrypted message from another node decrypts to a message mj

containing the following elements:

– j is the party number (the publicly known number between 1 and n, not the
party’s id)

– IDj is the vector of unique random id’s. Carrying this in the message allows
us to ensure that inputs are all consistent with the same parties.

– Gj is the adjacency matrix of the network graph. It is also used to check
consistency.

– Pathj = (id1, . . . , id4n2
): a vector of length 4n2, containing the current set

of identifiers of parties visited so far along the graph traversal starting at Pj

(recall that the eulerian cycle of length at most 2n2 is traversed twice).
– fj is the function that parties will compute.
– �xj is a vector that has a slot for every party to put its input. It starts as

being completely empty, but gains an entry when it visits a new node on the
graph. We also check this for consistency (a party trying to input a different
value from the one they started with will not be able to use the hardware).

At a high level, FHW first discards any dummy or repeated messages (a party
can receive many messages, but the hardware box needs to continue at most n
Eulerian cycles), and then processes each remaining message. If a message has
traversed the whole Eulerian cycle, FHW computes and reveals the function
applied to the inputs. Otherwise, it creates an encryption of a new message with
the current party’s id added to the current path, and its input added to the list
of inputs, and next contains the id of the destination neighbor. After processing
all messages, for each destination neighbor, it adds correctly formated dummy
encryptions, so that exactly n encryptions are sent to each neighbor.

The functionality FHW is formally described below. It calls the following
subroutines:

– AggregateTours takes as input a set of messages M . Each of these messages
contain information about a Eulerian Cycle, the party that started that Eule-
rian Cycle, and the path traversed so far. The subroutine selects the (at most
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n) messages that start from different parties. It is expected that Eulerian
Cycles starting from the same party, are exactly the same message.

– ContinueTour takes as input a specific message, a Eulerian Cycle that the
message must traverse, and a current party’s input and number. If the Eule-
rian Cycle has not been traversed, it then creates a new message containing
a path with the current party’s input and id appended to the corresponding
variables, and also the id of the party where the message should be sent.
Otherwise, it outputs a flag indicating that the Eulerian Cycle has ended and
the output must be revealed.

– EncryptAndFormatOutput takes as input a set of pairs message-
destination, and appends to each possible destination parsable messages until
there are n messages. It then encrypts each message and outputs, for each
possible destination a set of encryptions and the id of the party where the
encryptions must be sent.

Functionality FHW

Setup: The hardware box is initialized with a symmetric encryption key pk and

a PRF key rk.

Initial input during Hw-Preprocessing

Input: x = (i, idi,NG(Pi))
1: Compute the initial vector ID as a vector of n ⊥’s except with idi in the i-th

position.
2: Compute a new adjacency matrix Gi with the only entries being the local

neighborhood of Pi.
3: Compute the initial state s = (i, ID, Gi)

Output: the encrypted initial state AE.Encpk(s; prfrk(x)).

Intermediate input during Hw-Preprocessing

Input: x = (id, c, cj), where id is the identifier of Pi, c is the encrypted state
of Pi, and cj is the state of a neighbor Pj .

1: Compute the states (i, ID, G) = AE.Decpk(c) and (j, IDj , Gj) = AE.Decpk(cj).
2: Compute the new state s = (i, ID′, G′), where ID′ contains all identifiers which

appear in IDj or ID, and G′ is the union of G and Gj .
Output: the encrypted state AE.Encpk(s; prfrk(x)).

Intermediate input during Hw-Computation

Input: x = (i, id, c, E, xi, fi, r), where i is the party’s index, id is the iden-
tifier of Pi, c is the encrypted state of Pi, E is the set of encrypted messages
(freshly gotten from the buffer), xi is the input, fi is the evaluated function
and r is a fresh random value.

1: Decrypt the messages M = {AE.Decpk(e) | e ∈ E} (output ⊥ if any decryp-
tion fails).

2: Let L = AggregateTours(M), and output ⊥ if AggregateTours outputs ⊥.
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3: Let S = ∅, val = ⊥.
4: if L = ∅ then// Start the traversal.
5: Decrypt the state (i, ID, G) = AE.Decpk(c) (output ⊥ if the decryption

fails). // The graph and the ID-vector are taken from the encrypted state.

6: Let Path = (id, ⊥, . . . , ⊥) be a vector of length 4n2. Let x be the vector
of length n, initialized to ⊥ and set x[i] = xi.

7: Compute Touri as the reverse Euler Cycle for G starting at party Pi.
8: Let m = (i, ID, G, Path, fi, x).
9: Add (m, Touri[2]) to S.

10: else// Continue traversals.
11: for m ∈ L do
12: Parse m = (j, IDj , Gj , Pathj , fj , �xj). // The graph and the ID-vector

are taken from the message.
13: Compute Tourj as the reverse Euler Cycle for G starting at party Pj .
14: Parse Pathj = (p1, . . . , p�j , ⊥, . . . , ⊥). Output ⊥ if any of the following

conditions holds:
– id �= IDj [i]
– p�j �= i
– for any l ∈ [�j ], pl �= Tourj [l mod 2m]

15: Let (m′, next) = ContinueTour(m, xi, i, Tourj).
16: if m′ = Output then
17: Let val = fi(�xj).
18: else
19: Add (m′, next) to S.

20: Output : (val, EncryptAndFormatOutput(i, G, r, S, 0))

Functionality FHW-subroutines

AggregateTours (M)

// Takes a set of messages and for each party outputs a message that corresponds
to its Euler Cycles.

1: If any m ∈ M does not parse properly, return ⊥.
2: Let L = ∅.
3: for each m ∈ M do
4: Parse m = (j, ID, G, Path, f, �x).
5: if ∃m′ := (j, ∗, ∗, ∗, ∗, ∗) ∈ L and m′ �= m then
6: Output ⊥.

7: if m /∈ L then
8: Add m to L.
9: return L

ContinueTour (mj , xi, i, Tourj)

1: Parse mj = (j, IDj , Gj , Pathj , fj , �xj).
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2: Parse Pathj = (p1, . . . , p�j , ⊥, . . . , ⊥).
3: if �j = 4m − 1 and Tourj [(�j + 1) mod 2m] = i then
4: return (Output, 0).

5: Set Pathj = (p1, . . . , p�j , Tourj [(�j + 1) mod 2m], ⊥, . . . , ⊥).
6: If �xj [i] = ⊥, then set �xj [i] = xi.
7: return (mj , Tourj [(�j + 1) mod 2m]).

EncryptAndFormatOutput (i, G, r, S, sim)a

1: For each d ∈ NG(i), let Md = {m : (m, d) ∈ S}.
2: for d ∈ NG(i) do
3: If |Md| < n, pad Md with fake, but parsable, messages until it is length

n (messages that start with the party number being 0).

4: for d ∈ NG(i) do
5: Let k = 0, Ed = ∅.
6: for m ∈ Md do
7: if sim = 0 then
8: Add AE.Encpk(m; prfrk(Md, k, r)) to Ed. // Used in protocol
9: else

10: Add AE.Encpk(m; r) to Ed. // Used in simulator

11: return {(Ed, d) : d ∈ NG(i)}

a The additional input sim ∈ {0, 1} will be used by the simulator and can be ignored

at this point.
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