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Abstract. Consider an access policy for some resource which only allows
access to users of the system who own a certain set of attributes. Specif-
ically, we consider the case where such an access structure is defined by
some monotone function f : {0, 1}N → {0, 1}, belonging to some class
of function F (e.g. conjunctions, space bounded computation), where N
is the number of possible attributes.

In this work we show that any succinct single-round delegation scheme
for the function class F can be converted into a succinct single-round pri-
vate access control protocol. That is, a verifier can be convinced that an
approved user (i.e. one which holds an approved set of attributes) is
accessing the system, without learning any additional information about
the user or the set of attributes.

As a main tool of independent interest, we show that assuming a
quasi-polynomially secure two-message oblivious transfer scheme with
statistical sender privacy (which can be based on quasi-polynomial hard-
ness of the DDH, QR, DCR or LWE assumptions), we can convert any
single-round protocol into a witness indistinguishable one, with similar
communication complexity.

1 Introduction

The main goal in the study of delegation of computation is to construct a single-
round succinct argument system for a wide class of functions, in which the
communication complexity and verification computational complexity are inde-
pendent (or at least sublinear) in the computational complexity of deciding the
statement, and where the prover (given a witness if needed) can compute a
proof efficiently (i.e. with comparable complexity to that of deciding the state-
ment). Delegation schemes for polynomially computable functions under stan-
dard assumptions were presented by [GKR08,KRR13,KRR14,KP15,RRR16,

Z. Brakerski—Supported by the Binational Science Foundation (Grant No. 2016726),
and by the European Union Horizon 2020 Research and Innovation Program via ERC
Project REACT (Grant 756482) and via Project PROMETHEUS (Grant 780701).

c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 97–123, 2020.
https://doi.org/10.1007/978-3-030-45388-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_4


98 Z. Brakerski and Y. Kalai

BHK17,KPY18]. In this work, we consider delegation for NP. Constructing del-
egation for all of NP under standard assumptions is an important open prob-
lem, and such schemes are only known in the random oracle model [Mic94],
and under knowledge assumptions [DFH12,BCCT13,BCC+14]. However, for
restricted classes of NP languages, there are delegation schemes from standard
assumptions [BHK17,BKK+17].

When delegating an NP statement, the prover needs to hold a witness that
allows to decide the statement. In such a case a natural question is whether
the privacy of the witness is preserved by the delegation scheme. In this work
we show a general transformation that translates any delegation scheme into a
witness indistinguishable one, without blowing up the communication by much.
We then apply this transformation to known delegation schemes based on stan-
dard assumptions, and construct an object that we call “succinct access control
scheme”. These objects allow a master authority to distribute credentials of
attributes to parties, in a way that will allow them to provide a succinct proof
that the credentials that they hold satisfy a predicate, without revealing the
credentials or their identity.

1.1 Our Witness Indistinguishability Transformation

We show a generic transformation that converts any single-round (2-message)
delegation scheme into one that is also witness indistinguishable (WI), with-
out blowing up the communication complexity. This transformation relies on the
existence of a quasi-poly secure OT scheme, which can be based on the quasi-
polynomial hardness of the DDH, QR, Paillier’s decisional composite residu-
osity assumption (DCR) and recently also the Learning with Errors assump-
tion (LWE). The communication complexity and verifier complexity remain
unchanged up to poly(λ) factors. This transformation relies on a recent 2-
message strong WI protocol in the delayed input setting, proposed by [JKKR17].
(In this work we achieve computational WI, but we believe it may be possible to
achieve statistical witness indistinguishability using the results and techniques
of [KKS18].) See details in Sects. 1.3 and 2.

It should be noted that the high level approach of executing a delegation
scheme homomorphically in order to achieve privacy for the witness can be
traced back to prior works, e.g. [BBK+16]. However, our result statement and
analysis are different from what is done in prior works.

1.2 Application: Succinct Single-Round Access Control

By applying our WI transformation to a class of succinct single-round argument
systems in the literature, that we call “batch NP families”, we get a succinct
single-round witness indistinguishable argument system that allows a user to
prove that they contain a set of attributes that satisfies a given monotone access
structure. We call this “a succinct access control scheme”. We start by explaining
what delegation for batch NP family is, and proceed with our construction.
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Delegation for Batch NP Families. The work of [BHK17] considered a spe-
cial setting of delegation for NP languages. They considered a conjunction (AND
function) of a number of “small” NP statements, and showed a delegation pro-
tocol whose communication complexity scaled with the witness length of a small
statement, rather than a concatenation of the witnesses. We can consider an
extension of this paradigm, replacing the conjunction with other classes of func-
tions. Note that this only makes sense for monotone functions, since a prover
can always claim not to have a witness for a specific small instance.

Formally, our batch NP families will be characterized by a family of mono-
tone functions F . The statements to be proven will be characterized by a col-
lection of instances x1, . . . , xN respective to a language L, and a monotone
function (i.e. without negation gates) f : {0, 1}N → {0, 1} in F . The state-
ment ((x1, . . . , xN ), f) holds if f(1x1∈L, . . . ,1xN ∈L) = 1, where 1xi∈L = 1
if and only if xi ∈ L. For example, we can consider statements of the form
(((x1 ∈ L) ∧ (x2 ∈ L)) ∨ (x3 ∈ L)) ∧ (x4 ∈ L), and much more. In order
to produce an accepting proof, an honest prover needs a set of witnesses for
a subset S ⊆ [N ] of the xi’s that makes f accept. Namely a set of witnesses
{wi}i∈S so that wi is a witness for xi and the set S is sufficient for f to
accept; i.e., f(11∈S , . . . ,1N∈S) = 1. Since f is monotone, this indeed implies
that f(1x1∈L, . . . ,1xN ∈L) = 1 (since S is a subset of the xi’s that are in L).

A delegation scheme for such a family is said to be succinct if the communica-
tion complexity is independent of N (most desirably (m+polylog(n,N))·poly(λ))
and the verifier computational complexity only depends on N to the extent that
it is required to read the input and a description of the function f . In particular,
if f has a succinct representation, e.g. it can be generated by a Turing machine,
then the verification complexity can be lower. Indeed, our results are interesting
for families F that consist of functions f that have a succinct description. We also
require a proof-of-knowledge property, meaning that one can efficiently extract
a valid witness {wi}i∈S from any (possibly cheating) prover that convinces the
verifier to accept with non-negligible probability.

As mentioned above, if the class F is the class of conjunctions, [BHK17]
provide a delegation scheme with the aforementioned properties. We also notice
that the work of Badrinarayanan et al. [BKK+17] implies such a delegation
scheme for space-bounded non-deterministic computations.

Access Control Schemes. Consider a setting where there are N public keys
pk1, . . . , pkN (for a very large N), and each user receives for some subset S ⊂ [N ]
(corresponding to his credentials) a set of secret keys {ski}i∈S , where each ski

corresponds to pki. Now suppose a user wishes to prove anonymously and suc-
cinctly that his credentials satisfy some monotone formula f : {0, 1}N → {0, 1}.
Namely, he wishes to prove that his set S satisfies f(11∈S , . . . ,1n∈S) = 1. Com-
bining our two main results (monotone NP delegation and our WI transforma-
tion) we obtain a single-round succinct and anonymous scheme, where a user
can succinctly prove that his set of secret keys satisfies some monotone access
structure (formulated as a monotone formula), where the anonymity property
is WI and the length of a proof is |ski| · poly(log N,λ), where |ski| is the length
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of a single secret key, and λ is the security parameter. We call such a scheme a
succinct single-round access control scheme.

Moreover, we can make our scheme collusion resilient. Namely, we can ensure
that if two users have credentials corresponding to two sets S1, S2 ⊆ [N ], then
together they cannot get credentials corresponding to S1 ∪ S2, and moreover
together they cannot prove more than what each user could have proven indi-
vidually. This is done by introducing a signature scheme and setting each secret
key to be a signature on the attribute concatenated with a random tag that is
unique for the user. The random tags will prevent mixing an matching between
different users’ attributes. We refer to Sect. 3 for the formal definition and the
construction.

We note that our notion of access control systems is similar to the notion of
anonymous credentials [Cha85]. We identify two main differences between the
two notions. One is that anonymous credentials require anonymity even against
the issuer of the credentials, whereas in our model the issuer is a trusted party.
The second is that anonymous credentials are not required to be succinct, in
the sense that the proof could depend on the number of attributes, whereas
succinctness is a cornerstone in the definition of access control systems. We
believe that our techniques may be useful towards the construction of succinct
anonymous credential schemes under standard assumptions by replacing the
signature scheme from our construction in Sect. 3 with blind signatures [Cha82].

1.3 Technical Overview of Our WI Transformation

We show how to convert any single-round (2-message) argument system (and in
particular, our single-round delegation protocol) with super-polynomial security
into a witness indistinguishable one, with minimal (asymptotic) blowup to the
communication complexity, albeit witness indistinguishability holds only against
polynomial time distinguishers. We note that we can get super-polynomial secu-
rity by properly strengthening the assumption, namely for any function T (λ) ≥ λ
(where λ is the security parameter), if the original scheme was secure against
any poly(T )-size adversary then we get witness indistinguishability against all
T o(1)-size adversaries. Furthermore, if the original protocol is extractable then
the transformation would allow to apply the extractor as well.

The basic idea is for the verifier to simply send the first message of the
protocol, and for the prover to compute its response according to the protocol,
but rather than sending it to the verifier “in the clear”, it will send a statistically
binding commitment to the response. The idea is then for the prover to provide
a WI proof (in parallel) that he indeed sent a commitment to an accepting
response to the verifier’s first message.

This idea runs into several obstacles, let us present the most severe ones.
First, the original protocol may not be publicly verifiable (and indeed we would
like to apply it to our aforementioned privately verifiable protocol), in which case
the prover cannot prove that he is committing to a message that corresponds
to an accepting response, since he does not know the verifier’s verdict function.
Second, we require that the prover commits to the accepting response using a
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statistically binding commitment, but this means that there is only one accepting
witness and WI becomes meaningless. We next explain how to address these
obstacles.

To address the first obstacle, we consider the secret state that the verifier
keeps and is used to render the verdict of acceptance on the prover’s response.
In our new protocol, the verifier will send, along with its delegation query, its
random tape in an encoded form. This encoded form should allow to apply the
functionality of the prover under the encoding and send the encoded result back
to the verifier, and at the same time hide the state so that soundness is main-
tained. To this end, we present an abstraction that we call private remote evalu-
ation scheme, which can be thought of as a one-time non compact homomorphic
encryption scheme with malicious circuit privacy. We show that this primitive
can be constructed using garbled circuits and using an oblivious transfer protocol
with security against malicious receivers (the same assumption is required for the
WI proof system that we need to use). Given the verifier’s random tape encoded
in this way, the prover can “homomorphicly” check that indeed applying the ver-
ifier’s query generation on the encoded random tape results in the query string
sent by the verifier, and that the prover’s response to this query string will result
in the verifier accepting. The prover will perform this operation on the encoded
random tape (note that the expected output should always be an encoding of
1) and prove in WI that the resulting encoding was indeed generated using the
aforementioned operation. Since our encoding scheme is circuit-private, the ver-
ifier will not learn anything from the encoding itself (since it is just an encoding
of 1), but the WI proof will guarantee that indeed the prover committed to a
message that would have made the verifier of the original protocol accept.

The communication complexity of the generic remote evaluation scheme that
we present is proportional to the running time of the verifier in the underlying
argument system. This aspect could be improved by using a succinct remote
evaluation scheme (i.e., a circuit private fully homomorphic encryption scheme),
where the communication complexity does not grow with the running time. Such
an evaluation scheme requires fully homomorphic encryption and can therefore
is currently only known based on the learning with errors assumption (LWE),
whereas our generic solution can be based on a variety of assumptions. We
chose not to specify the succinct version in this work since we anyway inherit a
communication blowup from the WI protocol that we use (see below), which in
general can anyway grow with the running time of the verifier. Thus, we chose
to avoid introducing a new assumption for this purpose.

Let us now specify the properties of the two message WI protocol that is
required for this approach to go through. First of all, we notice that we need
a protocol with adaptive soundness, i.e. soundness holds even against a prover
that chooses the statement to be proven after seeing the verifier’s first message.
We emphasize that even though we use as a building block a WI protocol with
adaptive soundness, our resulting (succinct) WI protocol is not adaptively sound
(i.e., soundness holds only against provers that choose the statement to be proven
before seeing the verifier’s message).



102 Z. Brakerski and Y. Kalai

Second, we need to address the aforementioned vacuousness of the standard
notion of WI when proving with respect to a committed value. This is resolved
by resorting to the notion of strong WI, which considers two distributions over
instance-witness pairs, and requires that if the instance components of the two
distributions are computationally indistinguishable, then the verifier cannot dis-
tinguish which instance-witness pair was used to generate the proof. Indeed, the
recently proposed protocol of Jain et al. [JKKR17] has the required properties
(in the delayed input setting), under the assumption that a quasi-poly secure OT
scheme exists (we refer to Sect. 2 for details, and in particular to Theorem 2.5).

Lastly, we require extractability, namely being able to extract the committed
response to the delegation protocol in case the WI protocol accepted. However,
since the prover only sends a single message, we cannot get extractability under
standard assumptions. We therefore rely on complexity leveraging, and extract
the prover answer by brute-force breaking the hiding of the commitment scheme.
This means that in order for soundness to hold, we need all components other
than the commitment scheme to be secure even in the presence of this brute-
force extractor, i.e. to have super-polynomial security. This way, we can scale
down the hardness of the commitment scheme and allow it to be broken while
leaving the other building blocks secure.

2 Witness Indistinguishability for Any Argument System

In this section we present our general transformation for converting any 2-
message argument system into a 2-message witness indistinguishable one with
only modest increase in communication complexity.

2.1 Preliminaries

Our transformation makes use of several cryptographic building blocks, which
we present below.

Garbled Circuits. We rely on a decomposable randomized encoding scheme.
For the sake of concreteness we consider garbled circuits.

Definition 2.1 (Garbled Circuits). A garbling scheme consists of a tuple of
three algorithms (Garble,GCEval,GCSim) where:

1. Garble(1λ, C) is a PPT algorithm that takes as input the security parameter λ
(ommitted when clear from the context) and a circuit C : {0, 1}n → {0, 1}m,
and outputs a garbled circuit ̂C along with input labels (labi,b)i∈[n],b∈{0,1}
where each label labi,b ∈ {0, 1}λ.

2. GCEval(1λ, ̂C, ̂lab) is a deterministic algorithm that takes as input a garbled
circuit ̂C along with a set of n labels ̂lab = (labi)i∈[n], and outputs a string
y ∈ {0, 1}m.

3. GCSim(1λ, 1|C|, 1n, y) is a ppt algorithm that takes as input the security
parameter, the description length of C, an input length n and a string
y ∈ {0, 1}m, and outputs a simulated garbled circuit ˜C and labels ˜lab.
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We often omit the first input to these algorithms (namely, 1λ) when it is clear
from the context. We require that the garbling scheme satisfies two properties:

1. Correctness: For all circuits C, inputs x, and all ( ̂C, (labi,b)i,b) ← Garble(C)
and ̂lab = (labi,xi

)i∈[n], we have that GCEval( ̂C, ̂lab) = C(x).
2. Simulation Security: For all circuits C : {0, 1}n → {0, 1}m and all inputs x ∈

{0, 1}n, the following two distributions are computationally indistinguishable:
{

( ̂C, ̂lab) : ( ̂C, (labi,b)i,b) ← Garble(C), ̂lab = (labi,xi
)i∈[n]

}

c≈ {

( ˜C, ˜lab) : ( ˜C, ˜lab) ← GCSim(1λ, 1|C|, 1n, C(x))
}

.

Oblivious Transfer Secure Against Malicious Receivers. We use a notion
of oblivious transfer that has computational security against senders (i.e. receiver
privacy) but also (statistical) security against malicious receivers (sender pri-
vacy). That is, regardless of the receiver’s first message, the sender’s response
never reveals more than one of its inputs, even to an unbounded adversary.

Definition 2.2 (Two-Message Oblivious Transfer with Statistical
Sender Security). A two-message oblivious transfer is a protocol between two
parties, a sender S with messages (m0,m1) and receiver R = (R1, R2) with a
choice bit b, such that R obtains output mb at the end of the protocol. Specifi-
cally, R1(b) = R1(1λ, b) outputs (σ, e), where e is the message sent to the receiver
and σ is a local state that is kept private. The sender responds with an answer
v = S(1λ, (m0,m1), e). Finally R2(1λ, σ, v) outputs a message m. We omit the
security parameter input to these procedures when it is clear from the context.

We consider OT that satisfies the following properties:

– Computational Receiver Security. The distributions R1(0) and R1(1) are
computationally indistinguishable. We sometimes require super-polynomial
security, specifically, we say that the OT scheme is T -receiver secure if
T · poly(λ)-size distinguishers have advantage less than negl(λ)

T .
– Statistical Sender Security. For all λ and for all e∗ ∈ {0, 1}∗ there exists a

bit b∗ such that the distributions S(1λ, (m0,m1), e∗) and S(1λ, (mb∗ ,mb∗), e∗)
are statistically indistinguishable. It would sometimes be convenient to think
about b∗ as produced by a computationally unbounded procedure Ext so that
b∗ = Ext(1λ, e∗) (we sometimes omit 1λ when it is clear from the context).

Oblivious transfer protocols satisfying these definitions have been introduced
based on assumptions such as DDH, QR, DCR and LWE [NP01,Kal05,HK07,
BD18].

Delayed-Input Interactive Protocols and Strong Witness Indistin-
guishability. A �-message delayed-input interactive protocol (P, V ) for deciding
an NP language L with associated relation RL proceeds in the following manner:

– At the beginning of the protocol, P and V receive the size of the instance
and the security parameter, denoted by n and λ, respectively, and execute
the first � − 1 messages.
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– Before sending the last message, P receives as input a pair (x,w) ∈ RL, where
|x| = n, and V receives x. Upon receiving the last message from P , V outputs
1 or 0.

An execution of (P, V ) with instance x and witness w is denoted as 〈P, V 〉(x,w).
Whenever clear from context, we also use the same notation to denote the output
of V .

A �-message delayed-input interactive argument for a language L must sat-
isfy the standard notion of completeness (in the delayed-input setting) as well as
adaptive soundness, where the soundness requirement holds even against mali-
cious PPT provers who choose the statement adaptively, depending upon the
first � − 1 messages of the protocol.

Definition 2.3 (Delayed-Input Interactive Arguments). A �-message
delayed-input interactive protocol (P, V ) for deciding a language L is an inter-
active argument for L if it satisfies the following properties:

– Adaptive Completeness: For every (x,w) ∈ RL chosen adaptively after
� − 1 rounds of interaction,

Pr
[〈P, V 〉(x,w) = 1

]

= 1,

where the probability is over the random coins of P and V .
– Adaptive Soundness: For every (non-uniform) PPT prover P ∗ that

chooses n = poly(λ) and chooses x ∈ {0, 1}n \ L adaptively, depending upon
the first � − 1 messages,

Pr
[〈P ∗, V 〉(x) = 1

]

= negl(λ),

where the probability is over the random coins of V .

Definition 2.4 ((Strong) Witness Indistinguishability). Let n = n(λ) ≤
poly(λ). An interactive argument (P, V ) for a language L is strong witness
indistinguishable (which we denote sWI) if for every pair of distributions over
pairs {(X1,n(λ),W1,n(λ))}λ∈N and {(X2,n(λ),W2,n(λ))}λ∈N supported over RL, for
which the distributions {X1,n(λ)}λ∈N and {X2,n(λ)}λ∈N are computationally indis-
tinguishable, for every PPT verifier V ∗, and for every (non-uniform) PPT dis-
tinguisher D,

∣

∣

∣

∣

∣

Pr
(x,w)←(X1,n(λ),W1,n(λ))

[D(x,ViewV ∗ [〈P, V ∗〉(x,w)] = 1
]

− Pr
(x,w)←(X2,n(λ),W2,n(λ))

[D(x,ViewV ∗ [〈P, V ∗〉(x,w)] = 1
]

∣

∣

∣

∣

∣

≤ negl(λ).

Standard (as opposed to strong) witness indistinguishability (which we denote
simply by WI) only requires that the above holds for singleton distributions, which
is equivalent (due to the indistinguishability condition) to defining a deterministic
sequence of input and witness pairs

{(xn(λ), w1,n(λ), w2,n(λ))}λ∈N.
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In delayed input strong witness indistinguishability, the above is only required
to hold with respect to PPT verifiers V ∗ who obtain the instance together with the
last prover message in the protocol (i.e., who generate their messages obliviously
of x). Note that this notion is vacuous for standard (non-strong) WI.

Theorem 2.5 ([JKKR17]). For any T = λω(1), assume the existence of a non-
interactive statistically binding commitment scheme, that is hiding against poly-
size adversaries, but where the hiding property can be broken by poly(T ) adver-
saries, and assume the existence of a poly(T )-secure OT scheme as in Defi-
nition 2.2. Then there exists a 2-message delayed-input strong WI protocol for
every language in NP such that soundness holds against poly(T )-size adver-
saries, but (strong) WI property holds only against poly-size cheating verifiers.

Remark 2.6. The strong WI property can be strengthened to hold against
poly(T ∗)-size cheating verifiers, for any T ∗ = T o(1). However, this requires
assuming that the underlying commitment scheme that can be broken in time
poly(T ), is secure against poly(T ∗) size adversaries.

2.2 Private Remote Evaluation

Our transformation makes use of a primitive that we call a private remote eval-
uation scheme. Loosely speaking, this can be thought of as a one-time non-
succinct fully homomoprhic encryption scheme with strong malicious circuit pri-
vacy [GHV10,OPP14].

Rather than formally defining this primitive, we construct it following the
outline of Yao’s 2-party 2-round secure function evaluation protocol [Yao82]
(using a garbling scheme satisfying Definition 2.1 and using an oblivious transfer
protocol satisfying Definition 2.2), and state its properties.

Let (R = (R1, R2), S) be an OT scheme that satisfies Definition 2.2 and
let (Garble,GCEval,GCSim) be a garbling scheme. Our private remote evaluation
scheme consists of a tuple of four algorithms (Enc,Eval,Dec,Sim), defined as
follows.

– The encoding algorithm Enc takes an input a security parameter 1λ and a
string x ∈ {0, 1}n, and outputs an encoded output ψ and a secret state σ.
Specifically, for every bit of x, Enc runs R1(1λ, xi) to compute the first OT
receiver message ψ(i) and the state σ(i). It outputs ψ = {ψ(i)}i∈[n], σ =
{σ(i)}i∈[n]. We sometimes denote by Enc1 the algorithm that computes Enc
and only outputs the ψ component, and we often omit the security parameter
from the notation.

– The evaluation algorithm Eval takes as input a circuit C : {0, 1}n → {0, 1}m

and an encoded input ψ = {ψ(i)}i∈[n]. It runs GarbleC to generate a gar-
bled circuit ̂C for C with labels labi,b, and computes the sender response
for each OT execution ψ′(i) = S((labi,0, labi,1), ψ(i)). It finally outputs
ψ′ = ({ψ′(i)}i∈[n], ̂C).
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– The decoding procedure Dec takes as input ψ′ = ({ψ′(i)}i∈[n], ̂C) and σ =
{σ(i)}i∈[n], and applies the OT receiver protocol to obtain labi = R2(σ(i), ψ′(i)).
It finally runs GCEval( ̂C, {labi}i∈[n]) and outputs the resulting y ∈ {0, 1}m.

– For all 1n, 1m, 1c representing input, output and circuit size (these inputs are
often omitted when they are clear from the context), there exists a simulator

Sim = (Sim1,Sim2),

such that the following holds. Let Ext be the OT extractor from Definition 2.2.
The simulator Sim1 takes as input a (possibly adversarially chosen) sequence
ψ = {ψ(i)}i∈[n], and runs Ext on each ψ(i) to obtain a bit xi. Let x ∈ {0, 1}n

denote the collection of the extracted bits.
The simulator Sim2, takes as input (ψ, x) together with a string y ∈ {0, 1}m,
it runs in probabilistic polynomial time, and does the following:
1. It runs the PPT garbled circuit simulator GCSim, on input y (and input

1λ, 1|C|, 1n), to generate simulated circuit ˜C and labels ˜lab.
2. It generates simulated sender messages { ˜ψ(i)} ← S((˜labi, ˜labi), xi).
3. It outputs ˜ψ = ({ ˜ψ(i)}, ˜C).

Claim 2.7. For any ψ = {ψ(i)}i∈[n] and any circuit C : {0, 1}n → {0, 1}m, it
holds that

Eval(C,ψ)
c≈ Sim2(ψ, x,C(x)),

where x ← Sim1(ψ).

Proof. By definition,

Eval(C,ψ) =
(

{

S((labi,0, labi,1), ψ(i))
}

i∈[n]
, ̂C

)

.

Since ψ is fixed, then the value x ← Sim1(ψ) is also fixed. It follows from Defi-
nition 2.2 that

Eval(C,ψ)
s≈

(

{

S((labi,xi
, labi,xi

), ψ(i))
}

i∈[n]
, ̂C

)

.

Now we use the garbled circuit security to argue that

Eval(C,ψ)
c≈

(

{

S((˜labi, ˜labi), ψ(i))
}

i∈[n]
, ˜C

)

= Sim2(ψ, x,C(x)),

where ˜lab, ˜C are produced by the garbled circuit simulator given y = C(x).

The following claims are immediate from the OT correctness and receiver
security.

Claim 2.8 (Correctness). For every n = n(λ) (not necessarily polynomially
bounded), every x ∈ {0, 1}n, every C : {0, 1}n → {0, 1}, letting (ψ, σ) ←
Enc(1λ, x), ψ′ ← Eval(C,ψ), y = Dec(σ, ψ′), it holds that y = C(x) with proba-
bility 1.

Claim 2.9 (Receiver Privacy). For every n = n(λ) ≤ poly(λ) and every
sequences of inputs x, x′ ∈ {0, 1}n it holds that Enc1(1λ, x)

c≈ Enc1(1λ, x′).



WI Arguments with Applications to Access Control 107

2.3 Making Single-Round Protocols Witness Indistinguishable

We show how to convert any single-round (2-message) protocol (P, V ) with
super-polynomial security and perfect completeness into a single-round (2-
message) witness indistinguishable (WI) protocol, such that if the communica-
tion complexity of the original protocol (P, V ) is cc(n, λ) then the communication
complexity of the resulting WI protocol (PWI, VWI) is cc(n, λ) + poly(v(n, λ)),
where v(n, λ) is the total runtime of the original verifier V , both in generating
the query string to be sent to the prover and in verifying the response received
by the prover. We use the term verdict function to refer to the second step on
V , namely the function that takes as input the communication transcript and
an internal secret state of the verifier, and outputs whether the verifier accepts
or rejects. Our transformation requires that the original protocol (P, V ) is sound
against super-polynomial time adversaries (as we intend to use complexity lever-
aging). Our theorem statement follows.

Theorem 2.10. For any super-polynomial function T : N → N, there is a
generic transformation that transforms any (privately or publicly verifiable)
single-round argument (P, V ) for an NP language L with perfect completeness
and with soundness against poly(T )-size cheating provers, into a privately veri-
fiable witness indistinguishable single-round argument (PWI, VWI) for L with the
following properties:

– Succinctness. If the communication complexity of (P, V ) is cc(n, λ), and
V has total time complexity v(n, λ), then the communication complexity of
(PWI, VWI) is1

ccWI(n, λ) � cc(n, λ) + poly(λ, v(n, λ)).

– Completeness. For every x ∈ L and any witness w for x, it holds that
(PWI(x.w), VWI(x)) accepts with probability 1.

– Soundness. (PWI, VWI) is sound against (non-uniform) cheating provers of
size poly(T ).2

– Witness Indistinguishability. (PWI, VWI) is witness indistinguishable
against (non-uniform) PPT cheating verifiers (but not against poly(T )-size
cheating verifiers, see also Remark 2.12 below).

This transformation requires the following building blocks:

– A statistically binding non-interactive commitment scheme Com that can be
broken in time poly(T ) for all sufficiently large value of λ.

1 This guarantee is of interest only if v(n, λ) is significantly smaller than the witness
size, which is the case for example the argument systems constructed in [BHK17,
BKK+17].

2 We emphasize that the soundness property (both for the underlying argument (P, V )
and the resulting one (PWI, VWI)) is non-adaptive soundness, where soundness is
required to hold only against cheating provers that choose the statement to be proven
before seeing the verifier’s message.
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– The private remote evaluation scheme (Enc,Dec,Eval,Sim), as described in
Sect. 2.2, where the underlying OT scheme has receiver privacy against
poly(T )-size adversaries (i.e, Claim 2.9 is satisfied against poly(T )-size
adversaries).

– A delayed-input single-round (2-message) strong WI (sWI) argument system
(PsWI, VsWI) for NP, that is sound against poly(T ) size cheating provers.

In fact, we will show that our transformation enjoys an even stronger sound-
ness guarantee as described next. There exist black-box non-rewinding, instance
preserving (where applicable) poly(T )-time reductions M1,M2,M3, such that for
every (possibly inefficient) cheating prover P ∗

WI it holds that M
P ∗

WI
1 is a cheat-

ing prover against the sWI proof system, M
P ∗

WI
2 is a distinguisher for the remote

evaluation scheme, and M
P ∗

WI
3 is a cheating prover against the original argument

system, and it holds that the sum of advantages of these adversaries in their
related game is at least the advantage of P ∗

WI in the compiled protocol (up to
negligible terms).

We note that the resulting WI protocol is only privately verifiable, even if
the underlying protocol was publicly verifiable.

Remark 2.11. We note that if we rely on a succinct remote evaluation scheme
(e.g., a circuit-private fully homomorphic encryption scheme), then the commu-
nication complexity would be poly(λ) · cc(n, λ) + cc(sWI), where cc(sWI) is the
communication complexity of the underlying strong WI protocol, which in gen-
eral can be as large as v(n, λ), but can be smaller if the underlying strong WI
protocol is succinct.

Remark 2.12. One can strengthen the above theorem so that WI holds against
any poly(T ∗)-size adversaries, for any T ∗ = T o(1), by relying on a quantified
version of Theorem 2.5 (see Remark 2.6), with WI against poly(T ∗)-size adver-
saries. This requires assuming that the underlying commitment scheme Com,
which can be broken in time poly(T ), is secure against poly(T ∗)-adversaries.

Proof. Consider a language L, time complexity bound T , a protocol (P, V ), a
private remote evaluation scheme (Enc,Dec,Eval,Sim) and a delayed input strong
WI argument system (PsWI, VsWI), all as described in the theorem statement.
We denote by (Q,A) the first and second message respectively exchanged in the
protocol (P, V ).

Let Com be a statistically binding non-interactive commitment scheme that
can be broken in time poly(T ), as described in the theorem statement. Such
commitment schemes can be constructed from injective one-way functions. We
note that for our purposes it is possible to use Naor’s two-message commitment
scheme from any one-way function [Nao89] since we can allow a message from
the receiver to the sender prior to the commitment message, but for the sake of
simplicity we will assume that Com is non-interactive. We further assume w.l.o.g
that the length of the commitment string is equal to the length of the committed
message plus an additive poly(λ) term. This can be achieved generically using
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“key encapsulation” (committing to a PRG seed and using the PRG output to
mask the message).

We show how to convert (P, V ) into a 2-message witness indistinguishable
argument, denoted by (PWI, VWI), which preserves the succinctness property
of (P, V ), as stated in the theorem statement. Since (P, V ) is not necessarily
publicly verifiable, in order to verify a transcript (Q,A) the verifier may need
a private state, which we denote by st. We will assume w.l.o.g that st is simply
the random tape of the verifier V . This will allow to check, given some possible
query string Q whether Q is the string generated when V starts with random
tape st. If this condition holds, we say that st is consistent with Q, we denote this
by st |= Q. The resulting protocol (PWI, VWI) makes use of an underlying (not
necessarily succinct) delayed-input strong WI 2-message argument (PsWI, VsWI)
for the NP language L′, defined as follows:

L′ ={(1λ, x,Q, c, st) : ∃(A, r) s.t.
(

st �|= Q
) ∨ (

c = Com(A, r) ∧ V (1λ, x,Q,A, st) = 1
)}. (1)

Note that every instance where Q is inconsistent with st is trivially in the lan-
guage. Intuitively, this is to force witness indistinguishability also against verifiers
who produce inconsistent transcripts. This condition will never be relevant for
honest verifiers.

In the protocol (PWI, VWI), the prover will send a commitment to his
answer A (as opposed to sending it in the clear, which may reveal information),
followed by a proof that the committed value is an accepting answer. However,
to generate such a proof he needs to know the verdict function, and thus, needs
the verifier’s secret state. However, he cannot receive this secret state “in the
clear”, since that may breech soundness. Instead, the verifier will send the prover
an encoding of his secret state st using the private remote evaluation scheme.

We are now ready to define the protocol (PWI, VWI):

1. On input 1λ and x ∈ {0, 1}n the verifier does the following:
(a) Compute (Q, st) ← V (1λ, x), where Q is the message to be sent to the

prover P , and st is the corresponding secret state of V .
(b) Compute (ψ, σ) ← Enc(st).
(c) Compute (sWI1, stsWI) ← VsWI(1λ).

Note that the first message sWI1 is independent of the instance since
(PsWI, VsWI) is a delayed-input 2-message argument (see Definition 2.3).

Send (Q, sWI1, ψ) to the prover, and store (σ, st, stsWI) as the secret state for
verification.

2. The prover, on input (1λ, x, w), and given the message (Q, sWI1, ψ), does the
following:
(a) Compute A ← P (1λ, x, w,Q)
(b) Choose a random string r ← {0, 1}poly(λ) and compute c = Com(A, r).
(c) Define (implicitly since st is not known) x′ = (1λ, x,Q, c, st), and w′ =

(A, r) as its corresponding witness with respect to RL′ , i.e. (x′, w′) ∈ RL′ .
(d) Given ψ, compute ψ′ = Eval(f, ψ) where f = f1λ,x,Q,c,w′,sWI1 , is the

function that on input st outputs sWI2 ← PsWI(1λ, x′, w′, sWI1).
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Send (c, ψ′) to the verifier.
3. Upon receiving a message (c, ψ′) from the prover, and given a secret state

(σ, st, stsWI) the verifier does the following:
(a) Decrypt the ciphertext ψ′, by computing sWI2 ← Dec(σ, ψ′).
(b) Accept if and only if VsWI(1λ, x′, sWI1, sWI2, stsWI) = 1, where x′ =

(1λ, x,Q, c, st).

Succinctness. We first argue that (PWI, VWI) satisfies the succinctness property
as in the theorem statement. To do this, we argue that

cc(PWI, VWI) = cc(P, V ) + poly(λ) + poly(λ, v(n, λ)),

which would immediately imply the required succinctness.
The first additive poly(λ) term is due to the overhead of sending a commit-

ment to the answer A rather than sending A itself (as explained above, we can
assume additive overhead w.l.o.g). The second poly(λ, v(n, λ)) term is an upper
bound on the length of ψ′. The value ψ′ is the output of applying Eval on a func-
tion f of size v(n, λ)+poly(λ) ≤ poly(λ, v(n, λ)) (an upper bound on the prover
complexity of PsWI when proving (x′, w′) ∈ RL′). Verifying that (x′, w′) ∈ RL′

can be done in time proportional to the total complexity of V since checking
whether st |= Q is proportional to running the first phase of V , and checking the
value of the verdict function is proportional to the second phase. Add to that
checking the commitment which is polynomial in (λ, |A|). Since Eval introduces
a fixed polynomial overhead, its output length is at most poly(λ, v(n, λ)).

It remains to prove that (PWI, VWI) satisfies the standard completeness and
soundness guarantees, and in addition that it is witness indistinguishable.

Completeness. The completeness of (PWI, VWI) follows immediately from the
completeness of (P, V ), the delayed-input completeness of (PsWI, VsWI), and the
correctness of the underlying private remote evaluation scheme.

Soundness. Consider a cheating prover P ∗
WI that for any security parameter 1λ

generates x ∈ {0, 1}n \ L, where n ≤ poly(λ), such that for some non-negligible
function α = α(λ)

Pr[OutputVWI
(P ∗

WI, VWI)(1λ, x) = 1] ≥ α. (2)

Recall that P ∗
WI, upon receiving a message (Q, sWI1, ψ), where ψ ← Enc1(st),

from the verifier, generates a response (c, ψ′). Since Com is a statistically binding
commitment scheme that can be broken in poly(T ) time, there exists a poly(T )-
time algorithm that given c outputs (A′, r′) such that c = Com(A′, r′).

Define

α1 = α1(λ) � Pr[
(

OutputVWI
(P ∗

WI, VWI)(1λ, x) = 1
) ∧ (

V (1λ, x,Q,A′, st) = 0
)

].
(3)

We consider a cheating prover P ∗
sWI = M

P ∗
WI

1 (where M1 is a non-rewinding
reduction) that succeeds in breaking the delayed input soundness of (PsWI, VsWI)
with probability α1. The reduction M1, takes as input a message sWI1 from the
verifier VsWI, and does the following:
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1. Generate x ← P ∗
WI(1

λ) using the P ∗
WI oracle.

2. Compute (Q, st) ← V (1λ, x).
3. Compute (ψ, σ) ← Enc(st).
4. Send (Q, sWI1, ψ) to the P ∗

WI oracle to obtain (c, ψ′) = P ∗
WI(Q, sWI1, ψ).

Recall that for an honest PWI, it holds that ψ′ decrypts to sWI2.
5. Let x′ = (1λ, x,Q, c, st).
6. Compute sWI2 ← Dec(σ, ψ′).
7. Send (x′, sWI2) to the verifier.

Note that it suffices to argue that

Pr[VsWI(1λ, sWI1, (x′, sWI2), stsWI) = 1 ∧ (x′ /∈ L′)] ≥ α1.

This follows immediately from Eq. (3), together with the fact that x′ /∈ L′ if and
only if V (1λ, x,Q,A′, st) = 0, where A′ is the value that c commits to, and the
fact that

VWI(1λ, x, (Q, sWI1, ψ), (c, ψ′), st) = 1

only if

VsWI(1λ, sWI1, (x′, sWI2), stsWI) = 1.

Note that by Eqs. (2) and (3),

Pr[
(

OutputVWI
(P ∗

WI, VWI)(1λ, x) = 1
) ∧ (

V (1λ, x,Q,A′, st) = 1
)

] ≥ α − α1. (4)

We now present poly(T )-time straight line reductions M2,M3 converting P ∗
WI

into an adversary A that breaks the indistinguishability property of the encoding
scheme (i.e., breaks Claim 2.9 with respect to a poly(T )-size adversary), and into
cheating prover P ∗ for the underlying 2-message argument (P, V ), respectively,
so that the sum of the advantages of the resulting adversaries, denoted α2, α3

respectively is α2 + α3 ≥ α − α1. Furthermore, M3 is also input preserving.

The distinguisher A = M
P ∗

WI
2 runs as follows.

1. Generate x ← P ∗
WI(1

λ).
2. Run the verifier V (1λ, x) to generate (Q, st).
3. Send (st, 0|st|) as the two messages for the distinguishing advantage, and

receive a challenge encoding ψ from the encoding scheme challenger.
4. Generate (sWI1, stsWI) ← VsWI(1λ).
5. Send (Q, sWI1, ψ) to the P ∗

WI oracle to obtain (c, ψ′) = P ∗
WI(Q, sWI1, ψ).

6. Run in time poly(T ) to find (A′, r′) such that c = Com(A′, r′).
7. Return V (1λ, x,Q,A′, st).

The cheating prover P ∗ = M
P ∗

WI
3 is as follows.

1. Upon receiving a security parameter 1λ, generate x ← P ∗
WI(1

λ).
2. Upon receiving a message Q from the verifier V (1λ, x), do the following:
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(a) compute (sWI1, stsWI) ← VsWI(1λ).
(b) Generate ψ ← Enc1(0|st|) (while st itself is unknown, its length is specified

by the protocol, we recall that Enc1 is the algorithm that executes Enc
but only outputs the ψ component, see Sect. 2.2).

(c) Send (Q, sWI1, ψ) to the P ∗
WI oracle to obtain (c, ψ′) = P ∗

WI(Q, sWI1, ψ).
3. Run in time poly(T ) to find (A′, r′) such that c = Com(A′, r′).
4. Send A′ to the verifier.

Note that σ is not used at all by our P ∗ (and of course also not by V which
is the distinguisher for the original protocol). Consider an experiment with a
prover P̃ ∗ which is identical to P ∗ except it uses ψ = Enc1(st), where st is the
actual secret state corresponding to Q. Then by Eq. (4),

Pr[(P̃ ∗, V )(x) = 1] ≥ α − α1.

However, by definition of P̃ ∗, it is identical to P ∗ except for the use of ψ that
encodes st instead of 0|st|. If the two behave differently this translates to advan-
tage for the distinguisher A. In other words, the success probability of A is
exactly

α2 = Pr[(P ∗, V )(x) = 1] − Pr[(P̃ ∗, V )(x) = 1].

We conclude that α1 + α2 + α3 ≥ α as required.

Witness Indistinguishability. It remains to argue that (PWI, VWI) satisfies
the WI criterion. Fix a function n = n(λ) ≤ poly(λ), and fix any ensemble
{(xn, w1,n, w2,n)}λ∈N, such that (xn, w1,n) ∈ RL and (xn, w2,n) ∈ RL. Suppose
for the sake of contradiction that there exists a (non-uniform) poly-size cheating
verifier V ∗

WI, such that

ViewV ∗
WI

(PWI(1λ, xn, w1,n), V ∗
WI(1

λ, xn)) �≈ ViewV ∗
WI

(P (1λ, xn, w2,n), V ∗
WI(1

λ, xn)).

Assume w.l.o.g that V ∗
WI is deterministic and denote V ∗

WI = (V ∗
WI,1, V

∗
WI,2) s.t.

(Q, sWI1, ψ) = V ∗
WI,1(1

λ, xn) generates the first message of V ∗
WI, and V ∗

WI,2(c, ψ
′)

is the distinguisher that takes the message from PWI and outputs a bit. Note that
λ determines n and thus also x and (Q, sWI1, ψ). Let st = Sim1(ψ), where Sim1(·)
is the possibly inefficient first part of the simulator for the remote evaluation
scheme (see Sect. 2.2). Note that st is uniquely well defined per λ.

We design a cheating non-uniform adversary V ∗
sWI for the strongly witness

indistinguishable scheme. Note that since the adversary is allowed to be non-
uniform, we can hard-code the values (xn, w1,n, w2,n, Q, sWI1, ψ, st) into V ∗

sWI.
We start by defining the two distributions

{X ′
1,n(λ),W ′

1,n(λ)}λ∈N and {X ′
2,n(λ),W ′

2,n(λ)}λ∈N,

as required by the definition of sWI. The samplers for these distributions can
also depend on (xn, w1,n, w2,n, Q, sWI1, ψ, st). Formally, for b ∈ {1, 2}, the dis-
tribution (X ′

b,n(λ),W ′
b,n(λ)) generates pairs (x′

b,n, w′
b,n) ∈ RL′ as follows:
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1. Emulate the prover PWI(1λ, xn, wb,n, Q, sWI1, ψ), as follows.
(a) Compute A ← P (1λ, xn, wb,n, Q).
(b) Compute c = Com(A, r) with uniformly chosen r ← {0, 1}poly(λ).

2. Set x′
b,n = (1λ, xn, Q, c, st) and w′

b,n = (A, r).

The computational hiding property of the commitment scheme implies that
indeed

{X ′
1,n(λ)}λ∈N

c≈ {X ′
2,n(λ)}λ∈N.

We still need to prove that (x′
b,n, w′

b,n) ∈ RL′ for b ∈ {1, 2}. If st |= Q then
this follows from the perfect completeness of (P, V ). If st �|= Q this follows by
definition (see Eq. (1)).

For this pair of distributions, the cheating verifier V ∗
sWI runs as follows.

1. Send the fixed value sWI1 as the first message.
2. Receive x′ = (1λ, xn, Q, c, st) and message sWI2 = PsWI(x′, w′, sWI1).
3. Generate simulated ψ′ = Sim2(ψ, st, sWI2), where Sim2 is the simulator for

the remote evaluation scheme (see Sect. 2.2), and output V ∗
WI,2(c, ψ

′, sWI2).

To prove that V ∗
sWI indeed distinguishes between the distributions

{X ′
b,n(λ),W ′

b,n(λ)}λ∈N, we consider a hybrid where ψ′ is generated as
Eval(f1λ,x,Q,c,w′

b,n,sWI1 , ψ). This hybrid is computationally indistinguishable from
the original experiment by Claim 2.7. However, in this hybrid the distribution
given to V ∗

WI,2 is identical to the one produced by PWI, and since we assume that
V ∗
WI is a successful adversary against WI, it follows that our V ∗

sWI successfully
distinguishes between the distributions {X ′

b,n(λ),W ′
b,n(λ)}λ∈N in contradiction to

the strong witness indistinguishability property.

3 Succinct Single-Round Access Control Scheme

In this section we formalize the notion of succinct single-round access control
presented in Sect. 1.2. The motivation is to allow authorities to provide users
with certificates of owning certain attributes (coming from a very large attribute
universe). An authority is specified by a pair of master secret and public keys.
After being issued a certificate, the user can succinctly prove in a witness indis-
tinguishable manner that its attributes (issued by a specific authority) satisfy a
predicate from a given class of predicates. Note that similarly to the setting of
secret sharing, only monotone predicates make sense in this setting, since users
can always behave as if they do not have a certain attribute, even if they do. We
can now formally define the notion of succinct access control schemes.

Definition 3.1. A succinct access control scheme with respect to a
class of monotone functions F consists of a tuple of PPT algorithms
(Setup,KeyGen,Query,Proof,Verdict), with the following syntax:

– Setup takes as input the security parameter 1λ and outputs a pair (mpk,msk)
of master public and secret keys.
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– KeyGen takes as input a tuple (1λ,msk, N, S, id), where λ is the security
parameter, msk is a master secret key (supposedly generated by Setup(1λ)),
N ∈ N is a parameter such that N < 2λ, S ⊆ [N ], and id ∈ {0, 1}λ. It outputs
a secret key sk.

– Query takes as input the security parameter 1λ and outputs a pair
(query, state).

– Proof takes as input a tuple (1λ, f, query, sk), where f : {0, 1}N → {0, 1}
is a predicate from the class F , query is supposedly generated by running
Query(1λ), and sk is supposedly generated by running KeyGen. It outputs a
succinct proof, denoted by pf, of length ≤ poly(λ).

– Verdict takes as input a tuple (1λ, f, query, state,mpk, pf) where f : {0, 1}N →
{0, 1} is a predicate from the class F , (query, state) is supposedly generated
by Query(1λ), mpk is supposedly generated by Setup(1λ), and outputs 1 if and
only if pf is accepting with respect to (1λ, f, query, state,mpk).
Moreover, the running time of Verdict should be sublinear in the complexity
of f , and only depend polynomially (or preferably quasi-linearly) on the input
length and the description length of f .

In addition, an access control scheme must satisfy the following conditions:

– Completeness. For any λ ∈ N any N < 2λ, any poly-size f : {0, 1}N →
{0, 1}, any identity id ∈ {0, 1}λ, and any set S ⊆ [N ] such that
f(11∈S , . . . ,1N∈S) = 1,

Pr[Verdict(1λ, f, query, state,mpk, pf) = 1] = 1,

where the probability is over the random coin tosses of Verdict, over
(query, state) ← Query(1λ), over pf ← Proof(1λ, f, query, sk), where sk ←
KeyGen(1λ,msk, N, S, id) and (mpk,msk) ← Setup(1λ).

– Soundness. For any λ ∈ N, any polynomially-bounded N = N(λ), any poly-
size f : {0, 1}N → {0, 1}, we consider an oracle O = Omsk, that on input
(id, S), outputs sk ← KeyGen(1λ,msk, N, S, id) if and only if id ∈ {0, 1}λ, S ⊆
[N ], and f(11∈S , . . . ,1N∈S) = 0 (recall that f is monotone); and otherwise
output ⊥.
The soundness requirement is that for any PPT adversary A = (A1,A2) it
holds that

Pr[Verdict(1λ, f, query, state,mpk, pf∗) = 1] = negl(λ),

where pf∗ ← A2(1λ, query,AOmsk
1 (1λ,mpk)), and in addition (query, state) ←

Query(1λ) and (mpk,msk) ← Setup(1λ).
Note that A2 does not take any oracle access, i.e. the adversary is first allowed
to interact with the oracle, and only then sees the protocol query. We can hope
for a stronger variant where oracle access is allowed after seeing the queries
as well, but we cannot currently achieve this stronger notion.

– Witness Indistinguishability (WI). For any λ ∈ N, any polynomially-
bounded N = N(λ), any poly-size f : {0, 1}N → {0, 1} in F , any id0, id1 ∈
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{0, 1}λ, and any sets S0, S1 ⊆ [N ] such that f(11∈Sb
, . . . ,1N∈Sb

) = 1 for both
b = 0 and b = 1, the following holds: For any PPT adversary A that generates
(query∗, state∗) = A(1λ,msk,mpk),

(query∗, state∗,msk,mpk, pf0) ≈ (query∗, state∗,msk,mpk, pf1),

where
pfb(λ) ← Proof(1λ, f, query∗, skb),

where skb ← KeyGen(1λ,msk, N, Sb, idb).

Remark 3.2. We note that Definition 3.1 above guarantees that the identity of
the prover remains hidden, even if the prover issues many proofs. This is the
case since we require the WI property to hold even given msk.

We next define delegation for batch NP families, which will be a building
block for our construction. The construction and proof will then follow.

3.1 Delegation for Batch-NP Families

In this section we define the notion of a (succinct, single-round) delegation
scheme for a subclass of languages in NP. While achieving the above for
all of NP is still out of reach under falsifiable assumptions, many mean-
ingful subclasses of NP admit such proof systems with short proof length
[BHK17,BKK+17]. We start with a definition, and then proceed to derive corol-
laries based on known schemes in the literature.

Definition 3.3 (NP-Batching of a Function Family). Let F ⊆ {{0, 1}∗ →
{0, 1}} be a class of functions. Let R be an NP relation corresponding to an NP-
language L, with witness length m = m(n) for length n instances. For x ∈ {0, 1}n

we let Rx : {0, 1}m → {0, 1} denote the function where Rx(w) = 1 if and only
if (x,w) ∈ R. Let N be a polynomial.

We define the RN -batching of F , denoted F (R,N) as follows. For all n (recall-
ing that m,N are a function of n), let Fn = F ∩ ({{0, 1}N → {0, 1}}). For all
f ∈ Fn define gf : ({0, 1}n)N × ({0, 1}m)N → {0, 1} as

gf ((x1, . . . , xN ), (w1, . . . , wN )) = f(Rx1(w1), . . . , RxN
(wN )). (5)

We frequently denote x = (x1, . . . , xN ), w = (w1, . . . , wN ).
Finally, F (R,N) is the class of all such functions gf , formally:

F (R,N)
n = {gf : f ∈ Fn} (6)

F (R,N) = ∪n∈NF (R,N)
n . (7)

We omit the superscript where R, N are clear from the context.

We can now define the notion of a succinct delegation scheme for a batch
family.



116 Z. Brakerski and Y. Kalai

Definition 3.4 (Delegation for Batch Families). Let R, N, F be as in Def-
inition 3.3 and let F (R,N) be the N -batching of R with respect to F .

A succinct and doubly efficient delegation scheme (or simply “a delegation
scheme” for the purpose of this work) for F (R,N) with communication overhead
cov and verification overhead vov (both fixed polynomial functions), is a single-
round proof system (P, V ) running on inputs (1λ,x,M), where M is a Turing
machine s.t. M(1n) runs in time T(n) and outputs a circuit that computes a
function gn ∈ F (R,N)

n .
with the following guarantees.

– Efficiency. The protocol (P, V ), on input (1λ,x,M), has the following effi-
ciency guarantees, for x = (x1, . . . , xN ) where each |xi| = n, and assuming λ
is such that T(n) ∈ [λ, 2λ]:
1. The communication complexity is cov(m,λ) (ideally m ·poly(λ)), where m

is the length of a witness corresponding to an instance of length n in RL.
2. The runtime of V is vov(nN, |M |,m, λ), where |M | denotes the size of

the non-uniform advice of M .
3. The runtime of P , given a witness w such that gn(x,w) = 1, is

poly(T(n)).
– Perfect Completeness. For every security parameter λ and any inputs

x ∈ ({0, 1}n)N and M such that T(n) ∈ [λ, 2λ], and every satisfying assign-
ment w ∈ ({0, 1}m)N such that gn(x,w) = 1:

Pr
[

(P (w), V )(1λ,x) = 1
]

= 1,

where the probability is over the random coin tosses of V .
– Soundness. For every machine M , for any function n(λ) s.t. T(n(λ)) =

poly(λ) and for every constant c ∈ N, there exists a PPT oracle machine Ec

such that if there exists a non-uniform PPT cheating prover P ∗, that on input
1λ generates x = x ∈ ({0, 1}n)N , such that for infinitely many λ ∈ N,

Pr
[

(P ∗, V )(1λ,x,M) = 1
] ≥ 1

λc
,

then for these values of λ,

Pr[EP ∗
c (1λ) = (x,w) s.t. gn(x,w) = 1] = 1 − negl(λ).

3.2 Known Batch Delegation Schemes

Starting from the work of [BHK17], delegation schemes are known for a number
of function classes F . (Recall a batch delegation scheme for the set of all functions
from a standard assumption may be too much to hope for, unless major progress
in delegation is made and succinct arguments for all of NP are constructed.)

Theorem 3.5 ([BHK17]). There exists a succinct delegation scheme when the
class F is the class of all conjunctions, with quasi-linear verification overhead,
under the assumption that computational private-information retrieval (PIR)
exists. Furthermore, the delegation scheme is sound even against time T adver-
saries if the PIR scheme is secure against poly(T ) time adversaries.
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A different result can be achieved based on the construction of [BKK+17].

Corollary 3.6 ([BKK+17]). For any constant c, there exists a succinct dele-
gation scheme for F = DSPACE(nc), with fixed polynomial verification over-
head, under the assumption that private-information retrieval (PIR) with sub-
exponential security exists. Furthermore, the delegation scheme can be made
sound even against sub-exponential time adversaries.

3.3 Our Scheme

We now formally state the result that is hinted in Sect. 1.2.

Theorem 3.7. Let F be a class of monotone functions. There exists a succinct
single-round access control scheme for F if the following exist for some super-
polynomial function T : N → N.

– A batch delegation scheme for the class F as per Definition 3.4 that is sound
against poly(T )-size cheating provers.

– A poly(T )-secure 2-message oblivious transfer with statistical sender privacy
(as in Definition 2.2 where Claim 2.9 is satisfied w.r.t. poly(T )-size adver-
saries).

– A poly(T )-secure signature scheme.
– A statistically-binding commitment scheme that can be broken in time

poly(T ).

The required building blocks can be instantiated from various assumptions.
For the delegation scheme, we can rely on the schemes in Theorem 3.5 and Corol-
lary 3.6. Given the new maliciously statistical sender private oblivious transfer
and private information retrieval schemes from the DDH, QR, LWE and Deci-
sional Composite Residuosity (DCR, a.k.a Paillier) assumptions [DGI+19], the
following corollary follows.

Corollary 3.8. There exists a succinct single-round access control schemes as
follows:

– For conjunctions, assuming the quasi-poly hardness of either DDH, QR,
LWE, DCR, and assuming the existence of a sub-exponentially secure one-way
function.

– For monotone space-bounded computation, assuming the sub-exponential
hardness of either DDH,QR,LWE,DCR, and assuming the existence of a
sub-exponentially secure one-way function.

The access control scheme uses the following components:

– A batch delegation scheme for the class F as per Definition 3.4 that is sound
against poly(T )-size cheating provers The schemes in Theorem 3.5 and Corol-
lary 3.6 are examples for such schemes in the literature. We denote this del-
egation scheme by (P, V ).
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– WI compiler w.r.t the super polynomial function T = T (n) (as in Theo-
rem 2.10). This can be constructed assuming the existence of a poly(T )-
secure 2-message oblivious transfer with statistical sender privacy (as in Def-
inition 2.2 where Claim 2.9 is satisfied w.r.t. poly(T )-size adversaries), and
assuming the existence of a statistically binding commitment scheme Com
that can be broken in time poly(T ).

– A poly(T )-secure signature scheme SIG (i.e., one that is existentially unforge-
able against chosen message attacks by a poly(T )-size adversary), which can
be based on any poly(T )-hard to invert one-way function, and does not require
additional assumptions.

In what follows, we first present an access control scheme without the WI guar-
antee. We denote the algorithms in this (non WI) scheme by

AccessControl′ = (Setup,KeyGen,Query′,Proof ′,Verdict′)

We then use our WI compiler from Sect. 2 to compile (Query′,Proof ′,Verdict′)
into a witness indistinguishable protocol (Query,Proof,Verdict), thus obtaining
our final access control scheme

AccessControl = (Setup,KeyGen,Query,Proof,Verdict).

– Setup(1λ) generates a pair of keys (mpk,msk) by running the key generation
algorithm of the signature scheme SIG (with security parameter λ).

– KeyGen(1λ,msk, N, S, id) samples a random tag tag ∈ {0, 1}λ, it computes a
signature σtag,i = Signmsk(tag‖i) for every attribute i ∈ S and in addition
σtag,0 = Signmsk(tag‖0). It outputs (tag, {σtag,i}i∈S∪{0}).

– Query′(1λ) generates a pair (Q, st) ← V (1λ), where Q is the query string
and st is the internal state. Note that we use the property that query string
generation in the monotone delegation scheme is independent of the instance
to be proven.

– Proof ′(1λ, f,Q, (tag, {σtag,i}i∈S∪{0})) runs the prover P (from the monotone
NP delegation scheme), respective to (R, f, {xi}i∈[N ]), where xi = mpk‖tag‖i,
R is the NP relation defined by

(mpk‖tag‖i, σ) ∈ R ⇔ Verifympk(tag‖i, σ) = 1,

and f ∈ F is the function corresponding to the access structure. Let A denote
the answer generated by P . Then Proof ′ outputs

pf = (A, tag, σtag,0).

– Verdict′(1λ, f,Q, pf, st,mpk) parses pf = (A, tag, σtag,0), checks that Verifympk

(tag‖0, σtag,0) = 1, and checks that A verifies correctly respective to the NP
statement {xi}i∈[N ], where xi = mpk‖tag‖i.

Adding Witness Indistinguishability. We wish to augment the scheme
AccessControl′, and specifically the algorithms (Query′,Proof ′,Verdict′) with wit-
ness indistinguishability properties using the transformation from Sect. 2. The
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first idea would be to simply replace the NP proof system (Q,P, V ) with its
WI version as obtained from Theorem 2.10, however this is insufficient since
Proof ′ outputs tag, σtag,0 in addition to the response A (note that outputting
tag is necessary in order to avoid collusion, the role of the signature will be
clarified in the proof). However, we can still consider the proof system defined
by (Query′,Proof ′,Verdict′) itself, and apply Theorem 2.10 to this proof sys-
tem in order to obtain witness indistinguishability. We now no longer need to
think about batch verification, and simply consider the NP relation that takes
(mpk, tag, {σtag,i}i∈S) as instance, verifies the signatures w.r.t tag and verifies
that F accepts relative to the resulting structure.

The description of the new (Query,Proof,Verdict) thus follows from
(Query′,Proof ′,Verdict′) above together with Theorem 2.10, which concludes the
description of our access control scheme. We now show that the required prop-
erties still hold.

3.4 Proof of Theorem 3.7 for Our Construction

We show completeness, soundness and WI of the scheme described above. While
completeness will follow straightforwardly based on the correctness of the com-
ponents, and WI follows via the WI properties guaranteed in Theorem 2.10,
soundness is a more serious challenge. The reason is that in the soundness exper-
iment, the adversary has access to the oracle O, which in turn uses msk. We want
to show that an adversary that violates soundness can forge signatures, but this
will require care with respect to the use of the oracle O. Details follow.

Completeness. The completeness follows immediately from the completeness
of (P, V ), the completeness of the WI transformation (see Theorem 2.10), and
the correctness of the signature scheme.

Soundness. We prove soundness by again referring to the variant without pri-
vacy AccessControl′, which has a valid syntax for an access control scheme. We
show that an adversary that breaks soundness in AccessControl can be used to
construct an adversary that breaks soundness in AccessControl′, and then pro-
ceed with ruling out this option given the properties of the proof system and
signature scheme. We start by assuming that there exists A such that (infinitely
often)

Pr[Verdict(1λ, f, query, state,mpk, pf∗) = 1] ≥ δ(λ),

where δ(λ) ≥ 1/poly(λ), pf∗ ← A2(1λ, query,AOmsk
1 (1λ,mpk)), and where

(query, state) ← Query(1λ) and (mpk,msk) ← Setup(1λ).
To reduce the soundness claim from AccessControl to AccessControl′, we use

the fact that the reduction from Theorem 2.10 is black-box, non-rewinding
and instance preserving. This means that given an adversary that breaks
the soundness of the delegation scheme (Query,Proof,Verdict) with access to
some oracle, then either there is an adversary with comparable advantage for
(Query′,Proof ′,Verdict′) with the same instance and with access to the same
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oracle, or alternatively there is an adversary with the same oracle for the sWI
scheme or for the remote evaluation scheme. However, for the latter cases oracle
access can easily be simulated given msk, but sWI and the remove evaluation
scheme are secure even given msk.

Therefore, an adversary against the soundness of AccessControl implies an
adversary against the soundness of AccessControl′. That is, we assume that thee
exists A′ such that (infinitely often)

Pr[Verdict′(1λ, f, query, state,mpk, pf∗) = 1] ≥ δ′(λ),

where δ′(λ) ≥ 1/poly(λ), pf∗ ← A′
2(1

λ, query,A′Omsk
1 (1λ,mpk)), and where

(query, state) ← Query′(1λ) and (mpk,msk) ← Setup(1λ). The idea now is to
use Definition 3.4 to extract a signature out of the AccessControl′ adversary and
violate the unforgability of SIG, of course taking into account that A′ has access
to O which is capable of producing signatures. Let pf∗ = (A∗, tag∗, σ∗) denote
the forged proof generated by A′, let q denote a polynomial upper bound on the
number of O queries made by A′, and let TAGS = {tag1, . . . , tagq} be the tags
generated and returned by O on these calls (we recall for the future that tagi

are generated uniformly and independently).
We now consider two cases:

1. In the first case, the adversary A′ forges on a new tag:

Pr[Verdict′(1λ, f, query, state,mpk, pf∗) = 1 ∧ tag∗ �∈ TAGS] ≥ δ′(λ)/2

infinitely often. In this case, we do not need to use the soundness of the
argument system (P, V ) since pf∗ includes σ∗ which is a valid signature on
(tag∗‖0). Therefore O can be simulated using a chosen message oracle for the
signature scheme, we are guaranteed that this oracle will never be called on
(tag∗‖0) and therefore we can succeed in the forgery attack.

2. In the second case A′ forges on a tag that was generated by O:

Pr[Verdict′(1λ, f, query, state,mpk, pf∗) = 1 ∧ tag∗ ∈ TAGS] ≥ δ′(λ)/2

infinitely often. Note that either this case or the previous one must occur.
In this case σ∗ is not useful since we queried the chosen message oracle on
(tag∗‖0). We therefore would like to use the extraction property of (P, V ) to
extract a signature on (tag∗‖i) for i �∈ S∗ (the set that corresponds to the
query that produced tag∗).
We therefore need to convert A′ into a non-adaptive adversary for (P, V ).
First, we notice that (P, V ) is applied to an NP language whose instances
are of the form (mpk, tag) and the values {xi} constitute a possible witness.
Since Definition 3.4 only allows to extract from a non-adaptive adversary,
we will need to create an adversary that decides on (mpk, tag) before seeing
query. The separation between A′

1 and A′
2 will thus be useful.

Consider the following distribution over non-adaptive adversaries against
(P, V ). More accurately, our distribution will sample pairs of instance



WI Arguments with Applications to Access Control 121

(mpk, tag′) and algorithm B s.t. B(Q) is accepted by V with non-negligible
probability, where Q is a sampled according to the V -prescribed distribution.
The distribution is generated as follows. Sample mpk,msk and a random set
TAGS. Set tag′ to be a random element from TAGS. Execute A′O

1 (1λ,mpk)
to obtain a value ζ, and set B(Q) = A′

2(1
λ, Q, ζ). The expected probability

of success of B(Q) is at least δ′(λ)/(2q) > 1/poly(λ), since with probability
1/q the guess tag′ hits the correct tag∗ (which is an element of TAGS with
probability δ′(λ)/2). This means with non-negligible probability, we sample
(mpk, tag′) for which B succeeds with non-negligible probability.
We can thus apply the extractor that is implied by Definition 3.4, to conclude
that with non-negligible probability, it is possible to extract a set of signatures
on messages (tag∗‖i) for all i ∈ S where S satisfies F . However, in the above
experiment, the oracle O can be replaced with access to a chosen message
signature oracle. We are guaranteed that this oracle is not queries on any S
that satisfies F . Therefore the extractor will allow to produce a signature on
a message for which the chosen message oracle was not queried, thus violating
the unforgability of the signature scheme with non-negligible probability. This
completes the soundness argument.

Witness Indistinguishability. The WI condition follows immediately from
the fact that the commitment scheme is (computationally) hiding, and from the
strong WI property of (PsWI, VsWI).

References

[BBK+16] Bitansky, N., Brakerski, Z., Kalai, Y.T., Paneth, O., Vaikuntanathan, V.:
3-message zero knowledge against human ignorance. IACR Cryptology
ePrint Archive 2016/213 (2016)

[BCC+14] Bitansky, N., et al.: The hunting of the SNARK. IACR Cryptology ePrint
Archive 2014/580 (2014)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In: STOC, pp.
111–120. ACM (2013)
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