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Abstract. Oblivious Transfer (OT) is an important building block for
multi-party computation (MPC). Since OT requires expensive public-
key operations, efficiency-conscious MPC protocols use an OT extension
(OTE) mechanism [Beaver 96, Ishai et al. 03] to provide the functionality
of many independent OT instances with the same sender and receiver,
using only symmetric-key operations plus few instances of some base
OT protocol. Consequently there is significant interest in constructing
OTE friendly protocols, namely protocols that, when used as base-OT
for OTE, result in extended OT that are both round-efficient and cost-
efficient. We present the most efficient OTE-friendly protocol to date.
Specifically:

– Our base protocol incurs only 3 exponentiations per instance.
– Our base protocol results in a 3 round extended OT protocol.
– The extended protocol is UC secure in the Observable Random Ora-

cle Model (ROM) under the CDH assumption.
For comparison, the state of the art for base OTs that result in 3-round
OTE are proven only in the programmable ROM, and require 4 expo-
nentiations under Interactive DDH or 6 exponentiations under DDH
[Masney-Rindal 19]. We also implement our protocol and benchmark it
against the Simplest OT protocol [Chou and Orlandi, Latincrypt 2015],
which is the most efficient and widely used OT protocol but not known
to suffice for OTE. The computation cost is roughly the same in both
cases. Interestingly, our base OT is also 3 rounds. However, we slightly
modify the extension mechanism (which normally adds a round) so as
to preserve the number of rounds in our case.

1 Introduction

Oblivious Transfer (OT) is a fundamental primitive for multi-party computation
(MPC). It has been shown to be complete [GMW87,Kil88] and has become the
most widely used building block in both the two-party setting [Yao86,NNOB12]
and the multi-party setting [BLO16,WRK17,HSS17]. However, oblivious trans-
fer is expensive since it requires public key operations [IR89]. This limitation
is mitigated by the seminal concept of OT extension [Bea96,IKNP03], which
allows the parties to compute m = poly(κ) number of OTs using only κ “base
c© International Association for Cryptologic Research 2020
A. Kiayias et al. (Eds.): PKC 2020, LNCS 12111, pp. 299–327, 2020.
https://doi.org/10.1007/978-3-030-45388-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45388-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-45388-6_11


300 R. Canetti et al.

OTs” and O(m) symmetric-key operations, where κ is the computational secu-
rity parameter. This yields a large number of OTs at the cost of O(1) symmetric
key operations.

The state-of-the-art protocol for malicious OT extension [KOS15] can com-
pute more than ten million OTs per second in a high bandwidth network setting.
As such, it appears that the problem of constructing efficient OT extension has
been resolved. However, some challenges remain. First, we note that the cost
of the base OTs remains a significant consideration when m is only moderately
larger than κ and security against all-but-one corruption is needed. For instance,
Wang et al. [WRK17] reported that in their implementation of a malicious 128-
party computation tolerating 127-party corruption in the WAN setting, it takes
about 140 s to securely evaluate an AES circuit, where 80 s (more than 55% of
the total cost!) are spent on computing base OTs.

Another challenge is the number of rounds. Ideally, we would like to obtain
extended OT with only two rounds. However, here we have only two known
solutions: The original OT extension pf Beaver [Bea96] which is highly inefficient
due to non-black-box use of the underlying symmetric-key primitives, and the
Boyle et al. [BCG+19] two-round OT extension, based on the Learning Parity
with Noise (LPN) assumption, whose performance is better than IKNP-like OT
extension only when the network bandwidth is low (≈100 Mbps).

The other approach taken in the literature is to apply a black-box OT exten-
sion (such as that of [KOS15]) to some base OT. This method, however results
in an additional round. In fact, recent result by Garg et al. [GMMM18] shows
that this is inevitable, namely (n + 1) rounds for OT extension are necessary if
an n-round base OT is used. Thus, this approach seems to result in extended
OT protocols with three or more rounds. Furthermore, the state-of-the-art two-
round OT protocols are much slower than the best three-round OT protocols.
For example, the two-round OT by Peikert et al. [PVW08] requires 11 expo-
nentiations. More recently, [MR19] proposed an OT that requires 6 exponentia-
tions under standard DDH assumption or 4 exponentiations under non-standard
IDDH assumption. This means that even three-round extended OT protocols,
obtained in this way, are less than optimally efficient.

Another set of challenges revolves around the level of security obtained and
the assumptions used. Chou and Orlandi [CO15] proposed a base-OT protocol
with malicious security (dubbed as CO-OT). The work of [HL17] proposed a sim-
ilar protocol. However, it has been shown [BPRS17,GIR17,LM18] that this pro-
tocol and [HL17] cannot be proven secure with simulation-based security because
a simulator cannot extract a corrupt receiver’s choice bit. There have been some
works [BPRS17,DKLs18] trying to fix this issue, but all of them require either
much more computation or higher round complexity. Masny and Rindal [MR19]
recently proposed a UC-secure OT in the programmable random oracle model
(ROM). Their performance is slightly worse than CO-OT under non-standard
notion of interactive version of the Decisional Diffie Hellman (IDDH) assumption
and much worse under Decisional Diffie Hellman (DDH) assumption.
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Table 1. Comparison to related protocols. “#Rounds of OT extension” is the
round complexity of the best OT extension with selected base OT protocol. IDDH refers
to interactive DDH, not known to be reducible to DDH. PRO refers to programmable
RO; ORO refers to observable RO.
aDo not provide simulation-based security.
bIncur a one-time computation cost of one NIZKPoK.

Protocol
#Exponentiations #Rounds of Computational Trusted

per base OT OT Extension Assumption Setup

[PVW08] 11 3 DDH CRS
[CO15]a 3 4 CDH PRO

[BPRS17] 11 3 DDH PRO
[HL17]a 5 4 CDH PRO

[DKLs18]b 3 6 CDH ORO
[MR19] 4 3 IDDH PRO
[MR19] 6 3 DDH PRO

This work 3 3 CDH ORO

1.1 Our Contributions

In this paper, we construct an OT protocol tailored to be base OT for the
[KOS15] OT extension. Our protocol is highly efficient, and results in a 3 round
extended OT that is UC secure in the observable ROM assuming only CDH. See
Table 1 for comparison with the state of the art.

The key idea underlying our construction is to design a three-round base OT
protocol that circumvents the lower bound proved by Garg et al. [GMMM18].
This is achieved by considering a slight modification of the KOS extension, that
is specific to our base OT protocol: The parties use the inputs for the base OT
protocol to compute the OT extension messages in parallel to the execution
of the base-OT computation. This yields a round-preserving three-round OT
extension protocol. To preserve efficiency, we only use some specific property
of the base OT protocol (and thus non-black-box to base OT), but avoid non-
black-box use of any underlying primitives or computational assumptions. We
observe that our protocol is compatible with OT extension protocols [ALSZ15,
PSS17,OOS17] in the IKNP domain. It also works for state-of-the-art 1-out-of-
N OT extension protocols [PSS17,OOS17]. See Sect. 3 for more discussion. Our
detailed contributions are listed as follows:

– Weaker base-OT Functionality. To securely realize OT extension effi-
ciently, we consider a UC-secure base-OT functionality that allows selective
failure attack by a corrupt sender. We further relax the UC-security require-
ment to only sender-sided simulation-based security; on the receiver-side, we
demonstrate that indistinguishability based security suffices for KOS, pro-
vided the receiver’s input can be extracted.

– Weaker Assumptions. Our protocol is secure assuming CDH in the observ-
able random oracle (ORO) model. Our assumptions and trusted setup are
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weaker and far more well-studied than other protocols with comparable effi-
ciency. When used in the OT extension, the OT extension protocol becomes
UC-secure.

– Best efficiency. Our protocol requires three exponentiations per OT and is
as efficient as the CO-OT [CO15]. This is also experimentally verified based
on implementation. Since CO-OT (which is insecure) is the most efficient
among all existing OT protocols, our new OT with provable security is also
the most efficient.

– Round Preserving. Our OT protocol requires three rounds, one round more
than necessary; however, one unique feature of our protocol is that its last two
rounds of messages can be securely sent in parallel with the OT-extension
messages and thus resulting in a three-round OT extension protocol.

– Empirical Comparison. Finally, we implement our protocol and demon-
strate its high performance. In detail, our protocol is as efficient as the OT
by Chou and Orlandi (which cannot be proven UC secure). When used in
the OT extension, our protocol results in a even better performance due to
reduced round complexity.

We note that the original KOS paper had an interactive coin tossing sub-
protocol. It resulted in a 5 rounds protocol and it relied on Correlation Robust
Function (CRF). The subprotocol was made non-interactive by the work of
[DKLs18] using the Fiat-Shamir transform by relying on a non-programmable
random oracle. This reduced the round complexity to 3. We consider this round
optimized variant of KOS in the RO model since we already require the RO for
our OT protocol.

1.2 More Discussion on Related Works

Here we highlight the protocols from prior OT literature that are relevant to our
work. A comparison can be found in Table 1.

– The two-round UC-secure OT protocol by [PVW08] is a candidate for the
base OTs in KOS. Its optimized variant computes 11 exponentiations and is
proven secure in the common reference string model under DDH assumption.

– The Simplest OT (or CO-OT) was proposed by Chou and Orlandi [CO15].
It computes 3 exponentiations in the programmable random oracle (PRO)
model assuming CDH. It requires 2 rounds to compute a random OT, but
their OT messages cannot be parallelized with the OT extension messages,
thus resulting in a 4 round OT extension. It has been shown [LM18] that
this protocol cannot be proven secure with simulation-based security because
a simulator cannot extract a corrupt receiver’s choice bit. For proving UC-
security of the OT extension protocol, the inputs of the receiver (of the base
OT) has to be extracted.

– The work of [DKLs18] proposed a 5 round OT protocol, with selective failure,
for the base OTs in the ORO model. They compute 3 exponentiations per
OT and incur a one-time computation of a non-interactive zero-knowledge
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proof of knowledge (NIZKPoK) for Discrete Log. The high round complexity
of the base OTs leads to a 6 round OT extension since their last OT message
cannot be parallelized with the last message of the OT extension.

– A recent work by [MR19] proposed non-interactive OTs from non-interactive
Key Exchange. The resulting OT extension would still require 3 rounds. Their
optimized variant requires 4 exponentiations under IDDH assumption and
their unoptimized variant requires 6 exponentiations in the PRO model. How-
ever, IDDH is not known to be reducible to the standard DDH assumption.

– Silent OT extension [BCG+19] does not follow the IKNP-style extension.
Instead, it can be viewed as a special case of vector OLE [BCGI18] and
requires an LPN assumption. The resulting protocol can be more efficient
than KOS under low network bandwidth.

Roadmap. In the next section, we introduce some notations and important
concepts used in this paper. In Sect. 3, we present the key intuitions behind
our protocols. This is followed by our weakened OT functionality in Sect. 4.
Then, we show that our weakened OT functionality suffices to obtain the KOS
OT extension in Sect. 5. We instantiate κ instances of our OT functionality in
Sect. 6. Finally, we present our implementation details and compare it with the
CO-OT in Sect. 7.

2 Preliminaries

Notations. We denote by a ← D a uniform sampling of an element a from a
distribution D. The set of elements {1, . . . , n} is represented by [n]. A function
neg(()·) is said to be negligible, if for every polynomial p(·), there exists a con-
stant c, such that for all n > c, it holds that neg(()n) < 1

p(n) . We denote a
probabilistic polynomial time algorithm as PPT. We denote the computational
security parameter by κ and statistical security parameter by μ respectively. Let
Zq denote the field of order q, where q = p−1

2 and p are primes. Let G be the mul-
tiplicative group corresponding to Z

∗
p with generator g, where CDH assumption

holds. We denote a field of size 2κ as F. Our security proofs are in the Universal
Composability (UC) framework of [Can01]. We refer to the original paper for
details. For a bit b ∈ {0, 1}, we denote 1 − b by b̄. We denote a matrix as M
where Mi refers to the ith column and Mj as the jth row of M respectively.
Given a field element x ∈ F and a bit vector a = (a1, a2, . . . , aκ) we denote
component-wise multiplication as x · a = (a1 · x, a2 · x, . . . , aκ · x). In our OT
extension protocol, the sender is denoted as SExt and the receiver is denoted as
RExt respectively.

Random Oracle Model. A random oracle (RO) functionality is parametrized
by a domain and a range and it is as FRO in Fig. 2. A random oracle query
on message m is denoted by FRO(m). The random oracle functionality can be
broadly classified [CDG+18] into three categories based on its features- plain RO,
observable RO and programmable RO. A plain RO returns a random string, from
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OT

OT interacts with a sender S and a receiver R:
– On input (Choose, rec, sid, b) from R where b ∈ {0, 1}; if no message of the form

(rec, sid, b) has been recorded in the memory, store (rec, sid, b) and send (rec, sid)
to S.

– On input (Transfer, sen, sid, (a0, a1)) from S with a0, a1 ∈ {0, 1}n, if no mes-
sage of the form (sen, sid, (a0, a1)) is recorded and a message of the form
(rec, sid, b) is stored, send (sent, sid, ab) to R and (sent, sid) to S. Ignore future
messages with the same sid.

Fig. 1. The ideal functionality FOT for Oblivious Transfer

its range, upon being queried on a message m, from its domain. An observable
RO inherits the properties of the plain RO but in addition it grants the simulator
to observe the queries made, to FRO, by the adversary. Our proofs hold in the
global RO (GRO) model of [CJS14] where the observable RO is replaced by the
GRO.

Tweakable Correlation Robust Hash. OT extension requires a correlation robust
hash function. We adopted the definition proposed by Guo et al. [GKW+19],
where a tweak is explicitly included in the hash function too. Given a function
CRF : T × {0, 1}κ → {0, 1}κ, define OΔ(t, w) def= CRF(t, w ⊕ Δ), where t ∈ T .
Let Func denote the set of functions from T × {0, 1}κ to {0, 1}κ.

Definition 1. Given a function CRF : T ×{0, 1}κ → {0, 1}κ, a uniform distri-
bution on {0, 1}κ namely Uκ, we say that CRFis tweakable correlation robust
if for any PPT distinguisher D, if

∣
∣
∣
∣

Pr
Δ←Uκ

[

DΔ(·) = 1
]

− Pr
f←Func

[

Df(·) = 1
]
∣
∣
∣
∣
= negli(κ).

Note that in our use of tweakable correlation robust hash, T is a tuple of values,
one for sid and one for index i.

Oblivious Transfer. In a 1-out-of-2 OT, we have a sender (S) holding two inputs
a0, a1 ∈ {0, 1}n and a receiver (R) holding a choice bit b. The correctness of OT
means that R will obtain ab as the outcome of the protocol. At the same time, S
should learn nothing about b, and R should learn nothing about the other input
of S, namely ab̄. The ideal OT functionality FOT is shown in Fig. 1.

3 Technical Overview

In this section we give an overview of our technical contributions. First, we recall
the KOS OT extension from a high-level. We argue that the base OTs in KOS
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RO

RO is parameterized by a domain D and range R and it proceeds as follows, running
on security parameter k:

– RO maintains a list L (which is initially empty) of pairs of values (m̂, ĥ), s.t.
m̂ ∈ D and ĥ ∈ R.

– Upon receiving a value (sid, m) (where m ∈ D) perform the following: If there
is a pair (m, ĥ), for some ĥ ∈ R, in the list L, set h := ĥ. If there is no such
pair, sample h ←R R and store the pair (m, h) in L. Once h is set, reply to the
activating machine with (sid, h).

Fig. 2. The ideal functionality FOT for Random Oracle

do not require UC security. Building on this idea, we propose a weaker OT
functionality and then we provide an efficient three-round OT protocol which
would yield a three round OT extension.

3.1 Overview of KOS

In the KOS OT extension, the sender SExt and receiver RExt wants to generate m
OTs using κ invocations to FOT (base OTs) and symmetric key operations. The
sender SExt plays the role of a receiver in the base OTs. He samples a random
κ bit string s and invokes ith instance of FOT with ith bit of s for i ∈ [κ]. The
receiver RExt invokes FOT as sender with random pads (ki,0,ki,1). SExt obtains
ki,si

from the ith base OT. In addition, RExt also sends a mapping D from his
inputs to the (ki,0,ki,1) values. Upon obtaining this mapping D and the base-
OT output, the sender computes his mapping Q. He computes correlated pads
for the extended OTs using s and Q as CRF(sid, j,Qj) and CRF(sid, j,Qj ⊕ s)
for j ∈ [m], where CRF is a correlation robust function. If the receiver’s input
bit for j-th extended OT is 0, then he can compute Qj , else he can compute
Qj ⊕ s. The other value remains hidden due to s and security of CRF. Using
the correlated pads, SExt encrypts his inputs for the extended OTs and sends it
to RExt.

In addition, SExt also performs a consistency check on matrix D is correctly
formed by RExt, else a malformed D matrix would leak the bits of s rendering
the protocol insecure. The original KOS paper had an interactive check phase.
It was made non-interactive by the work of [DKLs18] using the Fiat-Shamir
transform by relying on the observable random oracle. Our protocol also uses
the same non-interactive check to obtain a 3-round OT extension protocol where
the checks are run in the second OT extension message. The base OTs are run
for 3 rounds and the last message of the OT extension is sent in parallel to the
last message of the base OT. Next, we discuss our proposed relaxations in the
base OT functionality.



306 R. Canetti et al.

3.2 Relaxation in the OT Functionality

Firstly, it can be observed that the parties invoke the base OTs in KOS with
random OTs. So, one can consider random OT functionality instead of full OT
functionality. Next, we can allow selective failure in the base OTs. The work of
KOS and [DKLs18] showed that the base OTs do not require full UC-security of
an OT functionality. Instead, the functionality can allow a corrupt sender (i.e.
RExt in the OT extension) to launch a selective failure attack on the s bits of the
receiver (i.e. SExt in the OT extension). In such a case, the corrupt R∗

Ext will still
have a negligible advantage in breaking the security of the extended OTs. We
claim that the OT functionality can be further relaxed based on the following
observations in the KOS protocol.

1. Delayed input extraction of receiver: The inputs of the receiver (SExt)
in the base OTs can be extracted after SExt sends the last message of the
OT Extension protocol. Recall, that the last message of the OT Extension
protocol consists of the inputs of SExt encrypted with the correlated pads.
The simulator against a corrupt S∗

Ext can simulate the second message of the
OT extension without the knowledge of s. Later, it can extract s from the
base OTs and then extract SExt’s inputs from the last message.

2. Corrupt receiver can abort after base OT: A corrupt receiver (SExt)
can abort after obtaining the results of base-OT protocol corresponding to
s. In such a case, the honest RExt would just abort the protocol as the base
OTs resulted in an abort. For each base OT, one of the input of RExt remain
hidden from SExt due to the security of the OT; thus hiding RExt’s inputs.

3. Batch of κ OT: The OT extension protocol requires κ base OTs between
the parties. So, the base OTs can be computed in a batch of κ OTs instead
of κ independent instances of the OT protocol.

Based on the above observations we can consider the following relaxations to
the OT functionality for a corrupt receiver.

1. Indistinguishability based security against corrupt receiver with
input extraction: We can reduce the simulation based security for a cor-
rupt receiver to an indistinguishability based security. We need an extractor
algorithm Ext that can extract the input bit b of a corrupt receiver, given
blackbox access to it. The corrupt receiver cannot distinguish its real world
view from a view constructed with the sender’s message corresponding to bit
b̄ set as 0κ.

2. Corrupt receiver can abort without input extraction: A corrupt
receiver can decide to abort in the OT functionality and in such a case the
Ext does not need to extract his inputs.

3. Corrupt receiver cannot compute both sender messages: A corrupt
receiver cannot compute both sender input messages from the OT transcript
and his internal randomness, even if he aborts the protocol.
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3.3 Usage in KOS OT Extension

The above relaxations in the base-OT functionality are justified since we do not
require simulation based security in the OT extension protocol for the base OTs.
This is because the base OTs are internal to the protocol; hence the input/output
of the honest parties in the base OTs are inaccessible to the environment Z who
tries to distinguish between real and ideal world executions of the OT extension
protocol. Indistinguishability based security suffices for a corrupt receiver (i.e. a
corrupt SExt) in the base OTs, if we are guaranteed that the following conditions
hold:

1. If the base OTs succeed then the input s of the receiver (i.e. SExt) can be
extracted after obtaining the OT extension last message as that is used by
the simulator (for a corrupt S∗

Ext) to extract the input messages of S∗
Ext. This

is guaranteed by the correctness of Ext algorithm when the base OT protocol
succeeds.

2. In case the base OT aborts, then the Ext does not need to extract the inputs
of S∗

Ext since the OT extension protocol terminates with an abort too.
3. The corrupt S∗

Ext should not be able to distinguish between the real world
interaction with honest RExt, and ideal world interaction with the simulator.
In the ideal world, the simulator runs with input for the extended OTs as all
0s string. S∗

Ext, playing the role of receiver in the base OT, cannot compute
both sender messages of the base OT. Based on this property, we tweak our
OT extension protocol by relying on the random oracle. The tweak ensures
that one of the sender’s messages in the each base OT will be hidden from S∗

Ext.
Thus, he cannot distinguish the real world from the ideal world by relying
on the security of the original KOS protocol. Our tweak incurs a minimal
overhead of 2 RO queries for each base OT.

We also utilize the fact that the base OTs are computed in a batch of κ OTs.
This allows us to efficiently implement a batch of κ instances of the above (weak-
ened) OT functionality based on observable random oracle. Next, we discuss our
OT protocol which implements a batch of κ instances of weak OT functionality,
as discussed above.

3.4 Optimized OT Protocol in the Observable RO Model

We consider an OT protocol in the observable random oracle model where the
receiver R generates receiver OT parameter T by invoking a random oracle FRO1

on a seed. He samples a random α ← Zq and computes his first message based
on his input bit b as B, where

B = gα · T b

He sends B and seed to the sender S. The sender computes T from seed and
samples a random r ← Zq. S computes sender OT parameters- z = gr and sends
z to R. S computes his random pads p0 and p1 by invoking a random oracle FRO2

as follows:
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p0 = FRO2(sid, Br)

p1 = FRO2(sid, (B
T )r)

Upon obtaining z, R computes his output pad pb as follows:

pb = FRO2(sid, zα) = FRO2(sid, grα)

This protocol ensures that a corrupt receiver R∗ cannot compute both random
pads as that would require invoking FRO2 on Br and (B

T )r = Br

T r . Such a corrupt
receiver could be used to break the CDH assumption where (T, z) = (gt, gr) is
the CDH challenge. The queries made by R∗ to FRO2 can be used to obtain T r

which is the answer to the CDH challenge. This OT protocol also perfectly hides
the input b of an honest receiver from a corrupt receiver as α and α− t are valid
receiver randomness for b = 0 and b = 1 respectively, where B = gα. However,
this protocol doesn’t allow extraction of receiver or sender’s inputs from the OT
messages in the observable RO model.

Adding Receiver Input Extraction. To add receiver’s input extraction the
sender adds a challenge in the second round of the OT protocol.

chall = FRO3(sid, p0) ⊕ FRO3(sid, p1).

The receiver has to respond to the challenge by computing his answer Ans.

Ans = FRO3(sid, pb) ⊕ (b · chall) = FRO3(sid, p0).

R has to query FRO3 to compute Ans and assists a simulator to extract a corrupt
receiver’s input. R sends Ans to the sender in a third OT message. This increases
the round complexity to 3 but it ensures that the simulator can extract the
receiver’s input bit from the RO queries of FRO3 if Ans is valid. This is similar to
the challenge-response paradigm introduced in the work of [DKLs18]. However,
a corrupt sender can compute the challenge in a malicious way such that he can
find out the bits of receiver from the response and the receiver fails to identify
such an attack. The work of [DKLs18] tackles this issue by making the sender
open his randomness (for computing the challenge) to the receiver in a fourth
OT message. We ensure correctness of the challenge by making the sender send
a proof γ along with the challenge in the second OT message,

γ = FRO3(sid,FRO3(sid, p0)) = FRO3(sid, Ans).

After obtaining the second OT message, the receiver can compute Ans and verify
the proof γ. If γ is valid then he sends Ans to sender else he aborts. This ensures
input extraction of receiver as argued before but it adds selective failure attack
by a corrupt sender S∗. S∗ can try to guess the bits of receiver and based on
that he can maliciously construct the challenge. However, our OT functionality
accommodates selective failure attack over a batch of κ OTs and hence this
challenge-prove-response paradigm would work in our case. Next, we show that
this trick already provides extraction of a corrupt sender’s input.
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Adding Sender Input Extraction. Our challenge-prove-response paradigm
allows us to construct a protocol where the sender’s inputs can be extracted if
a batch of � > μ OTs are run together. In KOS, κ OTs are run where κ > μ.
Now, we will explain the reason behind our assumption of � > μ. In a batch of �
OTs, every OT uses the same T and z = gr, i.e. the ith OT pad is of the form:

pi,0 = FRO2(sid, Br
i ),

pi,1 = FRO2(sid, (Bi

T )r),

where Bi is chosen by R based on his randomness αi and input bit bi for the
i-th OT. In such a case, the sender sends a unique challenge challi for each OT
as follows:

challi = FRO3(sid, pi,0) ⊕ FRO3(sid, pi,1).

Now, the receiver computes the answer resp to the challenge as:

respi = FRO3(sid, pb) ⊕ (b · chall) = FRO3(sid, p0).

The answer to the challenge is optimized to sending one string for the whole
batch instead of κ strings, as follows:

Ans = FRO4(sid,FRO3(sid, resp1),FRO3(sid, resp2), . . . FRO3(sid, respκ))
= FRO4(sid,FRO3(sid, p1,0),FRO3(sid, p2,0), . . . FRO3(sid, pκ,0)).

The proof sent by the sender is also modified accordingly as:

γ = FRO3(sid,FRO4(sid,FRO3(sid, p1,0),FRO3(sid, p2,0), . . . FRO3(sid, pκ,0)))
= FRO3(sid, Ans).

The receiver can check his computed answer with the proof and then respond
with Ans. This tweak allows us to extract a corrupt sender’s input for � > μ OTs.
The simulator can extract T r by observing the queries- Br

i and (Bi

T )r made by S
to FRO2. Sender needs to query FRO2 for computing pi,0 and pi,1 values, which are
in turn used to compute the challenge and proof for � > μ OTs. Sender can avoid
querying FRO2 with both- Br

i and (Bi

T )r. In that case, he has to either guess the
corresponding RO query results, i.e. pi,0 or pi,1, or he launches a selective failure
attack for every OT and he has to correctly guess receiver’s input bit for every
OT. This is because, the receiver’s input is random and he will compute the Ans
and it will not match with the γ sent by the sender, except with 2−μ probability,
since γ and challi were computed without correctly computing the pi,0 or pi,1

values, for every i ∈ [�]. Thus, the simulator can observe FRO2, compute the
candidate pi,0, pi,1, match with challi values and γ and extract the correct T r.
Using T r, he can extract the sender’s input messages.

3.5 Circumventing the Impossibility Result of [GMMM18]

We circumvent the impossibility result of [GMMM18] by allowing the OT exten-
sion receiver RExt, i.e. base OT sender, to use the base OT output messages to
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send his mapping D in the second round of the OT extension protocol. If the
base OT receiver fails to answer the base OT challenge then RExt aborts else he
computes his OT extension output message. The base OT security ensures that
a corrupt base OT receiver (i.e. S∗

Ext) cannot compute both messages of the base
OT sender (i.e. RExt). This hides the input of RExt in D even though we use the
base OT messages before it has terminated. Such non-blackbox usage of the 3
round base-OT protocol allows us to obtain a 3 round OT extension protocol.

4 Weakening the Oblivious Transfer Functionality

In this section, we discuss the type of security that we require from the base OT
protocols of the KOS OT extension. We demonstrate that by gradually relaxing
the FOT functionality, where the parties choose their own input, to a random OT
where the functionality provides random inputs to the parties. Next, we allow
selective failure attack by a sender on receiver’s inputs and define it as FSF-rOT.
We also allow a corrupt receiver to abort the protocol. We relax the UC-security
of this protocol to one-sided simulation. Finally, we formally define our notion
of weakened OT which provides simulation based security for a corrupt sender
and indistinguishability security against a corrupt receiver.

Random Oblivious Transfer. The OT functionality can be relaxed to consider
random inputs, i.e. FrOT. In this case, the inputs of an honest sender and an
honest receiver are chosen randomly by the functionality. However, a malicious
sender (also a malicious receiver) can choose his own inputs. The ideal random
OT functionality has been presented in Fig. 3.

Random Oblivious Transfer with Selective Failure and Explicit Abort. We can
further weaken the FrOT functionality to allow selective failure attacks by a
corrupt sender. Here, the corrupt sender S∗ can try to guess the random input
of the receiver by setting its message, corresponding to bit 0 as ⊥, whereas the
message corresponding to bit 1 is set correctly. An honest receiver would abort
if his input bit b is 0, else he continues with the protocol. This would leak b to
S∗. We also allow a corrupt receiver R∗ to explicitly abort the protocol after it
obtains its input message ab. In such a case, the functionality notifies the sender
regarding the abort. Our FSF-rOT functionality has been modeled in Fig. 4.

Oblivious Transfer for KOS. It was shown in the work of KOS and [DKLs18]
that κ instances of FSF-rOT (without the Abort option) suffices to instanti-
ate the κ base OTs in the KOS OT extension protocol. However, this requires
simulation based security against a corrupt R∗, where the simulator needs to
extract the input of R∗ and simulate the sender’s message s.t. they open to the
correct message, i.e. ab, even if R∗ aborts the protocol. However, such a strong
requirement from FSF-rOT is an overkill for instantiating the base-OT protocols.
We demonstrate that the security against a corrupt receiver can be reduced to
indistinguishability based security and his input need not be extracted when he
aborts. More precisely:
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rOT

OT interacts with a sender S and a receiver R:
– On input (Choose, rec, sid) from R; if no message of the form (rec, sid, b) has

been recorded in the memory, sample b ← {0, 1}, store (rec, sid, b) and send
(rec, sid) to S and (b, sid) to R.

– On input (Choose∗, rec, sid, b) from R∗ where b ∈ {0, 1}; if no message of the
form (rec, sid, b) has been recorded in the memory, store (rec, sid, b) and send
(rec, sid) to S and (b, sid) to R.

– On input (Transfer, sen, sid) from S, if no message of the form (sen, sid, (a0, a1))
is recorded and a message of the form (rec, sid, b) is stored, sample a0, a1 ←
{0, 1}n, store (sen, sid, (a0, a1)) in memory and send (sent, sid, (b, ab)) to R and
(sent, sid, (a0, a1)) to S. Ignore future messages with the same sid.

– On input (Transfer∗, sen, sid, (a0, a1)) from S∗ with a0, a1 ∈ {0, 1}n, if no
message of the form (sen, sid, (a0, a1)) is recorded and a message of the form
(rec, sid, b) is stored, send (sent, sid, (b, ab)) to R and (sent, sid, (a0, a1)) to S.
Ignore future messages with the same sid.

Fig. 3. The ideal functionality FrOT for random Oblivious Transfer

– Indistinguishability against a Malicious R∗: In the KOS OT extension,
the invocations to the base OT functionality is internal to the OT extension
protocol. The environment Z does not have access to it; hence it cannot choose
inputs for the honest parties in the base OT functionality. This permits us
to use an efficient OT protocol to emulate the functionality, s.t. it provides
simulation based security against a corrupt S∗ whereas for a corrupt R∗, it
provides indistinguishability based security. Such a relaxation allows us to
use observable random oracle instead of a programmable one in 3 rounds.
Previous protocols, like [DKLs18] used observable RO but they required 5
rounds for the base OTs, where the last 2 rounds where spent in simulating
the honest sender’s messages, i.e. providing simulation based security against
corrupt R∗. The work of [MR19] obtain a two-round OT but they require
twice the amount of exponentiation as ours by extracting the receiver’s input
from the first OT message.

– Input of R∗ need not be extracted during Abort: When the sender
S∗
Ext of the OT extension protocol (acting as the receiver R∗ of the base OTs)

misbehaves and causes an abort, the OT extension protocol leads to an abort.
In such a case, the input messages (in the extended OTs) of S∗

Ext need not be
extracted. Hence, it is not necessary to extract the inputs of S∗

Ext(or R∗) in
the base OTs. This allows us to push the extraction of the R∗ input until the
last round of the base OT (in our case also the last round of OT extension),
where it can be extracted when he computes the base OTs correctly. In case
he aborts then it is guaranteed that he cannot compute both sender messages.
This allows us to save on the number of exponentiations.
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SF-rOT

SF-rOT interacts with a sender S and receiver R :
– On input (Choose, rec, sid) from R; if no message of the form (rec, sid, b) has been

recorded in the memory, sample b ← {0, 1}, store (rec, sid, b) and send (rec, sid)
to S and (b, sid) to R. If a message of the form (sen, sid, (a0, a1)) is stored, send
(sent, sid, (b, ab)) to R and (sent, sid, (a0, a1)) to S and ignore future messages
with the same sid.

– On input (Choose∗, rec, sid, b) from R∗ where b ∈ {0, 1}; if no message of the
form (rec, sid, b) has been recorded in the memory, store (rec, sid, b) and send
(rec, sid) to S and (b, sid) to R. If a message of the form (sen, sid, (a0, a1)) is
stored, send (sent, sid, (b, ab)) to R and (sent, sid, (a0, a1)) to S and ignore future
messages with the same sid.

– On input (Guess∗, sen, sid, b′) from S∗, if (rec, sid, b) exists in memory, b′ ∈
{0, 1, ⊥} and there does not exist (sen, sid, (Guess, ·)) in memory then store
(sen, sid, (Guess, b′)) in memory and perform the following:

• If b′ = ⊥, do nothing.
• If b′ = �, send (Cheat-Detected, S) to R and (Cheat-Detected) to S.
• If b′ = b, send (Cheat-Undetected) to S.
• If b′ �= b, send (Cheat-Detected, S) to R and (Cheat-Detected) to S.

– On input (Transfer, sen, sid) from S, if no message of the form (sen, sid, (a0, a1))
is stored; sample a0, a1 ← {0, 1}κ, store (sen, sid, (a0, a1)) in memory and send
(Received, sid) to R and S. If a message of the form (rec, sid, b) is stored, send
(sent, sid, (b, ab)) to R and (sent, sid, (a0, a1)) to S and ignore future messages
with the same sid.

– On input (Transfer∗, sen, sid, (a0, a1)) from S∗, if no message of the form
(sen, sid, (a0, a1)) is stored then store (sen, sid, (a0, a1)) in memory and send
(Received, sid) to R and S. If a message of the form (rec, sid, b) is stored, then
send (sent, sid, (b, ab)) to R and (sent, sid, (a0, a1)) to S and ignore future mes-
sages with the same sid.

– On input (Abort, rec, b, sid) from R∗, if messages of the form - (sen, sid, (a0, a1))
is stored; send (sent, sid, (b, ab)) to R and (Abort, sid, (a0, a1)) to S. Ignore
future messages with the same sid.

Fig. 4. The ideal functionality FSF-rOT for Random Oblivious Transfer with Selective
Failure

– Batch of κ > μ OTs: We consider a batch of κ > μ invocations of OT
protocol for the base OTs. This is necessary since a corrupt receiver of OT
extension R∗

Ext can launch a selective failure attack on the inputs of SExt to the
base OT. Since the inputs are random, R∗

Ext can at most determine μ inputs
bits of SExt’s randomness. However, that gives him a negligible advantage in
breaking the security of the OT extension protocol due to the security of the
underlying OT extension protocol.
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We also assume there exists a PPT algorithm Ext that can extract the input of
a malicious R∗, if he does not abort the protocol. We formally define our sender-
simulatable FSF-rOT with the following security properties required against a
corrupt receiver:

Definition 2. Let FSF-rOT be the Oblivious Transfer functionality as shown in
Fig. 4. We say that a protocol πOT securely computes FSF-rOT with sender-sided
simulation with input extractability of receiver if the following holds:

1. For every non-uniform PPT adversary S∗ controlling the sender in the real
model, there exists a non-uniform PPT adversary Sim for the ideal model,
such that for any environment Z,

idealFSF-rOT,Sim,Z((a0, a1), b, z)z∈{0,1}∗ ≈ realπOT,S∗,Z((a0, a1), b, z)z∈{0,1}∗ .

2. For every non-uniform PPT adversary A controlling the receiver R∗, the fol-
lowing holds:
– Property 1: If the sender did not abort, then there exists a PPT extractor

algorithm Ext such that the following holds:

Pr

[

(a0, a1) ← SFSF-rOT , (b, ab) ← AFSF-rOT , b′ ← ExtA

: (b �= b′) ∧ (a0 �= ⊥) ∧ (a1 �= ⊥)

]

≤ negli(κ)

– Property 2: If the sender did not abort, then the view of R∗ is independent
of ab̄. More formally the following condition holds:

VS
πOT,R∗(z)((a0, a1), b, z)z∈{0,1}∗ ≈ VS

πOT,R∗(z)((ã0, ã1), b, z)z∈{0,1}∗ ,

where Ext outputs b on interacting with R∗. VS
πOT,R∗(z) denotes the view of

adversarial R∗ after a real execution of protocol πOT with the honest sender
S, with random sender inputs (a0, a1), and (ã0, ã1) where ãb ← {0, 1}κ

and ãb̄ = 0κ respectively.
– Property 3: R∗ cannot compute both sender messages except with negligible

probability. More formally the following condition holds:

Pr

[
(a0, a1) ← SFSF-rOT , (a′

0, a
′
1) ← AFSF-rOT : (a0 = a′

0) ∧ (a1 = a′
1)

]
≤ negli(κ)

5 Oblivious Transfer Extension Using πκ
OT

In this section we show that the base OTs (a.k.a seed OTs) in the KOS OT
extension can be instantiated using κ invocations to the modified (according
to Definition 2) FSF-rOT. This results in an efficient seed OT phase, where each
base OT requires 3 exponentiations. We assume that there exists a protocol πκ

OT

which implements(according to Definition 2) κ instances of FSF-rOT. Then we use
πκ
OT to implement the base OTs. Our protocol has been presented in Fig. 5.
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πKOS

– Public Inputs: Group G, fields Zq and F, and generator g of group G.
– Private Inputs: S has m pairs

{
aj,0, aj,1

}
j∈[m]

of κ bit strings. R has m selec-
tion bit vector r = (r1, · · · , rm) such that each rj ∈ {0, 1}.

– Functionalities: PRG : {0, 1}κ → {0, 1}m+κ, RO1 : {0, 1}κ×{0, 1}κ → {0, 1}κ,
RO2 : {0, 1}κ × {0, 1}(m+κ)×κ → F

m+κ and CRF : {0, 1}κ × [m] × {0, 1}κ →
{0, 1}κ.

– Notations: πκ
OT implements κ instances of SF-rOT(according to Def. 2).

Seed OT Phase I:

1. For i ∈ [κ], S invokes the ith instance of πκ
OT with message (Choose, rec, sid) to

obtain si. He forms s = {s1, s2, . . . , sκ} ∈ {0, 1}κ.
2. For i ∈ [κ], R invokes the ith instance of πκ

OT with message (Transfer, sen, sid)
to obtain ki,0,ki,1 ∈ {0, 1}κ.

OT Extension Phase I:

1. R forms three (m+κ)×κ matrices M, R and D in the following way and sends
D to S:
– Sets Mi = PRG( RO1(sid,ki,0)).
– Samples τ ← {0, 1}κ and sets r′ = r||τ .
– Sets Rj = (r′

j , . . . , r
′
j). Clearly, R

i = r′.
– Set Di = Mi ⊕ PRG( RO1(sid,ki,1)) ⊕ Ri.

Consistency Check Phase I :

1. R computes challenge χ = {χ1, . . . , χm+κ} of consistency check as follows: χ̃ =
{χ1, . . . , χm+κ} = RO2(sid,D).

2. R computes u =
⊕

j∈(m+κ)(χj · Mj) and v =
⊕

j∈(m+κ)(χj · Rj). R sends u
and v to S.

Seed OT Phase II:

1. If S receives a Cheat-Detected message from πκ
OT then he aborts.

2. S receives ki,si from the ith instance of πκ
OT for i ∈ [κ].

Consistency Check Phase II :

1. On receiving D, S forms (m + κ) × κ matrix Q with the jth column of Q set
as Qi = si 	 Di

) ⊕ PRG( RO1(sid,ki,si)). Clearly, (i) Qi = Mi ⊕ (si 	 Ri)
)

and (ii) Qj = Mj ⊕ (s 	 Rj)
)
= Mj ⊕ (s 	 rj)

)
.

2. S obtains χ̃ values from D and computes w =
⊕

j∈(m+κ)(χj · Qj). S checks
that w = u ⊕ s · v.

OT Extension Phase II:

1. For every j ∈ [m], S computes yj,0 = aj,0 ⊕ CRF(sid, j,Qj) and yj,1 = aj,1 ⊕
CRF(sid, j,Qj ⊕ s). S sends {yj,0,yj,1}j∈[m] to R.

2. If R obtains Abort message from πκ
OT, then he aborts.

3. For every j ∈ [m], R recovers a′
j = yj,rj

⊕CRF(sid, j,Mj). R outputs {a′
j}j∈[m].

Fig. 5. KOS OT Extension using πκ
OT
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5.1 Security Proof

We prove UC-security of our OT extension protocol πKOS by relying on the secu-
rity properties of πκ

OT, correlation robust function, PRG and RO. More precisely,
we prove Theorem 1.

Theorem 1. Assuming PRG is a secure pseudorandom generator, CRF is a
tweakable correlation robust function, FRO2 is an observable random oracle and
πκ
OT implements (according to Definition 2) κ instances of FSF-rOT, then πKOS

UC-securely implements m = poly(κ) instances of FOT functionality.

Proof. We will first argue security for a corrupt sender and then for a corrupt
receiver. In both cases, we give a simulator algorithm and provide an indistin-
guishability argument.

The simulator for a statically corrupt S∗ constructs the M,R and D matrices
using r = 0m by following the honest receiver algorithm. S∗ cannot obtain both
ki,0 and ki,1 (due to the security of πκ

OT against a corrupt receiver). Hence,
R remains hidden due to the PRG security. The simulator will invoke the Ext
algorithm of πκ

OT to obtain the randomness of S∗, i.e. s. Using s, the simulator
can compute back the sender’s messages. Our simulator has been provided in
Fig. 6. We argue indistinguishability between real and ideal world by providing
hybrids and proving indistinguishability between each pair of consecutive hybrids
as follows:

– HYB0: Real world.
– HYB1: Same as HYB0, except the reduction constructs M,D and R using r =

0m. Indistinguishability follows since the corrupt sender cannot compute both
messages in the base OTs due to security of πκ

OT. Then one of FRO1(sid,ki,0)
and FRO1(sid,ki,1) remains hidden for every i ∈ [κ] due to the RO assumption
of FRO1.

– HYB2: Same as HYB1, except the reduction extracts s by invoking Ext algo-
rithm of πκ

OT. Indistinguishability follows due to the correctness of Ext algo-
rithm, which is guaranteed by the security of πκ

OT when the OT extension
sender does not abort.

– HYB3: Same as HYB2, except the reduction successfully extracts sender’s
input messages using M and s. This HYB3 is identical to HYB2 due to cor-
rectness of the OT extension protocol.

Next, we discuss the simulation for a corrupt R∗. The simulator will extract
the (ki,0,ki,1) values by invoking the simulator(for corrupt sender) of πκ

OT. A
corrupt R∗ can perform selective failure attack on the base OTs but the KOS
protocol is resilient to such attacks. R∗ can also construct the R matrix in such
a way that it is not monochrome, i.e. some of the rows of M does not contain all
0s or all 1s. In such a case the consistency checks detect it with high probability
and the sender aborts. If the checks pass, then R∗ infers limited knowledge about
the bits of s. We refer to the original KOS [KOS15] paper for more details. Our
simulator algorithm has been presented in Fig. 7. Next, we present our hybrids
and indistinguishability argument:
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– Functionalities: PRG : {0, 1}κ → {0, 1}m+μ, RO1 : {0, 1}κ×{0, 1}κ → {0, 1}κ,
RO2 : {0, 1}κ × {0, 1}(m+κ)×κ → F

m+κ and CRF : {0, 1}κ × [m] × {0, 1}κ →
{0, 1}κ.

Seed OT Phase I:

1. Sim invokes the ith instance of πκ
OT with message (Transfer, sen, sid) to obtain

ki,0,ki,1 ∈ {0, 1}κ for i ∈ [κ].
OT Extension Phase I:

– Sim forms matrices M, R and D, following the honest receiver algorithm using
r = 0m.

– Sim sends Di = Mi ⊕ PRG( RO1(sid,ki,1)) ⊕ Ri.
Consistency Check Phase I :
Sim computes u and v using the honest receiver algorithm and sends it to S∗.

Seed OT Phase II:
S∗ performs his own adversarial algorithm.

Consistency Check Phase II :
S∗ performs his own adversarial algorithm.

OT Extension Phase II:

1. For every j ∈ [m], S∗ sends {yj,0,yj,1}j∈[m] to Sim.
2. If Sim obtains Abort message from πκ

OT, then he aborts.
3. Else, Sim invokes Ext algorithm to obtain s.
4. For every j ∈ [m], Sim recovers a′

j,0 = yj,0 ⊕ CRF(sid, j,Mj) and a′
j,1 = yj,1 ⊕

CRF(sid, j,Mj ⊕ s).
5. For j ∈ [m], Sim invokes jth instance of OT with input (a′

j,0, a
′
j,1).

Fig. 6. Simulation against a statically corrupt S∗

– HYB0: Real world.
– HYB1: Same as HYB0, except the reduction invokes the simulator (for corrupt

sender) of FSF-rOT to obtain (ki,0,ki,1).
– HYB2: Same as HYB1, except the reduction aborts if M has more than μ

non-monochromatic rows. The real world sender would abort due to the cor-
rectness of the consistency checks, which follow from the RO assumption.
Thus, indistinguishability follows from the RO assumption.

– HYB3: Same as HYB2, except the simulator extracts R∗ input and simulates
the yj,0 and yj,1 according to the simulation algorithm. Indistinguishability
follows due to the CRF assumption. ��

5.2 Efficiency

Our instantiation of the KOS protocol has a minimal overhead of two random
oracle, per base OT, on top of the modified KOS protocol of [DKLs18]. The
original communication complexity remains preserved. Using Fiat-Shamir like
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– Functionalities: PRG : {0, 1}κ → {0, 1}m+μ, RO1 : {0, 1}κ×{0, 1}κ → {0, 1}κ,
RO2 : {0, 1}κ × {0, 1}(m+κ)×κ → F

m+κ and CRF : {0, 1}κ × [m] × {0, 1}κ →
{0, 1}κ.

Seed OT Phase I:
For i ∈ [κ], Sim invokes the ith instance of πκ

OT with message (Choose, rec, sid) to
obtain si. He forms s = {s1, s2, . . . , sκ} ∈ {0, 1}κ.

OT Extension Phase I:
R∗ sends D to Sim.

Consistency Check Phase I :
R∗ sends u and v to Sim.

Seed OT Phase II:

1. If Sim receives a Cheat-Detected message from πκ
OT then he aborts.

2. Sim invokes the simulator (for corrupt sender) of SF-rOT to obtain (ki,0,ki,1)
values for i ∈ [κ].

Consistency Check Phase II :

1. Sim computes Q matrix following the honest sender algorithm.
2. Sim computes Ri = Di ⊕PRG( RO1(sid,ki,0))⊕PRG( RO1(sid,ki,1)) for i ∈ [κ].
3. Sim verifies u and v by following the honest sender algorithm and aborts if

check fails.
4. Sim aborts if M has at least μ non-monochromatic rows.
OT Extension Phase II:

1. For every j ∈ [m], Sim invokes jth instance of OT with input rj to obtain aj .
2. For every j ∈ [m], Sim sets yj,rj = aj ⊕ CRF(sid, j,Qj ⊕ rj · s) and yj,r̄j ←

{0, 1}κ.

Fig. 7. Simulation against a statically corrupt R∗

transform of [DKLs18] the consistency checks have become non-interactive. In
the original KOS protocol, the consistency checks required 2 extra rounds for
coin-tossing protocol between the parties. In the next section we will provide
an efficient protocol for πκ

OT using 3 rounds. The base-OT messages can be sent
in parallel to the OT extension messages. Thus, it would be round preserving
and it will circumvent the impossibility result of [GMMM18] since we consider
non-blackbox usage of the base-OT protocol.

6 Implementing κ Instances of FSF-rOT

In this section we present our protocol π�
OT which implements (according to

Definition 2) � = κ instances of FSF-rOT assuming Observable Random Oracle,
where κ > μ. We refer to Sect. 3 for a detailed overview. Our protocol has been
presented in Fig. 8.
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π�
OT

– Public Inputs: Group G, field Zq and generator g of group G.
– Private Inputs: Sender S and receiver R do not possess any private inputs.
– Random Oracles: RO1 : {0, 1}2κ → G, RO2 : {0, 1}κ × G → {0, 1}κ, FRO3 :

{0, 1}2κ → {0, 1}κ, RO4 : {0, 1}(�+1)κ → {0, 1}κ.

Choose:

– Receiver Parameters: R samples seed ← {0, 1}κ and computes T ←
FRO1(sid, seed). R sends seed as OT receiver parameters.

– Receiver Message: For i ∈ [�], R computes its message for ith OT as follows :
• R samples bi as its random input for ith OT.
• R samples αi ← Zq and sets Bi = gαiT bi

• R sends Bi as ith OT message.

Transfer:

– Sender Parameters: S computes T ← RO1(sid, seed). S samples r ← Zq and
computes z = gr. S sends z to R as OT sender parameters.

– Sender Message: For i ∈ [�], S computes its message for ith OT as follows :
• S computes pi,0 = RO2 (sid, Br

i ) and pi,1 = RO2(sid, Bi
T

)r
).

• S sets (pi,0, pi,1) as its random inputs messages for ith OT.

– Challenge Computation: S computes the challenge for ith OT as
challi = RO3(sid, pi,0) ⊕ RO3(sid, pi,1) for i ∈ [�]. S sends Chall =
(chall1, chall2, . . . , chall�) to R.

– Proof Computation: S computes the answer to the challenge as follows :

Ans = RO4(sid, RO3(sid, p1,0), RO3(sid, p2,0), . . . , RO3(sid, p�,0)).

S computes the validity proof of challenge as γ = RO3(sid, Ans). S sends the
proof γ to R.

Response:

– Message Decryption: For i ∈ [�], R computes pi,bi = RO2(sid, zαi).

– Response Computation: For i ∈ [�], R computes respi = RO3(sid, pi,bi) ⊕ (b ·
challi). R computes response as Ans′ = RO4(sid, resp1, resp2, . . . , resp�).

– Challenge Verification: R aborts if RO3(sid, Ans′) �= γ. Else, he sends Ans′ to S
and outputs {(bi, pbi)}i∈[�].

Verification:

– S aborts if Ans �= Ans′. Else, he outputs (pi,0, pi,1) as his output for ith OT.

Fig. 8. Protocol computing � instances of FSF-rOT according to Definition 2
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6.1 Security Proof

We prove security of our protocol πOT by proving Theorem2. In Sect. 5, we will
show that such a relaxation in security suffices for KOS OT extension.

Theorem 2. Assuming the Decisional Diffie-Hellman holds in group G, then
πκ
OT (Fig. 8) UC-securely implements �(> μ) instances of FSF-rOT functionality

(according to Definition 2) in the observable random oracle model with sender-
sided simulation.

Proof. We will first argue security for a corrupt sender and then for a corrupt
receiver. In the first case we provide a simulator and in the latter part we provide
an indistinguishability argument.

The simulator for a statically corrupt sender S∗ will use the observability of
the ROs to extract the sender’s input, since he cannot program FRO1 on seed.
He will compute the receiver message with random input bits. He can compute
either gαir by following the receiver algorithm and extract one of the sender’s
input message for ith OT. In order to extract the other sender’s input message,
he needs to find out T r. Assume for sake of simplicity, that the simulator’s input
bit for all OTs are bi = 0 and he can compute pi,0 and ai,0, for all i ∈ [κ]. He
tries to compute pi,1 values as follows:

1. Observe the queries made by S∗ to FRO3 for computing challi using pi,1 for
every i ∈ [κ]. Extract candidate pi,1 values s.t. chall is well-formed using pi,0

and pi,1. It is guaranteed that from every challi, Sim can get at most one
candidate pi,1 value.

2. After obtaining candidate pi,1 values for each ith OT, the simulator observes
the queries made to FRO2 to obtain pi,1. If there aren’t any such query, then
the simulator sets adversary’s guess for ith OT as 0 in the selective failure
attack. Else, simulator will obtain an unique (guaranteed by RO assumption)
query ρi,1, s.t. FRO2(sid, ρi,1) = pi,1.

3. Simulator obtains all the candidate values of T r from ρi,0(which he can com-
pute locally) and ρi,1. Let A = {A1, A2, . . . , A�} denote the list of values
obtained as Ai = ρi,0

ρi,1
for i ∈ [κ] for i ∈ [κ]. Let A be the value which has

been obtained the maximum number of times from the OTs. The simulator
sets A as the supposed T r value. If there are more than μ OTs whose Ai val-
ues are different from A, then simulator sends (Guess,Sim,
, sid) to FSF-rOT

and aborts. In such a case, S∗ can distinguish the real and ideal world, only
if the honest receiver does not abort. To ensure that, S∗ must correctly guess
the random input bits of the honest R. Thus, S∗ can distinguish with 2−μ

probability if he miscomputed more than μ OTs. Otherwise, the simulator
can extract T r = A value correctly.

4. Given the correct T r value, simulator computes the correct pi,1 values whose
corresponding Aj values were different from A.

Next, the simulator needs to simulate the selective OT failure attacks. Sim
simulates the selective failure attack by checking whether challi is correctly
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formed or not, i.e. if challi = FRO3(sid, pi,0) ⊕ FRO3(sid, pi,1) then A is not per-
forming a selective failure attack. Else, he has performed a selective failure attack
on the receiver’s input. Simulator needs to find out the bit b′ which adversary
has guessed and invoke FSF-rOT with (Guess,Sim, sid,
). Sim performs this by
observing the queries made by A to FRO4 and FRO3.

1. Sim observes the queries made to FRO3 and compares it with γ. If γ was formed
without querying FRO3, then Sim aborts as the real world sender would also
abort irrespective of input, due to RO assumption. There can be only one
such candidate query β s.t. FRO3(sid, β) = γ, due to RO assumption. β is the
candidate for Ans that S must have obtained while computing γ.

2. Next, Sim searches for y = (y1y2 . . . y�), s.t. FRO4(sid, y) = β, due to RO
assumption.

3. Upon finding such a y tuple, it individually checks for y′
i values s.t. yi =

FRO3(sid, y′
i).

4. These y′
i values are then individually matched with the pads (pi,0, pi,1) and

challi. If pi,0 = y′
i, then challi is correctly formed for b′ = 0 and so Sim sets

b′ = 0. If FRO3(sid, pi,1) ⊕ challi = y′
i then challi is correctly formed for b′ = 0

and so Sim sets b′ = 1. Else, the challenge is malformed for both b′ = 0 and
b′ = 1; hence the simulator aborts as the honest sender would also abort.

If there are more than μ OTs where the A has launched a selective failure attack
then the simulator aborts and sends (Guess,Sim, sid,
) to FSF-rOT. Finally, the
simulator invokes FSF-rOT with input (Guess,Sim, b′, sid). It should be noted
that the input bit bi remains perfectly hidden in Bi = gαi since αi and αi − t are
valid randomness for bi = 0 and bi = 1 respectively. The real and ideal world are
statistically indistinguishable except with 2−μ probability. The simulation algo-
rithm has been provided in Fig. 9 and the formal hybrids and indistinguishability
argument are as follows:

– HYB0: Real world.
– HYB1: Same as HYB0, except the reduction except the reduction computes

(pi,0, pi,1) by following the simulation strategy and computes A = T r, or
aborts if necessary. Indistinguishability follows due to RO assumption as dis-
cussed previously.

– HYB2: Same as HYB1, except the reduction invokes FSF-rOT with input pi,0 =
pi,1 = ⊥ and aborts if there are 0 or 2 (and more) candidate values for β.
Indistinguishability follows from RO assumption.

– HYB3: Same as HYB2, except the reduction invokes FSF-rOT with input pi,0 =
pi,1 = ⊥ and aborts if there are 0 or 2 (and more) candidate values for y.
Indistinguishability follows from RO assumption.

– HYB4: Same as HYB3, except the reduction invokes FSF-rOT with input pi,0 =
pi,1 = ⊥ and aborts if there are 0 or 2 (and more) candidate values for y′

i for
each i ∈ [�]. Indistinguishability follows from RO assumption.

– HYB5: Same as HYB4, except the reduction aborts if there are ¿μ OTs where
the sender has launched a selective failure attack. Indistinguishability follows
statistically since the inputs of the honest sender are identically distributed
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to the inputs of the reduction, and both are random. The probability that
the reduction aborts and the sender doesn’t abort in the real world is 2−μ.

– HYB6: Same as HYB5, except the reduction simulates the selective failure
attack following the simulation algorithm. Indistinguishability follows due to
the RO assumption.

– HYB7: Same as HYB6, except Sim computes (pi,0, pi,1) following the simu-
lation strategy and invokes FSF-rOT with it. This hybrid is identical to the
previous hybrid.

This completes the security proof for a corrupt sender. Next, we discuss the
case for a corrupt receiver. In this case, the simulator either extracts the input bit
of a corrupt receiver or it aborts. In the real world, the honest sender would also
abort. However, in both cases the receiver can obtain the message corresponding
to his bit after the OT protocol results in an abort by the sender. More formally,
the simulator for a corrupt receiver R∗ will set (ci,0, ci,1) values randomly. Later,
upon obtaining the second OT second message, the receiver can follow either of
the two tactics:

– Resp is valid: The receiver can query FRO2 to compute pi,bi
, corresponding

to his input bit bi for ith OT. Then he can correctly compute the response to
the challenge by running the honest receiver algorithm. This would result in
the sender accepting the response to the challenge. The simulator can observe
the queries made to the random oracles to extract bi and invoke FSF-rOT with
input bi.

– Resp is invalid: On the other hand, the receiver can send a random response
to the challenge and force the sender to abort. However, the receiver can
decrypt the message corresponding to his input bit bi after the protocol ends
by running the honest receiver’s algorithm. This would hamper simulation as
the simulator cannot extract bi during the protocol since R∗ did not query the
random oracles. Hence, the message decrypted (after the protocol aborted) by
R∗ in the simulated world will be distinguishable from the message decrypted
(after the protocol aborted) by R∗ in the simulated world. Based on abi

,
the view of R∗ can be distinguished by the environment Z; hence simulation
would fail.

Next, we show indistinguishability based security for a corrupt receiver. We
demonstrate that there exists a PPT algorithm Ext who can extract the input
choice bit of R∗ if Ext has blackbox access to R∗ for the protocol session. If R∗

decides to forcefully abort the protocol, then it is guaranteed that he cannot
compute both sender input messages as that would require solving the CDH
problem. We present our Ext algorithm in Fig. 10 and we modularly discuss the
details of our proof by arguing that each property in Definition 2 holds for our
protocol.

– Correctness of Ext algorithm: The corrupt receiver has to compute a
correct answer to the challenge. To do that, he has to query either Br

i or
(Bi · T−1)r to FRO2, to obtain pi,0 or pi,1 and construct the correct response
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– Functionalities: Random Oracles RO1 : {0, 1}κ×{0, 1}κ → G, RO2 : {0, 1}κ×
G → {0, 1}κ, RO3 : {0, 1}κ × {0, 1}κ → {0, 1}κ, RO4 : {0, 1}κ × {0, 1}�κ →
{0, 1}κ.

Choose:

– Receiver Parameters: Sim runs the honest receiver algorithm.

– Receiver Message: Sim runs the honest receiver algorithm.

Transfer:

– S∗ sends (z, Chall, γ).
Response:

– Message Decryption: Sim extracts and sender’s messages as follows:
• Sim computes pi,bi = RO2(sid, zα

i ).
• Sim extracts candidate pi,b̄i

values for each i ∈ [κ] by observing the queries
made to RO3 for computing challi = RO3(sid, pi,0) ⊕ RO3(sid, pi,1).

• Sim extracts ρi,b̄i
from the query list of RO2, s.t. RO2(sid, ρi,b̄i

) = pi,b̄i
.

• Sim computes A = {Ai}i∈[κ] =
ρi,0
ρi,1

. Sets A as the most frequent Ai value
in A. If there are at least μ Ai values s.t. Ai �= A, then invoke SF-rOT with
message (Guess, Sim, sid, �) and abort. Else, consider T r = A.

• Sim computes the correct value of pi,b̄i
= RO2(sid, zαi · A−1).

– Challenge Verification and Response Computation: Sim extracts values by ob-
serving RO queries as follows:

• Sim extracts β s.t. RO3(sid, β) = γ. Set Ans = β by observing RO3. Sim
observes RO4 to extract y = (y1, y2, . . . , y�), s.t. RO4(sid, y) = Ans.

• For i ∈ [�], Sim extracts y′
i s.t. RO3(sid, y′

i) = yi for each i ∈ [�].
If Sim either finds two or more matching queries, or he finds no matching query
then he invokes SF-rOT with input messages pi,0 = pi,1 = ⊥ and aborts. For
i ∈ [�], Sim computes chall′i = RO3(pi,0)⊕ RO3(pi,1) and performs the following:

• If challi = chall′i: If y′
i = pi,0 and pi,1 was queried to RO3, then invoke

FSF-rOT with input (Guess, Sim, sid, ⊥) else abort.
• If challi �= chall′i: If y′

i = pi,0 then set b′
i = 0 else if RO3(sid, pi,0)⊕challi = y′

i

then set b′
i = 1. Invoke SF-rOT with input (Guess, Sim, sid, b′

i).
• Else, Sim aborts in the simulated execution.

– If Sim receives (Cheat-Detected) from any SF-rOT instance then he aborts.
– For i ∈ [�], Sim computes Ans′ following honest receiver algorithm using input

{bi}i∈[�]. Sends Ans′ to S∗ or he aborts.
– Sim invokes ith instance of SF-rOT with input (Transfer∗, sen, sid, (pi,0, pi,1))

for i ∈ [�].

Fig. 9. Simulation against a statically corrupt S∗

using FRO3(sid, pi,0) or FRO3(sid, pi,1). He can bypass querying the RO if he
can correctly guess pi,0 or pi,1 or FRO3(sid, pi,0) or FRO3(sid, pi,1). However,
that occurs with negligible probability. Thus, the Ext algorithm succeeds if
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– Functionalities: Random Oracles RO1 : {0, 1}κ×{0, 1}κ → G, FRO2 : {0, 1}κ×
G → {0, 1}κ, RO3 : {0, 1}κ × {0, 1}κ → {0, 1}κ, RO4 : {0, 1}κ × {0, 1}�κ →
{0, 1}κ.

Choose:

– Receiver Parameters: R∗ sends seed as OT receiver parameters.
– Receiver Message: For i ∈ [�], R∗ sends Bi as ith OT message.

Transfer:
Ext follows honest sender algorithm.

Response:
R∗ sends Ans′.

Verification:

– If Ans′ is not valid then set bi = ⊥ for i ∈ [�] and abort.
– For i ∈ [�], Ext extracts bi as follows and performs the following -

• If R∗ queried both Br
i and (Bi · T −1)r to RO3 then set bi = ⊥.

• If R∗ queried ρi,b′
i
= (Bi · T −b′

i)r to RO3 to obtain pi,b′
i
then set bi = b′

i

else set bi = ⊥.
• Output bi.

Fig. 10. Extractor Algorithm Ext

R∗ correctly responds to the challenge. In such a case, R∗ queries FRO2; hence
Ext can correctly extract bi.

– R∗ cannot compute both pi,0 and pi,1: It can be observed that if R∗

obtains both pi,0 and pi,1 by querying FRO2 on ρi,0 and ρi,1 respectively, then
he can be used to solve the CDH problem where the CDH challenge instance
is T = gt and z = gr. The solution to the CDH challenge would be T r = ρi,0

ρi,1
.

Here, we can assume that the reduction programs FRO1 on seed s.t. it returns
the CDH challenge T . This is a reasonable assumption to make since we are
programming the RO in the reduction. Such programming instances can be
found out in the work of [DKLs18].

– Indistinguishability of R∗ views: The real world view of the corrupt
receiver R∗ − VS

πOT,R∗(z)((pi,0, pi,1), b, z)z∈{0,1}∗ , after executing an OT pro-
tocol with S using random inputs is indistinguishable from the ideal world
view of R∗−VS

πOT,R∗(z)((p̃i,0, p̃i,1), b, z)z∈{0,1}∗ , after executing an OT protocol
with sender since the sender only sends z. This is because R∗ cannot query
ρi,˜bi

to FRO2 (due to CDH assumption) and hence pi,b̄i
and p̃i,b̄i

= 0κ would
look indistinguishable due to the RO assumption.

This completes our proof of Theorem 2. ��
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Table 2. Comparing the performance to compute κ = 128 base OTs using our protocol
and CO-OT.

RTT < 0.1 ms 50 ms 100 ms 200 ms

CO-OT [CO15] 21 ms 67 ms 117 ms 217 ms
This work 21 ms 67 ms 117 ms 217 ms

6.2 Efficiency

Overall the complexity of our protocol is similar to the CO-OT protocol. Our
protocol requires the receiver to compute 2 exponentiations and the sender to
compute 1 exponentiation for each OT. The sender needs to compute 5 RO
queries and the receiver need to query the RO for 4 times, for each OT. The
receiver needs to communicate one group element and one κ bit string for each
OT. The sender needs to send 4κ bit strings for each OT.

In addition, the sender has a one-time computation of 1 exponentiation, one
RO query and communication of one group element, which can be reused. The
receiver has a one-time communication of κ bit string and one-time computation
of one RO query.

7 Implementation and Evaluation

We will study the concrete performance of our OT protocol in this section. As
we have analyzed in previous sections, our OT protocol is expected to be as fast
as the CO-OT protocol by Chou and Orlandi [CO15], which is the most efficient
OT protocol but not provably UC-secure and does not provide input extraction
of a corrupt receiver. Since all state-of-the-art OT protocols are slower than CO-
OT, the above is sufficient to demonstrate the efficiency of our protocol against
all other alternatives [MR19,DKLs18].

We implement CO-OT and our protocol using relic-toolkit [AG] and test
them on a machine with a 3 GHz Intel Xeon CPU. No multi-thread or assembly-
level optimization is used. We throttle the network bandwidth to be 1 Gbps but
with different network round-trip time (RTT, measured by ping). The perfor-
mance is summarized in Table 2, where we can see that the performance of our
protocol is identical to the CO-OT protocol for different network latency val-
ues. This is expected as both protocols have the same number of exponentiation
operations. Note that prior works [CO15,MR19] reported performance of CO-
OT with low-level hardware-dependent accelerations. Our protocol can benefit
from them too, resulting in even higher performance. We further applied both
protocols as the base OT to compute OT extension. We can see that due to the
reduce round complexity of our protocol, we are to obtain a better efficiency
with the overall running time improved by one RTT (Table 3).
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Table 3. Comparing the performance to compute 107 random OTs using KOS with
base OT as our protocol and CO-OT.

RTT < 0.1 ms 50 ms 100 ms 200 ms

CO-OT [CO15]+KOS 1300 ms 1388 ms 1496 ms 1679 ms
This work +KOS 1300 ms 1327 ms 1391 ms 1485 ms
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[OOS17] Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT exten-
sion with application to private set intersection. In: Handschuh, H. (ed.)
CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52153-4 22

[PSS17] Patra, A., Sarkar, P., Suresh, A.: Fast actively secure OT extension for
short secrets. In: 24th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2017, San Diego, California, USA, 26 February–1
March 2017 (2017)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

[WRK17] Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty compu-
tation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017: 24th Conference on Computer and Communications
Security, pp. 39–56. ACM Press, October/November 2017

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th Annual Symposium on Foundations of Computer Science, pp.
162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

	Blazing Fast OT for Three-Round UC OT Extension
	1 Introduction
	1.1 Our Contributions
	1.2 More Discussion on Related Works

	2 Preliminaries
	3 Technical Overview
	3.1 Overview of KOS
	3.2 Relaxation in the OT Functionality
	3.3 Usage in KOS OT Extension
	3.4 Optimized OT Protocol in the Observable RO Model
	3.5 Circumventing the Impossibility Result of ch11C:GMMM18

	4 Weakening the Oblivious Transfer Functionality
	5 Oblivious Transfer Extension Using OT
	5.1 Security Proof
	5.2 Efficiency

	6 Implementing  Instances of FSF-rOT
	6.1 Security Proof
	6.2 Efficiency

	7 Implementation and Evaluation
	References




