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Abstract. Discrete Gaussian distributions over lattices are central to
lattice-based cryptography, and to the computational and mathematical
aspects of lattices more broadly. The literature contains a wealth of use-
ful theorems about the behavior of discrete Gaussians under convolutions
and related operations. Yet despite their structural similarities, most of
these theorems are formally incomparable, and their proofs tend to be
monolithic and written nearly “from scratch,” making them unnecessar-
ily hard to verify, understand, and extend.

In this work we present a modular framework for analyzing linear oper-
ations on discrete Gaussian distributions. The framework abstracts away
the particulars of Gaussians, and usually reduces proofs to the choice
of appropriate linear transformations and elementary linear algebra. To
showcase the approach, we establish several general properties of discrete
Gaussians, and show how to obtain all prior convolution theorems (along
with some new ones) as straightforward corollaries. As another applica-
tion, we describe a self-reduction for Learning With Errors (LWE) that
uses a fixed number of samples to generate an unlimited number of addi-
tional ones (having somewhat larger error). The distinguishing features
of our reduction are its simple analysis in our framework, and its exclu-
sive use of discrete Gaussians without any loss in parameters relative to
a prior mixed discrete-and-continuous approach.

As a contribution of independent interest, for subgaussian random
matrices we prove a singular value concentration bound with explicitly
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stated constants, and we give tighter heuristics for specific distributions
that are commonly used for generating lattice trapdoors. These bounds
yield improvements in the concrete bit-security estimates for trapdoor
lattice cryptosystems.

1 Introduction

The rapid development of lattice-based cryptography in recent years has moved
the topic from a theoretical corner of cryptography to a leading candidate
for post-quantum cryptography1, while also providing advanced cryptographic
functionalities like fully homomorphic encryption [Gen09]. Further appealing
aspects of lattice-based cryptography are its innate parallelism and that its two
foundational hardness assumptions, Short Integer Solution (SIS) and Learning
With Errors (LWE), are supported by worst-case to average-case reductions
(e.g., [Ajt96,Reg05]).

A very important object in lattice cryptography, and the computational and
mathematical aspects of lattices more broadly, is a discrete Gaussian prob-
ability distribution, which (informally) is a Gaussian distribution restricted
to a particular lattice (or coset thereof). For example, the strongest worst-
case to average-case reductions [MR04,GPV08,Reg05] all rely centrally on dis-
crete Gaussians and their nice properties. In addition, much of the develop-
ment of lattice-based signature schemes, identity-based encryption, and other
cryptosystems has centered around efficiently sampling from discrete Gaussians
(see, e.g., [GPV08,Pei10,MP12,DDLL13,DLP14,MW17]), as well as the anal-
ysis of various kinds of combinations of discrete Gaussians [Pei10,BF11,MP13,
AGHS13,AR16,BPMW16,GM18,CGM19,DGPY19].

By now, the literature contains a plethora of theorems about the behavior of
discrete Gaussians in a variety of contexts, e.g., “convolution theorems” about
sums of independent or dependent discrete Gaussians. Despite the close simi-
larities between the proof approaches and techniques employed, these theorems
are frequently incomparable and are almost always proved monolithically and
nearly “from scratch.” This state of affairs makes it unnecessarily difficult to
understand the existing proofs, and to devise and prove new theorems when
the known ones are inadequate. Because of the structural similarities among so
many of the existing theorems and their proofs, a natural question is whether
there is some “master theorem” for which many others are corollaries. That is
what we aim to provide in this work.

1.1 Our Contributions

We present a modular framework for analyzing linear operations on discrete
Gaussians over lattices, and show several applications. Our main theorem, which
is the heart of the framework, is a simple, general statement about linear trans-
formations of discrete Gaussians. We establish several natural consequences of
1 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
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this theorem, e.g., for joint distributions of correlated discrete Gaussians. Then
we show how to combine these tools in a modular way to obtain all previ-
ous discrete Gaussian convolution theorems (and some new ones) as corollaries.
Notably—and in contrast to prior works—all the consequences of our main the-
orem follow mostly by elementary linear algebra, and do not use any additional
properties (or even the definition) of the discrete Gaussian. In other words, our
framework abstracts away the particulars of discrete Gaussians, and makes it
easier to prove and verify many useful theorems about them.

As a novel application of our framework, we describe and tightly analyze
an LWE self-reduction that, given a fixed number of LWE samples, directly
generates (up to negligible statistical distance) an unlimited number of additional
LWE samples with discrete Gaussian error (of a somewhat larger width than the
original error). The ability to generate fresh, properly distributed LWE samples
is often used in cryptosystems and security proofs (see [GPV08,ACPS09] for two
early examples), so the tightness and simplicity of the procedure is important.
The high-level idea behind prior LWE self-reductions, first outlined in [GPV08],
is that a core procedure of [Reg05] can be used to generate fresh LWE samples
with continuous Gaussian error. If desired, these samples can then be randomly
rounded to have discrete Gaussian error [Pei10], but this increases the error
width somewhat, and using continuous error to generate discrete samples seems
unnecessarily cumbersome. We instead describe a fully discrete procedure, and
use our framework to prove that it works for exactly the same parameters as the
continuous one.

As a secondary contribution, motivated by the concrete security of “trap-
door” lattice cryptosystems, we analyze the singular values of the subgaussian
matrices often used as such trapdoors [AP09,MP12]. Our analysis precisely
tracks the exact constants in traditional concentration bounds for the singular
values of a random matrix with independent, subgaussian rows [Ver12]. We also
give a tighter heuristic bound on matrices chosen with independent subgaussian
entries, supported by experimental evidence. Since the trapdoor’s maximum sin-
gular value directly influences the hardness of the underlying SIS/LWE problems
in trapdoor cryptosystems, our heuristic yields up to 10 more bits of security in
a common parameter regime, where the trapdoor’s entries are chosen indepen-
dently from {0,±1} (with one-half probability on 0, and one-quarter probability
on each of ±1).2

1.2 Technical Overview

Linear Transformations of Discrete Gaussians. It is well known that any linear
transformation of a (continuous, multivariate) Gaussian is another Gaussian.

2 Our security analysis is a simple BKZ estimate, which is not a state-of-the-art con-
crete security analysis. However, we are only interested in the change in concrete
security when changing from previous bounds to our new ones. Our point is that
the underlying SIS problem is slightly harder in this trapdoor lattice regime than
previously thought.
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The heart of our work is a similar theorem for discrete Gaussians (Theorem 1).
Note that we cannot hope to say anything about this in full generality, because
a linear transformation of a lattice Λ may not even be a lattice. However, it is
one if the kernel K of the transformation is a Λ-subspace, i.e., the lattice Λ ∩ K
spans K (equivalently, K is spanned by vectors in Λ), so we restrict our attention
to this case.

For a positive definite matrix Σ and a lattice coset Λ + c, the discrete Gaus-
sian distribution DΛ+c,

√
Σ assigns to each x in its support Λ + c a probability

proportional to exp(−π ·xtΣ−1x). We show that for an arbitrary linear transfor-
mation T, if the lattice Λ ∩ ker(T) spans ker(T) and has smoothing parameter
bounded by

√
Σ, then T applied to DΛ+c,

√
Σ behaves essentially as one might

expect from continuous Gaussians:

TDΛ+c,
√

Σ ≈ DT(Λ+c),T
√

Σ .

The key observation for the proof is that for any point in the support of these two
distributions, its probabilities under TDΛ+c,

√
Σ and DT(Λ+c),T

√
Σ differ only by

a factor proportional to the Gaussian mass of some coset of Λ ∩ K. But because
this sublattice is “smooth” by assumption, all such cosets have essentially the
same mass.

Convolutions. It is well known that the sum of two independent continuous
Gaussians having covariances Σ1, Σ2 is another Gaussian of covariance Σ. We
use our above-described Theorem 1 to prove similar statements for convolutions
of discrete Gaussians. A typical such convolution is the statistical experiment
where one samples

x1 ← DΛ1+c1,
√

Σ1
, x2 ← x1 + DΛ2+c2−x1,

√
Σ2

.

Based on the behavior of continuous Gaussians, one might expect the distri-
bution of x2 to be close to DΛ2+c2,

√
Σ , where Σ = Σ1 + Σ2. This turns out

to be the case, under certain smoothness conditions on the lattices Λ1, Λ2

relative to the Gaussian parameters
√

Σ1,
√

Σ2. This was previously shown
in [Pei10, Theorem 3.1], using a specialized analysis of the particular experi-
ment in question.

We show how to obtain the same theorem in a higher-level and modular way,
via Theorem 1. First, we show that the joint distribution of (x1,x2) is close to
a discrete Gaussian over (Λ1 + c1) × (Λ2 + c2), then we analyze the marginal
distribution of x2 by applying the linear transformation (x1,x2) �→ x2 and ana-
lyzing the intersection of Λ1×Λ2 with the kernel of the transformation. Interest-
ingly, our analysis arrives upon exactly the same hypotheses on the parameters
as [Pei10, Theorem 3.1], so nothing is lost by proceeding via this generic route.

We further demonstrate the power of this approach—i.e., viewing convolu-
tions as linear transformations of a joint distribution—by showing that it yields
all prior discrete Gaussian convolution theorems from the literature. Indeed,
we give a very general theorem on integer combinations of independent discrete
Gaussians (Theorem 4), then show that several prior convolution theorems follow
as immediate corollaries.
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LWE Self-reduction. Recall the LWE distribution (A,bt = stA + et mod q)
where the secret s ← Z

n
q and A ← Z

n×m
q are uniform and independent, and

the entries of e are chosen independently from some error distribution, usu-
ally a discrete one over Z. As described in [GPV08,ACPS09] (based on a core
technique from [Reg05]), when m ≈ n log q or more we can generate unlimited
additional LWE samples (up to small statistical distance) with the same secret s
and continuous Gaussian error, as

(a = Ax ∈ Z
n
q , b = btx + ẽ = sta + (etx + ẽ) mod q)

for discrete Gaussian x ← DZm,r and continuous Gaussian “smoothing
error” ẽ ← Dr̃, for suitable parameters r, r̃. More specifically, the error term
etx + ẽ is close to a continuous Gaussian Dt, where t2 = (r‖e‖)2 + r̃2.

We emphasize that the above procedure yields samples with continuous Gaus-
sian error. If discrete error is desired, one can then “round off” b, either näıvely
(yielding somewhat unnatural “rounded Gaussian” error), or using more sophis-
ticated randomized rounding (yielding a true discrete Gaussian [Pei10]). How-
ever, this indirect route to discrete error via a continuous intermediate step seems
cumbersome and also somewhat loose, due to the extra round-off error.

An obvious alternative approach is to directly generate samples with dis-
crete error, by choosing the “smoothing” term ẽ ← DZ,r̃ from a discrete Gaus-
sian. However, directly and tightly analyzing this alternative is surprisingly non-
trivial, and to our knowledge it has never been proven that the resulting error
is (close to) a discrete Gaussian, without incurring some loss relative to what is
known for the continuous case.3 Using the techniques developed in this paper,
we give a modular proof that this alternative approach does indeed work, for the
very same parameters as in the continuous case. As the reader may guess, we
again express the overall error distribution as a linear transformation on some
joint discrete Gaussian distribution. More specifically, the joint distribution is
that of (x, ẽ) where x is conditioned on a = Ax, and the linear transformation
is given by [et | 1] (where et is the original LWE error vector). The result then
follows from our general theorem on linear transformations of discrete Gaussians
(Theorem 1).

Analysis of Subgaussian Matrices. A distribution over R is subgaussian with
parameter s > 0 if its tails are dominated by those of a Gaussian distribution
of parameter s. More generally, a distribution X over R

n is subgaussian (with
parameter s) if its marginals 〈X ,u〉 are subgaussian (with the same parameter s)
for every unit vector u ∈ R

n. We give precise concentration bounds on the sin-
gular values of random matrices whose columns, rows, or individual entries are
independent subgaussians. We follow a standard proof strategy based on a union
bound over an ε-net (see, e.g., [Ver12]), but we precisely track all the constant
factors. For example, let R ∈ R

m×n be a matrix with independent subgaus-
sian rows. First, we reduce the analysis of R’s singular values to measuring how
3 Of course, one can view the discrete Gaussian as a randomly rounded continuous

one, but this is equivalent to the indirect, loose approach described above.
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close R is to an isometry, specifically the norm ‖RtR−In‖ = supu ‖(RtR−In)u‖
where the supremum is taken over all unit vectors u. Next, we approximate
all unit vectors by an ε-net of the unit-sphere and bound the probability that
‖Ru‖22 is too large by expressing ‖Ru‖22 as a sum of independent terms (namely,
‖Ru‖22 =

∑
i〈ri,u〉2 where ri is a row of R). Finally, we take a union bound over

the net to get a concentration bound. Lastly, we give a tighter heuristic for sub-
gaussian matrices with independent entries from commonly used distributions
in lattice-based cryptography.

1.3 Organization

The rest of the paper is organized as follows. Section 2 reviews the relevant
mathematical background. Section 3 gives our general theorem on linear trans-
formations of discrete Gaussians. Section 4 is devoted to convolutions of discrete
Gaussians: we first analyze joint distributions and linear transforms of such con-
volutions, then show how all prior convolution theorems follow as corollaries.
Section 5 gives our improved, purely discrete LWE self-reduction. Finally, Sect. 6
gives our provable and heuristic subgaussian matrix analysis; the proof of the
main subgaussianity theorem appears in the full version.

2 Preliminaries

In this section we review some basic notions and mathematical notation used
throughout the paper. Column vectors are denoted by lower-case bold letters
(a,b, etc.) and matrices by upper-case bold letters (A,B, etc.). In addition,
positive semidefinite matrices are sometimes denoted by upper-case Greek letters
like Σ. The integers and reals are respectively denoted by Z and R. All logarithms
are base two unless specified otherwise.

Probability. We use calligraphic letters like X ,Y for probability distributions,
and sometimes for random variables having such distributions. We make infor-
mal use of probability theory, without setting up formal probability spaces.
We use set-like notation to describe probability distributions: for any distri-
bution X over a set X, predicate P on X, and function f : X → Y , we write
�f(x) | x ← X , P (x)� for the probability distribution over Y obtained by sam-
pling x according to X , conditioning on P (x) being satisfied, and outputting
f(x) ∈ Y . Similarly, we write {P (x) | x ← X} to denote the event that P (x) is
satisfied when x is selected according to X , and use Pr{z ← X} as an abbrevi-
ation for X (z) = Pr{x = z | x ← X}. We write f(X ) = �f(x) | x ← X � for the
result of applying a function to a probability distribution. We let U(X) denote
the uniform distribution over a set X of finite measure.

The statistical distance between any two probability distributions X ,Y over
the same set is Δ(X ,Y) := supA|Pr{X ∈ A} − Pr{Y ∈ A}|, where A ranges over
all measurable sets. Similarly, for distributions X ,Y with the same support, their
max-log distance [MW18] is defined as
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Δml(X ,Y) := sup
A

|log Pr{X ∈ A} − log Pr{Y ∈ A}|,

or, equivalently, Δml(X ,Y) = supa|log Pr{X = a} − log Pr{Y = a}|.

Distance Notation. For any two real numbers x, y, and ε ≥ 0, we say that x
approximates y within relative error ε (written x ≈ε y) if x ∈ [1−ε, 1+ε] ·y. We
also write x

ε≈ y as an abbreviation for the symmetric relation (x ≈ε y)∧(y ≈ε x),
or, equivalently, | log x − log y| ≤ log(1 + ε) ≤ ε.

For two probability distributions X ,Y over the same set, we write X ≈ε Y
if X (z) ≈ε Y(z) for every z. Similarly, we write X ε≈ Y if X ≈ε Y and Y ≈ε X .
The following facts are easily verified:

1. If X ≈ε Y, then Y ≈ε̄ X (and therefore, X ε̄≈ Y) for ε̄ = ε/(1 − ε).
2. If X ≈ε Y and Y ≈δ Z then X ≈ε+δ+εδ Z, and similarly for

ε≈.
3. For any (possibly randomized) function f , Δ(f(X ), f(Y)) ≤ Δ(X ,Y), and

X ≈ε Y implies f(X ) ≈ε f(Y).
4. If X ≈ε Y then Δ(X ,Y) ≤ ε/2.
5. X ε≈ Y if and only if Δml(X ,Y) ≤ log(1 + ε).

Linear Algebra. For any set of vectors S ⊆ R
n, we write span(S) for the linear

span of S, i.e., the smallest linear subspace of R
n that contains S. For any

matrix T ∈ R
n×k, we write span(T) for the linear span of the columns of T,

or, equivalently, the image of T as a linear transformation. Moreover, we often
identify T with this linear transformation, treating them interchangeably. A
matrix has full column rank if its columns are linearly independent.

We write 〈x,y〉 =
∑

i xi · yi for the standard inner product of two vectors
in R

n. For any vector x ∈ R
n and a (possibly empty) set S ⊆ R

n, we write x⊥S

for the component of x orthogonal to S, i.e., the unique vector x⊥S ∈ x+span(S)
such that 〈x⊥S , s〉 = 0 for every s ∈ S.

The singular values of a matrix A ∈ R
m×n are the square roots of the first

d = min(m,n) eigenvalues of its Gram matrix AtA. We list singular values in
non-increasing order, as s1(A) ≥ s2(A) ≥ · · · ≥ sd(A) ≥ 0. The spectral norm
is ‖A‖ := supx�=0 ‖Ax‖2/‖x‖2, which equals its largest singular value s1(A).

The (Moore-Penrose) pseudoinverse of a matrix A ∈ R
n×k of full column

rank4 is A+ = (AtA)−1At, and it is the unique matrix A+ ∈ R
k×n such that

A+A = I and span((A+)t) = span(A). (If A is square, its pseudoinverse is just
its inverse A+ = A−1.) For any v ∈ span(A) we have AA+v = v, because
v = Ac for some vector c.

The tensor product (or Kronecker product) of any two matrices A = (ai,j)
and B is the matrix obtained by replacing each entry ai,j of A with the block
ai,jB. It obeys the mixed-product property (A⊗B)(C⊗D) = (AC)⊗ (BD) for
any matrices A,B,C,D with compatible dimensions.

4 The pseudoinverse can also be defined for arbitrary matrices, but the definition is
more complex, and we will not need this level of generality.
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Positive (Semi)definite Matrices. A symmetric matrix Σ = Σt is positive
semidefinite, written Σ � 0, if xtΣx ≥ 0 for all vectors x. It is positive def-
inite, written Σ � 0, if xtΣx > 0 for all nonzero x. Positive (semi)definiteness
defines a partial ordering on symmetric matrices: we write Σ � Σ′ (and Σ′ � Σ)
if Σ − Σ′ � 0 is positive semidefinite, and similarly for Σ � Σ′.5 For any two
(not necessarily positive semidefinite) matrices S,T ∈ R

n×k, we write S ≤ T if
SSt � TTt.

For any matrix A, its Gram matrix AtA is positive semidefinite. Conversely,
a matrix Σ is positive semidefinite if and only if it can be written as Σ = SSt

for some matrix S; we write S =
√

Σ, and say that S is a square root of Σ. Note
that such a square root is not unique, because, e.g., −S =

√
Σ as well. We often

just write
√

Σ to refer to some arbitrary but fixed square root of Σ. For positive
definite Σ � 0, observe that S =

√
Σ if and only if Σ−1 = (SSt)−1 = S−tS−1, so

S−t =
√

Σ−1, i.e.,
√

Σ
−t

is equivalent to
√

Σ−1, and hence
√

Σ
−1

is equivalent
to

√
Σ−1

t
.

Lattices. An n-dimensional lattice Λ is a discrete subgroup of R
n, or, equiva-

lently, the set Λ = L(B) = {Bx : x ∈ Z
k} of all integer linear combinations of

the columns of a full-column-rank basis matrix B ∈ R
n×k. The dimension k is

the rank of Λ, and the lattice is full rank if k = n. The basis B is not unique;
any B′ = BU for U ∈ Z

k×k with det(U) = ±1 is also a basis of the same lattice.
A coset of a lattice Λ ⊂ R

n is a set of the form A = Λ + a =
{v + a : v ∈ Λ} for some a ∈ R

n. The dual lattice of Λ is the lattice Λ∨ =
{x ∈ span(Λ) : 〈x, Λ〉 ⊆ Z}. If B is a basis for Λ, then B+t is a basis for Λ∨. A
Λ-subspace, also called a lattice subspace when Λ is clear from context, is the lin-
ear span of some set of lattice points, i.e., a subspace S for which S = span(Λ∩S).
A fundamental property of lattices (used in the proof that every lattice has a
basis) is that if T is a linear transformation for which ker(T) is a Λ-subspace,
then TΛ is also a lattice.6

The Gram-Schmidt orthogonalization (GSO) of a lattice basis B = {bi} is
the set B̃ = {b̃i} of vectors defined iteratively as b̃i = (bi)⊥{b1,...,bi−1}, i.e., the
component of bi orthogonal to the previous basis vectors. (Notice that the GSO
is sensitive to the ordering of the basis vectors.) We define the minimum GSO
length of a lattice as b̃l(Λ) := minB maxi ‖b̃i‖2, where the minimum is taken
over all bases B of Λ.

For any two lattices Λ1, Λ2, their tensor product Λ1 ⊗ Λ2 is the set of all
sums of vectors of the form v1 ⊗ v2 where v1 ∈ Λ1 and v2 ∈ Λ2. If B1,B2 are
respectively bases of Λ1, Λ2, then B1 ⊗ B2 is a basis of Λ1 ⊗ Λ2.

Gaussians. Let D be the Gaussian probability measure on R
k (for any k ≥ 1)

having density function defined by ρ(x) = e−π‖x‖2
, the Gaussian function with

5 Notice that it is possible for Σ � Σ′ and Σ �= Σ′, and still Σ �� Σ′.
6 Clearly, TΛ is an additive group, and it is not too difficult to show that TΛ has a

minimal nonzero element (i.e., it is discrete), so it is a lattice.



Improved Discrete Gaussian and Subgaussian Analysis 631

total measure
∫
x∈Rk ρ(x) dx = 1. For any (possibly non-full-rank) matrix S ∈

R
n×k, we define the (possibly non-spherical) Gaussian distribution

DS := S · D = �Sx | x ← D�

as the image of D under S; this distribution has covariance Σ/(2π) where Σ =
SSt is positive semidefinite. Notice that DS depends only on Σ, and not on any
specific choice of the square root S.7 So, we often write D√

Σ instead of DS.
When Σ = s2I is a scalar matrix, we often write Ds (observe that D = D1).

For any Gaussian distribution DS and set A ⊆ span(S), we define DA,S as
the conditional distribution (where S−1(A) = {x : Sx ∈ A})

DA,S := [DS]A = �y | y ← DS,y ∈ A� = �Sx | x ← D,Sx ∈ A� = S · [D]S−1(A)

whenever this distribution is well-defined.8 Examples for which this is the case
include all sets A with positive measure

∫
x∈A

dx > 0, and all sets of the form
A = L + Λ + c, where L ⊆ R

n is a linear subspace and Λ + c ⊂ R
n is a lattice

coset.
For any lattice coset A = Λ + c (and taking S = I for simplicity), the distri-

bution DΛ+c is exactly the (origin-centered) discrete Gaussian distribution given
by Pr{x ← DA} := ρ(x)/

∑
y∈A ρ(y), as usually defined in lattice cryptography.

It also follows immediately from the definition that c+DΛ−c is the “c-centered”
discrete Gaussian DΛ,c that is defined and used in some works. Because of this,
there is no loss of generality in dealing solely with origin-centered Gaussians, as
we do in this work.

Lemma 1. For any A ⊆ R
n and matrices S,T representing linear functions

where T is injective on A, we have

T · DA,S = DTA,TS. (2.1)

Proof. By definition of the conditioned Gaussian and the fact that A =
T−1(TA), we have

T · DA,S = TS · [D]S−1(A) = TS · [D](TS)−1(TA) = DTA,TS. ��
We now recall the notion of the smoothing parameter [MR04] and its gener-

alization to non-spherical Gaussians [Pei10].

Definition 1. For a lattice Λ and ε ≥ 0, we say ηε(Λ) ≤ 1 if ρ(Λ∨) ≤ 1 + ε.
More generally, for any matrix S of full column rank, we write ηε(Λ) ≤ S if
Λ ⊂ span(S) and ηε(S+Λ) ≤ 1, where S+ is the pseudoinverse of S. When
S = sI is a scalar matrix, we may simply write ηε(Λ) ≤ s.
7 To see this, notice that the probability under S(D) of any vector Σx ∈ span(SSt) =

span(S) in its support is ρ({z : Sz = Σx}) = ρ(Ttx + ker(S)) = ρ(Stx) · ρ(ker(T))
because Stx is orthogonal to ker(S) = {z : Sz = 0}. Moreover, ρ(ker(S)) = 1 and
ρ(Stx) = ρ(‖Stx‖) = ρ(

√
xtΣx) depends only on Σ.

8 For any nonempty set A with zero measure, one can first define Aε = A+{x : ‖x‖ <
ε}, which has nonzero measure for any ε > 0. Then, [DS]A is defined as the limit of
[DS]Aε as ε → 0, if this limit exists.



632 N. Genise et al.

Observe that for a fixed lattice Λ, whether ηε(Λ) ≤ S depends only on Σ =
SSt, and not the specific choice of square root S =

√
Σ. This is because the

dual lattice (S+Λ)∨ = StΛ∨, so for any dual vector w = Stv where v ∈ Λ∨,
ρ(w) = exp(−π‖w‖2) = exp(−πvtSStv) = exp(−πvtΣv) is invariant under the
choice of S. From this analysis it is also immediate that Definition 1 is consistent
with our partial ordering of matrices (i.e., S ≤ T when SSt � TTt), and with
the original definition [MR04] of the smoothing parameter of Λ as the smallest
positive real s > 0 such that ρ(sΛ∨) ≤ 1 + ε. The following lemma also follows
immediately from the definition.

Lemma 2. For any lattice Λ, ε ≥ 0, and matrices S,T of full column rank, we
have ηε(Λ) ≤ S if and only if ηε(TΛ) ≤ TS.

The name “smoothing parameter” comes from the following fundamental
property proved in [MR04,Reg05].

Lemma 3. For any lattice Λ and ε ≥ 0 where ηε(Λ) ≤ 1, we have ρ(Λ + c) ≈ε

1/det(Λ) for any c ∈ span(Λ); equivalently, (D mod Λ) ≈ε U := U(span(Λ)/Λ).
In particular, Δ(D mod Λ,U) ≤ ε/2 and Δml(D mod Λ,U) ≤ − log(1 − ε).

The lemma is easily generalized to arbitrary vectors c not necessarily in span(Λ).

Corollary 1. For any lattice Λ and ε ≥ 0 where ηε(Λ) ≤ 1, and any vector c,
we have

ρ(Λ + c) ≈ε
ρ(c⊥Λ)
det(Λ)

.

Proof. Because c⊥Λ is orthogonal to span(Λ) and c′ = c− (c⊥Λ) ∈ span(Λ), we
have

ρ(Λ + c) = ρ(Λ + c′ + (c⊥Λ)) = ρ(c⊥Λ) · ρ(Λ + c′) ≈ε
ρ(c⊥Λ)
det(Λ)

,

where ρ(Λ + c′) ≈ε det(Λ)−1 by Lemma 3. ��
Finally, we recall the following bounds on the smoothing parameter.

Lemma 4 ([GPV08, Lemma 3.1]). For any rank-n lattice Λ and ε > 0, we
have ηε(Λ) ≤ b̃l(Λ) · √ln(2n(1 + 1/ε))/π.

Lemma 5 ([MP13, Corollary 2.7]). For any lattices Λ1, Λ2, we have

ηε′(Λ1 ⊗ Λ2) ≤ b̃l(Λ1) · ηε(Λ2),

where 1+ε′ = (1+ε)n and n is the rank of Λ1. (Note that ε′ ≈ nε for sufficiently
small ε.)
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Quotients and Groups. Lattice cryptography typically involves integer lat-
tices Λ that are periodic modulo some integer q, i.e., qZm ⊆ Λ ⊆ Z

m.
These “q-ary lattices” lattices can be equivalently viewed as subgroups of
Z

m
q = Z

m/qZm. Let A ∈ Z
n×m
q for some n ≥ 1 and define the lattice

Λ⊥
q (A) := {x ∈ Z

m : Ax = 0 mod q}. We say that A is primitive if A ·Zm = Z
n
q .

All the results in this paper apply not only to lattices, but also to arbitrary
(topologically closed) subgroups of Rn. These are groups of the form G = Λ + L
where Λ is a lattice and L is a linear subspace. When considering such groups,
one can always assume, without loss of generality, that Λ and L are mutually
orthogonal because Λ+L = (Λ⊥L)+L. Intuitively, one can think of groups Λ+L
as lattices of the form Λ + δΛL where span(ΛL) = L and δ ≈ 0. Notice that
limδ→0 ηε(Λ+ δΛL) = ηε(Λ⊥L). For simplicity, we will focus the presentation on
lattices, and leave the generalization to arbitrary groups to the reader. Results
for the continuous Gaussian distribution D are obtained as a special case by
taking the limit, for δ → 0, of δΛ, where Λ is an arbitrary lattice spanning the
support of D.

Subgaussian Distributions. Subgaussian distributions are those on R which have
tails dominated by Gaussians [Ver12]. An equivalent formulation is through a
distribution’s moment-generating function, and the definition below is commonly
used throughout lattice-based cryptography [MP12,LPR13].

Definition 2. A real random variable X is subgaussian with parameter s > 0
if for all t ∈ R,

E[e2πtX ] ≤ eπs2t2 .

From this we can derive a standard Gaussian concentration bound.

Lemma 6. A subgaussian random variable X with parameter s > 0 satisfies,
for all t > 0,

Pr{|X| ≥ t} ≤ 2 exp(−πt2/s2).

Proof. Let δ ∈ R be arbitrary. Then,

Pr{X ≥ t} = Pr{exp(2πδX) ≥ exp(2πδt)} ≤ exp(−2πδt) · E[exp(2πδX)]

≤ exp(−2πδt + πδ2s2).

This is minimized at δ = t/s2, so we have

Pr{X ≥ t} ≤ exp(−πt2/s2).

The symmetric case X ≤ −t is analogous, and the proof is completed by a union
bound. ��

A random vector x over R
n is subgaussian with parameter α if 〈x,u〉 is

subgaussian with parameter α for all unit vectors u. If each coordinate of a
random vector is subgaussian (with a common parameter) conditioned any values
of the previous coordinates, then the vector itself is subgaussian (with the same
parameter). See [LPR13, Claim 2.1] for a proof.
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3 Lattice Projections

We emphasize that the proof of Lemma 1 makes essential use of the injectivity
of T, and the lemma does not hold when T is not injective. There are two reasons
for this. Consider, for simplicity, the special case where A = Λ is a lattice and S =
I. First, the set TΛ is not necessarily a lattice, and the conditional distribution
DTΛ,T may not be well defined.9 We resolve this issue by restricting T to be a
linear transformation whose kernel is a lattice subspace P = span(P ∩Λ). Second,
even when T·DΛ is well defined, in general it does not equal the discrete Gaussian
DTΛ,T. We address this issue by showing that these distributions are statistically
close, assuming that the sublattice Λ∩P has small enough smoothing parameter.

Theorem 1. For any ε ∈ [0, 1) defining ε̄ = 2ε/(1− ε), matrix S of full column
rank, lattice coset A = Λ + a ⊂ span(S), and matrix T such that ker(T) is a
Λ-subspace and ηε(Λ ∩ ker(T)) ≤ S, we have

T · DA,S
ε̄≈ DTA,TS.

The proof of Theorem1 (given below) relies primarily on the following spe-
cialization to linear transformations that are orthogonal projections x �→ x⊥P .

Lemma 7. For any ε ∈ [0, 1), lattice coset A = Λ + a, and lattice subspace
P = span(Λ ∩ P ) such that ηε(Λ ∩ P ) ≤ 1, we have

Δml((DA)⊥P , DA⊥P
) ≤ log

1 + ε

1 − ε
,

or equivalently, (DA)⊥P

ε̄≈ DA⊥P
where ε̄ = 2ε/(1 − ε).

Proof. It is immediate that both (DA)⊥P and DA⊥P
are both well-defined dis-

tributions over A⊥P , which is a lattice coset. For any v ∈ A⊥P , let pv =
Pr{v ← (DA)⊥P } and qv = Pr{v ← DA⊥P

}. By definition, qv = ρ(v)/ρ(A⊥P ).
In order to analyze pv, let ΛP = Λ∩P , and select any w ∈ A such that w⊥P = v.
Then

pv =
ρ({x ∈ A : x⊥P = v})

ρ(A)
=

ρ(w + ΛP )
ρ(A)

≈ε
ρ(w⊥ΛP

)
ρ(A) det(ΛP )

,

where the last step follows by Corollary 1. By assumption, span(ΛP ) = P , so
w⊥ΛP

= w⊥P = v and hence

pv ≈ε
ρ(v)

ρ(A) det(ΛP )
= C · qv

9 For example, if Λ is the lattice generated by the vectors (1, 0) and (
√

2, 1), and
T(x, y) = x is the projection on the first coordinate, then TΛ = Z+

√
2Z is a count-

able but dense subset of R. In particular,
∑

x∈TΛ ρ(x) = ∞ and so the conditional
distribution DTΛ,T is not well defined.
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for some constant C = ρ(A⊥P )/(ρ(A) det(ΛP )). Summing over all v ∈ AA⊥P

gives 1 ≈ε C, or, equivalently, C ∈ [1/(1 + ε), 1/(1 − ε)]. It follows that

1 − ε

1 + ε
qv ≤ pv ≤ 1 + ε

1 − ε
· qv,

and therefore Δml((DA)⊥P ,DA⊥P
) ≤ log 1+ε

1−ε . ��
We now prove the main theorem.

Proof (of Theorem 1). The main idea is to express Λ as SΛ′ for a lattice Λ′, then
use the injectivity of TS on the subspace orthogonal to ker(TS), which contains
Λ′⊥ker(TS).

Notice that a ∈ A ⊂ span(S) and Λ = A − a ⊂ span(S). Therefore, we can
write A = SA′ for some lattice coset A′ = Λ′ + a′ with SΛ′ = Λ and Sa′ = a.
Since S is injective, by Lemma 1 we have

T · DA,S = T · DSA′,S = TS · DA′ . (3.1)

Now let P = ker(TS), so that SP = span(S) ∩ ker(T). In particular, using
Λ ⊂ span(S) and the injectivity of S, we get

Λ ∩ ker(T) = Λ ∩ span(S) ∩ ker(T) = Λ ∩ SP = SΛ′ ∩ SP = S(Λ′ ∩ P ).

Using the assumption ker(T) = span(Λ ∩ ker(T)) we also get

SP = span(S) ∩ ker(T) = span(S) ∩ span(Λ ∩ ker(T)) = span(Λ ∩ ker(T)).

It follows that SP = span(S(Λ′∩P )), and, since S is injective, P = span(Λ′∩P ).
We also have

ηε(S(Λ′ ∩ P )) = ηε(Λ ∩ ker(T)) ≤ S,

which, by definition, gives ηε(Λ′ ∩ P ) ≤ 1. So, the hypotheses of Lemma 7 are
satisfied, and

Δml((DA′)⊥P , DA′⊥P
) ≤ log

1 + ε

1 − ε
.

Applying TS to both distributions we get that

Δml(TS · (DA′)⊥P , TS · DA′⊥P
) ≤ log

1 + ε

1 − ε
.

It remains to show that these are the distributions in the theorem statement.
To this end, observe that TSx = TS(x⊥P ) for any vector x. Therefore, the first
distribution equals

TS · (DA′)⊥P = TS · DA′ = T · DSA′,S = T · DA,S.

Finally, since TS is injective on A′⊥P , we can apply Lemma 1 and see that the
second distribution is

TS · DA′⊥P
= DTSA′,TS = DTA,TS. ��
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Corollary 2 below, recently stated in [DGPY19], is a special case of Theo-
rem 1. The difference is that while Corollary 2 assumes that T is a primitive
integer matrix and A = Λ = Z

m is the integer lattice, Theorem 1 applies to
arbitrary linear transformations T and lattice cosets A = Λ + a ⊂ R

m.

Corollary 2 ([DGPY19, Lemma 3]). For any ε ∈ (0, 1/2) and T ∈ Z
n×m such

that TZ
m = Z

n and ηε(Zm ∩ ker(T)) ≤ r, we have

Δml(T · DZm,r , DZn,rT) ≤ 4ε.

4 Convolutions

This section focuses on convolutions of discrete Gaussians. The literature on
lattice-based cryptography has a multitude of convolution theorems and lemmas
for discrete Gaussians (e.g., [Reg05,Pei10,BF11,MP13]), most of which are for-
mally incomparable despite the close similarity of their statements and proofs.
In this section we show all of them can be obtained and generalized solely via
Theorem 1 and elementary linear algebra.

First, in Sect. 4.1 we analyze the joint distribution of a convolution. Then
in Sect. 4.2 we show how to obtain (and in some cases generalize) all prior dis-
crete Gaussian convolution theorems, by viewing each convolution as a linear
transformation on its joint distribution.

4.1 Joint Distributions

Here we prove several general theorems on the joint distributions of discrete
Gaussian convolutions.

Theorem 2. For any ε ∈ [0, 1), cosets A1, A2 of lattices Λ1, Λ2 (respectively),
and matrix T such that span(T) ⊆ span(Λ2) and ηε(Λ2) ≤ 1, we have

�(x1,x2) | x1 ← DA1 , x2 ← DA2+Tx1�
ε̄≈ DA,

where A = ( I
T I ) · (A1 × A2) and ε̄ = 2ε/(1 − ε).

Proof. Let P(x1,x2) = (x1, (x2)⊥Λ2
) be the orthogonal projection on the first n1

coordinates and the subspace orthogonal to Λ2, and observe that (A2)⊥Λ2
= {a}

is a singleton set for some a. For any fixed x1 ∈ A1, it is straightforward to verify
that

�(x1,x2) | x2 ← DA2+Tx1� = �x | x ← DA,P(x) = (x1,a)�.

Therefore, it is enough to show that (DA1 ,a)
ε̄≈ P(DA). Define Λ = ( I

T I ) · (Λ1 ×
Λ2) and ΛP = Λ ∩ ker(P) = {0} ⊕ Λ2. Notice that ker(P) = {0} ⊕ span(Λ2) =
span(ΛP ) (i.e., ker(P) is a Λ-subspace), and ηε(ΛP ) = ηε(Λ2) ≤ 1. Therefore,
by Theorem 1,

P(DA)
ε̄≈ DP(A) = DA1×{a} = (DA1 ,a). ��
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As a corollary, we get the following more symmetric statement, which says
essentially that if the lattices of A1 and A2 are sufficiently smooth, then a pair of
δ̄-correlated Gaussian samples over A1 and A2 can be produced in two different
ways, depending on which component is sampled first.

Corollary 3. For any ε ∈ [0, 1) and δ ∈ (0, 1] with δ′ =
√

1 − δ2, and any cosets
A1, A2 of full-rank lattices Λ1, Λ2 ⊂ R

n (respectively) where ηε(Λ1), ηε(Λ2) ≤ δ,
define the distributions

X1 = �(x1,x2) | x1 ← DA1 , x2 ← δ′x1 + DA2−δ′x1,δ�

X2 = �(x1,x2) | x2 ← DA2 , x1 ← δ′x2 + DA1−δ′x2,δ�.

Then X1
ε̄≈ DA,

√
Σ

ε̄≈ X2, where A = A1 ×A2, ε̄ = 2ε/(1− ε), and Σ = ( I δ′I
δ′I I

).

Proof. By Lemma 1, the conditional distribution of x2 given x1 in X1 is δ′x1 +
δD(A2/δ)−(δ′/δ)x1 . So, X1 can be equivalently expressed as

S · �( x1
x2 ) | x1 ← DA1 ,x2 ← D(A2/δ)−(δ′/δ)x1�, S = ( I

δ′I δI
).

Since ηε(Λ2/δ) = ηε(Λ2)/δ ≤ 1, we can apply Theorem 2 with T = −(δ′/δ)I,

and get that the first distribution satisfies X1
ε̄≈ S · DA′ , where A′ = ( I

T I )(A1 ×
(A2/δ)). Since S is injective, by Lemma 1 we have

X1
ε̄≈ S · DA′ = DSA′,S = DA,

√
Σ

where Σ = SSt = ( I δ′I
δ′I I

). By symmetry, X2
ε̄≈ DA,

√
Σ as well. ��

Corollary 3 also generalizes straightforwardly to the non-spherical case, as
follows.

Corollary 4. For any ε ∈ [0, 1), cosets A1, A2 of lattices Λ1, Λ2 (respectively),
and matrices R,S1,S2 of full column rank where A1 ⊂ span(S1), span(RS1) ⊆
span(Λ2), and ηε(Λ2) ≤ S2, we have

X := �(x1,x2) | x1 ← DA1,S1 , x2 ← Rx1 + DA2−Rx1,S2�
ε̄≈ DA,S,

where A = A1 × A2, ε̄ = 2ε/(1 − ε), and S = ( S1
RS1 S2

).

Proof. We proceed similarly to the proof of Corollary 3. For simplicity, substi-
tute x1 with S1x1 where x1 ← DS+

1 A1
. Then by Lemma 1, the vector x2 in X ,

conditioned on any value of x1, has distribution

RS1x1 + S2 · DS+
2 (A2−RS1x1)

.

So, we can express X equivalently as

S · �( x1
x2 ) | x1 ← DS+

1 A1
, x2 ← DS+

2 (A2−RS1x1)
�,
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and since ηε(S+
2 · Λ2) ≤ 1, we can apply Theorem 2 with lattice cosets A′

1 =

S+
1 A1, A

′
2 = S+

2 A2 and T = −S+
2 RS1. This yields X ε̄≈ S · DA′ = DSA′,S where

A′ = ( I 0
T I )(A′

1 × A′
2)

and hence SA′ = A, as needed. ��
The following corollary, which may be useful in cryptography, involves Gaus-

sian distributions over lattices and uniform distributions over their (finite) quo-
tient groups.

Corollary 5. Let Λ,Λ1, Λ2 be full-rank lattices where Λ ⊆ Λ1 ∩ Λ2 and ηε(Λ1),
ηε(Λ2) ≤ 1 for some ε > 0, and define the distributions

X1 = �(x1,x2) | x1 ← U(Λ1/Λ) , x2 ← x1 + DΛ2−x1 mod Λ�,

X2 = �(x1,x2) | x2 ← U(Λ2/Λ) , x1 ← x2 + DΛ1−x2 mod Λ�.

Then X1
ε̄≈ X2 where ε̄ = 4ε/(1 − ε)2.

Proof. We assume the strict inequality ηε(Λ1) < 1; the claim then follows in the
limit. Let δ′ ∈ (ηε(Λ1), 1), δ =

√
1 − δ′2, and apply Corollary 3 to A1 = (δ/δ′)Λ1

and A2 = δΛ2. Notice that the hypotheses of Corollary 3 are satisfied because
ηε(A1) = δηε(Λ1)/δ′ < δ and ηε(A2) = δηε(Λ2) ≤ δ. So, the distributions

X ′
1 = �(x1,x2) | x1 ← DA1 , x2 ← δ′x1 + DA2−δ′x1,δ�

X ′
2 = �(x1,x2) | x2 ← DA2 , x1 ← δ′x2 + DA1−δ′x2,δ�

satisfy X ′
1

ε̄≈ X ′
2. Let f : A1 × A2 → (Λ1/Λ,Λ2/Λ) be the function

f(x1,x2) = ((δ′/δ)x1 mod Λ,x2/δ mod Λ).

It is easy to check, using Lemma 1, that

f(X ′
1) = �(x1,x2) | x1 ← DΛ1,δ′/δ mod Λ , x2 ← x1 + DΛ2−x1 mod Λ�

f(X ′
2) = �(x1,x2) | x2 ← DΛ2,1/δ mod Λ , x1 ← δ′2x2 + DΛ1−δ′2x2,δ′ mod Λ�

and Xi = limδ′→1 X ′
i for i = 1, 2. Since X ′

1

ε̄≈ X ′
2 for all δ′, we have X1

ε̄≈ X2. ��

4.2 Convolutions via Linear Transformations

In this subsection we show how the preceding results can be used to easily derive
all convolution theorems from previous works, for both discrete and continuous
Gaussians. The main idea throughout is very simple: first express the statistical
experiment as a linear transformation on some joint distribution, then apply
Theorem 1. The only nontrivial step is to bound the smoothing parameter of the
intersection of the relevant lattice and the kernel of the transformation, which
is done using elementary linear algebra. The main results of the section are
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Theorems 3 and 4; following them, we show how they imply prior convolution
theorems.

The following theorem is essentially equivalent to [Pei10, Theorem 3.1],
modulo the notion of distance between distributions. (The theorem statement
from [Pei10] uses statistical distance, but the proof actually establishes a bound
on the max-log distance, as we do here.) The main difference is in the modularity
of our proof, which proceeds solely via our general tools and linear algebra.

Theorem 3. Let ε ∈ (0, 1) define ε̄ = 2ε/(1 − ε) and ε′ = 4ε/(1 − ε)2, let
A1, A2 be cosets of full-rank lattices Λ1, Λ2 (respectively), let Σ1, Σ2 � 0 be
positive definite matrices where ηε(Λ2) ≤ √

Σ2, and let

X = �(x1,x2) | x1 ← DA1,
√

Σ1
, x2 ← x1 + DA2−x1,

√
Σ2

�.

If ηε(Λ1) ≤ √
Σ3 where Σ−1

3 = Σ−1
1 +Σ−1

2 � 0, then the marginal distribution X2

of x2 in X satisfies

X2
ε′
≈ DA2,

√
Σ1+Σ2

.

In any case (regardless of ηε(Λ1)), the distribution X x2
1 of x1 conditioned on

any x2 ∈ A2 satisfies X x2
1

ε̄≈ x′
2 + DA1−x′

2,
√

Σ3
where x′

2 = Σ1(Σ1 + Σ2)−1x2 =
Σ3Σ

−1
2 x2.

Proof. Clearly, X2 = P·X , where P =
(
0 I

)
. Because ηε(Λ2) ≤ √

Σ2, Corollary 4
implies

X ε̄≈ DA,
√

Σ and hence P · X ε̄≈ P · DA,
√

Σ ,

where A = A1 ×A2 and
√

Σ = (
√

Σ1√
Σ1

√
Σ2

). Then, Theorem 1 (whose hypotheses
we verify below) implies that

P · DA,
√

Σ

ε̄≈ DPA,P
√

Σ = DA2,
√

Σ1+Σ2
,

where the equality follows from the fact that D is insensitive to the choice of
square root, and R = P

√
Σ =

(√
Σ1

√
Σ2

)
is a square root of RRt = Σ1 + Σ2.

This proves the claim about X2.
To apply Theorem 1, for Λ = Λ1×Λ2 we require that ker(P) is a Λ-subspace,

and that ηε(Λ ∩ ker(P)) = ηε(Λ1 × {0}) ≤ √
Σ. For the former, because Λ1 is

full rank we have

ker(P) = span(Λ1) × {0} = span(Λ1 × {0}) = span(ker(P) ∩ Λ).

For the latter, by definition we need to show that ηε(Λ′) ≤ 1 where Λ′ =
√

Σ
−1 ·

(Λ1 × {0}). Because

√
Σ

−1
=

( √
Σ1

−1

−√
Σ2

−1 √
Σ2

−1

)

, we have Λ′ = S · Λ1 where S =

( √
Σ1

−1

−√
Σ2

−1

)

.
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Now StS = Σ−1
1 + Σ−1

2 = Σ−1
3 , so ‖Sv‖2 = vtStSv = ‖√Σ3

−1
v‖2 for every v.

Therefore, Λ′ = S·Λ1 is isometric to (i.e., a rotation of)
√

Σ3
−1 ·Λ1, so ηε(Λ′) ≤ 1

is equivalent to ηε(
√

Σ3
−1 · Λ1) ≤ 1, which by definition is equivalent to the

hypothesis ηε(Λ1) ≤ √
Σ3.

To prove the claim about X x2
1 for an arbitrary x2 ∈ A2, we work with DA,

√
Σ

using a different choice of the square root of Σ = ( Σ1 Σ1
Σ1 Σ1+Σ2

), namely,

√
Σ =

(√
Σ3 Σ1

√
Σ1 + Σ2

−t

√
Σ1 + Σ2

)

where
√

Σ
−1

=

(√
Σ3

−1
X√

Σ1 + Σ2
−1

)

for
√

Σ3X = −Σ1(Σ1 + Σ2)−1 = −Σ3Σ
−1
2 ; this

√
Σ is valid because

Σ3 + Σ1(Σ1 + Σ2)−1Σ1 = (Σ−1
1 + Σ−1

2 )−1 + Σ1 − Σ2(Σ1 + Σ2)−1Σ1

= Σ1 + (Σ−1
1 + Σ−1

2 )−1 − (Σ−1
1 (Σ1 + Σ2)Σ−1

2 )−1

= Σ1,

and Σ1(Σ1 + Σ2)−1 = Σ3Σ
−1
2 by a similar manipulation. Now, the distribution

DA,
√

Σ conditioned on any x2 ∈ A2 is

DA1×{x2},
√

Σ =
√

Σ ·D√
Σ

−1
(A1×{x2}) =

√
Σ · (D√

Σ3
−1

A1+Xx2
,
√

Σ1 + Σ2

−1
x2),

where the last equality follows from the fact that the second component of√
Σ

−1
(A1 ×{x2}) is fixed because

√
Σ

−1
is block upper-triangular. So, the con-

ditional distribution of x1, which is the first component of the above distribution,
is

Σ1(Σ1 + Σ2)−1x2 + DA1+
√

Σ3Xx2,
√

Σ3
= x′

2 + DA1−x′
2,

√
Σ3

.

Finally, because X ε̄≈ DA,
√

Σ , the claim on the conditional distribution X x2
1 is

established. ��
There are a number of convolution theorems in the literature that pertain

to linear combinations of Gaussian samples. We now present a theorem that,
as shown below, subsumes all of them. The proof generalizes part of the proof
of [MP13, Theorem 3.3] (stated below as Corollary 6).

Theorem 4. Let ε ∈ (0, 1), let z ∈ Z
m \ {0}, and for i = 1, . . . , m let Ai =

Λi+ai ⊂ R
n be a lattice coset and Si ∈ R

n×n be such that Λ∩ =
⋂

i Λi is full rank.
If ηε(ker(zt ⊗ In) ∩ Λ) ≤ S where Λ = Λ1 × · · · × Λm and S = diag(S1, . . . ,Sm),
then

Δml(
m∑

i=1

ziDAi,Si
, DA′,S′) ≤ log

1 + ε

1 − ε
,

where A′ =
∑m

i=1 ziAi and S′ =
√∑m

i=1 z2i SiSt
i.
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In particular, let each Si = siIn for some si > 0 where b̃l(diag(s)−1(ker(zt) ∩
Z

m))−1 ≥ ηε(Λ∩), which is implied by ((zi∗/si∗)2 + maxi�=i∗(zi/si)2)−1/2 ≥
ηε(Λ∩) where i∗ minimizes |zi∗/si∗ | �= 0. Then

Δml(
m∑

i=1

ziDAi,si
, DA′,s′) ≤ log

1 + ε′

1 − ε′ ,

where s′ =
√∑m

i=1(zisi)2 and 1 + ε′ = (1 + ε)m.

Proof. Let Z = zt ⊗In and A = A1×· · ·×Am, which is a coset of Λ, and observe
that

m∑

i=1

ziDAi,Si
= Z · DA,S.

Also notice that ZA = A′, and R = ZS is a square root of RRt =
∑m

i=1 z2i SiSt
i.

So, the first claim follows immediately by Theorem1, as long as ker(Z) is a
Λ-subspace.

To see that this is so, first observe that the lattice Z = ker(zt)∩Z
m has rank

m−1. Then the lattice Z ⊗Λ∩ has rank (m−1)n and is contained in ker(Z)∩Λ,
because for any v ∈ Z ⊆ Z

m and w ∈ Λ∩ we have Z(v ⊗ w) = (ztv) ⊗ w = 0
and (v ⊗ w) ∈ Λm

∩ ⊆ Λ. So, because ker(Z) has dimension (m − 1)n we have
ker(Z) = span(Z ⊗ Λ∩) = span(ker(Z) ∩ Λ), as desired.

For the second claim (with the first hypothesis), we need to show that
ηε′(ker(Z)∩Λ) ≤ S = diag(s)⊗ In. Because Z ⊗Λ∩ is a sublattice of ker(Z)∩Λ
of the same rank, by Lemma 5 and hypothesis, we have

ηε′(S−1(ker(Z) ∩ Λ)) ≤ ηε′((diag(s)−1 ⊗ In) · (Z ⊗ Λ∩))

≤ ηε′((diag(s)−1Z) ⊗ Λ∩)

≤ b̃l(diag(s)−1Z) · ηε(Λ∩) ≤ 1.

Finally, to see that the first hypothesis is implied by the second one, assume
without loss of generality that i∗ = 1, and observe that the vectors

(−z2
s2

,
z1
s1

, 0, . . . , 0)t, (−z3
s3

, 0,
z1
s1

, 0, . . . , 0)t, . . . , (−zm

sm
, 0, . . . , 0,

z1
s1

)t

form a full-rank subset of diag(s)−1Z, and have norms at most

r =
√

(zi∗/si∗)2 + max
i�=i∗

(zi/si)2.

Therefore, by [MG02, Lemma 7.1] we have b̃l(diag(s)−1Z)−1 ≥ 1/r ≥ ηε(Λ∩),
as required. ��
Corollary 6 ([MP13, Theorem 3.3]). Let z ∈ Z

m \{0}, and for i = 1, . . . , m =
poly(n) let Λ + ci be cosets of a full-rank n-dimensional lattice Λ and si ≥√

2‖z‖∞ · ηε(Λ) for some ε = negl(n). Then
∑m

i=1 ziDΛ+ci,si
is within negl(n)

statistical distance of DY,s, where Y = gcd(z)Λ +
∑

i zici and s =
√∑

i(zisi)2.
In particular, if gcd(z) = 1 and

∑
i zici ∈ Λ, then

∑
ziDΛ+ci,si

is within negl(n)
statistical distance of DΛ,s.
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Proof. Apply the second part of Theorem 4 with the second hypothesis, and use
the fact that (1 + negl(n))poly(n) is 1 + negl(n). ��

Theorem 4.13 from [BF11] is identical to Corollary 6, except it assumes that
all the si equal some s ≥ ‖z‖ · ηε(Λ). This also implies the second hypothesis
from the second part of Theorem 4, because ‖z‖ ≥ √

z2i∗ + maxi�=i∗ z2i .

Corollary 7 ([BF11, Lemma 4.12]). Let Λ1 + t1, Λ2 + t2 be cosets of full-rank
integer lattices, and let s1, s2 > 0 be such that (s−2

1 + s−2
2 )−1/2 ≥ ηε(Λ1 ∩ Λ2)

for some ε = negl(n). Then DΛ1+t1,s1 + DΛ2+t2,s2 is within negl(n) statistical
distance of DΛ+t,s, where Λ = Λ1 + Λ2, t = t1 + t2, and s2 = s21 + s22.

Proof. The intersection of full-rank integer lattices always has full rank. So,
apply the second part of Theorem 4 with the second hypothesis, for m = 2 and
z = (1, 1)t. ��
Corollary 8 ([Reg05, Claim 3.9]). Let ε ∈ (0, 1/2), let Λ + u ⊂ R

n be a coset
of a full-rank lattice, and let r, s > 0 be such that (r−2 +s−2)−1/2 ≥ ηε(Λ). Then
DΛ+u,r + Ds is within statistical distance 4ε of D√

r2+s2 .

Proof. The proof of Corollary 7 also works for any full-rank lattices Λ1 ⊆ Λ2.
The corollary follows by taking Λ1 = Λ and Λ2 = limd→∞ d−1Λ = R

n. ��

5 LWE Self-reduction

The LWE problem [Reg05] is one of the foundations of lattice-based
cryptography.

Definition 3 (LWE distribution). Fix some parameters n, q ∈ Z
+ and a

distribution χ over Z. The LWE distribution for a secret s ∈ Z
n
q is

Ls = �(a, sta + e mod q) | a ← U(Zn
q ), e ← X �.

Given m samples (ai, bi = stai + ei mod q) from Ls, we often group them as
(A,bt = stA + et), where the ai are the columns of A ∈ Z

n×m
q and the bi, ei

are respectively the corresponding entries of b ∈ Z
m
q , e ∈ Z

m.
While LWE was originally also defined for continuous error distributions (in

particular, the Gaussian distribution Ds), we restrict the definition to discrete
distributions (over Z), since discrete distributions are the focus of this work,
and are much more widely used in cryptography. We refer to continuous error
distributions only in informal discussion.

Definition 4 (LWE Problem). The search problem S-LWEn,q,χ,m is to
recover s given m independent samples drawn from Ls, where s ← U(Zn

q ). The
decision problem D-LWEn,q,χ,m is to distinguish m independent samples drawn
from Ls, where s ← U(Zn

q ), from m independent and uniformly random samples
from U(Zn+1

q ).
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For appropriate parameters, very similar hardness results are known for
search and decision LWEn,q,χ,m with χ ∈ {Ds, �Ds�,DZ,s}, i.e., continuous,
rounded, or discrete Gaussian error. Notably, the theoretical and empirical hard-
ness of the problem depends mainly on n log q and the “error rate” α = s/q,
and less on m. This weak dependence on m is consistent with the fact that
there is a self-reduction that, given just m = O(n log q) LWE samples from Ls

with (continuous, rounded, or discrete) Gaussian error of parameter s, gener-
ates any polynomial number of samples from a distribution statistically close
to Ls with (continuous, rounded, or discrete) Gaussian error of parameter
O(s

√
m) · ηε(Z), for arbitrary negligible ε. Such self-reductions were described

in [GPV08,ACPS09,Pei10] (the latter for discrete Gaussian error), based on the
observation that they are just special cases of Regev’s core reduction [Reg05]
from Bounded Distance Decoding (BDD) to LWE, and that LWE is an average-
case BDD variant.

The prior LWE self-reduction for discrete Gaussian error, however, contains
an unnatural layer of indirection: it first generates new LWE samples having
continuous error, then randomly rounds, which by a convolution theorem yields
discrete Gaussian error (up to negligible statistical distance). Below we instead
give a direct reduction to LWE with discrete Gaussian error, which is more
natural and slightly tighter, since it avoids the additional rounding that increases
the error width somewhat.

Theorem 5. Let A ∈ Z
n×m
q be primitive, let bt = stA + et mod q for some

e ∈ Z
m, and let r, r̃ > 0 be such that ηε(Λ⊥

q (A)) ≤ ((1/r)2 + (‖e‖/r̃)2)−1/2 ≤ r
for some negligible ε. Then the distribution

�(a = Ax, b = btx + ẽ) | x ← DZm,r , ẽ ← DZ,r̃�

is within negligible statistical distance of Ls with error χ = DZ,t where t2 =
(r‖e‖)2 + r̃2.

Theorem 5 is the core of the self-reduction. A full reduction between proper
LWE problems follows from the fact that a uniformly random matrix A ∈ Z

n×m
q

is primitive with overwhelming probability for sufficiently large m � n, and by
choosing r and r̃ appropriately. More specifically, it is known [GPV08,MP12]
that for appropriate parameters, the smoothing parameter of Λ⊥

q (A) is small
with very high probability over the choice of A. For example, [MP12, Lemma 2.4]
implies that when m ≥ Cn log q for any constant C > 1 and ε ≈ ε′, we have
ηε(Λ⊥

q (A)) ≤ 2ηε′(Z) ≤ 2
√

ln(2(1 + 1/ε′))/π except with negligible probability.
So, we may choose r = O(

√
log(1/ε′)) for some negligible ε′ and r̃ = r‖e‖ to

satisfy the conditions of Theorem 5 with high probability, and the resulting error
distribution has parameter t =

√
2r‖e‖, which can be bounded with high prob-

ability for any typical LWE error distribution. Finally, there is the subtlety that
in the actual LWE problem, the error distribution should be fixed and known,
which is not quite the case here since ‖e‖ is secret but bounded from above.
This can be handled as in [Reg05] by adding different geometrically increasing
amounts of extra error. We omit the details, which are standard.
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Proof (of Theorem 5). Because A is primitive, for any a ∈ Z
n
q there exists an

x∗ ∈ Z
m such that Ax∗ = a, and the probability that Ax = a is proportional to

ρr(x∗ +Λ⊥
q (A)). Because ηε(Λ⊥

q (A)) ≤ r, for each a this probability is the same
(up to ≈ε) by Lemma 3, and thus the distribution of Ax is within negligible
statistical distance of uniform over Z

n
q .

Next, conditioning on the event Ax = a, the conditional distribution of x is
the discrete Gaussian Dx∗+Λ⊥

q (A),r. Because b = (stA+et)x+ ẽ = sta+(etx+ ẽ),
it just remains to analyze the distribution of etx+ẽ. By Lemma 8 below with Λ =
Λ⊥

q (A) and Λ1 = Z, the distribution 〈e,Dx∗+Λ⊥
q (A),r〉 + Dr̃ is within negligible

statistical distance of DZ,t, as desired. ��
We now prove (a more general version of) the core statistical lemma needed

by Theorem 5, using Theorem 1. A similar lemma in which Λ1 is taken to be
R = limd→∞ d−1

Z can be proven using Corollary 8; this yields an LWE self-
reduction for continuous Gaussian error (as claimed in prior works).

Lemma 8. Let e ∈ R
m, Λ + x ⊂ R

m be a coset of a full-rank lattice, and
Λ1 ⊂ R be a lattice such that 〈e, Λ〉 ⊆ Λ1. Also let r, r̃, ε > 0 be such that
ηε(Λ) ≤ s := ((1/r)2 + (‖e‖/r̃)2)−1/2. Then

Δml(〈e,DΛ+x,r〉 + DΛ1,r̃ , DΛ1+〈e,x〉,t) ≤ log
1 + ε

1 − ε
,

where t2 = (r‖e‖)2 + r̃2.

Proof. First observe that

〈e,DΛ+x,r〉 + DΛ1,r̃ = [et | 1] · DΛ×Λ1+(x,0),S

where S = ( rIm
r̃
). So, by applying Theorem1 (whose hypotheses we verify

below), we get that the above distribution is within the desired ML-distance of
DΛ1+〈e,x〉,[ret|r̃], where rt = [ret | r̃] is a square root of rtr = (r‖e‖)2 + r̃2 = t2,
as desired.

To apply Theorem 1, we first need to show that

K = ker([et | 1]) = {(v,−〈e,v〉) | v ∈ R
m}

is a (Λ × Λ1)-subspace. Observe that Λ′ = K ∩ (Λ × Λ1) is exactly the set of
vectors (v, v) where v ∈ Λ and v = −〈e,v〉 ∈ Λ1, i.e., the image Λ under the
injective linear transformation T(v) = (v,−〈e,v〉). So, because Λ is full rank,
span(Λ′) = K, as needed.

Finally, we show that sT ≤ S, which by hypothesis and Lemma2 implies
that ηε(T · Λ) ≤ sT ≤ S, as desired. Equivalently, we need to show that the
matrix

R = SSt − s2TTt =
(

(r2 − s2)Im s2e
s2et r̃2 − s2e2

)

is positive semidefinite, where e = ‖e‖. If r2 = s2 then e = 0 and R is positive
semidefinite by inspection, so from now on assume that r2 > s2. Sylvester’s
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criterion says that a symmetric matrix is positive semidefinite if (and only if) all
its principal minors are nonnegative.10 First, every principal minor of R obtained
by removing the last row and column (and possibly others) is det((r2−s2)Ik) > 0
for some k. Now consider a square submatrix of R wherein the last row and
column have not been removed; such a matrix has the form

R =
(

(r2 − s2)Ik s2e
s2et r̃2 − s2e2

)

,

where e is some subvector of e, hence ‖e‖2 ≤ e2. Multiplying the last column by
r2 − s2 > 0 and then subtracting from the last column the product of the first k
columns with s2 · e, we obtain a lower-triangular matrix whose first k diagonal
entries are r2 − s2 > 0, and whose last diagonal entry is

(r̃2 − s2e2)(r2 − s2) − s4‖e‖2 ≥ r̃2r2 − r̃2s2 − e2r2s2 = 0,

where the equality follows from clearing denominators in the hypothesis (1/s)2 =
(1/r)2 + (e/r̃)2. So, every principal minor of R is nonnegative, as desired. ��

6 Subgaussian Matrices

The concrete parameters for optimized SIS- and LWE-based trapdoor cryptosys-
tems following [MP12] depend on the largest singular value of a subgaussian
random matrix with independent rows, columns, or entries, which serves as the
trapdoor. The cryptosystem designer will typically need to rely on a singular
value concentration bound to determine Gaussian parameters, set norm thresh-
olds for signatures, estimate concrete security, etc. The current literature does
not provide sufficiently precise concentration bounds for this purpose. For exam-
ple, commonly cited bounds contains non-explicit hidden constant factors, e.g.,
[Ver12, Theorem 5.39] and [Ver18, Theorems 4.4.5 and 4.6.1].

In Theorem 6 (whose proof is in the full version) we present a singular value
concentration bound with explicit constants, for random matrices having inde-
pendent subgaussian rows. We also report on experiments to determine the sin-
gular values for commonly used distributions in lattice cryptography. Through-
out this section, we use σ to denote a distribution’s standard deviation and
m > n > 0 for the dimensions of a random matrix R ∈ R

m×n following
some particular distribution. We call a random vector x ∈ R

n σ-isotropic if
E[xxt] = σ2In.

Theorem 6. Let R ∈ R
m×n be a random matrix whose rows ri are independent,

identically distributed, zero-mean, σ-isotropic, and subgaussian with parameter
s > 0. Then for any t ≥ 0, with probability at least 1 − 2e−t2 we have

σ(
√

m − C(s2/σ2)(
√

n + t)) ≤ sn(R) ≤ s1(R) ≤ σ(
√

m + C(s2/σ2)(
√

n + t)),

where C = 8e1+2/e
√

ln 9/
√

π < 38.
10 A principal minor of a matrix is the determinant of a square submatrix obtained by

removing the rows and columns having the same index set.
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X s̄1 σ(
√

m + CX (s/σ)2
√

n) observed CX Sample Var
P 71.26 71.43 .99/4π .04
U{−1, 1} 100.74 101.01 .99/2π .05
D√

2π 100.71 101.01 .99/2π .043
D

Z,
√
2π 100.77 101.01 .99/2π .06

X s̄n σ(
√

m − CX (s/σ)2
√

n) observed CX Sample Var
P 39.60 39.43 .99/4π .017
U{−1, 1} 56.00 55.76 .99/2π .043
D√

2π 55.92 55.76 .99/2π .036
D

Z,
√
2π 56.00 55.76 .99/2π .037

Fig. 1. Data from fifty random matrices of dimension 6144 × 512 for each distribution
X . The average largest and smallest singular values are respectively denoted s̄1 and s̄n,
and we recorded the sample variance for each distribution’s singular values. The third
column is the expected singular value using each distribution’s calculated CX : 1/2π,
1/2π, and 1/4π for discrete/continuous gaussians, U{−1, 1}, and P respectively.

Comparison. There are two commonly cited concentration bounds for the sin-
gular values of subgaussian matrices. The first is for a random matrix with
independent entries.

Theorem 7 ([Ver18, Theorem 4.4.5]). Let R ∈ R
m×n be a random matrix

with entries drawn independently from a subgaussian distribution with parameter
s > 0. Then, there exists some universal constant C > 0 such that for any t ≥ 0,
with probability at least 1 − 2e−t2 we have

s1(R) ≤ C · s(
√

m +
√

n + t).

The second theorem is for a random matrix with independent subgaussian and
isotropic rows.

Theorem 8 ([Ver18, Theorem 4.6.1]). Let R ∈ R
m×n be a random matrix

whose rows ai are independent, identically distributed, zero-mean, 1-isotropic,
and subgaussian with parameter s > 0. Then there is a universal constant C > 0
such that for any t ≥ 0, with probability at least 1 − 2e−t2 we have

√
m − Cs2(

√
n + t) ≤ sn(R) ≤ s1(R) ≤ √

m + Cs2(
√

n + t).

We note that the above theorem is normalized to σ = 1. Our Theorem 6
is a more explicit version of this theorem for arbitrary σ, which scales in the
appropriate way in σ, since scaling a subgaussian distribution simply scales its
parameter.

6.1 Experiments

Here we present empirical data on the singular values of random matrices with
independent entries drawn from commonly used distributions in lattice-based
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cryptography. These distributions are the continuous Gaussian, the discrete
Gaussian over Z, the uniform distribution over {−1, 1} (denoted as U{−1, 1}),
and the distribution given by choosing 0 with probability 1/2 and ±1 each with
probability 1/4, which we denote P.

First Experiment. For each distribution, we sampled fifty m-by-n (where m =
6144 by n = 512) random matrices and measured their singular values, and
assumed the singular values were approximately

s1 ≈ σ
(√

m + CX (s/σ)2
√

n
)

sn ≈ σ
(√

m − CX (s/σ)2
√

n
)

where CX is a small constant dependent on the distribution X . The results are
given in Fig. 1. We observed CX (s/σ)2 ≈ 1 for each distribution.

Continuous and Discrete Gaussians. The continuous Gaussian Dσ is subgaussian
with parameter σ since E[e2πtX ] = eπt2σ2

where X ∼ Dσ. Further, the discrete
Gaussian DZ,s is subgaussian with parameter s, [MP12, Lemma 2.8]. Assuming
that the discrete Gaussian is smooth, then one can expect the standard deviation
of DZ,s to be close to the standard deviation of the continuous Gaussian it
approximates, s/

√
2π. This implies the ratio between the subgaussian parameter

and the standard deviation of (discrete) gaussians is
√

2π. Under this assumption
on the discrete Gaussian’s standard deviation, we observed CGaussian = 1/2π.

Uniform over {−1, 1}. Here σ = 1 and E[e2πtX ] = cosh 2πt ≤ e2π2t2 , or the
subgaussian parameter is at most

√
2π. We observed CU{−1,1} = 1/2π in our

experiment.

The Distribution P. By nearly the same steps as the previous distribution, P is
subgaussian with parameter

√
2π and σ = 1/

√
2. Then, we observed CP = 1/4π.

Second Experiment. As a second experiment, we sampled U{−1, 1}32n×n and
averaged its maximum singular value over 50 samples. We varied n = 50, 100,
200, 500, 1000 and plotted the results in Fig. 2 (red squares) graphed with the
expected largest singular value (dashed blue line). We remark that we saw the
same behavior for all four distributions when we varied the dimension.

6.2 Applications

Here we show how the updated singular value estimates from the previous sub-
section impact concrete security of lattice trapdoor schemes. As an example, we
use the [MP12] trapdoor scheme with entries drawn independently from P. That
is, we consider the SIS trapdoor scheme based on A = [Ā|G − ĀR] ∈ Z

n×m
q

where R ← P(m−n log q)×n log q is a subgaussian matrix serving as the trapdoor11,
G = [In|2In| . . . |2log q−1In] is the gadget matrix, and Ā is a truly random matrix.
Further, let s > 0 be the width of the discrete Gaussian that we are sampling
over. This s > 0 scales linearly with s1(R)12. Since the singular values of R scale
11 Trapdoor inversions are independent samples of the form x ← Dy∗+Λ⊥

q (A),s.
12 See [MP12, Section 3.4] for the further details.
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Fig. 2. Here we compare the measured largest singular value with the expecta-
tion under our heurstic, with entries from the distribution X = {−1, 1}. For each
n = 50, 100, 200, 500, 1000, the experiment sampled N = 50 random 32n-by-n matri-
ces and averaged their largest singular value. The measured sample variances were
.099, .064, .050, .048, .031 for n = 50, 100, 200, 500, 1000, respectively. Also of note, the
measured constant CX approached 1/2π from below as n increased (.92/2π, .96/2π,
.97/2π, .99/2π, .99/2π for n = 50, 100, 200, 500, 1000). (Color figure online)

with σ = 1/
√

2, the concrete security of the underlying SIS problem increases
compared to assuming the largest singular value of R scales with the subgaussian
parameter, s = 1. See Fig. 3 for the difference in a commonly-used parameter
regime.

In order to estimate security, we followed [APS15,ACD+18] by estimating the
time-complexity of the BKZ algorithm [SE94] using sieving as its SVP oracle13.
BKZ is expected to return a vector of length δ2ndet(Λ)1/2n for a lattice, Λ, of
dimension 2n. Also, Minkowski’s theorem tells us a short enough lattice vector
exists when we only use 2n columns of A. In other words, breaking the trapdoor
corresponds to finding a short vector in Λ⊥

q (A2n) = {z ∈ Z
2n|A2nz = 0 ∈ Z

n
q }

where A2n is the matrix formed by the first 2n columns of A.
We found the smallest block size k achieving the needed δ satisfying s

√
m =

δ2ndet(A2n)
1
2n = δ2n√

q. Finally, we used the heuristic δ ≈ ( k
2πe (πk)1/k)

1
2(k−1) to

determine the relationship between k and δ, and we set the total time complexity
of BKZ with block-size k, dimension 2n as 8·(2n)·time(SVP) = 8·(2n)·2.292k+16.4

[Che13,APS15]14.

13 Sieving in dimension k has heuristic time-complexity 2.292k+16.4 [BDGL16].
14 We use this simplistic method to estimate security since we are interested in the

difference in concrete security. More sophisticated methods to estimate the concrete
security of lattice-based schemes can be found in [Duc18,ADH+19].
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Parameters Original Updated
n 512 512
q 224 224

s 2881 2037
m 24804 24804
Bit Sec. 124 136
δ 1.0046 1.0043
k 324 364

Fig. 3. The change in concrete security of the underlying SIS problem in MP12 when
the trapdoor is drawn from P(m−n log q)×n log q. We give the smallest BKZ block size k
achieving the δ needed to find a vector of length s

√
m in (a subspace of) the lattice

Λ⊥
q (A).
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