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Abstract. Attribute-based encryption (ABE) is an advanced crypto-
graphic tool and useful to build various types of access control systems.
Toward the goal of making ABE more practical, we propose key-policy
(KP) and ciphertext-policy (CP) ABE schemes, which first support
unbounded sizes of attribute sets and policies with negation and multi-
use of attributes, allow fast decryption, and are adaptively secure under
a standard assumption, simultaneously. Our schemes are more expres-
sive than previous schemes and efficient enough. To achieve the adaptive
security along with the other properties, we refine the technique intro-
duced by Kowalczyk and Wee (Eurocrypt’19) so that we can apply the
technique more expressive ABE schemes. Furthermore, we also present a
new proof technique that allows us to remove redundant elements used
in their ABE schemes. We implement our schemes in 128-bit security
level and present their benchmarks for an ordinary personal computer
and smartphones. They show that all algorithms run in one second with
the personal computer when they handle any policy or attribute set with
one hundred attributes.

Keywords: Attribute-based encryption · Standard assumption ·
Non-monotone · Unbounded · Multi-use · Random oracle model

1 Introduction

Attribute-based encryption (ABE) [17] is an advanced form of public key encryp-
tion (PKE), which yields fine-grained access control over encrypted data. More
concretely, ABE allows us to embed an attribute x into a ciphertext when we
encrypt a message. An authority that has a master secret key can issue a secret
key that is associated with a predicate y. The ciphertext can be decrypted with
the secret key only if x and y satisfy some relation R.

Previously, ABE schemes have been proposed for various relations, such as
equality [9], threshold [29], orthogonality of vectors [19], and so on. One of the
most notable relations among them is that expressed by an access structure
[7,17]. In a key-policy ABE (KP-ABE) scheme, for instance, one can embed an
access structure in a secret key such as (Year:1991–2000 AND Category:jazz).
The secret key can decrypt ciphertexts that have attributes Year:1991–2000 and
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Category:jazz but cannot ones that only have at most one of them. Ciphertext-
policy ABE (CP-ABE) is a dual of KP-ABE and allows us to embed an access
structure into ciphertexts.

Recently, Agrawal and Chase proposed practical KP-ABE and CP-ABE
schemes named FAME [1], which are the first schemes that simultaneously:

1. have no restriction on sizes of policies and attribute sets (unboundedness);
2. allow an arbitrary string as an attribute (large universe);
3. are based on the fast Type-III pairings;
4. need a small number of pairings for decryption;
5. satisfy the adaptive security under standard assumptions.

All these properties are arguably important in practice. We briefly explain the
reasons. The first two properties say about scalability. It is not uncommon that
we extend a system to add new attributes to a database in operation. In such
cases, scalability is essential property because if the scheme does not have the
scalability, we need a redeployment of the scheme. The second two properties
say about efficiency. The efficiency of building blocks directly affects that of
the entire system. Thus, efficient cryptographic schemes are desirable. The final
property says about security. In contrast to the selective security, the adap-
tive security considers a model that captures a natural attack of an adversary
against a scheme. Additionally, standard assumptions are based on well-studied
hard problems and thus reliable. Hence, the adaptive security under standard
assumptions guarantees that schemes are secure enough.

1.1 Our Contribution

Toward the goal to make ABE schemes more usable and realistic, we propose
more expressive schemes. More precisely, we propose KP-ABE and CP-ABE
schemes that satisfy all the above properties and additionally allow us to use

6. negation in a natural form (non-monotonicity);
7. the same attribute more than once (multi-use of attributes or compactness);

in a policy. These properties allow us to use more fine-grained policies that are
commonly used in practice. Negation is essential for access control by blacklist-
ing. Multi-use of attributes in policies is indispensable to express certain types of
policies such as (A AND B) OR (A AND C) OR (B AND D), where A,B,C,D
are Boolean variables.

Thanks to great works on ABE [3,21,27], we have several ABE schemes that
can handle unbounded sizes of attribute sets and policies in prime-order groups.
To our knowledge, however, there are no schemes that achieve all the properties
listed above simultaneously. We summarize previous schemes and ours in Table 1.

One note is that our schemes require the random oracle model for security
analysis as well as FAME. Whereas a random oracle cannot be replaced with
any implemented hash function in some particular cases [11], it is still a widely
accepted and standard methodology to analyze the security of cryptographic
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Table 1. Comparison of unbounded KP and CP-ABE schemes based on prime-order
groups.

Scheme Unbounded-

ness

Large

universe

Type-III Fast

Dec

Standard

assump.

Non

monotonicity

Multi-

use

w/o

RO

OT12 [27] � � � × � � × �
AC17 [1] � � � � � × × ×
CGKW18 [13] � � � × � × × �
KW19 [21] � � � × � × � �
Att19 [3] � � � × × ×a � �
Ours � � � � b � � � ×
aThe scheme that is explicitly described by Attrapadung [3] can handle negation, but it is not

the natural form that we consider.
bThe number of pairings in decryption of our schemes does not depend on the size of policies

or the number of attributes but only depends on the number of multi-use of labels in a policy.

Thus, as long as considering the same setting as FAME, which imposes one-use restriction on

policies, the decryption requires only a constant number of pairings.

schemes. Actually, many practical schemes that are used in the real world require
the random oracle model for their security analysis [5,6,15].

In the following, we elaborate on the last two properties.

Non-monotonicity. Previously, there are several works that consider access
structures including negation (non-monotone access structures) in ABE [3,4,
24,26–28,32]. Among them, only the negation form defined by Okamoto and
Takashima (OT negation) [26,27] is different from that by the others (non-OT
negation). Considering an example is the best way to describe the difference.
Let attributes consist of a pair of a label and value, e.g., Year:1991–2000,
where Year is a label and 1991–2000 is a value. Suppose there are two labels
Year and Category in an access control system supported by KP-ABE. Then,
non-OT negation is like (NOT Year:1991–2000) whereas OT negation is like
(Year:NOT 1991–2000). Semantically, the former implies that the secret key can
decrypt a ciphertext if it does not have attribute Year:1991–2000. On the other
hand, the latter implies that a ciphertext is decryptable if it has an attribute on
label Year and its attribute is not 1991–2000.

When we consider large universe ABE, which is exactly the desirable case
in practice, the natural negation form is arguably OT negation. In large uni-
verse ABE, it is unreasonable to fix all attributes used in a system at the setup
phase because the most significant advantage of large universe ABE is that we
can utilize an exponentially large number of attributes. Associating strings with
attributes that the ABE scheme handles in an ad-hoc way by a hash function
would be a better solution. However, if we use non-OT negation in the system,
we have to fix all attributes that the system supports at the setup phase. This
is because a secret key whose policy is negation of an attribute that the system
has not supported before can decrypt all ciphertexts generated so far. More con-
cretely, in the above example, we consider the case where we add a new label
Artist in the system. Then, if an authority issues a key whose policy is (NOT
Artist:The Beatles), all previous ciphertexts are decrypted by the key even if
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the underlying content is by The Beatles because they do not have an attribute
on label Artist. On the other hand, OT negation does not cause this inconve-
nience because a key whose policy is (Artist:NOT The Beatles) is useless to
decrypt ciphertexts without an attribute on label Artist. Thus, we refer to OT
negation as a natural form.

Note that we can use monotone ABE as non-monotone ABE by preparing
attributes for both positive and negative if they are small-universe constructions,
in which the number of attributes are polynomially bounded. That is, non-
possession of attributes can be expressed by possession of negative attributes.
However, this is not the case in large-universe constructions because we can-
not attach an exponentially large number of negative attributes to a ciphertext
or secret key. Hence, monotone ABE and non-monotone ABE are completely
different things in the context of large-universe constructions.

Multi-use of Attributes (Compactness). Many ABE schemes whose secu-
rity relies on the dual system methodology [30] have a one-use restriction on
access structures [12,13,23,26,27]. In an ABE scheme with the one-use restric-
tion, one can use only policies in which all attributes appear once. That is, one
cannot embed a policy into a ciphertext or secret key such as ((Year:1991–
2000 AND Category:jazz) OR (Year:2001–2010 AND Category:jazz)
OR (Year:2001–2010 AND Artist:The Beatles)) because attributes Cate-
gory:jazz and Year:2001–2010 appear twice in the policy.

One way to circumvent this restriction is to prepare multiple nominal
attributes for each single attribute in advance like Category:jazz-1, . . . , Cat-
egory:jazz-d for Category:jazz. However, this solution has two problems. The
first is that the maximum number d of multi-use is fixed at the setup phase. Thus,
the access structures that the scheme supports are still limited. The second is
that, in KP-ABE, for instance, the solution increases the sizes of ciphertexts
proportionally to the maximum number of multi-use, and it leads to efficiency
loss. This prevents the solution to set a sufficiently large number for the limit.

On the other hand, in an ABE scheme that supports multi-use of attributes,
we have no restrictions on policies and can combine any attributes in an arbitrary
way to generate a policy. In KP-ABE, for instance, the sizes of ciphertexts are
independent of policies and thus satisfies “compactness” [21].

1.2 Design of Our ABE Schemes

In the following, we focus on the design our KP-ABE scheme, and the CP-ABE
scheme is similarly constructed. The relation R of our ABE is close to that by
Okamoto and Takashima in [27]. As we mentioned, an attribute consists of a label
and value. A predicate is an arbitrary Boolean formula that is a combination of
variables by operations AND, OR, and NOT such as ((Year:1991–2000 AND
Category:jazz) OR (Year:1991–2000 AND Artist:NOT The Beatles)). A
formal definition of R is described in Definition 2.5.
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Our scheme is based on the dual system encryption, which we can instantiate
from either composite-order or prime-order bilinear groups [12,25,30,31]. Our
actual scheme is based on prime-order bilinear groups following the framework by
Chen et al. [12] to utilize the dual system methodology in prime-order groups and
the technique by Agrawal and Chase [1] to utilize a random oracle in asymmetric
prime-order bilinear groups. For ease of exposition, we describe the composite-
order variant of our scheme here. Let N = p1p2 for primes p1 and p2, and
(G,H,GT ) be bilinear groups of order N . Let g and h be generators of G and
H, and gi and hi be generators of subgroups Gi and Hi of order pi for i = {1, 2},
respectively. Let R : {0, 1}∗ → G1 ×G1 be a hash function modeled as a random
oracle, and its input is a label. We denote the output of R(i) by (gui

1 , ghi
1 ). Then,

our scheme can be written as

pk = (g1, h1, e(g1, h1)α)

ct = (hs
1, {g

s(xiui+hi)
1
︸ ︷︷ ︸

ct of IBE

}i∈S , e(g1, h1)sαM)

sk =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

{hri
1 }i∈[n],

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

gαi · g
ri(yiuψ(i)+hψ(i))
1

︸ ︷︷ ︸

sk of IBE

or
g−αi · g

riuψ(i)
1 ,

gyiαi · g
rihψ(i)
1

︸ ︷︷ ︸

sk of NIBE

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

i∈[n]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where S is the set of labels, n is the number of variables in the formula, ψ : [n] →
{0, 1}∗ is a function that specifies the label of each variable, αi is a share of the
secret α, and xi and yi are the values for label i. Note that the reason ct and sk
contain both elements in G and H is to utilize a hash function in asymmetric
groups as FAME [1].

The high-level idea of the construction is a combination of secret sharing (SS)
and two-mode identity-based encryption (TIBE) [32]. TIBE is obtained by just
combining identity-based encryption (IBE) and negation of IBE (NIBE). Our
scheme can instantiate an arbitrary number of TIBE on the fly by leveraging
hash function R, and each instance corresponds to each label. A secret key of
our scheme consists of secret keys of IBE and NIBE, and each secret key hides
a share αi of a master secret α generated by SS according to the formula. A
ciphertext of ABE consists of ciphertexts of IBE, which have the same form
as those in Boneh-Boyen IBE [8]. Note that ciphertexts of IBE and NIBE are
identical, and thus we do not need to include both ciphertexts of IBE and NIBE
in a ciphertext of our scheme. In decryption, one computes {e(g1, h1)sαi}i for
labels in which the relation of (in)equality between the ciphertext and secret
keys is satisfied. Note that one cannot compute e(g1, h1)sαi if the relation of
(in)equality does not hold in label i, thanks to the security of underlying TIBE.
If e(g1, h1)sα is recovered via reconstruction of SS, which means that the policy
in the secret key is satisfied by the attribute in the ciphertext, one can decrypt
the ciphertext of ABE. By the construction, e(g1, h1)sαi cannot be computed if
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a ciphertext of ABE does not contain a ciphertext of TIBE for label i, and this
property yields OT negation.

1.3 Our Main Technique

We can easily prove the adaptive security of our scheme from a standard assump-
tion by the dual system methodology and the predicate encoding framework as
in [31] if ψ is injective, or the scheme has the one-use restriction of labels in poli-
cies. However, if it is not the case, to prove the adaptive security of the scheme
from standard assumptions becomes quite difficult and had been a long-standing
open problem. Very recently, Kowalczyk and Wee brought a breakthrough for
this problem (KW19) [21]. More precisely, they proposed a methodology to prove
the adaptive security of the most simple ABE scheme, which supports monotone
NC1 circuits (or equivalently Boolean formulae) for a small attribute universe.
The scheme can be written in composite-order groups as

pk = (g1, h1, g
w1
1 , . . . , gw�

1 , e(g1, h1)α)
ct = (gs

1, {gswi
1 }i∈S , e(g1, h1)sαM)

sk = ({hri
1 }i∈[n], {hαi · h

riwψ(i)
1 }i∈[n]).

Roughly speaking, this scheme can be seen as KP-ABE whose ingredients are
ElGamal-like encryption whereas the counterpart of our scheme corresponds to
TIBE.

We briefly recall the framework by KW19. Their framework follows the dual
system methodology, which is the standard technique to achieve the adaptive
security. In the methodology, we change the challenge ciphertext and secret keys
into the semi-functional form. Roughly speaking, semi-functional ciphertexts and
secret keys have an additional structure in G2 and H2 as follows:

ct = (gs, {gswi}i∈S , e(g, h)sαM)

sk = ({hri
1 }i∈[n], {hαi · h

riwψ(i)
1 · hγi

2 }i∈[n]),

where γi is a share of a random secret γ.
In the dual system methodology, we consider a series of hybrids where we first

change the challenge ciphertext into the semi-functional form and then the secret
keys into the semi-functional form one by one. In the latter part, the methodology
allows us to focus on only one secret key by leveraging components in G2 and
H2. Therefore, to show the following indistinguishability for the adaptive choice
of ct and the one key sk is sufficient to change the target secret key into a
semi-functional form:

⎧
⎨

⎩

ct : (gs
2, {gswi

2 }i∈S),

sk : ({hri
2 }i∈[n], {h

riwψ(i)+ γ0,i

2 }i∈[n])

⎫
⎬

⎭
≈c

⎧
⎨

⎩

(gs
2, {gswi

2 }i∈S),

({hri
2 }i∈[n], {h

riwψ(i)+ γ1,i

2 }i∈[n])

⎫
⎬

⎭

where γ0,i is a share of secret 0 and γ1,i is a share of secret γ. This core component
is called core 1-ABE.
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The difficulty of showing the indistinguishability of core 1-ABE from a stan-
dard assumption arises from the fact that we need to embed a computational
problem into sk depending on ct. That is, if an adversary first asks for sk, a sim-
ulator has no idea on how to embed the computational problem into sk. Their
framework tells us how to construct a series of hybrids to show the above indis-
tinguishability. In each transition of hybrids, the simulator guesses a part of the
adversary’s output that has sufficient information to embed the problem into sk.
Simultaneously, the part must be so small that the simulator can guess it with
non-negligible probability. In our case, the part tells the correct element in sk
where the simulator embeds the problem. Observe that each γi is masked by
ElGamal-like encryption in H2. Thus, we can embed the DDH problem based
on the guess and gradually change shares {γi}i∈[n].

At a glance, their framework seems applicable to our scheme directly, but
actually, it does not work. The main problem is the fact that whereas their
framework tells us the location and its label where we should embed the problem
in sk, it does not tell us the value of the label in ct. In other words, the difficulty
of directly applying their framework to our scheme seems essentially the same
as that of proving the adaptive security of Boneh-Boyen IBE, which was proven
secure only in the selective setting. This problem does not occur in the scheme
by KW19 because the corresponding part is just the ElGamal-like encryption,
that is, public-key encryption.

To overcome the problem, we introduce new usage of KW19 framework that
allows us to utilize the dual system methodology more beneficially. As we men-
tioned previously, a secret key of our scheme contains many secret keys of TIBE
based on the dual system encryption. Furthermore, the framework tells us which
secret key should be changed in each hybrid in the core 1-ABE. Thus, we can
gradually randomize the component in H2 of each element in sk by the dual
system methodology instead of the DDH problem in H2.

For simplicity, we show the case where we apply our new technique to the
scheme by KW19. In our technique, we consider the following indistinguishability
of core 1-ABE:
⎧

⎨

⎩

(gs, {gswi}i∈S),

({hri
1 }i∈[n], {h

riwψ(i)
1 · h

γ0,i

2 }i∈[n])

⎫

⎬

⎭

≈c

⎧

⎨

⎩

(gs, {gswi}i∈S),

({hri
1 }i∈[n], {h

riwψ(i)
1 · h

γ1,i

2 }i∈[n])

⎫

⎬

⎭

.

The difference from the original core 1-ABE is that our core 1-ABE considers
both normal space (G1 and H1) and semi-functional space (G2 and H2), whereas
the original one considers only semi-functional space. We use the dual system
methodology to randomize the component in H2. Let i∗ be the location where
γi∗ is supposed to be changed in some two hybrids, which means that i∗ �∈ S.
Then, from the subgroup assumption, the dual system methodology argue that
(hri∗

1 , h
ri∗ wψ(i∗)
1 ·hγi∗

2 ) ≈c (hri∗ , hri∗ wψ(i∗) ·hγi∗
2 ). Then, we can observe that wψ(i∗)

mod p2 in sk is randomly distributed in Zp2 from the Chinese remainder theorem
and the fact i∗ �∈ S. Thus, term γi is completely hidden by term ri∗wψ(i∗). Unlike
the framework by KW19, we can apply this technique to our scheme similarly.
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1.4 Other Techniques

Furthermore, we give the following technical contributions:

– reducing the number of pairings in decryption;
– reducing the number of shares of secret sharing;
– making the proof simpler;
– presenting our CP-ABE scheme.

Number of Pairings. Our scheme described in Sect. 1.2 requires O(n) pairings
in decryption. To reduce the number, we employ the construction by Agrawal and
Chase in [2]. That is, we use an exponent rπ(i) instead of ri, where π(i) = |{j |
ψ(j) = ψ(i), j ≤ i}|. In this construction, we need O(d) pairings in decryption
where d = max π(i) is the maximum number of multi-use of labels in the policy.
Because our scheme in prime-order groups follows the construction, it allows fast
decryption for secret keys with a small number of multi-use of labels. We show
that we can prove the security of our schemes under standard assumptions even
if we use this construction. Note that the construction by Agrawal and Chase
relies on a q-type assumption.

Number of Shares. In the scheme by KW19, they use a secret sharing scheme
where the number of shares corresponds to the summation of the numbers of
gates and input wires when we capture a Boolean formula as a circuit. On the
other hand, our schemes employ a secret sharing scheme where the number of
shares corresponds to only the number of input wires. Their framework derives
from the technique to prove the adaptive security of secret sharing for monotone
circuits by Jafargholi et al. [18], which requires the same number of shares as
in KW19. We guess that this is why their construction employs such a secret
sharing scheme. However, we show that we do not need shares for the gates in
secret sharing schemes for Boolean formulae to utilize the framework.

Simpler Proof. Our scheme follows the technique of FAME to make our scheme
unbounded by a hash function [1]. We show that we can utilize a pseudorandom
function (PRF) to significantly ease the security proof. Concretely, we can skip
the part that corresponds to Hyb0 to Hyb2,3,q in their security proof [1, Appendix
C]. Note that the additional computational cost by the modification is quite small
compared with the whole procedure of the key generation because it requires only
small numbers of PRF evaluations and multiplications in Zp for each element in
a secret key.

CP-ABE Scheme. We present our CP-ABE scheme and its security proof
(described in the full version). Note that the security proof of our CP-ABE
scheme is more complicated than that of our KP-ABE scheme, because we need
two hidden spaces as in [13,16] due to a technical reason.
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1.5 Implementation and Evaluation

We implement our KP and CP-ABE schemes in 128-bit security level and measure
benchmarks for an ordinary personal computer and two smartphones: iPhone XR
and Pixel 3. In our schemes, a running time of each algorithm is affected by the
numbers of negation and multi-use of labels in a policy as well as the number of
attributes. To show the effects of these factors, we present benchmarks for four
types of policies that differ in the existence of negation and multi-use.

We roughly describe the running times of our schemes when we handle a
policy or attribute set with 100 attributes on a personal computer. In all cases,
our KP-ABE (resp. CP-ABE) scheme takes about 0.4 to 0.7 s (resp. 0.4 to 0.9 s)
for encryption and key generation. Decryption is heavily affected by a type of
policy, and our schemes take only about 0.02 s (KP & CP) in the fastest case
and 0.5 (KP) or 0.7 s (CP) even in the slowest case. Thus, we can conclude that
our schemes take less than 1 s in any process and any cases with 100 attributes.

We also implement KP and CP-ABE schemes by Okamoto and Takashima
(OT12), which are the only known ABE schemes that support OT negation and
the unboundedness [27]. There are no known schemes that are as expressive as
ours (see Table 1), and OT12 seems to have a closet functionality. This is why
we choose OT12 to compare. The comparison between our schemes and OT12
shows that our schemes achieve significant speedups for each algorithm.

2 Preliminaries

2.1 Notation

For a natural number n ∈ N, [n] denotes a set {1, . . . , n}. For a set S, s ← S
denotes that s is uniformly chosen from S. For matrices with the same number of
rows A1 and A2, (A1||A2) denotes the matrix generated by their concatenation.
We denote the whole space spanned by all columns of matrix A by span(A). For
a matrix A := (aj,�)j,� over Zp, [A]i (i ∈ {1, 2, T}) denotes a matrix over Gi

whose (j, �) entry is g
aj,�

i , and we apply the similar notation to vectors and
scalars. We denote ([A]1, [A]2) by [A]1,2. For matrices A and B where A�B
is defined, we abuse the pairing notation in the following way: e([A]1, [B]2) =
[A�B]T . A function f : N → R is called negligible if f(λ) = λ−ω(1) and denotes
f(λ) ≤ negl(λ). For families of distributions X := {Xλ}λ∈N and Y := {Yλ}λ∈N,
X ≈c Y means that they are computationally indistinguishable.

2.2 Basic Tools

Boolean Formula and NC1. A monotone Boolean formula can be represented
by a Boolean circuit whose all gates have fan-in 2 and fan-out 1. We can specify
a monotone Boolean formula f : {0, 1}n → {0, 1} as f = (n,w, v,G), where
n,m, v ∈ N and G : [v] → {AND, OR}× [w]3. This means the Boolean formula f
has n input wires, w wires including the input wires, and v gates. We number the
wires 1, . . . , w and the gates 1, . . . , v. The function G specifies a type, incoming
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wires, and an outgoing wire of each gate. That is, for G(i) = (T, a, b, c) such
that a < b < c, T specifies a type of gate i, a and b specify the incoming wires,
and c specifies the outgoing wire. A non-monotone Boolean formula additionally
contains NOT gates, which have fan-in 1 and fan-out 1. It is well-known that we
can express all non-monotone Boolean formulae by one in which all NOT gates
are put on the input wires, and we only consider such formulae in this paper.
Thus, we can specify a non-monotone Boolean formula f ′ : {0, 1}n → {0, 1} as
f ′ = (f, t), where f = (n,w, v,G) is a monotone Boolean formula and t : [n] →
{0, 1} specifies input gates that connect to a NOT gate. That is, input wire i
connects to a NOT gate if t(i) = 0 and does not if t(i) = 1.

Standard complexity theory tells us that circuit complexity class NC1 and
Boolean formulae are equivalent. It is known also that NC1 is equivalent to the
class captured by log-depth Boolean formulae (see e.g., [21]). Thus, the circuit
complexity class captured by Boolean formulae is equivalent to the class captured
by log-depth Boolean formulae.

Definition 2.1 (Pseudorandom Functions). A pseudorandom function
(PRF) family F := {FK}K∈Kλ

with a key space Kλ, a domain Xλ, and a range
Yλ is a function family that consists of functions FK : Xλ → Yλ. Let Rλ be a
set of functions consisting of all functions whose domain and range are Xλ and
Yλ respectively. For any PPT adversary A, the following condition holds,

AdvPRFA (λ) := |Pr[1 ← AFK(·)] − Pr[1 ← AR(·)]| ≤ negl(λ),

where K ← Kλ and R ← Rλ.

Definition 2.2 (Bilinear Groups). A description of bilinear groups
G:=(p,G1, G2, GT , g1, g2, e) consist of a prime p, cyclic groups G1, G2, GT of
order p, generators g1 and g2 of G1 and G2 respectively, and a bilinear map
e : G1 × G2 → GT , which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha
1 , h

b
2) = e(h1, h2)ab.

– (Non-degeneracy): For g1 and g2, gT := e(g1, g2) is a generator of GT .

A bilinear group generator GBG(1λ) takes a security parameter 1λ and outputs
a description of bilinear groups G with Ω(λ) bit prime. In this paper, we refer
to Type-I groups, where efficient isomorphisms exist in both way between G1

and G2, as symmetric bilinear groups, and Type-III groups, where no efficient
isomorphisms exist between them, as asymmetric bilinear groups.

For the proofs of our schemes, we utilize the Dk-MDDH assumption [14],
which is generalization of the DDH assumption. There are mainly two types of
Dk-MDDH assumption families for asymmetric bilinear groups. In the first one,
an instance contains unilateral group elements such as the SXDH assumption.
The other one consists of assumptions that are involved with bilateral group
elements such as the DLIN assumption used in [1], which is sometimes called
the XDLIN assumption. In our paper, we utilize the latter type.
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Definition 2.3 (Dj,k-MDDH Assumption). For j > k, let Dj,k be a matrix
distribution over Z

j×k
p that outputs full rank matrix with overwhelming probabil-

ity. We can assume that, wlog, the first k rows of a matrix A chosen from Dj,k

form an invertible matrix. We consider the following distribution:

G ← GBG(1λ), A ← Dk, v ← Z
k
p, t0 := Av, t1 ← Z

j
p,

Pβ := (G, [A]1,2, [tβ ]1,2).

We say that the bilateral Dj,k-MDDH assumption holds with respect to GBG if,
for any PPT adversary A,

Adv
Dj,k-MDDH
A,bi (λ) := |Pr[1 ← A(P0)] − Pr[1 ← A(P1)]| ≤ negl(λ).

We denote Dk+1,k by Dk. Let Uj,k be a uniform distribution over full rank
matrices in Z

j×k
p . Then, the following relations hold with tight reductions;

Dk-MDDH ⇒ Uk-MDDH ⇒ Uj,k-MDDH.

For an appropriate distribution Dk, the Dk-MDDH assumption generically
holds in k-linear groups [14]. Thus, in asymmetric bilinear groups, we can utilize
the bilateral Dk-MDDH assumption for k ≥ 2.

Matrix Notation. For a matrix A ∈ Dk, we define a matrix A∗ and vectors a1

and a∗
1 as follows. Vector a1 is a k + 1 dimensional vector whose last entry is 1

and the others are 0. Then, it is not hard to see that A := (A||a1) forms a basis
of Z

k+1
p because the first k rows of a matrix A chosen from Dk form an invertible

matrix. A∗ and a∗
1 are the matrix that consists of the left k columns of (A

�
)−1

and the vector that consists of right one column of (A
�

)−1, respectively. Note
that we have A�A∗ = Ik, A�a∗

1 = 0, and A∗A� + a∗
1a

�
1 = Ik+1. We use a

similar notation for a matrix B ∈ GLk+η(Zp) where η ∈ N. B and bi denote a
matrix consists of the first k columns of B and a vector consists of the k + i-th
column of B, respectively. Similarly, B∗, b∗

i denote a matrix consists of the first
k columns of (B

�
)−1 and a vector consists of the k + i-th column of (B

�
)−1,

respectively. For the convenience, we denote (b1||b2) by B12, and this notation
is applied to other cases similarly.

2.3 Attribute-Based Encryption

Definition 2.4 (Attribute-Based Encryption). An attribute-based encryp-
tion (ABE) scheme for relation R : X × Y → {0, 1} consists of four algorithms,
where X and Y are an attribute universe and predicate universe, respectively.

Setup(1λ): It takes a security parameter 1λ and outputs a public key pk and a
master secret key msk. pk specifies a message space M.

Enc(pk, x,m): It takes pk, an attribute x ∈ X and a message m ∈ M and outputs
a ciphertext ctx.

KeyGen(pk,msk, y): It takes pk,msk, and a predicate y ∈ Y and outputs a secret
key sky.

Dec(pk, ctx, sky): It takes pk, ctx and sky and outputs a message m′ or ⊥.
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Correctness. An ABE scheme is correct if it satisfies the following condition.
For all λ ∈ N, x ∈ X , y ∈ Y such that R(x, y) = 1, and m ∈ M, we have

Pr

⎡

⎢

⎢

⎣
m = m′

(pk,msk) ← Setup(1λ)
ctx ← Enc(pk, x,m)
sky ← KeyGen(pk,msk, y)
m′ := Dec(pk, ctx, sky)

⎤

⎥

⎥

⎦
= 1.

Security. An ABE scheme is adaptively secure if it satisfies the following con-
dition. That is, the advantage of A defined as follows is negligible in λ for all
stateful PPT adversary A:

AdvABEA (λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎢

⎣

β = β′

β ← {0, 1}
(pk,msk) ← Setup(1λ)
(x∗,m0,m1) ← AKeyGen(pk,msk,·)(pk)
ctx∗ ← Enc(pk, x∗,mβ)
β′ ← AKeyGen(pk,msk,·)(ctx∗)

⎤

⎥

⎥

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where {yi}i∈[qsk] on which A queries KeyGen must satisfy R(x∗, yi) = 0.

A relation for ABE that we consider in our paper is expressed by a non-
monotone Boolean formula over the equivalence relation in Zp. More specifically,
each input of the Boolean formula is decided by whether certain components
in an attribute and predicate are equal. Then, the relation is decided by the
output of the formula. Our relation is very close to that formulated by Okamoto
and Takashima in [27], though their scheme has one-use restriction on labels in
policies. One caveat is that we can use only a non-monotone Boolean formula
for a predicate in our scheme, whereas the relation by Okamoto and Takashima
allows us to use a more powerful non-monotone span program for a predicate.
In the following, we consider only non-monotone Boolean formulae where NOT
gates exist only on input wires.

Definition 2.5 (Relation R). Relations RKP and RCP for our KP and CP-
ABE schemes, respectively, are defined as follows. Let R : X × Y → {0, 1} be a
relation defined as follows:

– X =
⋃

i∈N
Z

i
p × Φi, where Φi consists of all injective functions such that

φ : [i] → {0, 1}∗.
– Y =

⋃

i∈N
Z

i
p × Fi × Ψi × Ti, where Fi consists of all monotone Boolean

formulae whose input lengths are i, and Ψi and Ti consist of all functions
such that ψ : [i] → {0, 1}∗ and t : [i] → {0, 1}, respectively.

– For x = (x ∈ Z
m
p , φ) and y = (y ∈ Z

n
p , f, ψ, t), we define b =

(b1, . . . , bn) ∈ {0, 1}n as bi :=

{

t(i) � true(xφ−1(ψ(i)) = yi) ψ(i) ⊆ Im(φ)
0 ψ(i) �⊆ Im(φ)

,

where � denotes xnor. Then, R(x, y) = 1 ⇔ f(b) = 1.
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Then, RKP : XKP × YKP → {0, 1} is defined as XKP := X , YKP := Y, and
RKP(x, y) = R(x, y), whereas RCP : XCP × YCP → {0, 1} is defined as XCP := Y,
YCP := X , and RCP(x, y) = R(y, x).

For X , each element of x ∈ Z
m
p corresponds to a value for some label, and

φ specifies which label each element of x is associated with. For instance, when
we consider an attribute (Age:22, Hobby:tennis), x = (x, φ) can be set as x :=
(22,H1(tennis)), φ(1) := Age, and φ(2) := Hobby where H1 : {0, 1}∗ → Zp is
a collision resistant hash function.

For Y, each element of y ∈ Z
n
p corresponds to the value for each input

wire of f , and ψ specifies which label each input wire of f is associated with.
Additionally, t specifies whether each input wire connects to a NOT gate. For
instance, let us consider a predicate (Age:25 AND Hobby:NOT baseball). Then,
y = (y, f, ψ, t) can be set as y := (25,H1(baseball)), f is a formula with a single
AND gate, ψ(1) := Age and ψ(2) := Hobby, and t(1) = 1 and t(2) = 0.

Definition 2.6 (Linear Secret Sharing Scheme). A linear secret sharing
scheme (LSSS) for a function class F consists of two algorithms Share and Rec.

Share(f,k): It takes a function f ∈ F where f : {0, 1}n → {0, 1} and a vector
k ∈ Z

�
p. Then, outputs shares k1, . . . ,kn ∈ Z

�
p.

Rec(f, x, {ki}xi=1): It takes f : {0, 1}n → {0, 1}, a bit string x := (x1, . . . , xn) ∈
{0, 1}n and shares {ki}xi=1. Then, outputs a vector k′ or ⊥.

In particular, Rec computes a linear function on shares to reconstruct a secret;
k =
∑

xi=1 aiki where each ai is determined by f . A LSSS has two properties.

Correctness: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 1,

Pr[Rec(f, x, {ki}xi=1) = k | k1, . . . ,kn ← Share(f,k)] = 1.

Security: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 0, and k1, . . . ,kn ←
Share(f,k), shares {ki}xi=1 have no information about k.

2.4 Piecewise Guessing Framework

Here, we briefly recall the piecewise guessing framework by Kowalczyk and Wee
[21], which is based on the framework by Jafargholi et al. [18]. The framework
helps us to prove adaptive security of cryptographic schemes that are selectively
secure.

Definition 2.7 (Interactive Game). An interactive game G is a game
between an adversary A and a challenger C. In the game, A and C send mes-
sages interactively, and the messages sent by C depend on the game G. After the
interaction, A outputs β ∈ {0, 1}. We denotes the output of A in G by 〈A,G〉.
Let z ∈ {0, 1}R be a part of messages supposed to be sent by A in the game. In
the adaptive game G, A can send z at arbitrary points as long as it follows a
rule of the game. We define the selective variant of G, denoted by ̂G, to be the
same as G except that A has to declare z that will be sent in the game, at the
beginning of the interaction.
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Suppose we want to show that adaptive games G0 and G1 are computationally
indistinguishable, i.e.,

|Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 = 1]| ≤ negl(λ).

Then, we consider a series of selective hybrids ̂Hh0 , . . . , ̂HhL such that

̂G0 = ̂Hh0 ≈c
̂Hh1 ≈c, . . . ,≈c

̂HhL = ̂G1,

where h0, . . . , hL : {0, 1}R → {0, 1}R′
for some R′ � R, and ̂Hhι is an interactive

game in which C’s messages depend on u := hι(z). Additionally, h0 and hL

need to be constant functions. Note that C can generate messages depending
on u because z is declared at the beginning of the interaction. Next, we define
variants of ̂Hhι , namely, ̂Hhι

0 and ̂Hhι
1 as follows. In ̂Hhι

β for β ∈ {0, 1}, A has to
declare hι−1+β(z) and hι+β(z) instead of z at the beginning of the game. Then,
C interacts with A setting u := hι(z) in both ̂Hhι

0 and ̂Hhι
1 . In other words, ̂Hhι

β

is the same as ̂Hhι except that only partial information of z is declared by A.
Now we are ready to state the adaptive security lemma.

Lemma 2.1 (Adaptive Security Lemma [21]). Let G0 and G1 be adaptive
interactive games and {̂Hhi}0≤i≤L be selective hybrids defined above. Suppose
they satisfy the two properties:

– G0 = Hh0 and G1 = HhL , where Hh0 and HhL are the same as ̂Hh0 and ̂HhL ,
respectively, except that A does not declare z at the beginning. Note that C’s
messages can be correctly defined because h0 and hL are constant functions.

– For all PPT adversary A and all ι ∈ L, we have

|Pr[〈A, ̂H
hι−1
1 〉 = 1] − Pr[〈A, ̂Hhι

0 〉 = 1]| ≤ ε.

Then, we have

|Pr[〈A,G0〉 = 1] − Pr[〈A,G1〉 = 1]| ≤ 22R′
Lε.

2.5 Pebbling Strategy for Boolean Formula

A pebbling strategy is used for a guide of how to construct a series of hybrids
in the piecewise guessing framework.

Definition 2.8 (Pebbling Game). A player of the pebbling game is given a
monotone Boolean formula f : {0, 1}n → {0, 1} and input b = (b1, . . . , bn) ∈
{0, 1}n such that f(b) = 0. The goal of the game is to reach the state where a
pebble is placed on only the output gate (the gate with the output wire), starting
from the state with no pebbles on the Boolean formula f , following a pebbling
rule. The rule is defined as follows.

1. We can place or remove a pebble on input wire i whose input corresponds to
0, i.e., bi = 0.
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2. We can place or remove a pebble on an AND gate if at least one of its incoming
wires comes from a gate or input wire with a pebble on it.

3. We can place or remove a pebble on an OR gate if both of its incoming wires
come from a gate or input wire with a pebble on it, respectively.

4. We can pass the turn, which allows us to increase the total number of steps
in the game without changing the pebbling strategy.

Definition 2.9 (Pebbling Record). A pebbling record R := (r0, . . . , rL) ∈
({0, 1}R′

)L is a list of all pebbling configuration that a player took from the start
to the goal in the pebbling game. R′-bit string rι specifies the configuration at the
ι-th step in the play. Thus, r0 specifies the state with no pebbles and rL specifies
the state with one pebble on the output gate. It also means that the player takes
L steps to reach the goal, and all pebbling configurations that the player took can
be specified by an R′-bit string.

The following lemma says that, for any monotone Boolean formula and input,
there exists a pebbling strategy where all pebbling configurations can be specified
with a “short” bit string.

Lemma 2.2 (Pebbling Lemma [21]). Let f : {0, 1}n → {0, 1} be any mono-
tone Boolean formula with a depth d ≤ B, and b ∈ {0, 1}n be any bit string
such that f(b) = 0. Then, there exists a deterministic algorithm PebRec(f, b)
that takes f and b and outputs a record R consisting of 8B strings whose lengths
are 3B bits.

3 Our KP-ABE Scheme

First, we describe a linear secret sharing scheme that we use in our schemes as
a building block.

3.1 Linear Secret Sharing for Boolean Formulae

Our secret sharing scheme for monotone Boolean formulae is described in Fig. 1,
which is essentially the same as the scheme in [22, Appendix G]. Note that it
works similarly if all vectors in Fig. 1 are group elements. Let f be a formula and
b = (b1, . . . , bn) be a bit string such that f(b) = 1. Then, for reconstruction, it is
not difficult to see that there exists a set S ⊆ {i | bi = 1} such that

∑

i∈S σi = k.
Clearly, the number of shares for formula f corresponds to the number of its

input wires. The secret sharing scheme employed by Kowalczyk and Wee is dif-
ferent from ours [20], where the number of shares corresponds to the summation
of the numbers of input wires and gates in f . We show that we can utilize their
framework even if we replace the secret sharing scheme to ours.

We use the following lemma on the secret sharing scheme in the security
proof of our scheme.
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Share(f,k)
Input: A monotone Boolean formula f = (n, w, v, G) and a secret k ∈ Z

�
p.

1. Set a vector σout := k on the output wire.
2. For each AND gate g with incoming wires a, b and an outgoing wire c where a

vector σc is set on c, choose ug ← Z
�
p and set σa := σc − ug and σb := ug on a

and b, respectively.
3. For each OR gate g with incoming wires a, b and an outgoing wire c where a

vector σc is set on c, set σa := σc and σb := σc on a and b, respectively.
4. Output shares σ1, . . . , σn, which are set on the input wires 1, . . . , n.

Fig. 1. Our linear secret sharing scheme for Boolean formulae.

Lemma 3.1. Let Share be the algorithm defined in Fig. 1. For all �, n ∈ N,
monotone Boolean formulae f = (n,w, v,G), k,a ∈ Z

�
p, and μ ∈ Zp, we define

the following distribution.

k1, . . . ,kn ← Share(f,k + μa), k′
1, . . . ,k

′
n ← Share(f,k),

σ1, . . . , σn ← Share(f, μ).

Then, the two distributions are identical:

{k1, . . . ,kn} and {k′
1 + σ1a, . . . ,k′

n + σna}.

The proof of Lemma 3.1 is presented in the full version.

3.2 Construction

For generality, we describe our scheme using a matrix distribution Dk. When we
instantiate our scheme from asymmetric pairings, we typically choose the k-Lin
family Lk with k = 2. In this case, we can set matrices as

A =

⎛

⎝

a1 0
0 a2

1 1

⎞

⎠ , A∗ =

⎛

⎝

1
a1

0
0 1

a2

0 0

⎞

⎠ , a∗
1 =

⎛

⎝

− 1
a1

− 1
a2

1

⎞

⎠ ,

where a1, a2 ← Zp. Let H : {0, 1}∗ → G
(k+1)×k
1 × G

(k+1)×k
1 be a hash function

modeled as a random oracle. Let FK : {0, 1}∗ → Z
k+1
p × Z

k+1
p be a PRF with a

secret key K. Let Kλ be a key space of the PRF. Let Share be the LSSS described
in Fig. 1. Note that we can instantiate H from a hash function H ′ : {0, 1}∗ → G1

by generating each output group element of H with H ′. More precisely, each
output group element of H(i) is defined by H ′(i||$||j), where $ is a special
symbol and j ∈ [2k(k + 1)] specifies the location of the matrices. The symbol $
can be expressed by encoding, e.g., 0 → 00, 1 → 11, and $ → 01. Our scheme
for RKP is described as follows.
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Setup(1λ): It takes a security parameter 1λ and outputs pk and msk as follows.

G ← GBG(1λ), A ← Dk, B ← Z
(k+1)×k
p , k ← Z

k+1
p , K ← Kλ,

pk := (G, [A]2, [A�k]T ), msk := (A∗,a∗
1,B,k,K).

Enc(pk, x,M): It takes pk, an attribute x = (x ∈ Z
m
p , φ), and a message M ∈ GT

and outputs ctx as follows.

s ← Z
k
p, ([Uφ(i),0]1, [Uφ(i),1]1) := H(φ(i)),

c1 := [As]2, c2,i := [(xiUφ(i),0 + Uφ(i),1)s]1, c3 := [s�A�k]T M,

ctx := (x, c1, {c2,i}i∈[m], c3).

KeyGen(pk,msk, y): It takes pk, msk, and a predicate y = (y ∈ Z
n
p , f, ψ, t) and

outputs sky as follows. Let π : [n] → N be a function such that π(i) := |{j |
ψ(j) = ψ(i), j ≤ i}|. Let d be the maximum number of multi-use of labels in
f , i.e., d := maxi∈[n] π(i).

r1, . . . , rd ← Z
k
p, k1,j := [Brj ]2, k1, . . . ,kn ← Share(f,k) ∈ Z

k+1
p ,

([Uψ(i),0]1, [Uψ(i),1]1) := H(ψ(i)), (uψ(i),0,uψ(i),1) := FK(ψ(i)),
If t(i) = 1:

k2,i := [ki + A∗(yiU�
ψ(i),0 + U�

ψ(i),1)Brπ(i) + a∗
1(yiu�

ψ(i),0 + u�
ψ(i),1)Brπ(i)]1,

If t(i) = 0:

k2,i := (k2,i,1, k2,i,2) :=

(

[−ki + A∗U�
ψ(i),0Brπ(i) + a∗

1u
�
ψ(i),0Brπ(i)]1,

[yiki + A∗U�
ψ(i),1Brπ(i) + a∗

1u
�
ψ(i),1Brπ(i)]1

)

sky := (y, {k1,j}j∈[d], {k2,i}i∈[n]).

Dec(pk, ctx, sky): It takes pk, ctx, and sky. It computes b ∈ {0, 1}n from x and
y as in Definition 2.5. If f(b) = 0, it outputs ⊥. Otherwise, computes a set
S ⊆ {i | bi = 1} such that k =

∑

i∈S ki. Let S1 := S ∩ {i | t(i) = 1} and
S0 := S ∩ {i | t(i) = 0}. Then outputs M ′ as follows.

D1,j := e

⎛

⎜

⎜

⎝

∑

π(i)=j
i∈S1

k2,i +
∑

π(i)=j
i∈S0

1
yi − xφ−1(ψ(i))

(xφ−1(ψ(i))k2,i,1 + k2,i,2), c1

⎞

⎟

⎟

⎠

�

D2,j := e

⎛

⎜

⎜

⎝

∑

π(i)=j
i∈S1

c2,φ−1(ψ(i)) +
∑

π(i)=j
i∈S0

1
yi − xφ−1(ψ(i))

c2,φ−1(ψ(i)), k1,j

⎞

⎟

⎟

⎠

M ′ := c3/
∏

j∈[d]

(D1,j/D2,j).
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Correctness: For honestly generated ctx and sky such that R(x, y) = 1,

D1,j=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

π(i)=j
i∈S1

(
s�A�ki + s�(yiU

�
ψ(i),0 + U�

ψ(i),1)Brj

)

+
∑

π(i)=j
i∈S0

(

s�A�ki+
1

yi−xφ−1(ψ(i))

s�(xφ−1(ψ(i))U
�
ψ(i),0+U�

ψ(i),1)Brj

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

D2,j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

π(i)=j
i∈S1

(
s�(xφ−1(ψ(i))U

�
ψ(i),0 + U�

ψ(i),1)Brj

)

+
∑

π(i)=j
i∈S0

(
1

yi − xφ−1(ψ(i))

s�(xφ−1(ψ(i))U
�
ψ(i),0 + U�

ψ(i),1)Brj

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

.

In the above, we use the relations A�A∗ = Ik and A�a∗
1 = 0. Because

xφ−1(ψ(i)) = yi for i ∈ S1, we have
∏

j∈[d](D1,j/D2,j) = [s�A�∑
j∈[d]

∑

i∈S
π(i)=j

ki]T = [s�A�k]T . Thus, M ′ = M .

3.3 Security

Theorem 3.1. Let B be the maximum depth of formulae on which A queries
KeyGen. Let qsk be the maximum number of A’s queries to KeyGen. Then, our
scheme is adaptively secure as long as B = O(log λ). More precisely, for any
PPT adversary A, there exist PPT algorithms B1 and B2 such that

AdvABEA (λ)≤AdvPRFB1
(λ)+(29B+2qsk+1)(AdvDk-MDDH

B2,bi (λ)+2−Ω(λ)).

Proof Overview. We prove Theorem 3.1 following the standard dual system
methodology. To do so, we first replace the PRF with a random function. Then,
our scheme basically follows the construction on the dual system group from
prime-order groups in [12]. Concretely, we can rewrite c2,i and k2,i in the chal-
lenge ciphertext and secret keys as

c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)As]1,

k2,i := [ki + (yiWψ(i),0 + Wψ(i),1)Brπ(i)]1 if t(i) = 1,

k2,i :=

(

[−ki + Wψ(i),0Brπ(i)]1,
[yiki + Wψ(i),1Brπ(i)]1

)

if t(i) = 0,

where Wi,b ∈ Z
(k+1)×(k+1)
p . Next, we change the challenge ciphertext into a

semi-functional form, where As is replaced with a vector c ← Z
k+1
p . That is, the

elements in a ciphertext are

c1 = [c]2, c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)c]1, c3 = [c�k]T M.
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The indistinguishability directly follows from the Dk-MDDH assumption. After
that, we gradually change the secret keys into a semi-functional form, where ki

is a share of secret k+μa∗
1 instead of k for μ ← Zp. To prove each indistinguisha-

bility, we utilize the KW technique [21]. In the final hybrid, we can argue that
c�k in the challenge ciphertext is statistically close to a uniform randomness.

Proof. We consider a series of hybrids H0, H1, H2, and H3,ι for i ∈ {0, . . . , qsk},
where H0 is the real game and H3,qsk is the final game. In the following, we denote
the event β = β′ in hybrid H by 〈A,H〉win, where β is a random bit chosen by
the challenger, and β′ is the output of A. Note that we have

|Pr[〈A,H0〉win] − 1/2| = AdvABEA (λ). (1)

H1. We define H1 as the same as H0 except replacing PRF FK in KeyGen with
a random function R : {0, 1}∗ → Z

k+1
p × Z

k+1
p . From the definition of PRFs, we

have

|Pr[〈A,H0〉win] − Pr[〈A,H1〉win]| ≤ AdvPRFB (λ). (2)

H2. Next, we define H2. We change the behavior of random oracle H and ran-
dom function R. Consider another random oracle H ′ : {0, 1}∗ → Z

(k+1)×(k+1)
p ×

Z
(k+1)×(k+1)
p that only the challenger can access. We denote the first and sec-

ond elements of H ′(i) by Wi,0 and Wi,1, respectively. In H2, H(i) outputs
([W�

i,0A]1, [W�
i,1A]1), and R(i) outputs (W�

i,0a1,W�
i,1a1). Then, we have

Pr[〈A,H1〉win] = Pr[〈A,H2〉win]. (3)

It is not difficult to confirm that the above equality holds because A = (A||a1)
is a regular matrix, and thus W�

i,bA is randomly distributed in Z
(k+1)×(k+1)
p

for A. By this conceptual change, we can rewrite c2,i and k2,i in the challenge
ciphertext and secret keys as follows:

c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)As]1,

k2,i := [ki + (yiWψ(i),0 + Wψ(i),1)Brπ(i)]1 if t(i) = 1,

k2,i :=

(

[−ki + Wψ(i),0Brπ(i)]1,
[yiki + Wψ(i),1Brπ(i)]1

)

if t(i) = 0

In the above, we use the relations A∗A� + a∗
1a

�
1 = Ik+1.

H3,ι. To describe H3,ι, we define some distributions on ciphertexts and secret
keys as follows. Concretely, we define two types of ciphertexts and secret keys,
namely, normal and semi-functional. A normal ciphertext is one generated as in
H2. That is,

c1 = [As]2, c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)As]1, c3 = [s�A�k]T M.
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A semi-functional ciphertext is the same as the normal one except that As is
replaced with c ← Z

k+1
p . That is,

c1 = [c]2, c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)c]1, c3 = [c�k]T M.

Similarly, a normal secret key is one generated as in H2. That is,

k1,j = [Brj ]2,
k2,i := [ki + (yiWψ(i),0 + Wψ(i),1)Brπ(i)]1 if t(i) = 1,

k2,i :=

(

[−ki + Wψ(i),0Brπ(i)]1,
[yiki + Wψ(i),1Brπ(i)]1

)

if t(i) = 0

(4)

Especially, k1, . . . ,kn in k2,i is outputs of Share(f,k). On the other hand, in a
semi-functional secret key, k1, . . . ,kn in k2,i is outputs of Share(f,k+μa∗

1) where
μ ← Zp. Then, H3,ι is the same as H2 except that the challenge ciphertext and
the first ι keys that A is given are semi-functional.

Lemma 3.2

|Pr[〈A,H2〉win] − Pr[〈A,H3,0〉win]| ≤ AdvDk-MDDH
B,bi (λ). (5)

Proof. To show this, we describe B, which is given an instance of the Dk-MDDH
problem (G, [A]1,2, [tβ ]1,2). Let H ′ : {0, 1}∗ → Z

(k+1)×(k+1)
p × Z

(k+1)×(k+1)
p be a

random oracle simulated by B that A cannot access.

1. B generates B and k by itself.
2. B computes pk = (G, [A]2, e([A]1, [k]2)) and gives it to A.
3. For query H(i), B answers with ([W�

i,0A]1, [W�
i,1A]1), where (Wi,0,Wi,1) is

an output of H ′(i).
4. For query KeyGen(pk,msk, y), B computes sky as in Eq. (4). Note that B can

generate sk without the random function R because it does not contain terms
related to A any more.

5. For the challenge query with the attribute x∗ = (x, φ), B flip the coin δ ←
{0, 1} and generates ctx∗ as

c1 = [tβ ]2, c2,i = [(xiW�
φ(i),0 + W�

φ(i),1)tβ ]1, c3 = e([tβ ]1, [k]2)Mδ.

6. B outputs true(δ = δ′), where δ′ is an output of A.

The case β = 0 corresponds to H2 and the case β = 1 corresponds to H3,0. ��
In the next lemma, we prove the indistinguishability between H3,ι−1 and

H3,ι. That is, all PPT adversaries cannot distinguish whether the ι-th secret key
is normal or semi-functional. To prove this one-secret-key indistinguishability,
we introduce core 1-ABE game G1-ABE

β where β ∈ {0, 1} such that G1-ABE
0 and

G1-ABE
1 are computationally indistinguishable. Roughly speaking, the core 1-

ABE game is designed so that we can construct a distinguisher between G1-ABE
0

and G1-ABE
1 if there exists an adversary that can distinguish H3,ι−1 and H3,ι.
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It is convenient for us to parametrize the core 1-ABE game by η ∈ {1, 2}
because we also use it in the security proof of our CP-ABE scheme. We use the
game with η = 1 in the security proof of our KP-ABE scheme, and that with
η = 2 in the security proof of our CP-ABE scheme.

Definition 3.1 (Core 1-ABE). For η ∈ {1, 2} and β ∈ {0, 1}, we define
G1-ABE

η,β as Fig. 2. In G1-ABE
η,β , A can query OX and OF only once whereas A

can query OR polynomially many times. All queries can be done adaptively.
Furthermore, x ∈ X and y ∈ Y on which A queries OX and OF must satisfy
R(x, y) = 0. X and Y are defined in Definition 2.5. Note that the difference
between G1-ABE

η,0 and G1-ABE
η,1 lies in the input of Share in OF . We define the

advantage of A against G1-ABE
η,β as follows:

Adv1-ABEA,η (λ) := |Pr[〈A,G1-ABE
η,0 〉 = 1] − Pr[〈A,G1-ABE

η,1 〉 = 1]|.

We defer the proof of the indistinguishability between the two games to
Sect. 4.

Lemma 3.3. For ι ∈ [qsk], we have

|Pr[〈A,H3,ι−1〉win] − Pr[〈A,H3,ι〉win]| ≤ Adv1-ABEB,1 (λ). (6)

Proof. We consider an adversary B against G1-ABE
1,β where η = 1. We describe

B’s behavior.

1. B is given (G,A, [B]1,2, d,W) from the 1-ABE game.
2. B sets k := Wd and gives pk = (G, [A]2, [A�k]T ) to A.
3. For query H(i), B makes a query OR(i) and answers with ([W�

i,0A]1,
[W�

i,1A]1).
4. For the challenge query with an attribute x∗, B flips the coin δ ← {0, 1}.

Then, B obtains (A0, {Ai}i∈[m]) as the reply of OX(x∗). B returns ctx∗ as

ctx∗ :=
(

[A0]2, {[Ai]1}i∈[m], [A�
0 k]T Mδ

)

.

5. For the �-th query KeyGen(pk,msk, y), where � < ι and y = (y, f, ψ, t), B
computes sky as in Eq. (4) by setting k1, . . . ,kn ← Share(f,k + μa∗

1) with a
fresh randomness μ ← Zp.

6. For the �-th query KeyGen(pk,msk, y), where � = ι and y = (y, f, ψ, t), B
obtains (P0, {Pi}i∈[n]) as the reply of OF (y). Then, B returns sky as

sky := (P0, {Pi}i∈[n]).

7. For the �-th query KeyGen(pk,msk, y), where � > ι and y = (y, f, ψ, t), B
computes sky as in Eq. (4) by setting k1, . . . ,kn ← Share(f,k).

8. B outputs true(δ = δ′), where δ′ is an output of A.
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G1-ABE
η,β

G ← GBG(1λ), μ′ ← Zp, A ← Dk, B ← Z
(k+η)×(k+η)
p

d ← Z
k+η
p , W ← Z

(k+1)×(k+η)
p , L := ∅

param :=

{
(G,A, [B]1,2,d,W) η = 1
(G,A, [B]1,2,d,W,b∗

2) η = 2
β′ ← AOX (·),OF (·),OR(·)(param)
OX(·)
Input: x = (x ∈ Z

m
p , φ) ∈ X

A0 := c ← Z
k+1
p

For i ∈ [m]:
If (φ(i), ∗, ∗) �∈ L:

Wφ(i),0,Wφ(i),1 ← Z
(k+1)×(k+η)
p

L := L ∪ (φ(i),Wφ(i),0,Wφ(i),1)
Ai := (xiW�

φ(i),0 +W�
φ(i),1)c

Output (A0, {Ai}i∈[m])
OF (·)
Input: y = (y ∈ Z

n
p , f, ψ, t) ∈ Y

k1, . . . ,kn ← Share(f,Wd), σ1, . . . , σn ← Share(f, βμ′)
π(i) := |{j | ψ(j) = ψ(i), j ≤ i}|
d := maxi∈[n] π(i)
r1, . . . , rd ← Z

k
p

vi := Bri

P0 := ([v1]2, . . . , [vd]2)
For i ∈ [n]:

If (ψ(i), ∗, ∗) �∈ L:
Wψ(i),0,Wψ(i),1 ← Z

(k+1)×(k+η)
p

L := L ∪ (ψ(i),Wψ(i),0,Wψ(i),1)
If t(i) = 1 :

Pi := [ki + σia∗
1 + (yiWψ(i),0 +Wψ(i),1)Brπ(i)]1

If t(i) = 0 :
Pi := [−(ki + σia∗

1) +Wψ(i),0Brπ(i)]1, [yi(ki + σia∗
1) +Wψ(i),1Brπ(i)]1

)
Output (P0, {Pi}i∈[n])
OR(·)
Input: i ∈ {0, 1}∗

If (i, ∗, ∗) �∈ L:
Wi,0,Wi,1 ← Z

(k+1)×(k+η)
p , L := L ∪ (i,Wi,0,Wi,1)

Output ([W�
i,0A]1, [W�

i,1A]1, [Wi,0B]1, [Wi,1B]1)

Fig. 2. Core 1-ABE game.

From Lemma 3.1, the term ki +σia∗
1 in the reply of OF is identically distributed

with the i-th output of Share(k+βμa∗
1). Thus, if the oracles are those in G1-ABE

1,0 ,
A’s view corresponds to H3,ι−1, and otherwise, it corresponds to H3,ι. ��

Lemma 3.4

|Pr[〈A,H3,qsk〉win] − 1/2| ≤ 2−Ω(λ). (7)
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Proof. Because (A∗||a∗
1) forms a basis, redefining k as k := A∗z + za∗

1 where
z ← Z

k
p and z ← Zp does not change its distribution. Recall that the information

on k that A obtains throughout the game is A�k in pk, Share(f,k+μa∗
1) in sky,

and c�k in ctx∗ . However, A�k does not contain the information on z because
A�a∗

1 = 0. Similarly, each k + μa∗
1 also does not contain the information on z

because it is masked by fresh randomness μ. Thus, zc�a∗
1 is randomly distributed

in Zp for A, and so is c�k, unless c�a∗
1 = 0. Since c is randomly chosen from

Z
k+1
p , c�a∗

1 = 0 with a probability 2−Ω(λ). If it is not the case, ctx∗ does not
have information on β, and the lemma holds. ��

Thanks to Eqs. (1) to (3) and (5) to (7) and Lemma 4.1, Theorem 3.1 holds. ��
4 Adaptive Security for Core Component

In this section, we prove the indistinguishability between G1-ABE
η,0 and G1-ABE

η,1

defined in Definition 3.1. This is formally stated in the following lemma.

Lemma 4.1 (Core 1-ABE Security). Let B be the maximum depth of for-
mula f for all choice of f by A. For any PPT adversary A and η ∈ {1, 2}, there
exists a PPT algorithm B such that

Adv1-ABEA,η (λ) ≤ 29B+2(AdvDk-MDDH
B,bi (λ) + 2−Ω(λ)).

Proof. We prove Lemma 4.1 by extending the KW technique [21]. We omit the
variable η from the notation of hybrid games for conciseness, but all hybrids
are parametrized by η. Following the piecewise guessing framework, we define
a series of selective hybrids ̂Hh0 to ̂HhL , where L = 8B , and two intermediate
games G1-ABE

M0 and G1-ABE
M1 , which satisfy

– ̂G1-ABE
0 = ̂Hh0 ≈c, . . . ,≈c

̂HhL = ̂G1-ABE
M0

– G1-ABE
M0 = G1-ABE

M1 .

Let z := (x, y) ∈ {0, 1}R on which A queries OX and OF , respectively. Let b ∈
{0, 1}n be a string computed from z following Definition 2.5. Note that f(b) = 0
because the game imposes the condition R(x, y) = 0 on A. Let R be the pebbling
record generated as R = (r1, . . . , rL) = PebRec(f, b) as defined in Lemma 2.2.
Then, we define hι : {0, 1}R → {0, 1}3B as hι(z) := rι. Note that h0 and hL

are constant functions because they specify the pebbling configurations where
no pebbles on it and a pebble is placed on only the output gate, respectively.

The hybrids and intermediate games only differ in the Share algorithm in OF

as follows. That is, ̂Hhι is the same as ̂G1-ABE
0 except that Share(f, 0) is replaced

with S̃hare(f, 0, hι(z)), which is described in Fig. 3. G1-ABE
M0 is the same as HhL ,

and G1-ABE
M1 is the same as G1-ABE

M0 except that S̃hare(f, 0, hL(z)) is replaced with
S̃hare(f, μ, hL(z)).

We prove that

– G1-ABE
0 ≈c G1-ABE

M0 ,
– G1-ABE

M0 = G1-ABE
M1 ,

– G1-ABE
M1 ≈c G1-ABE

1 .

First, we prove item 2, then prove item 1. We omit the proof of item 3 because
it is almost the same as that of item 1. Then, we are done.
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S̃hare(f,k, u)
Input: f = (n, w, v, G) with a depth B, k ∈ Z

�
p, and u ∈ {0, 1}3B

1. Set a vector σout := k on the output wire.
2. Interpret u as a pebbling configuration on f .
3. For each gate g with a pebble that has incoming wires a, b and an outgoing wire

c where a vector σc is set on c, choose ug,1,ug,2 ← Z
�
p and set σa := ug,1 and

σb := ug,2 on a and b, respectively.
4. For each AND gate g with no pebble that has incoming wires a, b and an outgoing

wire c where a vector σc is set on c, choose ug ← Z
�
p and set σa := σc − ug and

σb := ug on a and b, respectively.
5. For each OR gate g with no pebble that has incoming wires a, b and an outgoing

wire c where a vector σc is set on c, set σa := σc and σb := σc on a and b,
respectively.

6. For each input wire i with a pebble, replace σi with a random vector ui ← Z
k
p.

7. Output shares σ1, . . . , σn, which are set on the input wires 1, . . . , n.

Fig. 3. Description of S̃hare.

G1-ABE
M0 = G1-ABE

M1 . Recall that the difference between the two games lies in the

input of S̃hare, namely, (f, 0, hL(z)) or (f, μ, hL(z)). First, we note that u =
hL(z) is a constant that specifies the pebbling configuration on f where a pebble
is placed on only the output gate. In this case, it is not difficult to see that the
output of S̃hare is independent of the second argument of the input. This is
because the values set on the two incoming wires of the output gate are chosen
independently of σout when a pebble is placed on the output gate (see item 3 in
Fig. 3). Then, the values to be set on the rest of wires are computed based on
these values set on the incoming wires of the output gate. Thus, the output of
S̃hare is identically distributed in both games, and the claim holds.

G1-ABE
0 ≈c G1-ABE

M0 . Following Lemma 2.1, we prove the two properties:

1. G1-ABE
0 = Hh0 and HhL = G1-ABE

M0 ,
2. ̂Hhι−1

1 ≈c
̂Hhι
0 for ι ∈ [L].

where ̂Hhi

β for β ∈ {0, 1} is defined in Sect. 2.4. For item 1, the latter holds
because we defined G1-ABE

M0 in such a way. To show the former, we need to confirm
that the output of Share(f, 0) and S̃hare(f, 0, h0(z)) is identically distributed.
Recall that h0 is a constant function that specifies the pebbling configuration
where no pebbles on it. In this case, no gates correspond to item 3 or 6 in Fig. 3,
and the remaining procedures are exactly the same as Share(f, 0). Thus, the
former also holds.

The remaining thing is to prove ̂Hhι−1
1 ≈c

̂Hhι
0 . Formally, we show that, for

any PPT adversary A, there exists a PPT adversary B such that

|Pr[〈A, ̂H
hι−1
1 〉=1]− Pr[〈A, ̂Hhι

0 〉=1]|≤2AdvDk-MDDH
B,bi (λ)+2−Ω(λ).
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To show this, we additionally consider three intermediate selective hybrids ̂Hhι−1
1,1

to ̂Hhι−1
1,3 .

In the following, we denote the pebbling configuration on f that is specified
by a bit string u by C(f, u). Let u0 and u1 be the committed values by A,
which correspond to hι−1(z) and hι(z) for z chosen by A. Then, C(f, u0) and
C(f, u1) are adjacent pebbling configurations for some input b ∈ {0, 1}n for f .
In other words, there exists b such that u0 and u1 correspond to rι−1 and rι

where (r0, . . . , rL) = PebRec(f, b). Thus, C(f, u0) can be changed to C(f, u1) in
one step following the rule defined in Definition 2.8. Recall that the difference
between ̂Hhι−1

1 and ̂Hhι
0 is the input of S̃hare. That is, the input is (f, 0, u0) in

̂H
hι−1
1 and (f, 0, u1) in ̂Hhι

0 . Thus, in case of u0 = u1, ̂H
hι−1
1 and ̂Hhι

0 are clearly
identical. In the following, we consider the case of u0 �= u1.

Let an object O be either a gate g or an input wire i∗, in which the difference
between C(f, u0) and C(f, u1) lies. We consider only the case where a pebble is
placed on g or i∗, since the case where a pebble is removed is just the reverse
of the former case. Intermediate hybrids ̂Hhι−1

1,1 to ̂Hhι−1
1,3 are different from ̂Hhι−1

1

only in OF as shown in Fig. 4. That is, when O is a gate, ̂Hhι−1
1,1 to ̂Hhι−1

1,3 are the
same as ̂Hhι−1

1 . When O is an input wire, these hybrids are defined as follows:

– ̂Hhι−1
1,1 is the same as ̂Hhι−1

1 except that vπ(i∗) ← span(B, b1),
– ̂Hhι−1

1,2 is the same as ̂Hhι−1
1,1 except that random value u is added to σi∗ ,

– ̂Hhι−1
1,3 is the same as ̂Hhι−1

1,2 except that vπ(i∗) := Brπ(i∗) for rπ(i∗) ← Z
k
p.

Thanks to Lemmas 4.2 to 4.5 and observations so far, Lemma 4.1 holds. ��

Lemma 4.2. |Pr[〈A, ̂H
hι−1
1 〉 = 1] − Pr[〈A, ̂H

hι−1
1,1 〉 = 1]| ≤ AdvDk-MDDH

B,bi (λ).

Lemma 4.3. |Pr[〈A, ̂H
hι−1
1,1 〉 = 1] − Pr[〈A, ̂H

hι−1
1,2 〉 = 1] ≤ 2−Ω(λ).

Lemma 4.4. |Pr[〈A, ̂H
hι−1
1,2 〉 = 1] − Pr[〈A, ̂H

hι−1
1,3 〉 = 1]| ≤ AdvDk-MDDH

B,bi (λ).

Lemma 4.5. Pr[〈A, ̂H
hι−1
1,3 〉 = 1] = Pr[〈A, ̂Hhι

0 〉 = 1].

We present the proof of Lemmas 4.2, 4.3 and 4.5 in the full version. We omit
the proof of Lemma 4.4 because the proof of this lemma is almost the same as
that of Lemma 4.2.

5 Implementation and Evaluation

We implement our KP-ABE and CP-ABE schemes and measure the benchmarks
of our schemes on an ordinary personal computer (PC) and two smartphones,
Apple iPhone XR and Google Pixel 3. The details of our implementation are
described in the full version.



28 J. Tomida et al.

H
hι−1
1 , H

hι−1
1,1 , H

hι−1
1,2 , H

hι−1
1,3

OF (·)
Input: y = (y ∈ Z

n
p , f, ψ, t) ∈ Y

k1, . . . ,kn ← Share(f,Wd), σ1, . . . , σn ← Share(f, 0, u0)
π(i) := |{j | ψ(j) = ψ(i), j ≤ i}|
d := maxi∈[n] π(i)
r1, . . . , rd ← Z

k
p

vi := Bri for i ∈ [d]

vi := Bri for i ∈ [d]\π(i∗), vπ(i∗) ← span(B,b1)

P0 := ([v1]2, . . . , [vd]2)
For i ∈ [n]:

If (ψ(i), ∗, ∗) L:
Wψ(i),0,Wψ(i),1 ← Z

(k+1)×(k+η)
p

L := L ∪ (ψ(i),Wψ(i),0,Wψ(i),1)
If i = i∗

u ← Zp, σi := σi + u

If t(i) = 1 :
Pi := [ki + σia∗

1 + (yiWψ(i),0 +Wψ(i),1)vπ(i)]1
If t(i) = 0 :

Pi := [−(ki + σia∗
1) +Wψ(i),0vπ(i)]1, [yi(ki + σia∗

1) +Wψ(i),1vπ(i)]1
Output (P0, {Pi}i∈[n])

Fig. 4. Description of OF in hybrids.

(a) Enc (b) KeyGen (c) Dec

Fig. 5. Benchmarks of our KP-ABE on PC.

(a) Enc (b) KeyGen (c) Dec

Fig. 6. Benchmarks of our CP-ABE on PC.
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(a) Enc (b) KeyGen (c) Dec

Fig. 7. Comparison of KP-ABE between ours and OT12 on PC.

(a) Enc (b) KeyGen (c) Dec

Fig. 8. Comparison of CP-ABE between ours and OT12 on PC.

The efficiency of KeyGen and Dec in KP-ABE (resp. Enc and Dec in CP-ABE)
is affected by formula f used in a secret key (resp. a ciphertext). More concretely,
in KeyGen of our KP-ABE and Enc of our CP-ABE, the numbers of exponenti-
ation in G1 and G2 increase proportionally to those of negation and multi-use,
respectively. On the other hand, the number of hashing decreases proportionally
to that of multi-use. In Dec, the numbers of exponentiation and pairings increase
proportionally to the numbers of negation and multi-use, respectively.

To clarify the effects of these factors, we consider the four types of formulae.

1. no negations and multi-uses (no neg. & no mult.):
i.e., (Label-1:v1 AND Label-2:v2 AND . . . ),

2. all negations and no multi-uses (all neg. & no mult.):
i.e., (Label-1:NOT v1 AND Label-2:NOT v2 AND . . . ),

3. no negations and all multi-uses (no neg. & all mult.):
i.e., (Label-1:v1 AND Label-1:v1 AND . . . ),

4. all negations and multi-uses (all neg. & all mult.):
i.e., (Label-1:NOT v1 AND Label-1:NOT v2 AND . . . ).

We present the benchmarks on the PC in Figs. 5 and 6 and smartphones
in the full version. The figures show the benchmarks with respect to a formula
or attribute set with 1, 10, 20, . . . , 100 attributes for each case listed above. Enc
in KP-ABE and KeyGen in CP-ABE are not affected by the types of formula,
and we measure the benchmark for encryption/key generation with attributes
Label-1:v1, . . . , Label-n:vn.

In all cases, our KP-ABE (resp. CP-ABE) scheme takes about 0.4 to 0.7s
(resp. 0.4 to 0.9s) for encryption and key generation on the PC to handle 100
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attributes. Our schemes allow very fast decryption for a monotone formula with-
out multi-use (item 1), and they take only about 0.02s (KP & CP) for a formula
with 100 attributes. We can assume that our schemes allow similarly fast decryp-
tion also for a formula in which the ratio of negation and multi-use is small. Even
in the slowest case (item 4), it takes about 0.5 (KP) or 0.7s (CP) for decryption.

Because of small computational resource compared with the PC, the smart-
phones take more time for each algorithm. The benchmarks show that running
times on iPhone XR are relatively close to those on the PC, and they are approx-
imately 1.5 times slower. Google Pixel 3 takes further more time and its running
times are 3 to 3.5 times as slow as those on the PC.

Effects of Negation and Multi-use. The benchmarks for KeyGen in KP-ABE
and Enc in CP-ABE show that both negation and multi-use slow the running
time down. It is reasonable that negation slows the running time down because
it increases the number of exponentiation in G1. In contrast, multi-use decreases
the number of hashing to G1 whereas it increases that of exponentiation in G2.
The benchmarks show that the former effect is smaller than the latter in our
implementation. However, multi-use can shorten the running time in a platform
where exponentiation in G2 is more efficient or hashing to G1 is less efficient.

In Dec, both negation and multi-use extend the running time, and the effect
of multi-use is larger. This is since the number of negation affects that of expo-
nentiation in G1 while the number of multi-use affects that of heavier pairings.

Comparison with OT12. We also implement KP and CP schemes by Okamoto
and Takashima in [27] (OT12), which are the only schemes that support OT
negation and unboundedness, and thus whose functionalities are the closest to
our schemes among known ABE schemes. The comparison between our schemes
and OT12 on PC is presented in Figs. 7 and 8, which shows that our schemes
achieve significant speedups in every algorithm. We compare them in the one-use
restriction of labels (no multi-use), which corresponds to item 1 and item 2 in
the four cases, since OT12 does not support multi-use of labels. Hence, the blue
and gray lines in Fig. 5 are the same as those in Fig. 7 up to scale (similarly in
Figs. 6 and 8). In contrast to our schemes, negation hardly affects the efficiency
in OT12. Note that although we can utilize a bounded number of multi-use of
labels by preparing multiple nominal labels for each single label in OT12, this
significantly affects the efficiency. For example, when we set the bound as 10,
this slows down Enc in KP-ABE or KeyGen in CP-ABE by 10 times.

CCA Security. In practice, the chosen ciphertext attack (CCA) security is
a de facto standard and desirable security requirement. The Fujisaki-Okamoto
conversion [15] is not suitable for our case because it requires the decryption
algorithm to run the encryption algorithm, which causes a significant efficiency
loss. However, our schemes can be efficiently converted to CCA secure ones via
Boneh-Katz conversion [10] in a similar manner to [26].
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