
Second Competition on Software Testing:
Test-Comp 2020

Dirk Beyer

LMU Munich, Germany

Abstract. This report describes the 2020 Competition on Software
Testing (Test-Comp), the 2nd edition of a series of comparative evaluations
of fully automatic software test-case generators for C programs. The
competition provides a snapshot of the current state of the art in the area,
and has a strong focus on replicability of its results. The competition
was based on 3 230 test tasks for C programs. Each test task consisted
of a program and a test specification (error coverage, branch coverage).
Test-Comp 2020 had 10 participating test-generation systems.

Keywords: Software Testing · Test-Case Generation · Competition ·
Software Analysis · Software Validation · Test Validation · Test-Comp ·
Benchmarking · Test Coverage · Bug Finding · BenchExec · TestCov

1 Introduction

Software testing is as old as software development itself, because the most straight-
forward way to find out if the software works is to execute it. In the last few
decades the tremendous breakthrough of fuzzers 1, theorem provers [40], and
satisfiability-modulo-theory (SMT) solvers [21] have led to the development of
efficient tools for automatic test-case generation. For example, symbolic execution
and the idea to use it for test-case generation [33] exists for more than 40 years,
yet, efficient implementations (e.g., Klee [16]) had to wait for the availability of
mature constraint solvers. Also, with the advent of automatic software model
checking, the opportunity to extract test cases from counterexamples arose (see
Blast [9] and JPF [41]). In the following years, many techniques from the areas
of model checking and program analysis were adapted for the purpose of test-case
generation and several strong hybrid combinations have been developed [24].

There are several powerful software test generators available [24], but they
were difficult to compare. For example, a recent study [11] first had to develop a
framework that supports to run test-generation tools on the same program source
code and to deliver test cases in a common format for validation. Furthermore,
there was no widely distributed benchmark suite available and neither input pro-
grams nor output test suites followed a standard format. In software verification,
the competition SV-COMP [3] helped to overcome the problem: the competition
community developed standards for defining nondeterministic functions and a
1 http://lcamtuf.coredump.cx/afl/

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 505–519, 2020.
https://doi.org/10.1007/978-3-030-45234-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_25&domain=pdf
https://orcid.org/0000-0003-4832-7662
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1007/978-3-030-45234-6_25

506 D. Beyer

language to write specifications (so far for C and Java programs) and established
a standard exchange format for the output (witnesses). A competition event with
high visibility can foster the transfer of theoretical and conceptual advancements
in the area of software testing into practical tools.

The annual Competition on Software Testing (Test-Comp) [4, 5] 2 is the
showcase of the state of the art in the area, in particular, of the effectiveness
and efficiency that is currently achieved by tool implementations of the most
recent ideas, concepts, and algorithms for fully automatic test-case generation.
Test-Comp uses the benchmarking framework BenchExec [12], which is already
successfully used in other competitions, most prominently, all competitions that
run on the StarExec infrastructure [39]. Similar to SV-COMP, the test generators
in Test-Comp are applied to programs in a fully automatic way. The results are
collected via BenchExec’s XML results format, and transformed into tables and
plots in several formats.3 All results are available in artifacts at Zenodo (Table 3).

Competition Goals. In summary, the goals of Test-Comp are the following:

• Establish standards for software test generation. This means, most promi-
nently, to develop a standard for marking input values in programs, define
an exchange format for test suites, and agree on a specification language for
test-coverage criteria, and define how to validate the resulting test suites.

• Establish a set of benchmarks for software testing in the community. This
means to create and maintain a set of programs together with coverage
criteria, and to make those publicly available for researchers to be used in
performance comparisons when evaluating a new technique.

• Provide an overview of available tools for test-case generation and a snapshot
of the state-of-the-art in software testing to the community. This means to
compare, independently from particular paper projects and specific techniques,
different test-generation tools in terms of effectiveness and performance.

• Increase the visibility and credits that tool developers receive. This means
to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the students the opportunity to publish about the
development work that they have done.

• Educate PhD students and other participants on how to set up performance
experiments, packaging tools in a way that supports replication, and how to
perform robust and accurate research experiments.

• Provide resources to development teams that do not have sufficient computing
resources and give them the opportunity to obtain results from experiments
on large benchmark sets.

Related Competitions. In other areas, there are several established competi-
tions. For example, there are three competitions in the area of software verification:
(i) a competition on automatic verifiers under controlled resources (SV-COMP [3]),
(ii) a competition on verifiers with arbitrary environments (RERS [27]), and
(iii) a competition on interactive verification (VerifyThis [28]). An overview of

2 https://test-comp.sosy-lab.org
3 https://test-comp.sosy-lab.org/2020/results/

https://test-comp.sosy-lab.org
https://test-comp.sosy-lab.org/2020/results/

Second Competition on Software Testing: Test-Comp 2020 507

16 competitions in the area of formal methods was presented at the TOOLympics
events at the conference TACAS in 2019 [1]. In software testing, there are several
competition-like events, for example, the DARPA Cyber Grand Challenge [38] 4,
the IEEE International Contest on Software Testing 5, the Software Testing
World Cup 6, and the Israel Software Testing World Cup 7. Those contests are
organized as on-site events, where teams of people interact with certain testing
platforms in order to achieve a certain coverage of the software under test. There
are two competitions for automatic and off-site testing: Rode0day 8 is a com-
petition that is meant as a continuously running evaluation on bug-finding in
binaries (currently Grep and SQLite). The unit-testing tool competition [32] 9 is
part of the SBST workshop and compares tools for unit-test generation on Java
programs. There was no comparative evaluation of automatic test-generation
tools for whole C programs in source-code, in a controlled environment, and
Test-Comp was founded to close this gap [4]. The results of the first edition
of Test-Comp were presented as part of the TOOLympics 2019 event [1] and
in the Test-Comp 2019 competition report [5].

2 Definitions, Formats, and Rules

Organizational aspects such as the classification (automatic, off-site, reproducible,
jury, traning) and the competition schedule is given in the initial competi-
tion definition [4]. In the following we repeat some important definitions that
are necessary to understand the results.

Test Task. A test task is a pair of an input program (program under test) and
a test specification. A test run is a non-interactive execution of a test generator
on a single test task, in order to generate a test suite according to the test
specification. A test suite is a sequence of test cases, given as a directory of
files according to the format for exchangeable test-suites.10

Execution of a Test Generator. Figure 1 illustrates the process of executing
one test generator on the benchmark suite. One test run for a test generator gets as
input (i) a program from the benchmark suite and (ii) a test specification (find bug,
or coverage criterion), and returns as output a test suite (i.e., a set of test cases).
The test generator is contributed by a competition participant. The test runs are
executed centrally by the competition organizer. The test validator takes as input
the test suite from the test generator and validates it by executing the program
on all test cases: for bug finding it checks if the bug is exposed and for coverage
it reports the coverage. We use the tool TestCov [14] 11 as test-suite validator.
4 https://www.darpa.mil/program/cyber-grand-challenge/
5 http://paris.utdallas.edu/qrs18/contest.html
6 http://www.softwaretestingworldcup.com/
7 https://www.inflectra.com/Company/Article/480.aspx
8 https://rode0day.mit.edu/
9 https://sbst19.github.io/tools/

10 https://gitlab.com/sosy-lab/software/test-format/
11 https://gitlab.com/sosy-lab/software/test-suite-validator

https://www.darpa.mil/program/cyber-grand-challenge/
http://paris.utdallas.edu/qrs18/contest.html
http://www.softwaretestingworldcup.com/
https://www.inflectra.com/Company/Article/480.aspx
https://rode0day.mit.edu/
https://sbst19.github.io/tools/
https://gitlab.com/sosy-lab/software/test-format/
https://gitlab.com/sosy-lab/software/test-suite-validator

508 D. Beyer

Test
Generator

Program
under Test

Test
Specification

Test Suite
(Test Cases)

Test
Validator

Bug
Report

Coverage
Statistics

Fig. 1: Flow of the Test-Comp execution for one test generator

Table 1: Coverage specifications used in Test-Comp 2020 (same as in 2019)
Formula Interpretation

COVER EDGES(@CALL(__VERIFIER_error)) The test suite contains at least one test
that executes function __VERIFIER_error.

COVER EDGES(@DECISIONEDGE) The test suite contains tests such that
all branches of the program are executed.

Test Specification. The specification for testing a program is given to the
test generator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp 2020).

The definition init(main()) is used to define the initial states of
the program under test by a call of function main (with no parame-
ters). The definition FQL(f) specifies that coverage definition f should
be achieved. The FQL (FShell query language [26]) coverage definition
COVER EDGES(@DECISIONEDGE) means that all branches should be covered,
COVER EDGES(@BASICBLOCKENTRY) means that all statements should be cov-
ered, and COVER EDGES(@CALL(__VERIFIER_error)) means that calls to func-
tion __VERIFIER_error should be covered. A complete specification looks like:
COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE))).

Table 1 lists the two FQL formulas that are used in test specifications of
Test-Comp 2020; there was no change from 2019. The first describes a formula
that is typically used for bug finding: the test generator should find a test case
that executes a certain error function. The second describes a formula that is
used to obtain a standard test suite for quality assurance: the test generator
should find a test suite for branch coverage.

License and Qualification. The license of each participating test generator
must allow its free use for replication of the competition experiments. Details on
qualification criteria can be found in the competition report of Test-Comp 2019 [5].

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp20/c/properties/coverage-error-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp20/c/properties/coverage-branches.prp

Second Competition on Software Testing: Test-Comp 2020 509

3 Categories and Scoring Schema

Benchmark Programs. The input programs were taken from the largest and
most diverse open-source repository of software verification tasks 12, which is
also used by SV-COMP [3]. As in 2019, we selected all programs for which the
following properties were satisfied (see issue on GitHub 13 and report [5]):

1. compiles with gcc, if a harness for the special methods 14 is provided,
2. should contain at least one call to a nondeterministic function,
3. does not rely on nondeterministic pointers,
4. does not have expected result ‘false’ for property ‘termination’, and
5. has expected result ‘false’ for property ‘unreach-call’ (only for category Error

Coverage).

This selection yielded a total of 3 230 test tasks, namely 699 test tasks for category
Error Coverage and 2 531 test tasks for category Code Coverage. The test tasks
are partitioned into categories, which are listed in Tables 6 and 7 and described in
detail on the competition web site.15 Figure 2 illustrates the category composition.

Category Error-Coverage. The first category is to show the abilities to dis-
cover bugs. The programs in the benchmark set contain programs that contain a
bug. Every run will be started by a batch script, which produces for every tool
and every test task (a C program together with the test specification) one of
the following scores: 1 point, if the validator succeeds in executing the program
under test on a generated test case that explores the bug (i.e., the specified
function was called), and 0 points, otherwise.

Category Branch-Coverage. The second category is to cover as many branches
of the program as possible. The coverage criterion was chosen because many
test-generation tools support this standard criterion by default. Other coverage
criteria can be reduced to branch coverage by transformation [25]. Every run will
be started by a batch script, which produces for every tool and every test task
(a C program together with the test specification) the coverage of branches of
the program (as reported by TestCov [14]; a value between 0 and 1) that are
executed for the generated test cases. The score is the returned coverage.

Ranking. The ranking was decided based on the sum of points (normalized for
meta categories). In case of a tie, the ranking was decided based on the run time,
which is the total CPU time over all test tasks. Opt-out from categories was
possible and scores for categories were normalized based on the number of tasks
per category (see competition report of SV-COMP 2013 [2], page 597).

12 https://github.com/sosy-lab/sv-benchmarks
13 https://github.com/sosy-lab/sv-benchmarks/pull/774
14 https://test-comp.sosy-lab.org/2020/rules.php
15 https://test-comp.sosy-lab.org/2020/benchmarks.php

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/pull/774
https://test-comp.sosy-lab.org/2020/rules.php
https://test-comp.sosy-lab.org/2020/benchmarks.php

510 D. Beyer

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

Recursive

Sequentialized

Cover-Error

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

Recursive

Sequentialized

BusyBox

DeviceDriversLinux64

SQLite

MainHeap

Cover-Branches

C-Overall

Fig. 2: Category structure for Test-Comp 2020

Second Competition on Software Testing: Test-Comp 2020 511

(a) Test-Generation Tasks

(e) Test-Generation Run

(b) Benchmark Definitions (c) Tool-Info Modules (d) Tester Archives

(f) Test Suite

Fig. 3: Test-Comp components and the execution flow

Table 2: Publicly available components for replicating Test-Comp 2020

Component Fig. 3 Repository Version

Test-Generation Tasks (a) github.com/sosy-lab/sv-benchmarks testcomp20
Benchmark Definitions (b) gitlab.com/sosy-lab/test-comp/bench-defs testcomp20
Tool-Info Modules (c) github.com/sosy-lab/benchexec 2.5.1
Tester Archives (d) gitlab.com/sosy-lab/test-comp/archives-2020 testcomp20
Benchmarking (e) github.com/sosy-lab/benchexec 2.5.1
Test-Suite Format (f) gitlab.com/sosy-lab/software/test-format testcomp20

4 Reproducibility

In order to support independent replication of the Test-Comp experiments,
we made all major components that are used for the competition available in
public version repositories. An overview of the components that contribute to
the reproducible setup of Test-Comp is provided in Fig. 3, and the details are
given in Table 2. We refer to the report of Test-Comp 2019 [5] for a thorough
description of all components of the Test-Comp organization and how we ensure
that all parts are publicly available for maximal replicability.

In order to guarantee long-term availability and immutability of the test-
generation tasks, the produced competition results, and the produced test suites,
we also packaged the material and published it at Zenodo. The DOIs and
references are listed in Table 3. The archive for the competition results includes
the raw results in BenchExec’s XML exchange format, the log output of the test
generators and validator, and a mapping from files names to SHA-256 hashes.
The hashes of the files are useful for validating the exact contents of a file, and
accessing the files inside the archive that contains the test suites.

To provide transparent access to the exact versions of the test generators that
were used in the competition, all tester archives are stored in a public Git reposi-
tory. GitLab was used to host the repository for the tester archives due to its gen-
erous repository size limit of 10GB. The final size of the Git repository is 1.47GB.

https://github.com/sosy-lab/sv-benchmarks/tree/testcomp20/c
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/master/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/2.5.1/benchexec/tools
https://gitlab.com/sosy-lab/test-comp/archives-2020/tree/testcomp20/2020
https://github.com/sosy-lab/benchexec/tree/2.5.1
https://gitlab.com/sosy-lab/software/test-format

512 D. Beyer

Table 3: Artifacts published for Test-Comp 2020

Content DOI Reference

Test-Generation Tasks 10.5281/zenodo.3678250 [7]
Competition Results 10.5281/zenodo.3678264 [6]
Test Suites (Witnesses) 10.5281/zenodo.3678275 [8]

Table 4: Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation

CoVeriTest [10, 31] Marie-Christine Jakobs TU Darmstadt, Germany
Esbmc [22, 23] Lucas Cordeiro U. of Manchester, UK
HybridTiger [15, 37] Sebastian Ruland TU Darmstadt, Germany
Klee [17] Martin Nowack Imperial College London, UK
Legion [36] Gidon Ernst LMU Munich, Germany
LibKluzzer [34] Hoang M. Le U. of Bremen, Germany
PRTest [35] Thomas Lemberger LMU Munich, Germany
Symbiotic [18, 19] Marek Chalupa Masaryk U., Czechia
TracerX [29, 30] Joxan Jaffar Nat. U. of Singapore, Singapore
VeriFuzz [20] Raveendra Kumar M. Tata Consultancy Services, India

5 Results and Discussion

For the second time, the competition experiments represent the state of the
art in fully automatic test-generation for whole C programs. The report helps
in understanding the improvements compared to last year, in terms of effec-
tiveness (test coverage, as accumulated in the score) and efficiency (resource
consumption in terms of CPU time). All results mentioned in this article were
inspected and approved by the participants.

Participating Test Generators. Table 4 provides an overview of the participat-
ing test-generation systems and references to publications, as well as the team rep-
resentatives of the jury of Test-Comp 2020. (The competition jury consists of the
chair and one member of each participating team.) Table 5 lists the features and
technologies that are used in the test-generation tools. An online table with infor-
mation about all participating systems is provided on the competition web site.16

Computing Resources. The computing environment and the resource limits
were mainly the same as for Test-Comp 2019 [5]: Each test run was limited to
8 processing units (cores), 15GB of memory, and 15min of CPU time. The test-
suite validation was limited to 2 processing units, 7GB of memory, and 5 h of CPU
time (was 3 h for Test-Comp 2019). The machines for running the experiments are
part of a compute cluster that consists of 168 machines; each test-generation run
was executed on an otherwise completely unloaded, dedicated machine, in order
16 https://sv-comp.sosy-lab.org/2020/systems.php

https://doi.org/10.5281/zenodo.3678250
https://doi.org/10.5281/zenodo.3678264
https://doi.org/10.5281/zenodo.3678275
https://sv-comp.sosy-lab.org/2020/systems.php

Second Competition on Software Testing: Test-Comp 2020 513

Table 5: Technologies and features that the competition candidates offer

Participant B
ou

n
d
ed

M
od

el
C
h
ec
ki
n
g

C
E
G
A
R

E
vo

lu
ti
on

ar
y
A
lg
or
it
h
m
s

E
xp

li
ci
t-
V
al
u
e
A
n
al
ys
is

F
lo
at
in
g-
P
oi
nt

A
ri
th
m
et
ic
s

G
u
id
an

ce
by

C
ov
er
ag
e
M
ea
su
re
s

P
re
d
ic
at
e
A
b
st
ra
ct
io
n

R
an

d
om

E
xe
cu

ti
on

S
ym

b
ol
ic

E
xe
cu

ti
on

T
ar
ge
te
d
In
p
u
t
G
en

er
at
io
n

CoVeriTest 3 3 3 3

Esbmc 3 3

HybridTiger 3 3 3 3

Klee 3 3

Legion 3 3 3 3

LibKluzzer 3 3 3

PRTest 3

Symbiotic 3 3 3

TracerX 3 3 3

VeriFuzz 3 3 3 3 3

to achieve precise measurements. Each machine had one Intel Xeon E3-1230 v5
CPU, with 8 processing units each, a frequency of 3.4GHz, 33GB of RAM,
and a GNU/Linux operating system (x86_64-linux, Ubuntu 18.04 with Linux
kernel 4.15). We used BenchExec [12] to measure and control computing resources
(CPU time, memory, CPU energy) and VerifierCloud 17 to distribute, install,
run, and clean-up test-case generation runs, and to collect the results. The values
for time and energy are accumulated over all cores of the CPU. To measure the
CPU energy, we use CPU Energy Meter [13] (integrated in BenchExec [12]).
Further technical parameters of the competition machines are available in the
repository that also contains the benchmark definitions. 18

One complete test-generation execution of the competition consisted of
29 899 single test-generation runs. The total CPU time was 178 days and the
consumed energy 49.9 kWh for one complete competition run for test-generation
(without validation). Test-suite validation consisted of 29 899 single test-suite

17 https://vcloud.sosy-lab.org
18 https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp20

https://vcloud.sosy-lab.org
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp20

514 D. Beyer

Table 6: Quantitative overview over all results; empty cells mark opt-outs

Participant

C
ov

er
-E

rr
or

69
9
ta
sk
s

C
ov

er
-B

ra
n
ch

es
25
31

ta
sk
s

O
ve

ra
ll

32
30

ta
sk
s

CoVeriTest 405 1412 1836
Esbmc 506
HybridTiger 394 1351 1772
Klee 502 1342 2017
Legion 302 1257 1501
LibKluzzer 630 1597 2474
PRTest 66 545 500
Symbiotic 435 849 1548
TracerX 373 1244 1654
VeriFuzz 636 1577 2476

validation runs. The total consumed CPU time was 632 days. Each tool was
executed several times, in order to make sure no installation issues occur dur-
ing the execution. Including preruns, the infrastructure managed a total of
401 156 test-generation runs (consuming 1.8 years of CPU time) and 527 805
test-suite validation runs (consuming 6.5 years of CPU time). We did not
measure the CPU energy during preruns.

Quantitative Results. Table 6 presents the quantitative overview of all tools
and all categories. The head row mentions the category and the number of test
tasks in that category. The tools are listed in alphabetical order; every table
row lists the scores of one test generator. We indicate the top three candidates
by formatting their scores in bold face and in larger font size. An empty table
cell means that the tester opted-out from the respective main category (perhaps
participating in subcategories only, restricting the evaluation to a specific topic).
More information (including interactive tables, quantile plots for every category,
and also the raw data in XML format) is available on the competition web site 19

and in the results artifact (see Table 3). Table 7 reports the top three testers for
each category. The consumed run time (column ‘CPU Time’) is given in hours
and the consumed energy (column ‘Energy’) is given in kWh.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [12] because these visualizations make it easier to
understand the results of the comparative evaluation. The web site 19 and the
19 https://test-comp.sosy-lab.org/2020/results

https://test-comp.sosy-lab.org/2020/results

Second Competition on Software Testing: Test-Comp 2020 515

Table 7: Overview of the top-three test generators for each category (measurement
values for CPU time and energy rounded to two significant digits)

Rank Verifier Score CPU Energy
Time
(in h) (in kWh)

Cover-Error
1 VeriFuzz 636 17 .22
2 LibKluzzer 630 130 1.3
3 Esbmc 506 9.5 .11

Cover-Branches
1 LibKluzzer 1597 540 5.6
2 VeriFuzz 1577 590 7.5
3 CoVeriTest 1412 430 4.4

Overall
1 VeriFuzz 2476 610 7.7
2 LibKluzzer 2474 670 6.9
3 Klee 2017 460 5.2

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500

M
in

.
n
u
m

b
e
r

o
f

te
st

 t
a
sk

s

Cumulative score

CoVeriTest
ESBMC

HybridTiger
KLEE

Legion
LibKluzzer

PRTest
Symbiotic

Tracer-X
VeriFuzz

Fig. 4: Quantile functions for category Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by test-generation runs below a
certain number of test tasks (y-coordinate). More details were given previously [5].
A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear
scale is used for the time range between 0 s and 1 s.

516 D. Beyer

Table 8: Alternative rankings; quality is given in score points (sp), CPU time in
hours (h), energy in kilo-watt-hours (kWh), the rank measure in joule per score
point (J/sp); measurement values are rounded to 2 significant digits

Rank Verifier Quality CPU CPU Rank
Time Energy Measure

(sp) (h) (kWh) (J/sp)

Green Testers
1 Symbiotic 1 548 41 0.50 1.2
2 Legion 1 501 160 1.8 4.4
3 TracerX 1 654 310 3.8 8.3
worst 53

results artifact (Table 3) include such a plot for each category; as example, we
show the plot for category Overall (all test tasks) in Fig. 4. A total of 9 testers
(all except Esbmc) participated in category Overall, for which the quantile plot
shows the overall performance over all categories (scores for meta categories
are normalized [2]). A more detailed discussion of score-based quantile plots for
testing is provided in the previous competition report [5].

Alternative Ranking: Green Test Generation — Low Energy Con-
sumption. Since a large part of the cost of test-generation is caused by the
energy consumption, it might be important to also consider the energy efficiency
in rankings, as complement to the official Test-Comp ranking. The energy is mea-
sured using CPU Energy Meter [13], which we use as part of BenchExec [12].
Table 8 is similar to Table 7, but contains the alternative ranking category
Green Testers. Column ‘Quality’ gives the score in score points, column ‘CPU
Time’ the CPU usage in hours, column ‘CPU Energy’ the CPU usage in kWh,
column ‘Rank Measure’ uses the energy consumption per score point as rank
measure: total CPU energy

total score , with the unit J/sp.

6 Conclusion

Test-Comp 2020, the 2nd edition of the Competition on Software Testing, attracted
10 participating teams. The competition offers an overview of the state of the art in
automatic software testing for C programs. The competition does not only execute
the test generators and collect results, but also validates the achieved coverage
of the test suites, based on the latest version of the test-suite validator TestCov.
The number of test tasks was increased to 3 230 (from 2 356 in Test-Comp 2019).
As before, the jury and the organizer made sure that the competition follows the
high quality standards of the FASE conference, in particular with respect to the
important principles of fairness, community support, and transparency.

Second Competition on Software Testing: Test-Comp 2020 517

References

1. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

2. Beyer, D.: Second competition on software verification (Summary of SV-
COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_43

3. Beyer, D.: Automatic verification of C and Java programs: SV-COMP
2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

4. Beyer, D.: Competition on software testing (Test-Comp). In: Proc. TACAS (3). pp.
167–175. LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-17502-
3_11

5. Beyer, D.: First international competition on software testing (Test-Comp 2019).
Int. J. Softw. Tools Technol. Transf. (2020)

6. Beyer, D.: Results of the 2nd International Competition on Software Testing (Test-
Comp 2020). Zenodo (2020). https://doi.org/10.5281/zenodo.3678264

7. Beyer, D.: SV-Benchmarks: Benchmark set of the 2nd Intl. Competition on Software
Testing (Test-Comp 2020). Zenodo (2020). https://doi.org/10.5281/zenodo.3678250

8. Beyer, D.: Test suites from Test-Comp 2020 test-generation tools. Zenodo (2020).
https://doi.org/10.5281/zenodo.3678275

9. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

10. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389–408. LNCS 11424, Springer (2019). https://doi.org/10.1007/978-3-
030-16722-6_23

11. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking. In:
Proc. HVC. pp. 99–114. LNCS 10629, Springer (2017). https://doi.org/10.1007/978-
3-319-70389-3_7

12. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

13. Beyer, D., Wendler, P.: CPU Energy Meter: A tool for energy-aware algorithms
engineering. In: Proc. TACAS (2). LNCS 12079, Springer (2020)

14. Beyer, D., Lemberger, T.: TestCov: Robust test-suite execution and
coverage measurement. In: Proc. ASE. pp. 1074–1077. IEEE (2019).
https://doi.org/10.1109/ASE.2019.00105

15. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel, S., Beyer, D.:
Facilitating reuse in multi-goal test-suite generation for software product lines. In:
Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015). https://doi.org/10.1007/978-
3-662-46675-9_6

16. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

17. Cadar, C., Nowack, M.: Klee symbolic execution engine (competition contribution).
Int. J. Softw. Tools Technol. Transf. (2020)

https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.5281/zenodo.3678264
https://doi.org/10.5281/zenodo.3678250
https://doi.org/10.5281/zenodo.3678275
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-662-46675-9_6

518 D. Beyer

18. Chalupa, M., Vitovska, M., Jašek, T., Šimáček, M., Strejček, J.: Symbiotic 6:
Generating test-cases (competition contribution). Int. J. Softw. Tools Technol.
Transf. (2020)

19. Chalupa, M., Strejcek, J., Vitovská, M.: Joint forces for memory safety checking.
In: Proc. SPIN. pp. 115–132. Springer (2018). https://doi.org/10.1007/978-3-319-
94111-0_7

20. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program-aware
fuzzing (competition contribution). In: Proc. TACAS (3). pp. 244–249. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_22

21. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207–242
(2016)

22. Gadelha, M.R., Menezes, R., Monteiro, F.R., Cordeiro, L., Nicole, D.: Esbmc:
Scalable and precise test generation based on the floating-point theory (competition
contribution). In: Proc. FASE. LNCS 12076, Springer (2020)

23. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (Feb 2017). https://doi.org/10.1007/s10009-015-0407-9

24. Godefroid, P., Sen, K.: Combining model checking and testing. In: Handbook of
Model Checking, pp. 613–649. Springer (2018). https://doi.org/10.1007/978-3-319-
10575-8_19

25. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Software Eng. 30(1), 3–16 (2004).
https://doi.org/10.1109/TSE.2004.1265732

26. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you
specify your test suite. In: Proc. ASE. pp. 407–416. ACM (2010).
https://doi.org/10.1145/1858996.1859084

27. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu,
C.S.: Rigorous examination of reactive systems. The RERS challenges 2012
and 2013. Int. J. Softw. Tools Technol. Transfer 16(5), 457–464 (2014).
https://doi.org/10.1007/s10009-014-0337-y

28. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012: A program verification
competition. STTT 17(6), 647–657 (2015). https://doi.org/10.1007/s10009-015-
0396-8

29. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: TracerX: Dynamic symbolic exe-
cution with interpolation (competition contribution). In: Proc. FASE. LNCS 12076,
Springer (2020)

30. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Tracer: A symbolic execution
tool for verification. In: Proc. CAV. pp. 758–766. LNCS 7358, Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_61

31. Jakobs, M.C.: CoVeriTest with dynamic partitioning of the iteration time limit
(competition contribution). In: Proc. FASE. LNCS 12076, Springer (2020)

32. Kifetew, F.M., Devroey, X., Rueda, U.: Java unit-testing tool com-
petition: Seventh round. In: Proc. SBST. pp. 15–20. IEEE (2019).
https://doi.org/10.1109/SBST.2019.00014

33. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). https://doi.org/10.1145/360248.360252

34. Le, H.M.: Llvm-based hybrid fuzzing with LibKluzzer (competition contribution).
In: Proc. FASE. LNCS 12076, Springer (2020)

35. Lemberger, T.: Plain random test generation with PRTest (competition contribu-
tion). Int. J. Softw. Tools Technol. Transf. (2020)

https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1109/SBST.2019.00014
https://doi.org/10.1145/360248.360252

Second Competition on Software Testing: Test-Comp 2020 519

36. Liu, D., Ernst, G., Murray, T., Rubinstein, B.: Legion: Best-first concolic testing
(competition contribution). In: Proc. FASE. LNCS 12076, Springer (2020)

37. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking
and domination-based partitioning for efficient multi-goal test-suite generation
(competition contribution). In: Proc. FASE. LNCS 12076, Springer (2020)

38. Song, J., Alves-Foss, J.: The DARPA cyber grand challenge: A competi-
tor’s perspective, part 2. IEEE Security and Privacy 14(1), 76–81 (2016).
https://doi.org/10.1109/MSP.2016.14

39. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Proc. IJCAR, pp. 367–373. LNCS 8562, Springer (2014).
https://doi.org/10.1007/978-3-319-08587-6_28

40. Sutcliffe, G.: The CADE ATP system competition: CASC. AI Magazine 37(2),
99–101 (2016)

41. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation
with Java PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004).
https://doi.org/10.1145/1007512.1007526

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1109/MSP.2016.14
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1145/1007512.1007526
http://creativecommons.org/licenses/by/4.0/

	Second Competition on Software Testing: Test-Comp 2020
	1 Introduction
	2 Definitions, Formats, and Rules
	3 Categories and Scoring Schema
	4 Reproducibility
	5 Results and Discussion
	6 Conclusion
	References

